トラゼンタ錠 5mg

CTD 第2部 資料概要

2.6 非臨床試験の概要文及び概要表

2.6.4 薬物動態試験の概要文

日本ベーリンガーインゲルハイム株式会社

2.6.4 薬物動態試験の概要文	1
1. 要 約	4
2. 分析法	13
2.1 薬物濃度分析法	13
2.1.1 マウスの血漿および尿中のリナグリプチンおよびCD 1790の定量	13
2.1.2 ラットの血漿および尿中のリナグリプチンおよびCD 1790の定量	14
2.1.3 ウサギの血漿および尿中のリナグリプチンの定量	15
2.1.4 イヌおよびミニブタの血漿中のリナグリプチンの定量	16
2.1.5 カニクイザルの血漿中のリナグリプチンおよびCD 1790の定量	17
2.1.6 測定対象物質の安定性	18
2.2 リナグリプチンの放射性標識	19
3. 吸 収	20
3.1 In vitroにおける吸収	20
3.2 in vivoにおける吸収	20
3.2.1 単回投与後の薬物動態	20
3.2.1.1 マウス	20
3.2.1.2 ラット	20
3.2.1.3 ウサギ	21
3.2.1.4 カニクイザル	22
3.2.2 反復投与後の薬物動態	23
4. 分 布	25
4.1 血漿蛋白結合率	25

4.2 血液における分布	26
4.3 組織分布	27
4.4 胎盤への移行	33
4.5 トランスポーターの関与	33
5. 代 謝	35
5.1 In vitroにおける代謝	35
5.2 In vivoにおける代謝	35
5.3 酵素の誘導および阻害	38
6. 排 泄	40
6.1 排泄経路および排泄率	40
6.1.1 マウス	40
6.1.2 ラット	40
6.1.3 ウサギ	41
6.1.4 カニクイザル	42
6.2 乳汁移行	42
7. 薬物動態学的薬物相互作用	44
8. その他の薬物動態試験	44
9. 考察および結論	45
10. 図および表	48
11. 参考文献	50

略語および用語の定義

ABC	ATP (adenosine-triphosphate) binding cassette ATP (アデノシン三リン酸) 結合カセット)							
ADME	Absorption, Distribution, Metabolism, Excretion (吸収, 分布, 代 謝, 排泄)							
Ae	amount of analyte that is eliminated in urine (尿中排泄量)							
aMean	arithmetic mean(算術平均)							
API	active pharmaceutical ingredient (医薬品有効成分)							
AtoB	apical-to-basal(頂端膜側から基底膜側への輸送)							
AUC _{0-24h}	area under the concentration-time curve of the analyte in plasma within							
	the time interval 0 to 24 h (0 から 24 時間までの血漿中濃度-時間 曲線下面積)							
AUC _{0-96h}	area under the concentration-time curve of the analyte in plasma within							
	the time interval 0 to 96 h (0 から 96 時間までの血漿中濃度-時間 曲線下面積)							
AUC _{0-inf}	area under the plasma level-time curve from zero time to infinity(時間							
	0から無限大まで外挿した血漿中濃度-時間曲線下面積)							
$AUC_{(\tau,ss)}$	area under the concentration-time curve of the analyte in plasma within one dosing interval τ at steady state (定常状態の1投与期間 τ 内におけ る血漿中濃度一時間曲線下面積)							
BCRP	breast cancer resistance protein (乳癌耐性蛋白)							
BI 1356	linagliptin (リナグリプチン)							
BLQ	below limit of quantification (定量下限值未満)							
BtoA	basal-to-apical (基底膜側から頂端膜側への輸送)							
Cc/Cp	distribution ratio of radioactivity concentration between blood cells (Cc)							
	and plasma (Cp)(血球(Cc)と血漿(Cp)間の,放射能濃度の分							
	布比)							
CD-1	mouse strain (マウス系統)							
CD 10604	compound code of metabolite of linagliptin (リナグリプチンの代謝							
	物の化合物コード)							
CD 1790	compound code of metabolite of linagliptin (リナグリプチンの代謝 物の化合物 マード)							
CI	total clearance of the analyte in plasma after intravascular							
	administration (静脈内投与後の全身クリアランス)							
C _{max}	maximum concentration of the analyte in plasma (最高血漿中濃度)							
C _{max,ss}	maximum concentration of the analyte in plasma at steady state (定常状態での最高血漿中濃度)							
CNS	central nervous system (中枢神経系)							

CYP1A2, 2B6, 3A4	cytochrome P450 (チトクロム P450)					
DDI	drug-drug 交互作用					
DPP-4	dipeptidyl peptidase 4(ジペプチジル・ペプチダーゼ 4)					
F	絶対バイオアベイラビリティ					
f_B	bound fraction of analyte in plasma(血漿中結合分画)					
FDA	Food and Drug Administration US(米国食品医薬品局)					
GD	gestation day(妊娠期間)					
GLP	Good Laboratory Practice (医薬品の安全性試験の実施に関する基 準)					
gMean	geometric mean (幾何平均)					
h	hour (時間)					
HPLC-MS/MS	high performance liquid chromatography coupled to tandem mass spectrometry (高速液体クロマトグラフィータンデム質量分析法)					
ICH	International Conference on Harmonisation (国際ハーモナイゼー ション会議)					
IC ₅₀	concentration which achieves a 50% inhibitory effect (50%阻止濃度)					
i.d.	intraduodenal(十二指腸内)					
i.v.	intravenous (静脈内)					
K _i	dissociation constant of the enzyme-inhibitor complex for competitive inhibition (酵素-競合阻害剤複合体の解離定数)					
K _I	dissociation constant of the enzyme-inhibitor complex for mechanism-					
	based inhibition(酵素-不可逆性阻害複合体の解離定数)					
K _{inact}	Inactivation constant (不活化定数)					
K _m	Michaelis-Menten constant; equals the dissociation constant of the enzyme-substrate complex at rapid equilibrium conditions (ミカエリ スーメンテン定数;急速な平衡条件下での酵素-基質複合体の解 離定数に等しい)					
LC-MS/MS	liquid chromatography coupled to tandem mass spectrometry (液体クロマトグラフィータンデム質量分析法)					
LOQ	lower limit of quantification (定量下限)					
LLC-PK1	porcine kidney cell line(豚の腎臓上皮由来細胞株)					
MAO-B	monoamine oxidase B(モノアミンオキシダーゼ B)					
MAT	mean absorption time(平均吸収時間)					
MDR-1	multidrug resistance protein(多剤耐性蛋白,P-糖蛋白と同義)					
MRP2	multi drug resistance-associated protein(多剤耐性関連蛋白)					
MRT	mean residence time (平均滞留時間)					
MRT(disp)	mean intrinsic residence time of the analyte molecules in the body (体 内の平均固有滞留時間)					
MRT _{tot}	total mean residence time of the analyte molecules in the body (体内の					

	平均滞留時間)
m/z	mass per charge number (質量電荷比)
Ν	sample size(患者数)
NA	not applicable (該当せず)
ND	not determined (測定せず)
OAT	organic anion transporter (有機アニオントランスポーター)
OATP	organic anion transporting-polypeptide-B(有機アニオン輸送ポリペ
	プチド B)
OCT	organic cation transporter (有機カチオントランスポーター)
OCTN	new type organic cation transporter(新型有機カチオントランスポー
	ター)
P-糖蛋白	P-glycoprotein (synonymous to MDR-1) (P-糖蛋白, MDR-1 と同
	義)
РК	Pharmacokinetics(薬物動態)
p.o.	per os (oral administration) (経口投与)
SLC	solute carrier (溶質キャリア)
t _{1/2}	terminal half-life of the analyte in plasma (消失半減期)
t _{max}	time to reach C _{max} (C _{max} 到達時間)
ТК	Toxicokinetics (トキシコキネティクス)
V(_{ss})	apparent volume of distribution at steady state after intravascular
	administration(静脈内投与後の定常状態におけるみかけの分布容
	積)
WT	wildtype (野生型)

1. 要約

リナグリプチン (BI 1356)の薬物動態および代謝をマウス,ラット,ウサギおよびカニクイ ザルにおいて検討し,ヒトと比較した。これらの動物種および系統は,薬理試験および毒性試 験に用いたものと同じである。さらに,DPP-4 欠損マウスおよびラットならびにそれらに対応 する野生型の系統を用いた mechanistic study (機構解明試験)も実施した。薬物動態の評価の 範囲として,未変化体,薬物由来放射能および主要代謝物 CD1790 の血漿/血中濃度-時間プ ロファイル,アルビノ,有色,DPP-4 欠損および妊娠ラットでの全身オートラジオグラフィ, マウスおよびラットの単回および反復投与後の定量的組織内分布,リナグリプチンおよび CD 1790 の血漿蛋白結合率,排泄バランスおよび胆汁排泄も含めた ADME 試験,ならびに血漿, 尿,糞および胆汁検体を用いた *in vivo* 代謝試験を実施した。マウスおよびラットを用いた広 範な機構解明試験を実施し,DPP-4 への結合がリナグリプチンの体内動態に及ぼす影響を検討 した。

経口投与後のリナグリプチンの吸収は、検討したすべての動物種において良好であった。5 mg/kg 以上の投与量で用量依存的な経口バイオアベイラビリティが認められ、非線形薬物動態 が示された。5 mg/kg での経口バイオアベイラビリティは Wistar ラットおよびカニクイザルで 約 50%であった。ラットにおいて、消化管内の P-糖蛋白は経口バイオアベイラビリティを低 下させることが明らかとなった。代謝による初回通過効果は小さかったが、未変化体の胆汁中 への排泄による初回通過効果はかなり大きいと考えられた。リナグリプチンはひとたび吸収さ れると中枢神経系を除く組織中に広く分布するが、このことは血液-脳関門をほとんど通過し ないことを示している。肝臓および腎臓の組織内濃度が最も高く、またリナグリプチン由来放 射能の滞留時間が極めて長かった。他の様々な組織や血漿でも滞留時間は長かった。リナグリ プチンの組織内濃度は、用量比例性を下回る増加を示した。機構解明試験の結果は、リナグリ プチンが組織内に長く滞留し、また組織内濃度が非線形に上昇するのは、主に DPP-4 に対す る親和性は高いが、キャパシティ(結合できる量)が小さいことを示している。反復経口投与 後のラットでは、滞留時間は長いが組織内の累積はごく限られた量に過ぎず、4 日以内に定常 状態に到達した。In vitro では、リナグリプチンの血漿蛋白結合率は、顕著な濃度依存性を示 した。血漿中濃度が 30 nM を超えている場合の蛋白結合率は,75%から 89%の間であった。 30 nM 未満では,蛋白結合率は約 99%まで上昇した。さらに,動物およびヒトの血液中では, 血漿と血球間の分布にも、濃度依存性が認められた。これらの結果を合わせて考えれば、血漿 および組織中での DPP-4 への結合飽和がリナグリプチンの体内動態に強く影響しており,ま たラットにおいて低用量(静脈内投与で 3 mg/kg 未満)で非線形薬物動態を示す主な原因と なっている。非線形薬物動態はそれより高い濃度でも認められたが, DPP-4 には依存していな かった。これは、消化管および肝臓に存在する P-糖蛋白などのトランスポーターが飽和する 可能性も考えられ、用量依存的な経口バイオアベイラビリティが生じたと考えられる。

ヒトにおいては、リナグリプチンは CYP3A4 によって代謝される。リナグリプチンの代謝に おける他の CYP 酵素の関与は示されなかった。経口投与後、親化合物の全身曝露量の 10%を 超える曝露量で体内循環していた代謝物は、薬理学的に不活性な代謝物 CD 1790 のみであっ た。毒性試験に用いた動物種は十分な量の CD 1790 に曝露されていたことが示された。CD 1790 に加えて微量代謝物も認められたが,代謝プロファイルは動物種間で大きく異ならなかった。リナグリプチンによる肝チトクローム P450 の誘導はなかった。

リナグリプチンはヒト肝ミクロソームの CYP3A4 活性を競合的に弱く阻害した。さらに、リ ナグリプチンによる CYP3A4 の軽度から中等度の mechanism-based (不可逆的な) 阻害が認め られた。

リナグリプチンの消失は、主に非代謝性の機構によって制御されていた。リナグリプチンおよびその代謝物の胆汁中排泄は顕著であり、主な排泄経路は糞であった。ラットでは、P-糖蛋白を介した未変化体の胆汁中への能動的分泌ならびに限定的な腸肝循環が認められた。リナグリプチンの腎臓からの排泄は、薬効用量では無視できることが示された(1 mg/kg のリナグリプチンをラットに経口投与後、投与量の 1%未満)。腎排泄において認められた強い用量依存性は、血漿および組織中での DPP-4 への結合飽和に起因することが明らかとなった。

妊娠ラットおよびウサギでの試験の結果は、リナグリプチンが血液-胎盤関門を通過すること を示している。ラットおよびウサギの胚-胎児毒性試験の投与量において、胚中あるいは胎児 中には母動物の約 50%(ラット)あるいは 5%(ウサギ)までの曝露が認められた。ラットで は、リナグリプチンは乳汁中に分泌されることが示された。

薬物動態パラメータの動物種間の比較を表 1:1 に示す。有意な性差は認められなかった。また,投与量で標準化(Dose-normalize)したリナグリプチン血漿中濃度推移図を経口投与および静脈内投与後の全動物種および各動物種別に示す(図1:1 から1:6)。

総じて、リナグリプチンの薬物動態プロファイルは、動物種間で類似していた。

	動物種	マ (C	ウス D-1)	ラ: (Wi	ラット ウサギ カニクイザル Wistar) (Himalayan)		ウサギ (Himalayan)		ヮイザル	ヒト
パラメータ	性別			雄お よび 雌	雄	雌		雄	雄 および 雌	男性 および 女性
投与量	mg/kg	5	15	5	45	4	25	3	5	5mg/ 被験者
C _{max}	nM	84.3	1010	547	6830	368	8560	622	1150	11.1
t _{max} ^{c)}	h	1.00	1.00	2.25	1.25	0.67	0.50	0.5-2	0.75	1.53
AUC _{0-inf}	nM∙ h	422	3050	2610	45600	1330 ^{a)}	16300 ^{a)}	3740	4550	158 ^{d)}
MRT	h	11.0	4.99	14.3	5.51	33.9	9.98	28.9	17.4	131
t _{1/2}	h	23.6	18.7	35.9	12.2	41.3	59.0	46.7	41.4	131
MAT	h	NC	NC	11.9	3.11	NC ^{e)}	NC ^{e)}	21.0	NC	NC
F	%	18.4 ^{b)}	44.4 ^{b)}	54.8	NC	NC ^{e)}	NC ^{e)}	68.8	41.0 (50.1 ^g)	30 ^{f)}

表 1: 1	リナグリプチン単回経口投与後の血漿中未変化体濃度から算出した薬物
	動態パラメータ平均値の動物種間比較

NC=算出せず、動物については算術平均、ヒトのデータについては幾何平均

a) AUC_{0-96h}, b) 異なる試験および同じ動物種の異なる系を用いて算出, c) 中央値, d) 定常状態における AUC_{0-24h}, e) 経口投与試験のみ実施, f) モデルを用いて算出 [CTD 5.3.1.1-2], g) リナグリプチンの尿中排 泄から算出

要約すると、本薬物動態試験概要に記載された動物試験から、2型糖尿病治療薬としてリナグ リプチンがヒトへの1日1回投与に適切な薬物動態特性を有すると考えられる。

図 1:1
 投与量で標準化(Dose-normalize)した全動物種の経口投与後リナグリプ
 チン血漿中濃度推移図

図 1:3
 投与量で標準化(Dose-normalize)したウサギ(上図)およびカニクイザ
 ル(下図)の経口投与後リナグリプチン血漿中濃度推移図

 図 1:4
 投与量で標準化(Dose-normalize)した全動物種の静脈内投与後リナグリ プチン血漿中濃度推移図

Dose-normalized plasma levels of linagliptin in female C57BL6 mice (WT and DPP-4 ko) after intravenous (bolus) administration

Dose-normalized plasma levels of linagliptin in Wistar and Fisher (WT and DPP-4 deficient) after intravenous (bolus) administration

図 1:5
 投与量で標準化(Dose-normalize)したマウス(上図)およびラット(下
 図)の静脈内投与後リナグリプチン血漿中濃度推移図

Dose-normalized plasma levels of linagliptin in Cynomolgus monkeys after intravenous (bolus) administration

図 1:6
 投与量で標準化(Dose-normalize)したカニクイザルの静脈内投与後リナ
 グリプチン血漿中濃度推移図

2. 分析法

2.1 薬物濃度分析法

毒性試験および非臨床試験に用いた動物種のために,特異的かつ高感度の HPLC-MS/MS 法を 開発し,バリデーションを実施した。この分析法は,当初はリナグリプチンのみを対象として 開発したが,後にリナグリプチンおよびその代謝物 CD 1790 の同時分析法に改良した。

CD1790 に対応する主要代謝物の標準物質は、当初はラセミ体として合成され(BI 社コード: CD 1750),動物およびヒトの試験における代謝物の生体試料中定量に用いられていた。しか し、代謝に関する詳細な検討から,*in vivo* および*in vitro* での主要代謝物の生成は高度に立体 選択的であり,*S*-エナンチオマーCD 1790 が生成することが示された[CTD 5.3.2.3-5] (cf. <u>section 5</u>)。

代謝物の絶対立体配置は HPLC-MS/MS 分析に影響を及ぼさないこと,およびリナグリプチン と CD 1750 についてバリデートされた分析法は CD 1790 の定量に関しても適切なものである ことが示された [CTD 5.3.1.4-9]。したがって,すべての CD 1790 の定量において,標準物質 として CD 1750 を用いた。

すべての分析法において,通常 30 µL または 50 µL の血漿検体を分取し,内標準[¹³C₃]リナグ リプチンのみ,または[¹³C₃]リナグリプチンと[¹³C₃]CD 1750 を添加した。検体を混合モードの 96-ウェルプレートを用いた固相抽出法により抽出し,分析用逆相カラムでグラジエントモー ドを用いて抽出物をクロマトグラフィにかけた。リナグリプチンとその内標準物質の定量では, m/z=473 → 420 および m/z=476 → 423 のプリカーサーイオンからプロダクトイオンの生成を モニターした。CD 1750 およびその内標準物質の定量では,m/z=474 → 421 および m/z=477 → 424 のプリカーサーイオンからプロダクトイオンの生成をモニターした。リナグリプチンの 同位体によるシグナルは,CD 1750 のプリカーサーイオンからプロダクトイオンの生成に対す る干渉として検出されうるが,これらのシグナルはクロマトグラフィにより分離される。

バリデートしたすべての分析法の精度および真度は 15%以内,定量下限(LOQ)においては 20%以下であり,許容基準内であった[CTD 4.3-19]。

2.1.1 マウスの血漿および尿中のリナグリプチンおよび CD 1790 の定量

マウス (CD-1) 血漿中のリナグリプチンを定量するための HPLC-MS/MS 法を開発し, Applied Biosystems API 4000 質量分析計を用いて 2.50~2500 nM の濃度範囲でフルバリデーションを実施した [CTD 4.2.2.1-1] 。さらに, マウス血漿中のリナグリプチンと CD 1790 を同時定量する ための HPLC-MS/MS 法を開発し, Applied Biosystems API 4000 質量分析計を用いてリナグリ

プチン 1.00~1000 nM の濃度範囲で,および CD 1790 0.500~500 nM の濃度範囲でバリデー ションを実施した [CTD 4.2.2.1-2]

表 2.1.1: 1	マウスの毒性および PK 試験におけるリナグリプチンの血漿中濃度の測
	È

試験の略称	GLP 適用 状況	試験番号	資料番号	使用した分析法 の資料番号
2週間嗜好性毒性試験	非 GLP	04B228	CTD 4.2.3.2-12	CTD 4.2.2.1-1
4週間用量検討毒性試験	非 GLP	BOI/319	CTD 4.2.3.2-13	CTD 4.2.2.1-1
13 週間経口毒性試験	GLP	BOI/324	CTD 4.2.3.2-1]	CTD 4.2.2.1-1
経口投与 PK 試験	非 GLP	A049/06FU	CTD 4.2.2.2-1]	CTD 4.2.2.1-1
104週間がん原性試験	GLP	BOI/0330	CTD 4.2.3.4.1-1	CTD 4.2.2.1-2
DPP-4 ノックアウトマウスの PK 試験*	非 GLP	A084/07FU	CTD 4.2.2.3-12	CTD 4.2.2.1-2

*分析法は CD-1 マウスを用いてバリデートした

さらに, ヒトにおける尿中リナグリプチンの分析法を参考にして, 試験 A084/07FU [CTD 4.2.2.3-12] で野生型 (C57BL/6J) および DPP-4 ノックアウトマウスの尿中のリナグリプチン を定量した。

2.1.2 ラットの血漿および尿中のリナグリプチンおよび CD 1790 の定量

Wistar ラットの血漿中のリナグリプチンを定量するための HPLC-MS/MS 法を開発し,0.500~500 nM の濃度範囲でフルバリデーションを実施した [CTD 4.2.2.1-3]。この方法は、分析カラムおよび内標準物質を変更することによって改変された(再バリデーション 1)。さらに、ラット血漿中のリナグリプチンを定量するために、定量範囲を 2.50~2500 nM (再バリデーション 2) および 15.0~15000 nM (再バリデーション 3) に変更した。再バリデーション 1~3 は、直線性、LOQ も含めた真度および精度について実施した [CTD 4.2.2.1-3]。

さらに、Wistar ラットの血漿中のリナグリプチンおよび CD 1790 を同時に定量するための HPLC-MS/MS 法を開発し、リナグリプチンについては 2.50~2500 nM, また CD 1790 につい ては 1.00~1000 nM の濃度範囲でバリデーションを実施した [CTD 4.2.2.1-5]。当初、この分 析法は Micromass Quattro LC 質量分析計でバリデートされ、その後 Applied Biosystems API 4000 質量分析計で再バリデートされた。

表 2.1.2: 1	ラットの毒性および P	Κ 試験における	リナグリプチ	ンおよび(CD 179
	の血漿中濃度の測定				

試験の略称	測定対象物質	GLP 適用 状況	試験番号	資料番号	使用した分析 法の資料番号
2週間嗜好性毒性試験	リナグリプチン	非 GLP	04B229	CTD 4.2.3.2-14	CTD 4.2.2.1-3
2 週間経口用量検討毒性 試験	リナグリプチン	非 GLP	03B166	CTD 4.2.3.2-15	CTD 4.2.2.1-3
ラット ADME 試験	リナグリプチン	非 GLP	A017/04FU	CTD 4.2.2.5-4	CTD 4.2.2.1-3
4週間経口投与毒性試験	リナグリプチン	GLP	04B042	CTD 4.2.3.2-2	CTD 4.2.2.1-3
胚-胎児発生毒性試験	リナグリプチン	GLP	04B226	CTD 4.2.3.5.2-1	CTD 4.2.2.1-3
13週間経口投与毒性試験	リナグリプチン	GLP	BOI/323	CTD 4.2.3.2-3	CTD 4.2.2.1-3
1 週間静脈内用量検討」 毒性試験	リナグリプチン	非 GLP	05B094	CTD 4.2.3.2-16	CTD 4.2.2.1-3
2 週間静脈内投与毒性試 験	リナグリプチン	GLP	05B134	CTD 4.2.3.2-5	CTD 4.2.2.1-3
26 週間経口投与毒性試験	リナグリプチン/ CD 1790	GLP	05B285	CTD 4.2.3.2-4	CTD 4.2.2.1-5
DPP-4 欠損ラット PK 試験	リナグリプチン/ CD 1790	非 GLP	A057/06FU	CTD 4.2.2.3-14	CTD 4.2.2.1-5*
104週間がん原性試験	リナグリプチン/ CD 1790	GLP	BOI/0332	CTD 4.2.3.4.1-2	CTD 4.2.2.1-5
乳汁移行試験	リナグリプチン/ CD 1790	非 GLP	A174/07RB	CTD 4.2.2.5-5	CTD 4.2.2.1-5
腸肝循環試験	リナグリプチン/ CD 1790	非 GLP	A177/07RB	CTD 4.2.2.5-7	CTD 4.2.2.1-5
P-糖蛋白の吸収への影響	リナグリプチン/ CD 1790	非 GLP	A056/08HH	CTD 4.2.2.2-2	CTD 4.2.2.1-5**
胎児移行試験	リナグリプチン	非 GLP	09B138	CTD 4.2.2.3-17	CTD 4.2.2.1-4

* 分析法は Wistar ラットを用いて検証した。2 つの異なる定量範囲(血漿 50 µ L を用い, リナグリプチンに ついては 0.500~500 nM, 血漿 150 µ L を用い, リナグリプチンについては 0.100~100 nM, CD1790 につ いては 0.050~50.0 nM)を用いた。

** 分析は改変された定量範囲(リナグリプチンについては 0.500~500 nM, CD 1790 については 0.250~2500 nM) を用いた。

さらに、ヒトにおける尿中リナグリプチンの分析法を参考にして、試験 A095/08FU [CTD 4.2.2.5-9] で Wistar ラットの尿中のリナグリプチンを定量した [CTD 5.3.1.4-2] 。

2.1.3 ウサギの血漿および尿中のリナグリプチンの定量

雌の Himalayan ウサギ血漿中のリナグリプチンを定量するための HPLC-MS/MS 法を開発し, フルバリデーションを 2.50~2500 nM の濃度範囲で実施した [CTD 4.2.2.1-1]。この分析法は, Applied Biosystems API 4000 質量分析計でバリデートされた。 さらに, 雌の Himalayan ウサギ血漿中のリナグリプチンと CD 1790 を同時定量するための HPLC-MS/MS 法を開発し, Applied Biosystems API 4000 質量分析計を用いてリナグリプチンは 1.00~1000 nM の濃度範囲で, CD 1790 は 0.500~500 nM の濃度範囲でバリデートされた [CTD 4.2.2.1-7, CTD 4.2.2.1-6]。

表 2.1.3:1 ウサギの毒性および PK 試験におけるリナグリプチンの血漿または尿中 濃度の測定

試験の略称	GLP 適用状況	試験番号	資料番号	使用した分析法の資料 番号
胚 - 胎児発生毒性用量 検討試験	非 GLP	04B195	CTD 4.2.3.5.2-2	CTD 4.2.2.1-1
雌ウサギ ADME 試験	非 GLP	A032/05FU	CTD 4.2.2.5-3	CTD 4.2.2.1-1 CTD 5.3.1.4-2*
胚 - 胎児発生毒性試験	GLP	05B097	CTD 4.2.3.5.2-3	CTD 4.2.2.1-1
雌ウサギ PK 試験	非 GLP	A024/07JS	CTD 4.2.2.2-3	CTD 4.2.2.1-6
胎児移行 TK 試験	GLP	C73207	CTD 4.2.2.3-18	CTD 4.2.2.1-7

* ヒトの尿測定を参考にして実施されたラットの尿におけるリナグリプチンの定量

さらに、ヒトにおける尿中リナグリプチンの分析法を参考にして、試験 A032/05FU [CTD 4.2.2.5-3] で、ウサギの尿中のリナグリプチンを定量した [CTD 5.3.1.4-2] 。

2.1.4 イヌおよびミニブタの血漿中のリナグリプチンの定量

ビーグル犬および Göttingen ミニブタの血漿中のリナグリプチンを定量するための HPLC-MS/MS 法を開発し, 0.500~500 nM の濃度範囲でバリデーションを実施した [CTD 4.2.2.1-3]。

ミニブタの血漿については、この動物種が非 GLP の 1 試験のみで使用されたため、バリデー ションは簡略化した。すなわち、安定性、回収率およびマトリックス効果に関する試験は実施 しなかった。

イヌの血漿については、この分析法の分析カラムおよび内標準溶液の変更による改変を行った (再バリデーション1) [CTD 4.2.2.1-3]。

試験の略称	GLP 適用状況	試験番号	資料番号	使用した分析 法の資料番号
イヌおよびミニブタの用量漸増試験	非 GLP	03B163	CTD 4.2.3.2-17	CTD 4.2.2.1-3
2週間経口投与用量検討試験	非 GLP	03B185	CTD 4.2.3.2-18	CTD 4.2.2.1-3
探索的経口投与毒性試験	非 GLP	04B008	CTD 4.2.3.7-1	CTD 4.2.2.1-3
4週間経口投与毒性試験	GLP	04B060	CTD 4.2.3.2-6	CTD 4.2.2.1-3

表 2.1.4:1 イヌの毒性試験におけるリナグリプチンの血漿中濃度の測定

2.1.5 カニクイザルの血漿中のリナグリプチンおよび CD 1790 の定量

カニクイザルの血漿中のリナグリプチンを定量するための HPLC-MS/MS 法を開発し, 0.500~500 nM の濃度範囲でフルバリデーションを実施した [CTD 4.2.2.1-8]。この分析法は,定量 範囲を 2.50~2500 nM (Applied Biosystems API 365 および API 4000 質量分析計で再バリデー ション 1) および 15.0~15000 nM (Applied Biosystems API 4000 質量分析計で再バリデーショ ン 2) に変更する改変を行った。再バリデーション 1 および 2 は直線性, LOQ も含めた真度 および精度について実施した [CTD 4.2.2.1-8]。

さらに、カニクイザルの血漿中のリナグリプチンおよび CD 1790 を同時に定量するための HPLC-MS/MS 法を開発し、リナグリプチンについては 1.00~1000 nM,また CD 1790 につい ては 0.500~500 nM の濃度範囲でバリデーションを実施した [CTD 4.2.2.1-9]。この方法は当 初は Micromass Quattro LC 質量分析計でバリデートし、その後、Applied Biosystems API 4000 質量分析計で再バリデートした。

試験の略称	測定対象物質	GLP 適用状況	試験番号	資料番号	使用した分析 法の資料番号
2週間経口投与毒性試験	リナグリプチン	GLP	BOI/299	CTD 4.2.3.2-7	CTD 4.2.2.1-8
経口および静脈内投与 PK 試験	リナグリプチン	非 GLP	A020/04FU	CTD 4.2.2.2-6	CTD 4.2.2.1-8
剤型比較試験	リナグリプチン	非 GLP	A025/04FU	CTD 4.2.2.2-4	CTD 4.2.2.1-8
 2 週間経口投与毒性試験 (予備的経口投与試験) 	リナグリプチン	非 GLP	BOI/310	CTD 4.2.3.2-19	CTD 4.2.2.1-8
4週間経口投与毒性試験	リナグリプチン	GLP	BOI/309	CTD 4.2.3.2-8	CTD 4.2.2.1-8
テレメトリ試験	リナグリプチン	GLP	BOI/311	CTD 4.2.1.3-3	CTD 4.2.2.1-8
13 週間経口投与毒性試験	リナグリプチン	GLP	BOI/315	CTD 4.2.3.2-9	CTD 4.2.2.1-8
最大耐量の静脈内投与試験	リナグリプチン	非 GLP	BOI/321	CTD 4.2.3.2-20	CTD 4.2.2.1-8
静脈内および経口投与 ADME 試験	リナグリプチン	非 GLP	AA27415	CTD 4.2.2.2-5	CTD 4.2.2.1-8
2週間静脈内投与試験	リナグリプチン	GLP	BOI/322	CTD 4.2.3.2-11	CTD 4.2.2.1-8
52 週間経口投与毒性試験	リナグリプチン/ CD 1790	GLP	BOI/0331	CTD 4.2.3.2-10	CTD 4.2.2.1-9

表 2.1.5:1 カニクイザルの毒性試験および関連 PK 試験におけるリナグリプチンの 血漿中濃度の測定

さらに、ヒトにおける尿中リナグリプチンの分析法を参考にして、試験 AA27415 [CTD 4.2.2.2-5] で、カニクイザルの尿中のリナグリプチンを定量した [CTD 5.3.1.4-2] 。

2.1.6 測定対象物質の安定性

リナグリプチンは検討したすべての条件下,たとえば3回の凍結-融解サイクル,24時間の 室温保存などを通じて,マウス,ラット,ウサギ,イヌおよびカニクイザルから採取した血漿 検体中で安定であることが証明された。同様に,CD1790は検討したすべての条件下,たとえ ば3回の凍結-解凍サイクル,24時間の室温保存などを通じて,マウス,ラットおよびカニ クイザルの血漿中で安定であった。ウサギおよびイヌの血漿中における長期保存安定性は評価 しなかった。種々の動物種におけるEDTA血漿中,-20℃での長期保存安定性を下表に示す。

動物種	リナ	-グリプチン	CD 1790		
	安定性	資料番号	安定性	資料番号	
CD-1 マウス	363 日	CTD 4.2.2.1-2	363 日	CTD 4.2.2.1-2]	
Wistar ラット	432 日 CTD 4.2.2.1-3		-	-	
	370 日	CTD 4.2.2.1-5	370 日	CTD 4.2.2.1-5	
ビーグル犬	432 日	CTD 4.2.2.1-3	-	-	
Himalayan ウサギ	236 日	CTD 4.2.2.1-1	-	-	
カニクイザル	363 日	CTD 4.2.2.1-9]	363 日	CTD 4.2.2.1-9	

表 2.1.6:1 リナグリプチンおよび CD 1790 の EDTA 血漿中での凍結長期保存安定性

- =実施せず

2.2 リナグリプチンの放射性標識

Boehringer Ingelheim Pharma GmbH & Co. KG (Biberach, Germany) において, 6 バッチの [¹⁴C]リナグリプチンを合成した [CTD 4.2.2.1-10] 。放射性標識は, 分子のキナゾリン部の第 2 位に導入した。合成直後の放射化学的純度はいずれのバッチも 98.5%を超えており, 動物試 験での使用前の放射化学的純度は 97%を超える高さが確保されていた。

オリジナルのバッチの比放射能は 1.46~2.14 MBq/µmol の範囲であった。放射性標識リナグリ プチンは *in vitro* 試験ならびに動物およびヒトの ADME 試験に用いた。

さらに、[³H]標識リナグリプチンを合成した(**Market Market**, Switzerland)。標識されたのは分子のキナゾリン部分のメチル基であった。合成直後の放射化学的純度はいずれのバッチも 97%を超えていた。[³H]標識リナグリプチンは, *in vitro* 血漿蛋白結合試験およびマイクロオートラジオグラフィ試験のみに用いた。

3. 吸収

3.1 In vitro における吸収

低(マンニトール)および高(プロプラノロール)透過性を識別可能であることが知られている Caco-2 細胞単層膜を用いて、リナグリプチンの頂端膜側から基底膜側への、また基底膜側 から頂端膜側への透過性を測定した [CTD 5.3.2.3-3]。リナグリプチンの膜透過性は中等度と 分類され、固有の透過性は 3.56×10⁻⁶ cm/秒であった。さらにシクロスポリン A で阻害される 方向性輸送が認められ、リナグリプチンが P-糖蛋白の基質であることが示された。このこと は、MDR1 発現 LLC-PK1 細胞を用いた *in vitro* 試験からも確認されている [CTD 5.3.2.3-2]。

3.2 *in vivo* における吸収

3.2.1 単回投与後の薬物動態

3.2.1.1 マウス

飼料を自由摂取させた雄の CD-1 (Crl:CD1(ICR)) マウスに 5 または 15 mg/kg のリナグリプチ ンを(強制)経口投与すると、比較的速やかに、投与後 1 時間で平均最高血漿中濃度に到達し た[CTD 4.2.2.2-1]。リナグリプチンを経口投与後、AUC_{0-inf}は用量比例関係を超える増加を 示し、経口バイオアベイラビリティは 5 mg/kg で 18.4%、15 mg/kg で 44.4%であった。経口バ イオアベイラビリティは野生型 C57BL/6J マウスから得た静脈内投与データを系統間をまたい だノンコンパートメント解析で算出した[CTD 4.2.2.3-12]。リナグリプチンの消失半減期は長 く、約 20 時間であった。

雌の野生型(C57BL/6J) および DPP-4 ノックアウト(C57BL/6TgH(CD26)-CIML) マウスを用 いて、リナグリプチン静脈内投与後の薬物動態を評価し、DPP-4 の結合がリナグリプチンの体 内動態に及ぼす影響を検討した[CTD 4.2.2.3-12]。マウスの両系統間に顕著な違いが認めら れた。DPP-4 ノックアウトマウスはリナグリプチンの消失半減期および MRT_(disp)が著しく短 く、また分布容積(V(ss))が著しく小さかった。さらに、DPP-4 ノックアウトマウスでは、分 布容積は用量に依存していなかったのに対し、野生型のマウスでは、分布容積は1 および 10 mg/kg の範囲で減少した(表 4.3: 1 参照)。組織分布の用量依存性については、第 4: 3 項で考 察する。

3.2.1.2 ラット

絶食させた雄 Wistar ラット (Crl:WI(Han),以前の CrlGlxBrlHan:WI) では,経口投与後の平均 最高血漿中濃度には中~短時間で到達し,5~45 mg/kgの用量範囲における t_{max}は0.5~2.25 時 間であった [CTD 4.2.2.5-4]。血漿中濃度プロファイルには2つのピークが出現し,第1の ピークは極めて速やかに0.5時間で到達し,第2のピークは4時間で到達した。食餌は血漿中 濃度プロファイルの形に影響を及ぼし,第2のピークを低く,0.5時間時点の第1のピークを 高くした。全体として、1 mg/kg の[¹⁴C]リナグリプチンを投与後の放射能の AUC_{0-inf} は食餌の 影響をうけず、食餌は吸収速度にのみ作用し、吸収率には作用しないことが示唆された。 Zosuquidar を経口で前投与して消化管内の P-糖蛋白を特異的に阻害することによって、消化管 内の P-糖蛋白がリナグリプチンの経口吸収を制限することが証明された [CTD 4.2.2.2-2]。こ のことが、げっ歯類を用いた経口投与毒性試験において、曝露量が用量比例関係を超える増加 を示した理由と考えられる。

5 mg/kg のリナグリプチンを Wistar ラットに静脈内投与した後の分布容積は大きかった (V_{ss}=5.39 L/kg)。5 mg/kg 投与時の全身血漿クリアランスは中~高程度であった (CL=37.3 mL/min/kg)。5 mg/kg のリナグリプチンを経口および静脈内投与後の AUC_{0-inf}値を 比較することによって算出した経口バイオアベイラビリティは、54.8%であった [CTD 4.2.2.5-4]。パラメータはノンコンパートメント法を用いて用量比例性を前提に算出したが、リナグ リプチンの薬物動態は後述のように非線形であった。

用量依存性試験では、0.01 から 50 mg/kg までの様々な用量で静脈内投与したリナグリプチン の薬物動態を、雄の野生型(F344/DuCrl) および DPP-4 欠損(F344/DuCrlCrlJ) Fischer ラット 間で比較した [CTD 4.2.2.3-14]。DPP-4 欠損ラットと野生型ラットとの間に、顕著な差が認 められた。リナグリプチンの消失半減期は、DPP-4 欠損ラットのほうが著しく短かった。 DPP-4 欠損ラットでは、低用量を静脈内投与(3 mg/kg まで)した後のリナグリプチンの血漿 クリアランス(CL) および分布容積(V(ss))が用量に非依存的であったのに対し、野生型の ラットでは 3 mg/kg まで CL が増加し、V(ss)が減少した。リナグリプチンの薬物動態は、 DPP-4 欠損ラットでは実質的に線形であり、野生型 Fischer ラットでは非線形であった。この ことは、低用量で認められる非線形性が、野生型ラットでは DPP-4 のみに起因することを示 している。3 mg/kg を超える高用量では、静脈内投与後の AUC0-inf は用量比例関係を超えて増 加する。このような作用は、Wistar ラットを用いた静脈内投与毒性試験でも認められた[CTD 4.2.3.2-16、CTD 4.2.3.2-5]。この非線形性はその他の(飽和)機構によるものであると考えら れ、DPP-4 には非依存的であった。

3.2.1.3 ウサギ

雌の Himalayan ウサギ (Crl:CHBB:HM) に 4 または 25 mg/kg のリナグリプチンを強制経口投 与すると C_{max} に速やかに到達し, t_{max} の中央値は 0.67 および 0.5 時間であった [CTD 4.2.2.-3]。リナグリプチンの AUC_{0-96h} は,用量比例関係を上回って増加した。血漿中のリナグリプ チンの消失半減期は 41.3~59.0 時間と長かった。さらに,排泄バランス試験中に 25 mg/kg の [¹⁴C]リナグリプチンを経口投与し,放射能および親化合物の血漿中濃度を評価した [CTD 4.2.2.5-3]。t_{max} は 1 時間であり,放射能および親化合物の消失半減期はそれぞれ 77.4 および 82.2 時間と長かった。妊娠ウサギのトキシコキネティクスにおいて, 25 および 150 mg/kg の 用量範囲で比例性を上回るリナグリプチンの曝露と未変化体の 4%に相当する CD 1790 の曝露 が観察された[CTD 4.2.2.3-18]。

3.2.1.4 カニクイザル

3 mg/kg のリナグリプチンを雄のカニクイザル (*Macaca fascicularis*) に経口投与した後,血漿 中濃度は 1.25 時間(中央値)で最高に達した。平均吸収時間(MAT)は 21.0 時間であり,吸 収は遅いことが示された。3 mg/kg を経口投与した後の絶対経口バイオアベイラビリティは 68.8%であった。経口投与後の平均滞留時間(MRT_{tot})は 28.9 時間と長く,平均消失半減期 (t_{1/2})も 46.7 時間と長かった [CTD 4.2.2.2-6]。

静脈内投与後の血漿クリアランスは 16~20 mL/min/kg,分布容積は 9~16 L/kg であった [CTD 4.2.2.2-6, CTD 4.2.2.2-5]。カニクイザルへの静脈内投与後にも,他の動物種と同様に 用量 -線形性からの逸脱が認められた。2 週間毒性試験 [CTD 4.2.3.2-11] における 10 分間の 短時間注入後の曝露量は、5~40 mg/kg/日の範囲では用量 -線形関係を超えて増加した。雌の カニクイザルも含む別の 2 つの試験では、リナグリプチン経口投与後の薬物動態に関して性差 は認められなかった [CTD 4.2.2.2-4, CTD 4.2.2.2-5]。酒石酸溶液と水道水溶液間の比較では、 リナグリプチンの血漿中濃度にはわずかな差しか認められなかった [CTD 4.2.2.2-4]。[¹⁴C]標 識リナグリプチンを用いた試験では、5 mg/kg を経口投与時の絶対バイオアベイラビリティは 50%、消化管における吸収率は 65.1%であり、リナグリプチンが胃および/または肝臓で受け る初回通過代謝は弱いものに過ぎないことが示された [CTD 4.2.2.5-6, CTD 4.2.2.2-5]。

動物およびヒトにおけるリナグリプチンの薬物動態パラメータを、表 3.2.1.4:1に要約する。

	資料 番号	CTD 4 CTD 4.	.2.2.2-1 2.2.3-12	C	ГD 4.2.2	.5-4	CTD 4	CTD 4.2.2.2-3		4.2.2.2-6 4.2.2.2-5	CTD 5.3.3.2-1 CTD 5.3.1.1-2
	動物種 系統	マリ po: (iv: C5)	ウス CD-1 7BL/6J		ラット Wistar		ウサギ Himalayan		カニクイザル		ヒト
	性別	雄雌	(po) (iv)	雄/雌	雄/雌 雄		雌		雄	雄/雌	男性/女性
パラ メータ	単位	aM	lean		aMean		aM	lean	aMean		gMean
用量 (po)	mg/kg	5	15	5	15	45	4	25	3	5	5 mg/ 被験者
C _{max}	nM	84.3	1010	547	2230	6830	368	8560	622	1150	11.1 ^{d)}
t _{max} ^{c)}	h	1.00	1.00	2.25	0.5	1.25	0.67	0.50	0.5-2	0.75	1.53
AUC _{0-inf}	$nM \cdot h$	422	3050	2610	8360	45600	1330 ^{a)}	16300 a)	3740	4550	158 ^{d)}
MRT	h	11.0	4.99	14.3	6.81	5.51	33.9	9.98	28.9	17.4	131
t _{1/2}	h	23.6	18.7	35.9	29.8	12.2	41.3	59.0	46.7	41.4	131
F	%	18.4 ^{b)}	44.4 ^{b)}	54.8	NC	NC	NC ^{e)}	NC ^{e)}	68.8	41.0	30 ^{f)}
										(50.1 ^g)	
用量 (iv)	mg/kg	1	10	5			静脈内 験は実	投与試 施せず	3	1.5	5 mg/ 被験者
AUC _{0-inf}	nM∙ h	458	4580	4760					5440	3370	1250
MRT	h	23.6	3.75	2.40					7.93	16.9	132
t _{1/2}	h	48.9	44.9	10.5	1				25.5	38.5	127
CL	mL/mi n/kg	77.1	77.2	37.3					19.7	15.8	2.0 ^{h)}
V(ss)	L/kg	109	17.4	5.39					9.47	15.8	15.9 ⁱ⁾

表 3.2.1.4:1 リナグリプチンを単回経口および静脈内投与後に血漿から導出した親薬物の薬物動態パラメータの動物種間比較

aMean/gMean=算術平均/幾何平均 NC=算出されず

a) AUC0-96h, b) 異なる試験および同じ動物種の異なる系を用いて算出, c) 中央値

d) 定常状態の C_{max} および AUC_{0-24h}, 濃度表記はモルに変更[CTD 5.3.3.2-1]

e) 経口投与試験のみ実施, f)モデルを用いて算出

g) リナグリプチンの尿中排泄から算出, h) 141 mL/min は体重 75 kg の患者の 2.0 mL/min/kg に相当

i) 1110 L, 体重 75 kg の患者の 15.3 L/kg に相当

3.2.2 反復投与後の薬物動態

2 mg/kg の[¹⁴C]リナグリプチンを1日1回14日間または21日間にわたり経口投与した後, 様々な組織における[¹⁴C]リナグリプチンの分布を検討した[CTD 4.2.2.3-11, CTD 4.2.2.3-10]。その結果を section 4.3 に示す。14日間投与試験では排泄バランスを検討した[CTD 4.2.2.3-11]。定常状態には速やかに,遅くとも4日目には達することが,糞中および尿中の 放射能分画が一定であることによって示された。したがって,リナグリプチンは血漿中および 組織内の消失半減期は長いが,定常状態には速やかに到達する。

リナグリプチンを反復経口および静脈内投与した後の薬物動態をマウス(経口), ラット(経 ロおよび静脈内), ウサギ(経口), イヌ(経口)およびカニクイザル(経口および静脈内) の毒性試験の一部として検討した。トキシコキネティクスに関するデータは, 毒性試験の概要 文[CTD 2.6.6]に記載している。反復投与の影響を以下で簡単に考察する。

マウス:基本的にリナグリプチンを反復経口投与した後のマウスの血漿中濃度は,投与後1日 目と同じであった。

*ラット:*ラットでは、リナグリプチンの全身曝露量が反復経口投与後に増加した。ほとんどの 試験では、累積係数は低く、最高で約2であった。累積係数の最高値は、がん原性試験[CTD 4.2.3.4.1-2]で認められた約5であった。がん原性試験における曝露の増加には加齢が寄与し ているかもしれない。反復静脈内投与後(10分間の静注)のリナグリプチンの血漿中濃度に 変化は認められなかった。

カニクイザル:2 および 4 週間の毒性試験(用量範囲は 10~300 mg/kg)では反復投与後に, また 6 カ月間毒性試験の高用量群(150 mg/kg)で,リナグリプチンの全身曝露量がわずかに 増加した。累積係数は,すべての試験で 2 未満であった。3 カ月毒性試験および 12 カ月毒性 試験の他の用量群では,反復投与後に血漿中濃度の有意な変化は認められなかった。

2 週間毒性試験では、5 および 40 mg/kg を反復静脈内投与(10 分間の静注)後に曝露量がわずかに増加したが、1 mg/kg の投与では変化は認められなかった。

全体として、リナグリプチンは消失半減期が極めて長いにもかかわらず、毒性試験に用いた動 物種では反復投与後の曝露量は全く増加しないか、または中等度の増加しか示さなかった。こ のことは、組織におけるリナグリプチンの結合は高い親和性はあってもそのキャパシティーが 小さいことを強く示唆している。

4. 分布

4.1 血漿蛋白結合率

リナグリプチンの血漿蛋白結合率をマウス、ラット、ウサギ(雌のみ)、イヌ、カニクイザル およびヒトの血漿において、30 nMを超える濃度での in vitro 平衡透析によって測定した。 1 nM をはるかに下回る極めて低い濃度のリナグリプチンを用いたマウス、ラットおよびヒト 血漿を用いた評価では、蛋白結合率の顕著な濃度依存性が認められた。30 nM を超える濃度で は中等度の蛋白結合が認められ、結合分画は 75%~89%であったのに対し [CTD 5.3.2.1-1, CTD 4.2.2.3-2], 1 nM の濃度では蛋白結合分画が約 99%に上昇した [CTD 5.3.2.1-2, CTD 4.2.2.3-2, CTD 4.2.2.3-1]。たとえば、ヒトのプール血漿においては、20 nM でのリナグリプ チンの結合分画は約 84%であったが、2 nM における結合分画は 98.8%であり、遊離分画には 20 および 2 nM の間で 10 倍を超える上昇が認められた。したがって、ヒトにおいては、血漿 中濃度の範囲内で、血漿蛋白結合率の変動が予想される。ウサギおよびカニクイザルの血漿に おいては, 30 nM を超える濃度のみが検討された [CTD 4.2.2.3-2]。動物血漿におけるこの濃 度では、ヒト血漿の低濃度(1 – 30 nM)で見られたような著しい濃度依存性はみられなかっ た。データを表 4.1:1 に示す。さらに, DPP-4 欠損マウスおよびラットの血漿では濃度依存性 が認められないこと、また野生型の動物で非線形性が認められるのは、リナグリプチンの血漿 中の可溶性 DPP-4 に対する親和性は高いが,結合能は低いためであることが明らかにされて いる [CTD 5.3.2.1-2, CTD 4.2.2.3-1, CTD 4.3-16]。したがって、リナグリプチンの血漿 DPP-4 への飽和結合がリナグリプチンの血漿蛋白結合の濃度依存性の原因であり、ヒトの治療的濃 度における血漿蛋白結合率は、主に DPP-4 によって決定される。リナグリプチンの分離ヒト 血清アルブミンおよびヒトα-1 酸性糖蛋白への結合率は、高濃度におけるリナグリプチンの血 漿中の蛋白結合率よりも低く,アルブミン,α-1 酸性糖蛋白のいずれからも非特異的結合を説 明できないことが示唆された[CTD 5.3.2.1-2]。しかし、個々に分離したヒト血漿蛋白分画へ のリナグリプチンの結合は in vivo 状態と異なっている可能性も考えられる。ヒトの治療域濃 度における血漿蛋白結合率は主に DPP-4 によって決定されるため,他の結合蛋白の特性の詳 しい解明は行われていない。

5 mg 投与時のヒトの定常状態におけるリナグリプチンの平均 C_{max} (11.1 nM, CTD 5.3.3.2-1) において,血漿蛋白結合率は高く,それは DPP-4 への結合によることが原因である。投与間 隔の終わりでリナグリプチンの血漿中濃度が低下すれば血漿蛋白結合はさらに上昇し,ヒトの 治療血漿中濃度での遊離分画はきわめて小さくなる。これに対し,動物を用いた各毒性試験に おけるリナグリプチンの血漿中濃度は,投与間隔のほとんどの時点において概して数桁高かっ た。毒性試験において動物で達成される曝露量でのリナグリプチンの遊離画分は,ヒトにおけ るリナグリプチンの治療域での遊離画分よりもはるかに大きい。したがって,血漿蛋白結合率 の補正をせずに,総血漿中濃度を基に安全域を計算することは,遊離画分曝露量が動物ではヒ トに比べてはるかに高いことを考えると,過小評価しているといえる。

動物種	系統	濃度範囲 [nM]	リナグリプチンの f _B (%)	資料番号
マウフ	CD-1	30-3000	78.2-72.7	CTD 4.2.2.3-2
マワス	C57BL/6J	0.172 - 13100	99.3 - 74.5 ^{a)}	CTD 5.3.2.1-2
	Crl:WI(Han)	3-30	96.1-76.8	CTD 4.2.2.3-1
ラット	F344/DuCrl	3-30	95.4-80.7	CTD 4.2.2.3-1
	F344/DuCrl	0.139 - 12700	99.2 - 77.5 ^{a)}	CTD 5.3.2.1-2
ウサギ (雌)	Crl:CHBB(HM)	30-3000	84.3-79.6	CTD 4.2.2.3-2
カニクイザル		30-3000	82.0-70.4	CTD 4.2.2.3-2
ヒト		0.021 - 29900	99.3 - 77.3 ^{a)}	CTD 5.3.2.1-2

表 4.1:1 種々の動物種におけるリナグリプチンの in vitro での血漿蛋白結合率の 要約

a) 非線形回帰から求めた fBの最小値および最大値

薬理学的に不活性な代謝物 CD 1790 の血漿蛋白結合率を,目標濃度1,10 および 100 nM で, 平衡透析および HPLC-MS/MS によって評価した [CTD 5.3.2.1-3]。検討した動物種では,10 および 100 nM における CD 1790 の血漿蛋白結合は中等度~高度であり,濃度に依存していな かった。1 nM では,透析液中の濃度は LOQ 未満であった。データを表 4.1:2 に要約する。遊 離画分についてはわずかではあるが明らかな種差が認められ,ラットの CD 1790 の蛋白結合 率はカニクイザルよりも低かった。ヒト血漿における CD 1790 の蛋白結合率は,これらの動 物種の中間であった。検討した濃度範囲では,血漿蛋白結合率は一定であり,飽和結合がない ことが示された。

表 4.1: 2

様々な動物種における CD 1790 の in vitro での血漿蛋白結合率の要約

動物種	CD 1790 の f _B (%)	参照番号
ラット	89.3 ^{a)}	CTD 5.3.2.1-3
カニクイザル	97.1 ^{a)}	CTD 5.3.2.1-3
ヒト	94.7 ^{a)}	CTD 5.3.2.1-3

a) 試験濃度1,10,100 nM において得られた血漿蛋白結合率の平均値

4.2 血液における分布

様々な動物種から採取した血液に[¹⁴C]リナグリプチンを添加後 *in vitro* で [CTD 5.3.2.1-1], また[¹⁴C]リナグリプチンを投与した動物から採取した血液を用いて *ex vivo* で [CTD 4.2.2.5-4, CTD 4.2.2.5-2, CTD 4.2.2.5-3], 化合物由来放射能の分布を検討した。また,血球と血漿の分 布比 (C_c/C_p)を測定した。 *In vitro*: ラットでは化合物由来放射能が血球と血漿間でほぼ等しく分布($C_c/C_p \approx 1$)していたの に対し、イヌ、カニクイザルおよびヒトでは[¹⁴C]リナグリプチン由来放射能は、大きな差異 ではないが血漿中により多く分布しており($C_c/C_p P < 0.6$)、血液中の分配にわずかな種差が認め られた。検討したリナグリプチンの濃度範囲は 200~300 nM であった。この分布動態には時 間依存性が認められず、*in vitro* では血中で代謝が起こらないことが示唆された。さらに、血 液中の分布に性差の影響はみられなかった[CTD 5.3.2.1-1, CTD 4.2.2.3-3]。

濃度依存性:ラット,カニクイザルおよびヒトの新鮮な血液を用いた *in vitro* 試験から,[¹⁴C] リナグリプチンの血中分布は濃度に依存することが明らかとなった。きわめて低い濃度(<5 nM)では,[¹⁴C]リナグリプチン由来放射能はほぼ血漿中に限定して分布していたのに対し, より高い濃度では血球中または血球表面への分布が示された。このことは,血漿中では DPP-4 への高親和性結合が飽和に達しうることによって説明可能である。血漿中の DPP-4 への結合 がひとたび飽和すると,過剰な化合物は血球,すなわち,主に赤血球中に分布可能となる [CTD 5.3.2.3-1, CTD 4.2.2.3-3]。したがって,ヒト治療域血漿中濃度では,リナグリプチン は主に血液の血漿分画中に存在すると予測される。

Ex vivo:マウスでは,25 mg/kgの[¹⁴C]リナグリプチンを経口投与後1および6時間時点で, 化合物由来放射能が血球と血漿中にほぼ等しく分布していた[CTD 4.2.2.5-2]。対応する[¹⁴C] リナグリプチンの血漿中濃度は6時間時点の300 nMから1時間時点の30000 nMの範囲であ り,推定される DPP-4 の血漿中濃度を超えていた[CTD 5.3.2.1-2]。

ラットでは、1 mg/kg の[¹⁴C]リナグリプチンを経口投与後の血中のリナグリプチン由来放射能 の C_e/C_pは、時間に依存していた [CTD 4.2.2.5-4]。投与後 30 分時点の C_e/C_pは 1.3 であり, *in vitro* での分布に類似していた。その後、C_e/C_pは 2~24 時間の間に約 0.3~0.4 まで低下した が、4 時間時点で一過性に約 0.7 まで上昇した。この上昇は、リナグリプチンの血漿中濃度プ ロファイルに認められた 2 つのピークに一致していた。したがって、C_e/C_pの時間依存的な変 化は血漿中のリナグリプチンの濃度の変化による可能性が高く、ヒトの血漿において証明され ているように血漿中の結合部位の飽和によって説明することができる [CTD 5.3.2.3-1]。

雌ウサギでは、25 mg/kg の[¹⁴C]リナグリプチンを経口投与後 0.5 時間時点での平均 C_c/C_p は約 1.6 であり、10 時間まで1よりも高いままであった [CTD 4.2.2.5-3]。24~72 時間の C_c/C_p は, 1 未満であった(平均値は約 0.5~0.6)。投与後 96 時間時点では、 C_c/C_p は約 1.3 に上昇した。 全体として、血漿中および血球中の[¹⁴C]リナグリプチン由来放射能は同じ範囲であり、血球 および血漿間の分布が実質的に同じであることが示された。

4.3 組織分布

組織分布の広いことが、全身の容積をはるかに超える大きな分布容積によって示された。しかし、リナグリプチンは非線形薬物動態を示すため、ノンコンパートメント解析によって算出した V(ss)値は慎重に扱わなければならない。後述するが、野生型と DPP-4 欠損のマウスおよび ラットと間の V(ss)に違いがあることからわかるように、組織分布は主に組織中に存在する

DPP-4 の強い影響を受ける。DPP-4 欠損動物に認められた分布容積は小さいものの身体の総容 積を超えており、リナグリプチンには DPP-4 に依存しない別の組織分布があることが示され た。V(ss)値の概要を、表 4.3:1 に示す。

動物種	系統	用量	分布容 [L	参照番号		
			[mg/kg]	野生型	DPP-4 欠損	
マウフ	C57BI /6I	1	109	4.64	CTD 4 2 2 3 12	
392	C5/BL/0J	10	17.4	4.08	CTD 4.2.2.3-12	
	Wistor	1	50.3	NA	CTD 4.2.2.5-7	
	wistai	5	5.39	NA	CTD 4.2.2.5-4	
		0.01	15.5	ND.		
		0.1	71.8	7.81		
ラット		0.3	97.1	9.02		
	Fischer	1	59.7	10.9	CTD 4.2.2.3-14	
		3	38.3	9.32		
		10	12.7	7.41		
		50	7.3	6.73		
カニクイザ	NA	3	9.47	NA	CTD 4.2.2.2-6	
12	NA	1.5	15.8	NA	CTD 4.2.2.2-5	

表 4.3:1 様々な動物種における分布容積 V(ss)の概要

NA.=該当なし, ND.=測定せず

2 mg/kg の[¹⁴C]リナグリプチンをラットに経口投与後, [¹⁴C]リナグリプチン由来放射能の高い 組織分布が認められた。定量的全身オートラジオグラフィを用いた評価により, 腎臓および肝 臓に残留放射能の大部分が長期間残ることが示された [CTD 4.2.2.3-6]。腎臓内では不均一な 分布パターンが認められた。腎髄質の外側の帯に相当する中間帯の濃度が最も高く, 次いで腎 皮質の濃度が高かったが, 腎髄質の濃度は極めて低かった。

腎皮質中の[¹⁴C]リナグリプチン由来放射能の半減期は7日と推定された。さらに,髄質外側の[¹⁴C]由来リナグリプチン濃度は7日の観察期間終了までほぼ一定のままであり,半減期はきわめて長く,28日を超すと推定された。腎臓の中間帯への顕著な放射能分布は,マウスで極端に低く[CTD 4.2.2.3-6],またウサギ[CTD 4.2.2.5-3]およびカニクイザル[CTD 4.2.2.5-3]では認められず,腎臓内でのリナグリプチンの分布パターンには種差のあることが示唆された。

ラットでは、2 mg/kg の[¹⁴C]リナグリプチンを単回経口または静脈内投与後の放射能の濃度が 最も高かったのは腎臓であり次いで高かった臓器は肝臓であった。ラットの肝臓の[¹⁴C]リナ グリプチン由来放射能の半減期は、3 日前後と推定された。さらに、ラットでは他の幾つかの 臓器、たとえば胸腺、脾臓および精巣上体で放射能の長期残留が認められ、その半減期は約 3~4 日と推定された。しかし、[¹⁴C]由来リナグリプチンのそれらの組織内濃度は、腎皮質お よび肝臓に比べて低かった。2 mg/kg の[¹⁴C]リナグリプチンをラットに単回経口投与後のリナ グリプチン由来放射能の組織内濃度の概要を表 4.3:2 に示す。

表 4.3:2 2 mg/kg の[¹⁴C]リナグリプチンをラットに単回経口投与後の[¹⁴C]リナグ リプチン由来放射能の組織内濃度および組織/血液比(データ元: CTD 4.2.2.3-6)

組織	0.5 時	間	4時	間	24 時	f間	168 馬	宇間
	濃度 [nmol/kg]	組織/ 血液比	濃度 [nmol/kg]	組織/ 血液比	濃度 [nmol/kg]	組織/ 血液比	濃度 [nmol/kg]	組織/ 血液比
ハーダー腺	514	3.6	232	5.6	84.7	3.1	92.6	3.4
舌	516	3.6	146	3.5	BLQ	BLQ	BLQ	BLQ
脳	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
下垂体	1100	7.6	329	7.9	57.9	2.1	ND	ND
脊髄	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ
褐色脂肪 ^{a)}	613	4.3	187	4.5	38.6	1.4	BLQ	BLQ
唾液腺	1230	8.5	461	11.1	330	12.2	52.8	2.0
胸腺	290	2.0	151	3.6	299	11.1	111	4.1
心筋	603	4.2	199	4.8	73.2	2.7	BLQ	BLQ
血液(心臓)	144	1.0	41.6	1.0	BLQ *	1.0	BLQ *	1.0
肺	706	4.9	461	11.1	344	12.7	86.6	3.2
肝臓	5650	39.2	1760	42.3	1250	46.3	304	11.3
脾臓	1930	13.4	1090	26.2	671	24.9	135	5.0
副腎	1730	12.0	563	13.5	270	10.0	45.8	1.7
腎臓,髄質	2520	17.5	670	16.1	2630	97.4	85.4	3.2
腎臓,中間帯 ^{b)}	ND	ND	9970	239.7	10600	392.6	9160	339.3
腎臓, 皮質	ND	ND	3960	95.2	3620	134.1	2010	74.4
腎臓, 全体	5230	36.3	4690	112.7	4020	148.9	2200	81.5
骨髄	744	5.2	278	6.7	133	4.9	25.7	1.0
筋肉	323	2.2	87.7	2.1	BLQ	BLQ	BLQ	BLQ
精巣	ND	ND	ND	ND	29.5	1.1	BLQ	BLQ
精巣上体	ND	ND	ND	ND	251	9.3	67.6	2.5
脂肪 ^{a)}	51.8	0.4	11.5	0.3	BLQ	BLQ	BLQ	BLQ
皮膚(腹部)	237	1.6	123	3.0	61.1	2.3	BLQ	BLQ
皮膚 (背部)	220	1.5	153	3.7	74.0	2.7	27.0	1.0

^{a)}脂肪組織内の自己吸収亢進により、実際より低く推定されている可能性あり

^{b)}中間帯とは腎髄質の外縁部を指す

ND=測定されず

BLQ=定量下限未満(27 nmol/kg)

*血中濃度は BLQ であったが、組織対血液比の算定では 27 nmol/kg とした。

ラットを用いた排泄バランス試験では、1 mg/kg の[¹⁴C]リナグリプチンを経口または静脈内投 与後 4 日経過しても、体内には 4~5%の投与放射能が残留していることが明らかとなった [CTD 4.2.2.5-4]。さらに、血漿中のリナグリプチンは、種々の動物種において、きわめて長 い消失半減期を示すことが明らかにされている[CTD 4.2.2.5-4, CTD 4.2.2.2-6, CTD 4.2.2.2-5, CTD 4.2.2.3-14]。これは以下で議論するように、組織から血漿へのゆっくりとした再分配に よるものと考えられる。

リナグリプチンの組織分布動態を, DPP-欠損ラット [CTD 4.2.2.3-14, CTD 4.2.2.3-4] および DPP-4 ノックアウトマウス「CTD 4.2.2.3-12, CTD 4.2.2.3-13]も含めた試験で詳しく検討した。 これらの試験では、[¹⁴C]リナグリプチン由来放射能の組織分布が飽和に達する可能性が明確 に証明された [CTD 4.3-17]。DPP-4 欠損動物での組織分布動態をそれぞれの野生型と比較す ることによって、このような非線形性が、標的である組織内の DPP-4 に対するリナグリプチ ンの飽和型結合に起因することが証明された。これらのデータから、体内に貯蔵されている DPP-4 の主要分画(20gのマウスで1.9 nmol, 250gのラットで22 nmol, 両動物種で約100 nmol/kg)は主に腎臓および肝臓に存在し(全身の DDP-4 の>50%),皮膚および肺がそれに 続くと推定された [CTD 4.2.2.3-16]。さらに、モデルに基づいた結合部位容量の予測は、こ れらのデータと良く一致していた[CTD 4.2.2.3-16]。リナグリプチンの DPP-4 依存的な組織 分布を図解するために、野生型および DPP-4 欠損ラットのオートラジオグラムを図 4.3:1 に示 す。DPP-4 欠損動物においても分布容積が全身の容積を超えていることからわかるように, DPP-4 依存性の組織分布に加えて, DPP-4 に依存しない組織分布も認められた [CTD 4.2.2.3-14, CTD 4.2.2.3-12]。DPP-4 に依存しない組織分布は,用量にほぼ比例している[CTD 4.2.2.3-14, CTD 4.2.2.3-12]。組織分布の特性を組織学的レベルでも明らかにするために、 [¹⁴C]標識基質を用いたオートラジオグラフィより分解能が高い[³H]リナグリプチンを用いた定 量的全身オートラジオグラフィ [CTD 4.2.2.3-5] を実施した。さらに、特定の臓器(腎臓,肝 臓および小腸)の[³H]リナグリプチン由来放射能の細胞内における存在位置を明らかにするた めに, [³H]リナグリプチンを用いてミクロオートラジオグラフィを実施した [CTD 4.2.2.3-8]。 後者の試験では、リナグリプチン由来放射能の分布パターンは DPP-4 の分布パターンに密接 に関連していることが、肝臓および腎臓において細胞レベルで確認された。ラットの肝臓およ び腎臓で抽出されてくる放射能のほとんどは親化合物それ自体であった[CTD 4.2.2.3-9]。し たがって、ラットにおける組織内の放射能は、未変化のリナグリプチンそのものに起因すると 考えることができる。

ごく微量で抽出ができない放射能が、マウスの肝臓および腎臓[CTD 4.2.2.3-13] ならびに ラットの肝臓[CTD 4.2.2.3-9] 中で認められた。さらに、動物およびヒトの血漿中でも抽出が できない放射能が認められた[CTD 5.3.2.3-4]。動物種間に量的な差が認められ、ラットとヒ トでは、検討した他の動物種よりも抽出ができない放射能が多く生成された。[¹⁴C]リナグリ プチンを経口投与後の様々な動物種および特定の時点における血漿中の抽出ができなかった放 射能の比率を表 4.3:3 に要約する。抽出ができなかった放射能の分画が最も大きかったのは、 30 mg/kg の[¹⁴C]リナグリプチンをラットに投与後 24 時間時点であり、約 50%であった。この 時点では、放射能の血漿中濃度は低く、C_{max} の 1620 nM に対して 37.4 nM であった[CTD 4.2.2.5-5]。したがって,抽出ができなかった放射能の分画が比較的大きくなった理由は,ヒトの治療量(5 mg/患者=体重 60 kg 換算で 0.083 mg/kg)より 360 倍高い用量を投与し,投与後その血漿中濃度が極めて下がった時点で観察したことによる。

動物種	玉体	五 弦 用量 书		血漿中 <i>0</i> 放射	D抽出不能 时能 ^{b)}	次机委旦	
剿彻悝	77 700	[mg/kg]	[h]	検体の放射能 に対する%	血漿中濃度 nmol/L	員牉街万	
マウス	CD-1	25	6	0.3 ^{c)}	4.9	CTD 4.2.2.4-1	
ラット	Wistor	1	4	16.1	17.7	CTD 4.2.2.4-2	
	WIStal	30	24	52.1	19.4	CTD 4.2.2.5-5	
ウサギ	Himalayan	25	4	0.7 ^{c)}	73.5	CTD 4.2.2.4-3	
カニクイザ ル	NA	5	2	7.5	121.1	CTD 4.2.2.4-4	
<u></u> Р			1.5 + 3 + 6	4.0	0.9	CTD 5.3.2.3-6	
		0.17	(プール)	4.0	0.9	CTD 5.3.2.3-4	

表 4.3:3 [¹⁴C]リナグリプチンを経口投与後の様々な動物種における血漿中の抽 出ができなかった放射能

a) 10 mg/患者,体重 60 kg と仮定, b) 血漿中の放射能のマスバランスを基に算出

c) 回収は完全と仮定, NA=該当せず

[¹⁴C]標識化合物を投与後の血漿および組織中の抽出不能放射能は,薬物由来物質が蛋白に共 有結合した結果であると考えられる。しかし,1日量10 mg以下で投与した薬物が特異的な反 応を起こすことは稀である[CTD 4.3-15]。ヒトにおける治療量が5 mgという低用量であり, またヒト血漿中の共有結合した放射能の濃度が極めて低いことを考慮すれば,この所見は無視 できるものとみなされる[CTD 5.3.2.3-4]。

カニクイザルの 52 週間経口投与毒性試験では、剖検時に採取した肝臓および腎臓中でリナグ リプチンへの高度の曝露が認められた [CTD 4.2.2.3-15]。リナグリプチンの腎臓中の濃度は、 1 および 10 mg/kg では肝臓よりもはるかに高かったが、100 mg/kg ではそのような所見は得ら れなかった。腎臓では明らかに非線形の、すなわち用量比例関係に到達しない、リナグリプチ ン濃度の上昇が認められたのに対し、肝臓では濃度が用量にほぼ比例して上昇した。このこと は、マウスおよびラットで証明されているように、腎臓ではリナグリプチンの DPP-4 への結 合が飽和に達するということから説明可能である。回復試験に用いた動物の結果に基づいて判 断すれば、腎臓および肝臓中のリナグリプチンは投与終了後に著しく減少したが、標的である 肝臓および組織中の DPP-4 に特異的に結合しているため、リナグリプチンの消失半減期は長 かった。

[¹⁴C]リナグリプチンをラットに反復経口投与後,放射能の組織への累積動態を詳しく検討した [CTD 4.2.2.3-10, CTD 4.2.2.3-11]。これらの試験から,[¹⁴C]リナグリプチンを単回経口投 与後の放射能の消失半減期は長いが,2 mg/kg の[¹⁴C]リナグリプチンを反復経口投与後に検討 したすべての組織では、累積は中程度に過ぎないことが示された。さらに、定常状態には速やかに、遅くとも4日以内に到達しており、この時点以降にさらなる累積は認められなかった [CTD 4.2.2.3-11]。

図 4.3:1 DPP-4 欠損(上図)および対照(下図)雄 Fischer ラットに 2 mg/kg の [¹⁴C]リナグリプチンを経口投与後 168 時間時点における全身オートラジオ グラム [CTD 4.2.2.3-4]

総じて,動物においてリナグリプチンが組織に顕著かつ持続的に分布するのは,リナグリプチンが組織中の DPP-4 に高い親和性で結合するためである。非線形性の累積は,投与または反復投与によって DPP-4 が飽和に達するためであり,これらによりリナグリプチンの特徴的な 組織分布パターンが生じると考えられる。ヒトヘ長期投与した場合でも,長い半減期から予想 されるような累積は起こらないと結論される。

4.4 胎盤への移行

1 mg/kg の[¹⁴C]リナグリプチンを妊娠(GD) 11 または 19 日目のラットに経口投与し,全身 オートラジオグラフィで総放射能の組織分布を検討した[CTD 4.2.2.3-7]。妊娠ラットの放射 能の分布は,雄ラットにおける分布と極めて類似していた。妊娠 11 目には,胚および胎盤で 検出下限(8 nmol/kg) 未満またはほぼ定量下限(16 nmol/kg)の濃度が検出された。妊娠 19 日目の胎児には,妊娠 11 目の胚と同様の濃度が測定された。胎児の心臓および肝臓で薬物に 由来した微量の放射能が検出された。妊娠ラットの妊娠 7~16 日目に 30 および 240 mg/kg の [CTD 4.2.2.3-17],およびウサギの妊娠 6~18 日目に 25 および 150 mg/kg の[CTD 4.2.2.3-18]リナグリプチンを反復経口投与する補足試験が実施された。投与量は,各胚-胎児発生毒 性試験の中用量および高用量の投与量と同じであった[CTD 4.2.3.5.2-1, CTD 4.2.3.5.2-3]。 ラット胚で得られたリナグリプチンの高曝露量は母動物の曝露の約 50%にまで至った。ウサ ギ胎児のリナグリプチン相対曝露量はラットより低かったが,それでも母動物の曝露の約 5% を示した。さらに、ウサギ胎児において、CD 1790の曝露は母動物の曝露の約 24%にまで達し ていた[CTD 4.2.2.3-18]。これらの結果から,胚-胎児発生毒性試験に使用した動物種におい て、リナグリプチンおよび CD 1790 は血液 - 胎盤関門を通過することを示した。

4.5 トランスポーターの関与

リナグリプチンの膜透過性を Caco-2 細胞 [CTD 5.3.2.3-3] および MDR1-発現 LLC-PK1 細胞 [CTD 5.3.2.3-2] を用いて検討した結果,移動速度比 (BtoA (basal-to-apical)/AtoB (apical-tobasal): efflux ratio) が 35.1 [CTD 5.3.2.3-2] を有する MDR1 (P-糖蛋白と同義)の基質である ことが確認された。このことは、P-糖蛋白の阻害によってリナグリプチンの消化管吸収が増大 し、胆汁中排泄が低下することを示したラットの試験によって裏付けられている [CTD 4.2.2.2-2, CTD 4.2.2.5-8]。リナグリプチンは *in vitro* でも P-糖蛋白を阻害したが、いずれの 試験でも IC₅₀ が 50 μ M よりも高かったことから、治療域血漿中濃度にあるリナグリプチンが P-糖蛋白を阻害する可能性は低いと考えられる [CTD 5.3.2.3-3, CTD 5.3.2.3-2]。リナグリ プチンは BCRP および MRP2 の基質および阻害剤ではなかった [CTD 5.3.2.3-2]。

さらに、リナグリプチンが SLC トランスポーターの基質または阻害物質であるか否かを検討 した [CTD 5.3.2.3-2]。リナグリプチンは OATP8, OCT2, OAT4, OCTN1 および OCTN2 の 基質であることが明らかとなり, *in vivo* でリナグリプチンの OATP8 介在性の肝臓からの取り 込み, OCT2 介在性の腎臓からの取り込みおよび OAT4, OCTN1 および OCTN2 介在性の腎臓 からの分泌および再吸収が起こる可能性が示唆された。最高濃度 100 µM のリナグリプチンに よって, OATP2, OATP8 および OCTN1 の活性がわずかに阻害された。さらに, OCT1 および OATP2 の活性は, それぞれ 45.2 µM および 69.7 µM の IC₅₀ で有意に阻害された。上記の SLC トランスポーターを阻害するために必要なリナグリプチンの濃度域がマイクロモルであること を考慮すれば, ヒトにおけるリナグリプチンの使用条件下で薬物相互作用が起こる可能性は極 めて低い。 ブタの腎臓上皮由来細胞株 LLC-PK1 を用いた試験では、腎臓においてリナグリプチンの能動 的分泌が起こる可能性が証明されたが [CTD 4.2.2.5-1],これは、リナグリプチンの投与量が 2.5 から 600 mg と増えるに従い、被験者での腎クリアランス値が糸球体濾過量を上回っていく ことに矛盾しない [CTD 5.3.3.1-1]。

6 項で詳述されている通り、リナグリプチンの腎排泄は野生型マウス [CTD 4.2.2.3-12],野 生型ラット [CTD 4.2.2.5-9] およびヒト [CTD 5.3.3.1-1] では用量に依存するが、DPP-4 ノッ クアウトマウスでは用量依存性が認められないことが示されている [CTD 4.2.2.3-12]。した がって、リナグリプチンの血漿および組織中の DPP-4 への結合は腎排泄に大きな影響を及ぼ し、また腎排泄における用量依存性に有意に関与している。

表 4.5: 1	トランスポータ	-による基質認識性および	トランスポーター阻害能
----------	---------	--------------	-------------

トランス ポーター ファミリー	トランスポーター	基質認識性	阻害能	IC ₅₀	資料番号
	MDD1 (D 結死白)	yes		55 μΜ	CTD 5.3.2.3-3
ADC	MDKI (P-r倍蛋白)	(Km=187 µM)	yes	66.1 µM	CTD 5.3.2.3-2
ABC	BCRP	no	no		CTD 5.3.2.3-2
	MRP2	no	no		CTD 5.3.2.3-2
	OATP8	yes	yes	>100 µM	CTD 5.3.2.3-2
	OCT2	yes	no		CTD 5.3.2.3-2
	OAT4	yes	no		CTD 5.3.2.3-2
	OCTN1	yes	yes	>100 µM	CTD 5.3.2.3-2
SI C	OCTN2	yes	no		CTD 5.3.2.3-2
SLC	OATP2	no	yes	69.7µM	CTD 5.3.2.3-2
	OATP-B	no	no		CTD 5.3.2.3-2
	OCT1	no	yes	45.2µM	CTD 5.3.2.3-2
	OAT1	no	no		CTD 5.3.2.3-2
	OAT3	no	no		CTD 5.3.2.3-2

ABC=ATP 結合カセット, SLC=溶質キャリア

5. 代謝

5.1 In vitro における代謝

ヒト肝ミクロソームおよびヒト肝細胞による[¹⁴C]リナグリプチンの *in vitro* 代謝は極めて弱く, このことはリナグリプチンがヒト [CTD 5.3.2.3-6] および動物(後述)において主に未変化で 排出されるという所見に矛盾しなかった。リナグリプチンが CYP3A4 によって代謝されるこ と,またリナグリプチン代謝に他の CYP 酵素の関与がないことが *in vitro* 試験によって示され ている。代謝は弱いが,その主たる代謝物 CD 1790 の生成には CYP3A4 が関与している [CTD 5.3.2.2-1]。ヒト腎ミクロソームおよびモノアミンオキシダーゼによる[¹⁴C]リナグリプ チンの代謝は認められなかった [CTD 5.3.2.2-1]。

5.2 *In vivo* における代謝

マウス(雌雄) [CTD 4.2.2.4-1], ラット(雌雄) [CTD 4.2.2.4-2], ウサギ(雌) [CTD 4.2.2.4-3], カニクイザル(雌雄) [CTD 4.2.2.4-4] およびヒト(男女) [CTD 5.3.2.3-6, CTD 5.3.2.3-4, CTD 4.3-18] において, リナグリプチンの代謝を検討した。リナグリプチンを [¹⁴C]標識薬物として,動物およびヒトに水溶液として経口および静脈内投与した。血漿,尿, 糞および胆汁(動物試験のみ)試料の定量には放射能検出器を組み合わせた HPLC 法を用い,また代謝物の同定には高分解能の質量分析計を組み合わせた HPLC 法を用いて分析した。さらに,ヒトの最初の試験では,リナグリプチンを経口投与後に採取した血漿および尿検体における代謝物の存在を評価した [CTD 5.3.2.3-7]。主要代謝物 CD 1790 の生成機構を *in vivo* および *in vitro* 試験で詳しく検討した [CTD 5.3.2.3-5, CTD 5.3.2.2-5]。動物ならびにヒトに経口投与後の代謝に関するデータを,表 10:1 および 10:2 に示す。マウス [CTD 4.2.2.4-1], ラット [CTD 4.2.2.4-2] およびカニクイザル [CTD 4.2.2.4-4] については静脈内投与後の *in vivo* 代謝データが得られているが,経口投与が臨床上有用な投与経路であるため本概要では議論しない。

代謝物の定性的なプロファイルに、ヒトも含めた動物間で大きな違いはみられなかった。微量 代謝物の相対的な割合のみが異なっていた(表 10:1)。毒性試験に用いた動物種の中ではカ ニクイザルで代謝の寄与が最も大きく、それに続いて雌ウサギ、マウスおよびラットで大き かった。ヒトに経口投与後のリナグリプチンの代謝クリアランスは、その体内動態および排泄 全体にわずかに寄与したのみであった。

以下のセクションではヒトにおける代謝を詳細に考察し,必要に応じて動物の安全性試験の データと比較検討する。

図 5.2:1 動物およびヒトにおけるリナグリプチン(矩形内)の代謝経路の概要 ^{註)} ヒトの血漿中の代謝物を円内に示す。

ヒトにおいては,経口および静脈内投与のいずれにおいても,リナグリプチンは主に未変化の まま排泄された [CTD 5.3.2.3-6] (表 10:1)。経口および静脈内投与後,それぞれ 89.7%お よび 75.7%が回収され,それぞれ全体の 78.0%および 61.1%が親化合物として排泄された。 [¹⁴C]リナグリプチン経口投与および静脈内投与後の放射能の平均回収率は,それぞれ 90.4%お よび 89.1%であった [CTD 5.3.2.3-6]。

動物では,親化合物の排泄率はカニクイザルが 19.7% (po) および 30.8% (iv), ラットが 71.0% (po) および 57.8% (iv), マウスが 66.7% (po) および 68.1% (iv), ウサギが 57.5% (po) であった。

ヒトに 10 mg の[¹⁴C]リナグリプチン経口投与後, CD 1790 は循環血中で認められた唯一の代謝 物であり,血漿中の全身曝露量は親化合物の全身曝露量の 10%を超えていた [CTD 5.3.3.1-2] (参照:表 10:2)。

患者1人当たり5 mgのリナグリプチンを1日1回反復投与した後の定常状態下で, CD 1790の曝露は親化合物の曝露の13.3%であった[CTD 5.3.1.1-3]。

CD 1790 はリナグリプチンの S-3-ヒドロキシピペリジニル誘導体として同定され,ケトン代謝 物 CD 10604 を介して 2 段階で生成された(図 5.2:1)。初めの CD 10604 の生成は CYP3A4 依存的であり, CD 1790 生成反応全体の律速段階であった [CTD 5.3.2.2-1]。その後の CD

10604 の還元による CD 1790 の生成については,アルド・ケト還元酵素に加えカルボニル還元 酵素がわずかに関与している可能性がある [CTD 5.3.2.2-5]。この反応は立体選択的であり, S-配置のアルコール CD 1790 が生じた。リナグリプチンおよび CD 1790 の光学対掌体は,適 切なエナンチオ選択的 LC-MS/MS 法で検出されなかった。したがって,ヒトにおいては,鏡 像体過剰率はリナグリプチンおよび CD 1790 の両方で 99.9%を超えていることから [CTD 5.3.2.3-5],リナグリプチンのキラル反転は起こらないと結論された。

ラセミ体として評価した CD 1790 は DPP-4 を阻害せず [CTD 4.2.1.1-8, CTD 4.2.1.1-6], また 様々な分子受容体および酵素測定に対しそれぞれ 3 μ M および 10 μ M の濃度においても 30%を 超える阻害作用を示さなかったことから [CTD 4.2.1.1-9], 薬理学的に不活性と分類した (参 照:薬理試験の概要文, CTD 2.6.2)。毒性試験に用いた動物種 (ラット,マウス,カニクイ ザル)が CD 1790 に十分に曝露されたことは,毒性試験においてバリデート済みの HPLC-MS/MS 法 (参照:毒性試験の概要文, CTD 2.6.6) によって,またウサギについては別の薬物 動態試験において明らかにされている [CTD 4.2.2.2-3]。したがって, CD 1790 がヒトの循環 血液中の代謝物として存在することによって起こり得る一般毒性,がん原性および催奇形性作 用は,非臨床安全性試験の中ですでに検証されていると考える。

経口投与後のヒトのプール血漿中では、CD 1790 に加え他の微量代謝物が認められた(表 10: 2)。AUC の比較による評価では、これらの代謝物は血漿中の放射能全体のそれぞれ 0.3% (M489(1))、5.5% (M665(8)および M650(1)の合計)および 3.1% (m4)を占めていた。これ らの数値は、親化合物の全身曝露量の 0.4%、7.4%および 4.2%に相当していた。M489(1)はブ チニル側鎖のメチル基のヒドロキシ化によって生じた。この代謝物はラットおよびカニクイザ ルの胆汁中ならびにウサギの血漿および排泄物中に認められた。M665(8)および M650(1)はリ ナグリプチンの酸化物のエーテルグルクロニドとして同定されたが、化学構造は完全には明ら かにならなかった。M665(8)は動物種では同定されず、M650(1)はウサギの血漿中のみで、 M531(1)とともに同定された。代謝物分画 m4 はラットおよびマウスの糞中で認められたが、 その構造は同定できなかった。

FDA ガイダンス「医薬品代謝物の安全性試験」(2008 年 2 月)および ICH の医薬品の臨床試験および販売承認申請のための非臨床安全性試験の実施時期についてのガイドライン M3(R2)に規定された規則に従い,以下の理由で微量代謝物 M489(1), M665(8), M650(1)および m4 の詳細な評価は実施しなかった。

- i) 代謝物の相対的濃度は親化合物の全身曝露量の 10%未満であり、また血漿中の薬物由来 化合物全体の 10%未満である。
- ii) 代謝物 M665(8)および M650(1)は第 I 相代謝物のグルクロニド(アシルグルクロニドで はない)として同定されている。

さらに、これらの微量代謝物の絶対濃度は極めて低かった。M489(1), M665(8)と M650(1)の合計および m4 の濃度は、それぞれ 0.1 nM、1.3 nM および 0.7 nM であった(10 mg のリナグリプチンの経口投与後 1.5、3 および 6 時間後の、プール血漿中の濃度)。

¹⁴C 標識リナグリプチンを投与後のヒト血漿を詳細に検討した結果,抽出不能放射能の量は極 めて少ないことが明らかとなった [CTD 5.3.2.3-4]。投与後 24 時間以降の採血時点のプール 血漿中で認められた抽出不能放射能は,静脈内投与で最高 9.4%,経口投与で最高 14.1%で あった。最高濃度は,静脈内投与では 1.5~1.75 時間における 4.1 nM,経口投与では 2~3 時 間における 1.9 nM であった。すでに議論したように(参照:セクション 4.3),代謝物の量お よび濃度が極めて低かったことから,その重要性は無視できるとみなされた。

ヒトの排泄物中では、M489(1)は最も量の多い代謝物として観察され、投与量の 9.6% (iv) および 4.7% (po) に相当した。数種類の微量代謝物が、投与量の≤2.5% (iv) および≤4.5% (po) を占めていた。これらの代謝物は、次の反応(図 5.2:1)の組み合わせによって生成されていた。

ブチニル側鎖およびピペリジン部分の酸化 (M490(1), M487(1), M504(2)) およびそれに続く ピペリジン部分の酸化分解 (M506(1), M476(1)), *N*-アセチル化 (M515(1), M531(1), M531(2)) およびグルクロン酸抱合 (M650(1), M665(3), M665(8))。キナゾリン部分の第 4 位にあるメチル基の酸化によって,それに対応するカルボキシル酸誘導体 M503(1)が生じた。 静脈内投与後,尿中で投与量の 0.1%に相当するシステイン付加物 (M636(2)) およびその硫酸 抱合体 (M716(1)) が認められた。

排泄された尿および糞中で認められたヒトの代謝経路は、質的には動物の代謝と同等であった。 微量代謝物の相対比のみに差が認められた。

結論として、ヒトにおいて、リナグリプチンの分布および排泄への代謝の関与はわずかであった。動物を用いた毒性試験では、リナグリプチンの経口投与後、親化合物の 10%を上回る十分な量のヒト主要代謝物 CD 1790 に曝露されていたことが確認された。また、CD 1790 は薬理学的に不活性であった。

その他のヒトの代謝物は、血漿中では親化合物の 10%未満、また排泄された尿および糞中では薬物由来化合物全体の 10%未満であった。

代謝物のプロファイルは,動物種間で大きな違いはみられなかった。微量代謝物の相対的な割 合のみが異なっていた。

5.3 酵素の誘導および阻害

ラットに 6 または 60 mg/kg のリナグリプチンを 1 日 1 回 4 日間の反復経口投与後,生物学的 に有意なチトクロム P450 の活性変化はみられなかった [CTD 4.2.2.4-5]。さらに,ラットの *in vivo* 試験 [CTD 4.2.2.4-5] およびヒトの肝細胞を用いた試験 [CTD 5.3.2.2-2] から,酵素誘 導 (CYP1A2, 2B6 および 3A4)を示す所見は得られなかった。したがって,リナグリプチン は肝チトクロム P450 の誘導剤ではない。 リナグリプチンはヒト肝ミクロソームの CYP3A4 活性に対して弱い競合的阻害 (K_i=115 μ M)を示し、また MAO-B が触媒するキヌラミンの脱アミノ化に対して弱い阻害 (Ki=2.39 μ M)を示した [CTD 5.3.2.2-1]。さらに、リナグリプチンはヒト肝ミクロソームの CYP3A4 に対して、基質によるが、43.2 および 222 μ M·min の K_I/k_{inact} 比を示す弱~中程度の mechanism-based (不可逆的)阻害剤であることが明らかとなった [CTD 5.3.2.2-3]。リナグ リプチンの治療域血漿中濃度が低ナノモルの範囲であるとすれば、これらの阻害所見が臨床上 有意である可能性は低い。

さらに、ヒトの肝ミクロソームを用いて、CD 1790 によるチトクロム P450 が触媒する反応の 阻害についても検討した [CTD 5.3.2.2-4]。CD 1790 は CYP2C9 の競合的阻害物質であり、ま た CYP3A4 の不可逆的阻害物質であることが明らかとなった。CYP3A4 の不可逆的阻害に関 する *in vitro* データを基に CD 1790 が薬物相互作用を起こす可能性を検討した結果、肝固有ク リアランスの低下は 1.1 倍程であると推定された [CTD 5.3.2.2-4]。したがって、*in vivo* 条件 下で CYP アイソザイムの阻害が起こる可能性は低いと考えられた。さらに、CYP2C9 阻害の IC₅₀ は 15~20 μ M であった。ヒトの治療域血漿中濃度 (C_{max,ss}=20 nM) を考慮すると、 CYP2C9 を介する臨床的に注意を要する薬物相互作用が起こる可能性は極めて低いと思われる。

以上のことから、CD 1790 は同時投与された薬物の CYP 介在性の代謝に対して有意な影響を 及ぼす可能性は低い。

6. 排泄

6.1 排泄経路および排泄率

マウス, ラット, 雌ウサギおよびカニクイザルに対して, [¹⁴C]リナグリプチンを用いた排泄 およびマスバランス試験を実施した。排泄データを表 6.1.4:1 に示す。

6.1.1 マウス

雌雄の CD-1 マウスに[¹⁴C]リナグリプチン 25 mg/kg の単回経口投与後および 4 mg/kg の静脈内 投与後の,排泄およびマスバランスを検討した [CTD 4.2.2.5-2]。マウスでは[¹⁴C]リナグリプ チン由来放射能の主要排泄経路は糞であり,経口投与または静脈内投与でそれぞれ投与量の 69.2%または 66.1%を占めていた。糞中に排泄された放射能(6 時間以内に投与量の 46.2%(最 大値))は胆汁排泄に起因すると考えられた。経口投与または静脈内投与後の尿中への排泄は 投与量のそれぞれ 20.7%または 25.6%を占めており,消化管での吸収率が高いことが示唆され た。経口および静脈内投与後,尿中の薬物由来放射能の約 90%が親化合物に由来していた [CTD 4.2.2.4-1]。性差は認められなかった。

[¹⁴C]リナグリプチンを野生型マウス(C57BL/6J) および DPP-4 ノックアウトマウスに静脈内 投与し, 腎排泄の用量依存性を検討した[CTD 4.2.2.3-12]。放射能の尿中排泄は, 雌の野生 型マウスでは用量依存的であり, 0.01 mg/kg での 2.7%から 10 mg/kg での 24.5%に増加した。 これに対し, DPP-4 ノックアウトマウスでは, 放射能の尿中排泄は用量に依存せず, 0.01 mg/kg および 10 mg/kg 間で 16.8~24.7%の範囲であった。したがって, 野生型のマウスに認め られたリナグリプチンの用量依存的な腎排泄は, DPP-4 に起因すると考えられた。

6.1.2 ラット

1 mg/kg の[¹⁴C]リナグリプチンを雌雄の Wistar ラットに単回経口および静脈内投与し, 排泄お よびマスバランスを検討した [CTD 4.2.2.5-4]。[¹⁴C]リナグリプチン由来放射能の主要排泄経 路は糞であり, 静脈内投与および経口投与でそれぞれ投与量の 72.8%および 95.1%を占めてい た。経口投与後に尿中へ排泄された放射能は投与量の 1.6%に過ぎなかったのに対し, 静脈内 投与後では投与量の 21.7%が尿中で検出された。*In vivo* 代謝試験より, これら薬物由来放射能 の約 90%が親化合物に由来していた [CTD 4.2.2.4-2]。ほとんどの放射能が投与後 48 時間ま で排泄されたが, 投与後 96 時間を経過しても, 投与量の約 4~5%が体内に残留していた。静 脈内および十二指腸内投与後 6 時間以内に, 投与した放射能の 42.8%または 37.5%が胆汁を介 して排泄された。しかし, 胆汁排泄はこの時点では完了していなかった。

2 mg/kg の[¹⁴C]リナグリプチンをラットに1日1回14日間の経口投与後,総投与量の91.15% および0.96%がそれぞれ糞および尿を介して排泄された[CTD 4.2.2.3-11]。1から2日目に腎 排泄は0.44%から1.26%へとわずかに増加したが,その後の腎排泄は残りの観察期間を通じて 比較的安定しており,速やかに定常状態に到達することが示された。 リナグリプチンは胆汁中に親化合物として十分量排出され、十二指腸内投与後でも十分に吸収 されたが、腸肝循環を受ける割合は小さかった [CTD 4.2.2.5-7]。したがって、胆汁がリナグ リプチンの消化管吸収に影響を及ぼすか否かを、ラットを用いて検討した。水に溶解した 1 mg/kg の[¹⁴C]リナグリプチンを十二指腸内投与すると、5 時間以内に投与量の 29.0%が胆汁中 に排出されたのに対し、ラットの無処置胆汁に溶解して投与した場合には、5 時間以内に胆汁 を通じて排泄された量は投与量の 2.2%に過ぎなかった [CTD 4.2.2.5-7]。したがって、胆汁 の構成成分はリナグリプチンの腸管吸収を妨げる効果を有しており、このことから、リナグリ プチンが胆汁中に親化合物として大きな割合で存在するにもかかわらず、腸肝循環を受けるリ ナグリプチンの割合が予想外に低いことが説明される。

さらに、P-糖蛋白阻害剤 Zosuquidar を投与した Fischer ラットにおいて証明されているように、 胆汁中の親化合物の一部は、P-糖蛋白を介した能動輸送に由来するものであった[CTD 4.2.2.5-8]。親化合物の胆汁排泄は、P-糖蛋白の阻害によって有意に抑制されるが(投与量の 8.2%から 3.2%に減少),代謝物(総放射能-リナグリプチン)の胆汁排泄は、実質的に影響 を受けなかった(投与量の 29.8%に対し 30.8%)。これらのデータは、全体として、代謝クリ アランスに続く胆汁排泄により親化合物の排泄の低下が補われることを示している。

最後に、1~30 mg/kg の様々な用量の[¹⁴C]リナグリプチンを Fischer ラットに経口投与し、放 射能および親化合物の尿中排泄を検討した [CTD 4.2.2.5-9]。投与後 48 時間以内の放射能の 平均尿中排泄量は、1 mg/kg では 0.7%であったのに対し、30 mg/kg では 22.1%に増加した。さ らに、全身オートラジオグラフィ試験にあわせて実施した Wistar ラットのマスバランス試験 では、7.4、100 および 2000 µg/kg の[³H]リナグリプチンを単回静脈内投与後に尿中排泄が用量 依存的であることが確認された [CTD 4.2.2.3-5]。放射能および未変化の親化合物の総尿中排 泄量は、1 mg/kg を超える高用量では実質的に同じであった。1 mg/kg では、親化合物の尿中 排泄量(投与量の 0.2%)は放射能の尿中排泄量(投与量の 0.7%)よりもはるかに少なかった。 しかし、この用量では、親化合物および放射能の尿中排泄量がいずれも投与量の 1%未満であ ることから、リナグリプチンの尿中排泄はリナグリプチンの排泄にほとんど重要な影響を与え ない。以上のことから、ラットにおいて、リナグリプチンを経口および静脈内投与後の腎排泄 は用量に強く依存している。1 mg/kg を超える用量では、尿中排泄が増大し、かつその尿に占 める親化合物リナグリプチンの割合が極めて大きい。ラットにおいて、代謝物はリナグリプチンの 腎排泄にほとんど意味のある影響を与えない。

6.1.3 ウサギ

雌の Himalayan ウサギ (Crl:CHBB(HM)) に 25 mg/kg の[¹⁴C]リナグリプチンを単回経口投与し, 排泄およびマスバランスを検討した [CTD 4.2.2.5-3]。主要な排泄経路は糞であり, 投与した 薬物由来放射能の 66.7%を占めていた。投与した放射能の 18.1%が腎から排泄され, 一方, 未 変化の親化合物として尿中に排泄されたのは投与量の 13.6%であった。個々の動物から得られ たデータは胆汁からの排泄が主たるものであり, その排泄は投与後 4 時間以内に投与量の最高 5.4%であった。

6.1.4 カニクイザル

雌雄のカニクイザルに 5 mg/kg の[¹⁴C]リナグリプチンを単回経口投与,または 1.5 mg/kg の [¹⁴C]リナグリプチンを静脈内投与し,排泄およびマスバランスを検討した [CTD 4.2.2.2-5, CTD 4.2.2.5-6]。主要な排泄経路は糞であり,経口投与または静脈内投与した薬物由来放射能 のそれぞれ 70.0%または 56.6%を占めていた。経口または静脈内投与後,投与した放射能の 11.1%または 15.6%が腎から排泄されたのに対し,未変化の親化合物として尿中に排泄された リナグリプチンは投与量の 5.3%および 11.2%であった。排泄の総回収率は,このタイプの試 験で予測される値よりも低く,投与した製剤の溶解度および均一性に関わる技術的問題に起因 していた。しかし,これらのデータはいくつかの排泄経路の関与を十分に反映したものと考え られた [CTD 4.2.2.2-5, CTD 4.2.2.5-6]。

概ね, 5 mg/kg の[¹⁴C]リナグリプチンの十二指腸内投与後, 投与した放射能の 27.1%が 6 時間 以内に胆汁を介して排泄され, カニクイザルにおいても胆汁排泄がリナグリプチンの重要な排 泄経路であることが示された。

動物種 (系統)	マ (C	ウス D-1)	ラッ (Wist	ト tar)	ウサギ (Himalayan)	カニク	イザル	٤	٢
資料番号	CTD 4 CTD 4	4.2.2.5-2 4.2.2.4-1	CTD 4.2 CTD 4.2	2.2.5-4 2.2.4-2	CTD 4.2.2.5-3 CTD 4.2.2.5-6 C CTD 4.2.2.2-5 C		CTD 5 CTD 5	.3.2.3-6 .3.3.1-2	
投与経路	iv	ро	iv	ро	ро	iv	ро	iv	ро
用量[mg/kg]	4	25	1	1	25	1.5	5	5 mg/ 被験者	10 mg/ 被験者
糞中排泄	66.1	69.2	72.8	95.1	66.7	56.6	70.0	58.5	83.8
胆汁中排泄	ND	up to 46.2*	42.8	37.5 (i.d.)	>5#	ND	27.1 (i.d.)	ND	ND
尿中排泄	25.6	20.7	21.7	1.6	18.1	15.3	11.1	30.4	6.6
fe	23.1 [§]	18.4 [§]	20.1 [§]	1.4 [§]	13.6	11.2	5.3	21.2	2.4

表 6.1.4:1 様々な動物種の特定の用量における[¹⁴C]リナグリプチン由来放射能の 排泄バランスの概要(排泄データは投与量の%で示す)

* 最大値 (N=1), ND=測定せず

胆汁排泄は定量的に評価しなかった。最大値に基づく値 (N=1)

fe=未変化のまま尿中に排泄された割合(%)

§=各 in vivo 代謝試験において測定された親化合物の分画を用いて推定

ND=測定されず

6.2 乳汁移行

リナグリプチンはラットの乳汁に移行した [CTD 4.2.2.5-5]。さらに、代謝物 CD 1790, M515 (1)および5 種類の未同定の代謝物が、ラットの乳汁中で検出された。30 mg/kg の[¹⁴C]リ ナグリプチンをラットに経口投与後 1 時間、6 時間および 24 時間時点における乳汁中の主な 放射能は親化合物であり、乳汁中の放射能のそれぞれ 95.9%、90.4%および 90.6%を占めてお り,これは6547.2 nM, 1257.1 nM および 28.7 nM に相当する。1 時間時点では,乳汁中の放射 能濃度は血漿の 4 倍以上であったが,24 時間時点の放射能濃度は乳汁と血漿で同様であった。 総じて,30 mg/kgの[¹⁴C]リナグリプチンをラットに経口投与すると,投与放射能の0.35%(平 均値)が24時間以内に乳汁中に移行した[CTD 4.2.2.5-5]。

7. 薬物動態学的薬物相互作用

動物を用いた *in vivo* 薬物動態学的薬物相互作用試験は実施しなかった。しかし、リナグリプ チンによる阻害作用がみられた薬物トランスポーター(セクション 4.5 を参照)または薬物 代謝酵素については(セクション 5.3 を参照)、明らかな阻害はマイクロモルという濃度範 囲でのみ生ずる。ヒトにおいてはリナグリプチンの血漿中濃度が極めて低いこと(C_{max,ss}=20 nM)、またヒトの治療域血漿中濃度では血漿蛋白結合率が高いことを考慮すれば、リナグリ プチンが併用薬物の薬物動態に影響を及ぼす可能性は極めて低い。主要代謝物 CD 1790 につ いても同じことが言える。

リナグリプチンは P-糖蛋白の基質である。さらに、ヒトでリナグリプチンはわずかしか代謝 されず、その主代謝物は CYP3A4 によって生ずる CD 1790 である。したがって、P-糖蛋白お よび/または CYP3A4 に作用する薬物の併用はリナグリプチンの薬物動態に影響を及ぼす可 能性がある。これについては CTD 2.7.2 で詳しく考察する。

8. その他の薬物動態試験

DPP-4 の結合がリナグリプチンの薬物動態に及ぼす影響を検討するために, DPP-4 欠損マウス およびラットを用いて広範にわたる機構解明試験を実施した。これらの試験では,吸収(単回 投与後の薬物動態, 3.2.1.1, 3.2.1.2),分布(血漿蛋白結合率 4.1,組織分布 4.3)および排泄 (マウス 6.1.1 およびラット 6.1.2 における尿中排泄)について検討した。

さらに、P-糖蛋白がリナグリプチンの消化管吸収および胆汁排泄において果たす役割を、P-糖 蛋白阻害物質 Zosuquidar を用いた *in vivo* ラットモデルにて検討した。これらの試験はセク ション 3.2.1.2 (ラットにおける経口吸収) および 6.1.2 (ラットにおける胆汁排泄) に記載し ている。

考察および結論

リナグリプチンの薬物動態および代謝をマウス, ラット, ウサギおよびカニクイザルにおいて 検討し, ヒトと比較した。動物は概ね, 毒性試験に用いた系統を用いた。さらに, リナグリプ チンの DPP-4 への結合がその薬物動態に及ぼす影響を検討するために, DPP-4 欠損マウスお よびラットを用いた機構解明試験も実施した。DPP-4 欠損マウスは遺伝子を組み換えたノック アウト動物(C57BL/6J)であったが, ラットは F344 系の自然突然変異に由来する DPP-4 欠損 系であった。両動物系は, 組織および血漿中の DPP-4 を完全に欠いているとみなすことがで きる。両系統をそれぞれの野生型のバックグラウンドと比較した。このため, 毒性試験に用い た系統とは異なる C57BL/6J マウスおよび Fischer F344 ラットが補足的に用いられた。

吸収およびバイオアベイラビリティ:経口投与毒性試験では、リナグリプチンは検討したす べての動物種において経口投与により吸収され、高い曝露量に達した。動物への5 mg/kg ある いはそれ以上の投与量で、経口バイオアベイラビリティが用量依存的である。このことは、消 化管の P-糖蛋白による輸送に飽和が生じることにより説明できる。5 mg/kg のリナグリプチン を投与した時のラットおよびカニクイザルの経口バイオアベイラビリティは、約 50%と推定 された。したがって、毒性試験に用いた用量では、経口バイオアベイラビリティは中へ高程度 と推測することができる。経口バイオアベイラビリティは、ノンコンパートメント法を用い、 AUC0-inf を直接比較することによって算出した。しかし、経口投与後、曝露量は用量比例関係 を超えて増加し、静脈内投与後には非線形の薬物動態が示された。薬物動態パラメータの解釈 にあたっては、この点を考慮しなければならない。カニクイザルでは吸収率が約 65%とバイ オアベイラビリティをわずかに超えており、弱い初回通過代謝の存在が示された。しかし、リ ナグリプチンは主に胆汁中に排泄されるため、動物においては親化合物の初回通過排泄は重要 と考えられる。ラットにおいて、食餌はリナグリプチンの血漿中プロファイルに中程度の影響 を及ぼしたが、全体の吸収率は変化しなかった。

分布:リナグリプチンの分布は、血漿および組織中のその標的 DPP-4 への結合によって決定 されていた。リナグリプチンの血漿蛋白結合率には顕著な濃度依存性が認められた。約 1 nM までの濃度では、結合率は極めて高く、約 99%であった。30 nM を超える濃度では、血漿蛋白 結合率は一定であり、結合分画は 70~90%と中程度であった。濃度依存性は、血漿中の可溶 性 DPP-4 に対する高親和性の飽和結合に起因することが示されている。したがって、可溶性 DPP-4 の血漿中濃度がリナグリプチンの薬物動態に影響を及ぼす可能性があり、またヒトにお いてはリナグリプチンを治療域の濃度で血漿蛋白結合率が変動することが予測される。このこ とが、リナグリプチンが非線形の薬物動態を示す一因である。さらに、毒性試験で到達した血 漿中濃度は、概して血漿中のリナグリプチンの DPP-4 への結合が飽和に達している濃度範囲 にあることに注意しなければならない。したがって、毒性試験におけるリナグリプチンの血漿 蛋白結合率は治療域におけるヒトの蛋白結合率よりも低く、動物の遊離分画濃度はヒトより高 いので、曝露が高いもとで試験が行われていると考えられ、十分な安全域を保障していると考 えられる。リナグリプチンは組織内に広く分布し、DPP-4 含有組織、特に腎臓および肝臓にお いては滞留時間が長い。血漿蛋白結合率と同様、マウスおよびラットで明らかにされているよ うに、リナグリプチンの組織分布は DPP-4 への結合によって決定される。マウスおよびラットにおいては、体内 DPP-4 の大部分が腎臓および肝臓に含まれていることが明らかにされており、低用量であっても高い親和性で DPP-4 に結合が起こるため、リナグリプチンの組織内 濃度は長時間にわたり高く維持される。

DPP-4 がひとたび飽和すると,非特異的結合のために組織内濃度は用量に比例して上昇する。 このことは、DPP-4 に依存しない組織分布を示す DPP-4 欠損ラットにおいて一定の高い分布 容積が認められることと矛盾しない。すべての毒性試験において組織内の DPP-4 が完全に飽 和していたと考えられ、また 52 週間毒性試験で採取したカニクイザルの肝臓および腎臓では、 リナグリプチンへの高度の曝露が確認されている。リナグリプチンは組織内の滞留時間が長く, また血漿中の消失半減期は長いが、反復投与後に速やかに定常状態に到達し、組織内での累積 はほとんど起こらない。低用量のリナグリプチンの長期間投与により、組織内濃度は速やかに 定常状態達することになる。このことは、本化合物の長期安全性において重要である。共有結 合した放射能がごく微量、動物およびヒトの血漿中で検出されたが、それが極めて低い濃度で あり、リナグリプチンの治療量が低用量であることから、無視できるとみなされる。ラットお よびウサギにおいて、 25 mg/kg/日を超えるリナグリプチン投与により、リナグリプチンは血 液-胎盤関門を通過した。このことは、生殖発生毒性試験におけるラットの胚および胎児がリ ナグリプチンに曝露されていたことを実証した。一方,全身オートラジオグラフィ試験では, 1 mg/kgの[¹⁴C]リナグリプチンの単回経口投与後に検出された胚-胎児のリナグリプチンへの曝 露量は低く、P-糖蛋白が胎盤通過を阻害する可能性が示された。したがって、治療に用いる低 用量(5 mg)では、ヒトの胚の曝露量は極めて少ないと予測される。また、リナグリプチン は乳汁中に移行するため、ラットの新生児が乳汁を摂取することによって曝露されることが予 測される。

代謝:全体として、マウス、ラットおよび雌ウサギのリナグリプチンの排泄は、非代謝的機構(未変化体リナグリプチンの胆汁中への直接排泄が主たるもの)によって決定されていた。 カニクイザルを除く動物で尿、糞、胆汁および血漿中に最も多量にみられた成分は、親化合物であった。サルの胆汁および糞中では、リナグリプチンの代謝物が主として存在していた。ヒトでは、リナグリプチンは CYP3A4 によって代謝される。リナグリプチンの代謝において、その他の CYP 酵素の関与は示されなかった。経口投与後、循環血液中で認められた代謝物は、薬理学的に不活性な代謝物 CD 1790 のみであり、そのヒト血漿における全身曝露量は親化合物の全身曝露量の 10%を上回っていた。また、毒性試験に用いた動物種が十分量の CD 1790 に曝露されていたことが明らかとなった。CYP3A4 は CD 1790 の生成に関与している。したがって、CYP3A4 阻害物質の併用はリナグリプチンの薬物動態に影響を及ぼし、また CD 1790 の生成を抑制する可能性がある。リナグリプチンは肝チトクロム P450 の誘導剤ではない。しかし、リナグリプチンによる CYP3A4 の弱~中程度の mechanism based (不可逆的)阻害が認められた。ヒトにおいてはリナグリプチンの血漿中濃度が極めて低く、リナグリプチンが併用薬物の薬物動態に影響を及ぼす可能性はきわめて低い。 **排泄および排出**:主要な排泄経路は胆汁および糞である。親化合物の胆汁排泄には P-糖蛋白 が関与している。動物に1 mg/kg を経口投与後, 腎排泄はほとんど意味を持たない。しかし, 動物に高用量を投与した場合には, 腎排泄は用量依存的であり, 投与量の 20~30%に相当す る。用量依存性は, DPP-4 ノックアウトマウスにおいて証明されているように, DPP-4 への結 合の飽和に起因する。尿中では, 薬物由来成分のほとんどが親化合物で占められている。血漿 中のリナグリプチンの消失半減期はいずれの動物種でも長かったが, これは組織の DPP-4 に 強く結合したリナグリプチンのゆっくりとした血漿中の可溶性 DPP-4 への再分布に基づくも のである。

以上,リナグリプチンの薬物動態は非線形であり,非線形の理由は十分に解明されている:リ ナグリプチンは組織中の DPP-4 および血漿中の可溶性 DPP-4 に高い親和性を持ち,その結合 は飽和性を示すが,それは低用量,すなわち治療用量域で認められた非線形薬物動態の主因と なっている。非線形性の他の原因は,P-糖蛋白の輸送飽和であるが,この P-糖蛋白抑制作用 がリナグリプチンの薬物動態に重要な影響を及ぼすのは動物の毒性試験に用いるような高用量 においてのみである。このことを考慮すれば、リナグリプチンの薬物動態は、ヒトを含めた動 物種間を通じて大きな差はないと考えられる。 10. 図および表

種	ヒト		ラット			マウス			カニクイザル			ウサギ		
用量	10 mg/患者(経口)		1 mg/kg (経口)			25 mg/kg (経口)			5 mg/kg (経口)			25 mg/kg (経口)		
採取時点	尿	糞	尿	糞	胆汁	尿	糞	胆汁	尿	糞	胆汁	尿	糞	胆汁
	0–48 h	0–120 h	0–24 h	0–48 h	0-6 h	0–48 h	0–48 h	0-6 h	0–48 h	0–72 h	0-6 h	0–48 h	0–72 h	0-4 h
BI 1356 (M473(1))	3.9	74.1	1.1	69.9	24.8	18.3	48.4	4.5	8.4	11.3	7.9	15.6	41.9	1.1
CD 1790 (M474(1))	0.2	0.3	0.1	0.7	-	-	2.9	-	-	0.4	-	-	0.4	-
M515(1), M476(1)	0.1 ^f	-	-	-	-	-	-	-	-	-	-	0.1 ^g	-	-
M489(1)	0.2	4.5	-	-	3.2	-	-	-	-	1.8	0.3	0.7	18.6	2.5
M489(3) ,M491(1), M489(4)	-	-	-	-	-	0.3	3.5	0.7	-	2.0 ^e	0.3 ^e	-	-	-
M490(1,2,3), M531(2)	-	-	-	-	-	-	-	-	0.8	4.9	1.9	-	-	-
M503(1)	<0.1	0.1	-	-	3.4 ^a	-	0.8	-	-	-	-	-	-	-
M504(2)	0.1	-	-	-	-	-	-	-	-	6.5	1.2	-	-	-
M505(1)	-	-	-	-	-	-	-	-	-	3.5	0.4	-	0.6	0.1
M505(2)	-	-	-	-	-	-	3.1	0.3	-	-	-	-	-	-
M505(8), M505(9)	-	-	-	1.6	3.1	-	-	-	-	-	-	-	-	-
M531(2), M490(1), M506(1)	-	2.5	-	-	-	-	-	-	-	34.2 ^b	8.3 ^b	-	-	-
M531(1), M531(2), M693(1)	-	-	-	-	6.9	-	-	-	-	-	0.9 ^c	-	-	1.2 ^c
M531(1), M506(1)	-	-	-	-	-	-	3.4	-	-	-	-	-	-	-
m3	-	-	-	-	2.8	-	-	-	-	-	-	< 0.1	-	-
m4	-	-	-	4.7	-	-	0.3	-	-	-	-	< 0.1	-	-
m5	-	-	-		-	0.1	-	-	-	-	-	< 0.1	-	-
m6				2.4		<0.1								
m13	-	-	-	-	-	-	-	-	-	-	-	-	-	-
m14	-	-	-	2.3	-	-	-	-	-	-	-	-	-	-
その他 (個別<2%), 合計	1.0	-	0.2	3.1	2.9	1.9	5.3	2.6	1.3	3.7	0.9	1.3	2.3	0.4
抽出/指定されず	-	-	-	10.6	-	-	-	-	-	-	-	-	-	-
合計	5.5	81.5	1.3	94.1	41.7	20.6	67.7	8.0	10.6	68.2	22.1	17.7	63.9	5.3

表 10:1 経口投与後の尿, 糞および胆汁(動物種のみ)中の代謝物の濃度(投与量に対する%)

-:検出されず, a:M665(1)との合計, b:M650(1)との合計, c:M693(1)のみ, d:M506(1)のみ, e:M489(3)のみ, f:M515(1)のみ, g:M476(1)のみ

表	1	0:	2
-		۰.	_

経口投与後のヒトおよび動物種の血漿中の代謝物の濃度[nM](検体の放射能に対する%)

種	ť	ヒト ラット			ット	·	[マウス				'イザル		ウサギ			
用量	10 mg/患者		1 mg/kg			25 mg/kg				5 mg/kg		25 mg/kg					
採取時点	$1.5 + 3 + 6 h^a$		1 h			4 h		1 h		6 h		2 h		1 h		h	
BI 1356 (M473(1))	17.3	(74.2)	136.4	(74.3)	91.6	(83.5)	16790	(74.2)	1337	(82.4)	816.6	(50.9)	12600	(82.3)	7910	(75.4)	
CD 1790 (M474(1))	3.9	(16.9)	11.5	(6.3)	13.9	(12.7)	372	(1.7)	22	(1.6)	486.1	(29.8)	420	(2.7)	390	(3.8)	
M476(1), M504(2), M506(4)	-	-	-	-	-	-	-	-	-	-	110.1	(6.8)	-	-	-	-	
M489(1)	0.1	(0.3)	-	-	-	-	-	-	-	-	-	-	430	(2.8)	590	(5.6)	
M489(2)	-	-	-	-	-	-	441	(1.9)	22	(1.4)	-	-	290	(1.9)	-	-	
M489(3) ,M491(1), M489(4)	-	-	-	-	-	-	656	(2.9)	78	(4.5)	-	-	-	-	-	-	
M490(1,2,3)	-	-	-	-	-	- '	-	-	-	-	63.9	(3.9)	-	-	-	-	
M490(4), M531(3)	-	-	-	-	-	-	-	-	-	-	40.1	(2.4)	-	-	-	-	
M490(5)	-	-	-	-	-	-	790	(3.5)	32	(2.4)	-	-	-	-	-	-	
M531(1), M650(1)	-	-	-	-	-	-	-	-	-	-	-	-	320	(2.1)	-	-	
M531(2)	-	-	-	-	-	-	-	-	-	-	19.4	(1.2)	-	-	-	-	
M636(1), M693(1)	-	-	-	-	-	-	610	(2.6)	38	(1.9)	-	-	-	-	-	-	
M665(2)	-	-	-	-	-	- 1	1829	(7.7)	51	(4.3)	36.0	(2.3)	420 ^b	$(2.7)^{b}$	-	-	
M665(3), M665(4)	-	-	-	-	-	-	-	-	-	-	-	-	370	(2.4)	-	-	
M665(8), M650(1)	1.3	(5.5)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
M693(1)	-	-	-	-	-	-	-	-	-	-	-	-	460	(3.0)	1610	(15.3)	
m1	-	-	-	-	-	-	398	(1.7)	-	-	-	-	-	-	-	-	
m2	-	-	-	-	-	-	735	(3.2)	40	(1.5)	43.0	(2.7)	-	-	-	-	
m3	-	-	-	-	-	-	163	(0.7)	-	-	-	-	-	-	-	-	
m4	0.7	(3.1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
m14	-	-	35.5	(19.4)	8.4	(7.7)	-	-	-	-	-	-	-	-	-	-	
合計	23.3	(100.0)	183.5	(100.0)	109.7	(103.9*)	22783	(100)	1620	(100)	1615	(100.0)	15300	(100.0)	10500	(100.0)	

-:検出されず, a:検体プール, b:M505(6)との合計

*: 雌ラットの血漿中に m14 が認められなかったことから、雄平均値を用いて算出したため合計が 100%より高い値となった

11. 参考文献

CTD 4.3-15	Nassar AEF, Lopez-Anaya A. Strategies for dealing with reactive intermediates in drug
	discovery and development. Curr Opin Drug Discov Dev 7 (1), 126 - 136 (2004)
CTD 4.3-16	Fuchs H, Tillement JP, Urien S, Greischel A, Roth W. Concentration-dependent plasma
	protein binding of the novel dipeptidyl peptidase 4 inhibitor BI 1356 due to saturable
	binding to its target in plasma of mice, rats and humans. J Pharm Pharmacol 61, 55 - 62
	(2009).
CTD 4.3-17	Fuchs H, Binder R, Greischel A. Tissue distribution of the novel DPP-4 inhibitor BI
	1356 is dominated by saturable binding to its target in rats.
	Biopharm Drug Dispos 30, 229 - 240 (2009).
CTD 4.3-18	Blech S, Ludwig-Schwellinger E, Graefe-Mody EU, Withopf B, Wagner K. The
	metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in
	humans. Drug Metab Dispos 38 (4), 667 – 678 (2010)
CTD 4.3-19	Guidance for industry: bioanalytical method validation.
	Website: fda.gov/cder/guidance/4252fnl.htm - U.S. Department of Health and Human
	Services, Food and Drug Administration, 22.05.2001, 1 - 22 (2001).