ギリアデル脳内留置用剤 7.7 mg
に関する資料

本資料に記載された情報に係る権利及び内容の責任は、ノーベルファーマ株式会社にあります。
当該情報を適正使用以外の営利目的に利用することは出来ません。
ギリアデル脳内留置用剤 7.7 mg

1.4 特許状況

ノーベルファーマ株式会社
1.4 特許状況

国内でのカルムスチン脳内留置用剤の特許は、

です。
1.5 起原又は発見の経緯及び開発の経緯

ノーベルファーマ株式会社
1.5 起原又は発見の経緯及び開発の経緯

目次

1.5 起原又は発見の経緯及び開発の経緯 ... 2
1.5.1 起原又は発見の経緯 .. 2
1.5.2 開発の経緯 .. 3
1.5.2.1 外国での開発の経緯 ... 3
1.5.2.2 国内での開発の経緯 .. 4
1.5 起原又は発見の経緯及び開発の経緯

1.5.1 起原又は発見の経緯

ギリアデル脳内留置用剤 7.7 mg（以下、本剤）は、有効成分としてニトロソウレア系の抗悪性腫瘍剤であるカルムスチン（BCNU）を7.7 mg含有する脳内留置用の徐放性製剤であり、悪性神経膠腫切除術時の大切切腔に、留置する製剤である。本剤の形状は、微黄白色から微黄色を呈する直径約14.0 mm、厚さ約1.3 mmの滅菌された円盤状のウェハー（重合体形成物）であり、徐放化のために新添加物であるポリフェプロサン20を基剤としている。本剤は、1枚中にカルムスチン（BCNU）7.7 mgを含有し、腫瘍切除腔に最大8枚（カルムスチンとして61.6 mg）を留置する。

本剤は、すでに米国を始め欧州諸国、アジア諸国など29ヵ国で承認され、「初発の悪性神経膠腫患者における手術及び放射線療法との併用」及び「再発の膠芽腫患者における手術との併用」の適応で、Eisai Inc.が製造販売している製剤（米国商品名：Gliadel®Wafer）と同一の製剤である。

本剤の原薬であるカルムスチンは、1955年に米国において組織化された「The Chemotherapy Program of The National Cancer Institute」のプロジェクトのもとで、多くの化合物が坦がんマウス（Sarcoma 180、Carcinoma 755、L1210の3種）を用いてスクリーニングされ、その中で有力な化合物として見出されたニトロソウレア系の化合物のうちの一つである。

カルムスチンは、1960年代初頭から広汎な臨床試験が行われ、注射剤として1979年に米国で多発性骨髄腫等の適応で承認されて以来、欧米では、脂溶性で血液脳関門を良く通過することから、主に脳腫瘍に広く用いられていた。しかし、これまでのカルムスチン注射剤は、脳腫瘍に対する効果は認められるが、脳において腫瘍細胞を死に至らしめる濃度に達するには高用量の投与を必要とし、骨髄抑制や肺毒性などの重篤な全身的な副作用が発現していた。これらのことから、脳腫瘍細胞へ高濃度のカルムスチンの曝露と重篤な副作用発現の回避に加えて、カルムスチンの血中半減期は約15分と短いことからも、脳腫瘍部への局所投与が理想的な投与形態と考えられた。

局所投与に加えて、徐放性を有する基剤にカルムスチンを含有させることを目的に、1980年代半ばより、米国マサチューセッツ工科大学で、生分解性のポリマーとしての基剤の研究開発がなされた。開発されたポリマーは、1,3-ビス(4-カルボキシフェノキシ)プロパン（CPP）とセバシン酸（SA）の共重合体であった。CPPは疎水性であり、逆にSAは親水性である。この2つの比率を変えて重合させる（CPPとSAの重量比を20:80）ことにより、生分解性を有するポリフェプロサン20を得ることができた。このポリマーをラット脳内に埋植したときポリマーは36日目で消失したことで、その生体適合性が確認され、その間、全身性あるいは神経学的な副作用は認められなかった。

本剤は、脳腫瘍切除術時の大大切切腔の水分の多い環境に留置すると、ポリフェプロサン20が徐々にCPPとSAに加水分解されるとともに、有効成分であるカルムスチンが徐々に放出され残存腫瘍に対して抗腫瘍効果を発揮する。Johns Hopkins大学（Baltimore, Maryland州）では、ポリフェプロサン20の脳内細胞との適合性並びに人の悪性神経膠腫抑制作用に対するカル
カルムスチン脳内留置用剤 1.5 起原又は発見の経緯及び開発の経緯

カルムスチンの放出制御の効果について評価した。その結果、カルムスチンとポリフェプロサン 20 の組み合わせは良好な結果であった。

このように、本剤は、腫瘍切除時の残存腫瘍近辺に留置することにより骨髄抑制や肺毒性などを回避して、術後直後から腫瘍細胞に直接、高濃度のカルムスチンを一定期間にわたり効率よく曝露させるため、残存腫瘍縮小や増殖抑制効果を発揮することが期待できる。

1.5.2 開発の経緯

外国及び国内の開発の経緯を図 1.5-1 に示した。

1.5.2.1 外国での開発の経緯

米国 Nova Pharmaceuticals Inc.（以下、ノバファーマ社）がカルムスチンとウェハー（ポリフェプロサン 20）を組み合わせた本剤の臨床開発を 1987 年から開始し、再発の悪性神経膠腫 21 例を対象とした非盲検、投与量漸増の第 I / II 相試験（Study 8701）を実施した。本試験では、カルムスチン脳内留置剤の低濃度から高濃度の製剤（1 枚あたりのカルムスチン含有量 1.925%、3.85% 及び 6.35%）を最大 8 枚腫瘍切除部位に留置した後の各用量における安全性を観察した。この試験結果より、以後のすべての試験では、カルムスチンを 3.85% 含む本剤が使用された。

次に第 III 相試験として、再発時の悪性神経膠腫患者における本剤の有効性及び安全性を検証するプラセボ対照二重盲検比較試験（Study 8802）が実施された。その結果、悪性神経膠腫の一部で最も悪性度の高い膠芽腫患者の本剤留置後 6 ヶ月間の累積死亡率がプラセボ群に比べて有意に減少した（P=0.013）。その後、Study 8802 への登録が終了した後、継続して本剤を用いて安全性を評価する目的の試験（Study 9115）が、非盲検、非対照試験により実施された。これらの試験結果を基に米国において申請がなされ、1996 年 9 月に「再発の膠芽腫患者における手術との併用」の適応症で承認された。

また、本剤の審査中に、再発悪性神経膠腫患者に本剤を利用できるようにする目的で、主として安全性データを収集する第 III 相試験（Study 9501）及びカルムスチン含有量を 6.5%、10%、14.5%、20% に漸増させたウェハーを腫瘍切除腔に留置し、末梢血のカルムスチン濃度を測定する第 I 相試験（Study 9601）が追加実施された。さらに、初発の悪性神経膠腫に対する本剤の効果については、患者 22 例を対象に、本剤の安全性を予備評価する目的の非盲検非対照試験（Study 9003）が実施された。その後、実施した Study CL-0190 は、プラセボ対照二重盲検比較試験として実施されたが、治験薬の不足により登録を 32 例で終了した。このため、改めて、欧米各國で、患者 210 例を対象に、生存率を、プラセボ群と比較する第 III 相試験（Study T-301 本試験期及び長期追跡調査期）が実施された。その結果、本剤投与群で生存期間の有意な延長が認められ（P=0.027、試験実施国別の層別 Log-rank 検定）、これらの試験結果を基に 2003 年 2 月に「初発の悪性神経膠腫患者における手術及び放射線療法との併用」の適応症が米国において追加された。

以上の経緯で明らかにごとく、本剤は、脳腫瘍治療薬分野で、エビデンスレベルの高いプラセボ対照二重盲検比較試験で、唯一生存期間の有意な延長など臨床的エビデンスが証明された薬剤である。
これらの試験結果を受け、米国及び英国の脳腫瘍治療ガイドラインでは、悪性神経膠腫における手術時の付加療法として本剤の使用が推奨されている。2011年11月までに、米国や英国、フランス、ドイツ及びイタリアなどの欧州諸国、香港、インド、タイ及び台湾などのアジア諸国を含めた29ヵ国で承認され、これまでに50例以上の患者に使用されてきた。なお、本剤の当初の開発企業であったノーベルファーマ社は、1992年9月に、Scios社と合併し、Scios Nova Inc.（以下、SNI社）となった。1994年に、SNI社は、米国 Guilford Pharmaceuticals Inc.（以下、ギルフォード社）にGliadelの権利を導出した。また、ギルフォード社は、2005年11月に米国 MGI Pharma Inc.（以下、MGI社）に買収され、その後、2008年1月にMGI社はEisai Inc.に買収され、現在に至っている。

1.5.2 国内での開発の経緯

国内においては、本剤が2008年9月開催の第18回未承認薬使用問題検討会議に取り上げられ、医療上の必要性が指摘されたことから、ノーベルファーマ株式会社は、国内における開発権をEisai Inc.の所有権者であるエーザイ株式会社から入手し、本剤の開発に着手した。ノーベルファーマ株式会社は、海外で既に実施された臨床試験及び非臨床試験成績並びに欧米での本剤の承認申請に使用された資料（データ）を入手・検討した。本剤の開発方針、製造販売承認申請に必要な品質、非臨床試験及び臨床試験資料（データ）については、独立行政法人医薬品医療機器総合機構（以下、総合機構）との間にわたる対面助言（20年1月1日相談（治験相談番号：）20年1月1日相談（治験相談番号：））において助言を得た。

また、本承認申請にあたり、医薬品申請前相談（承認日:20年1月1日（治験相談番号：）において、及び資料について助言を得て承認申請資料を作成した。

本剤は、2009年6月5日には希少疾病用医薬品として指定されている（指定番号（21薬）第225号）。また、医政研発0521第1号／薬食審査発0521第1号（2010年5月21日付）により、「医療上の必要性が高いことから、医療現場で早期に使用することができるよう」と開発要請を受けている。更に、20年1月日、20年1月日より厚生労働大臣宛に早期承認への要望書が提出されている。

(1) 品質及び安定性

原薬の規格及び試験方法は、米国のに基づくと共に、USP「Carmustine」を参照して設定した。原薬の安定性試験結果は、Eisai Inc.の欧米で申請に用いられた資料を引用した。

製剤の規格及び試験方法は、Eisai Inc.社資料に準じて、「の測定」を20年1月より20年1月にかけて実施した。製剤の安定性試験については、Eisai Inc.の欧米で申請に用いられた資料を引用した。

新添加物のポリフェプロサン20についての品質及び安定性に関しては、Eisai Inc.の欧米で申請に用いられた資料を引用した。なお、ポリフェプロサン20の製造工程で使用するについては、製剤を用いて、国内で試験・検討した。
カルムスチン脳内留置用剤 1.5 起原又は発見の経緯及び開発の経緯

(2) 非臨床試験

非臨床試験において、薬理試験では薬効を裏付ける試験として、in vivo におけるカルムスチンの抗腫瘍作用を評価するとともに、カルムスチン及び本剤に関して、欧米で申請に用いられた資料並びに文献検索をして得られた公表論文を用いてまとめ、安全性薬理試験については安全性薬理試験ガイドラインに準拠し、コーポレーションに従って GLP 対応にて国内で実施した。薬物動態試験については、主に、Eisai Inc.より提供を受けた米国における申請資料と、文献検索により収集した論文の中から、試験方法、使用された実験動物種などを考慮して、評価に資すると思われるものを引用し、新たな試験としては、カルムスチンの乳汁移行性試験及びヒト代謝試験を国内で実施している。

毒性試験については、カルムスチンの安全性に関しては医学薬学上公知であると考えることから、カルムスチンの毒性試験は文献検索を実施し、公表論文の中から評価に資すると思われる論文（GLP 不適用）を用いて申請資料を構成し、安全性毒性試験は。がん原性試験については、カルムスチンが抗悪性腫瘍剤であり、本邦ガイドラインで、進行性がんの治療を目的とした抗悪性腫瘍剤などでは、通常、がん原性試験を必要としないとされており、カルムスチンは実施しなかった。本剤に用いられている担体のポリフェプロサン 20 については、添加剤としては本邦において使用前例がないことからポリフェプロサン 20 の毒性試験並びにポリフェプロサン 20 のモノマーであるセバシン酸のラット胚・胎児発生に関する試験を GLP に準拠して国内で実施している。また、類縁物質に関しては、本剤に含まれる類縁物質のうち、1,3-ビジス（2-クロロエチル）尿素（BCU）及び2-クロロエチルアミンの 2 種類につき、急性毒性試験を GLP に準拠して国内で実施している。

(3) 臨床試験

国内では、第 Ⅰ/Ⅱ相試験（Study NPC-08-1）を 2009 年 6 月から実施した。本試験では、既に外国で 3 報のプラセボ対照二重盲検比較試験において本剤の有効性及び安全性が検証されていることから、安全性検討を主体的として、副次的に生存率、無増悪生存率、神経症状改善効果などを評価することとした。対象患者は、海外での適応症と同様に『初発の悪性神経腫及び再生の膠芽腫患者』を対象とした。その結果、本剤が留置された 24 例（初発症例 16 例、再発症例 8 例）での 6 ル月生存率は 95.8%、12 ル月生存率は 87.5%であった。初発症例の生存率は 12 ル月まで100.0%、再発症例の 6 ル月生存率は 87.5%、12 ル月生存率は 62.5%であった。本治験の生存率は、参考とした外国臨床試験でのプラセボ対照二重盲検比較試験（Study 8802, Study T-301）より上回った成績であった。

有害事象は、本剤留置 24 例全例で何らかの事象が発現した。本剤留置開始例 24 例のうち、治験観察期間中に 2 例が死亡したが、いずれも死亡原因は原疾患である悪性神経腫の再発／増悪で本剤との因果関係は否定された。その他の重篤な有害事象は 10 例、重篤な副作用は 3 例に認められた。重篤な副作用の不全片麻痺（2 例）及び脳浮腫（1 例）の転帰は、それぞれ軽快又は消失であった。これらの結果から、重篤な有害事象、副作用の発現率において、国内試験の結果は外国試験に比べて種類、頻度で大きな差異は認められず、また本剤留置例は外国試験でのプラセボ留置例に比べても、種類、頻度はほぼ同程度と考えられた。
カルムスチン脳内留置用剤

1.5 起原又は発見の経緯及び開発の経緯

国内試験は本申請段階において、本剤留置全患者の留置後12ヵ月までの観察期間が終了しているが、引き続き留置後3年までの生存確認のための調査を実施中である。今回の承認申請資料での本試験の成績は、全患者の留置後12ヵ月までの評価データ並びにその後の生存確認情報について、2020年□月□日効果安全性評価委員会開催時点で得られているデータを基に、2020年□月□日にデータを固定した結果をまとめた。

以上より、本剤の効能・効果及び用法・用量を以下のように設定し、製造販売承認申請を行うこととした。

【効能・効果】
悪性神経膠腫

【用法・用量】
腫瘍切除術時の切除腔に、本剤を、最大8枚（カルムスチンとして61.6 mg）を留置する。腫瘍切除腔の大きさと形状によるが、できる限り多くの枚数を留置することが望ましい。
図1.5-1 開発の経緯

<table>
<thead>
<tr>
<th>試験項目</th>
<th>国内治療相談</th>
<th>海外治療相談</th>
</tr>
</thead>
<tbody>
<tr>
<td>機関及び試験方法</td>
<td>米国FDAへの申請</td>
<td>外国製剤の試験方法検討</td>
</tr>
<tr>
<td>安全性試験</td>
<td>米国FDAへの申請</td>
<td>経性発生毒性試験</td>
</tr>
<tr>
<td>薬物動態学的試験</td>
<td>9701(第Ⅰ/Ⅱ相)</td>
<td>国内治験相談</td>
</tr>
<tr>
<td>原薬の品質に関する検</td>
<td>9402(第Ⅱ相)</td>
<td>9815(第Ⅲ相)</td>
</tr>
<tr>
<td>生物化学的試験</td>
<td>9601(第Ⅰ相)</td>
<td>9003(第Ⅰ/Ⅱ相)</td>
</tr>
<tr>
<td>薬理試験</td>
<td>9310(第Ⅲ相)</td>
<td>9501(第Ⅲ相)</td>
</tr>
<tr>
<td>単回投与毒性試験</td>
<td>CL0190(第Ⅲ相)</td>
<td>9301(第Ⅲ相)</td>
</tr>
<tr>
<td>反復投与毒性試験</td>
<td>NPC-08-1 (第Ⅰ/Ⅱ相試験)</td>
<td>T-301(長期追跡調査期)(第Ⅲ相)</td>
</tr>
<tr>
<td>有毒性試験</td>
<td></td>
<td></td>
</tr>
<tr>
<td>未発生毒性試験</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ギリアデル脳内留置用剤 7.7 mg

1.6 外国における使用状況等に関する資料

ノーベルファーマ株式会社
1.6.1 外国での許可及び使用状況

本剤は、1996年9月に米国で最初に承認を受けて以来、2011年11月までに29ヶ国で承認を受けたが、現在は22ヶ国で承認、20ヶ国で販売している。当初の「再発膠芽腫患者における手術との併用(GLIADEL Wafer is indicated in patients with recurrent glioblastoma multiforme as an adjunct to surgery.)」の効能・効果に加え、2003年2月に米国、その後欧州を初めとする各国で「初発の(高)悪性神経膠腫患者における手術及び放射線療法との併用(GLIADEL Wafer is indicated in patients with newly diagnosed high-grade malignant glioma as an adjunct to surgery and radiation.)」の効能を取得している。現在、カナダでは「初発の悪性神経膠腫患者における手術及び放射線療法との併用」の効能を取得していないが、20年■月■日に効能追加の承認申請を行い、現在審査中である。

なお、ルクセンブルグとオランダについては、承認を受けているものの、市場の大きさや周囲の国からの距離を鑑み、ビジネス上の判断から製品販売を行っていない。本剤は、フィリピン並びにブラジル、アルゼンチン、チリ、ベルー等の中南米諸国計7ヶ国においても「再発膠芽腫患者における手術との併用」の効能・効果について承認を受けたが、当時のこれらの国々における医療環境（本剤を適切に使用するための医療施設等）、市場性、承認維持費用等を鑑み、これらの国における本剤の販売権を保有していた企業のビジネス的な意思決定により、市場から撤退し、承認の取り下げを行っている。最近の市場並びに医療環境の著しい変化から、ブラジルについては、20年■月■日に再度承認申請を行い、来年再承認を受ける予定である。また、新たにメキシコで20年■月■日に承認申請が行われた。

本剤の用法・用量を以下に記す。

米国並びに欧州各国及びカナダを除くその他の諸国：“Each GLIADEL Wafer contains 7.7 mg of carmustine, resulting in a dose of 61.6 mg when eight wafers are implanted. It is recommended that eight wafers be placed in the resection cavity if the size and shape of it allows. Should the size and shape not accommodate eight wafers, the maximum number of wafers as allowed should be placed. Since there is no clinical experience, no more than eight wafers should be used per surgical procedure.”

欧州各国及びカナダ：“For intralesional use in adults only. Each GLIADEL Implant contains 7.7 mg of carmustine, resulting in a dose of 61.6 mg when eight implants are placed in the tumour resection cavity. It is recommended that a maximum of eight implants be placed if the size and shape of the resection cavity allows it. Implants broken in half may be used, but implants broken in more than two pieces should be discarded in the dedicated biohazard waste containers. It is recommended that the placement of the implants should be directly from the product’s inner sterile packaging into the resection cavity. Oxidised regenerated cellulose may be placed over the implants to secure them to the cavity surface.”
主な国における承認・許可・販売状況（2011年11月現在）を表1.6.1-1に示す。

<table>
<thead>
<tr>
<th>国名</th>
<th>販売名</th>
<th>効能・効果ごとの承認日</th>
<th>販売中</th>
</tr>
</thead>
<tbody>
<tr>
<td>アメリカ</td>
<td>Gliadel Wafer</td>
<td>1996年9月23日-2003年2月25日</td>
<td>販売中</td>
</tr>
<tr>
<td>フランス</td>
<td>Gliadel 7,7mg Implant</td>
<td>1998年12月10日-2005年1月18日</td>
<td>販売中</td>
</tr>
<tr>
<td>ドイツ</td>
<td>Gliadel 7,7mg Implant</td>
<td>1999年8月5日-2008年3月20日</td>
<td>販売中</td>
</tr>
<tr>
<td>ギリシャ</td>
<td>GLIAD 7,7mg Εμφύτευμα</td>
<td>1999年8月31日-2005年2月16日</td>
<td>販売中</td>
</tr>
<tr>
<td>アイルランド</td>
<td>Gliadel 7,7mg Implant</td>
<td>1999年7月7日-2004年10月7日</td>
<td>販売中</td>
</tr>
<tr>
<td>イタリア</td>
<td>GLIADEL 7,7 MG Impianto</td>
<td>1999年5月25日-2005年10月14日</td>
<td>販売中</td>
</tr>
<tr>
<td>ルクセンブルク</td>
<td>Gliadel 7,7mg Implant</td>
<td>1999年5月29日-2004年10月13日</td>
<td>非販売</td>
</tr>
<tr>
<td>オランダ</td>
<td>GLIADEL 7,7 mg, implantaat</td>
<td>1999年8月9日-2005年8月2日</td>
<td>非販売</td>
</tr>
<tr>
<td>ポルトガル</td>
<td>Gliadel 7,7 mg implanente</td>
<td>1999年7月1日-2004年10月6日</td>
<td>販売中</td>
</tr>
<tr>
<td>スペイン</td>
<td>Gliadel 7,7 mg implanente</td>
<td>1999年10月1日-2005年3月16日</td>
<td>販売中</td>
</tr>
<tr>
<td>イギリス</td>
<td>Gliadel 7,7mg Implant</td>
<td>1999年5月28日-2004年12月14日</td>
<td>販売中</td>
</tr>
<tr>
<td>オーストリア</td>
<td>Gliadel 7,7mg Implant</td>
<td>2009年4月2日-2009年4月2日</td>
<td>販売中</td>
</tr>
<tr>
<td>オーストラリア</td>
<td>Gliadel Wafer</td>
<td>2001年12月29日-2004年10月27日</td>
<td>販売中</td>
</tr>
<tr>
<td>カナダ</td>
<td>Gliadel Wafer</td>
<td>1998年11月1日 (20年月日)</td>
<td>再発時のみの適応</td>
</tr>
<tr>
<td>香港</td>
<td>Gliadel Wafer</td>
<td>2006年2月5日-2006年5月2日</td>
<td>販売中</td>
</tr>
<tr>
<td>インド</td>
<td>Gliadel Wafer</td>
<td>2008年4月2日-2008年2月4日</td>
<td>販売中</td>
</tr>
<tr>
<td>イスラエル</td>
<td>Gliadel 7,7mg Implant</td>
<td>1999年1月22日-2008年5月31日</td>
<td>販売中</td>
</tr>
<tr>
<td>南アフリカ</td>
<td>Gliadel Wafer</td>
<td>2000年10月1日-2005年12月2日</td>
<td>販売中</td>
</tr>
<tr>
<td>台湾</td>
<td>Gliadel Wafer</td>
<td>2008年1月1日-2011年9月1日</td>
<td>販売中</td>
</tr>
<tr>
<td>タイ</td>
<td>Gliadel Wafer</td>
<td>2006年8月1日-2006年8月1日</td>
<td>販売中</td>
</tr>
<tr>
<td>シンガポール</td>
<td>Gliadel Wafer</td>
<td>1998年7月31日-2007年8月31日</td>
<td>販売中</td>
</tr>
<tr>
<td>マレーシア</td>
<td>Gliadel Wafer</td>
<td>1999年7月29日-2007年3月14日</td>
<td>販売中</td>
</tr>
</tbody>
</table>
定期的安全性最新報告（PSUR）に基づく本剤の出荷数量（出荷数量が判明している1998年1月～2000年3月）から、本剤は、累積で約 100万人（1人8枚のウェハーを使用したと仮定）の患者に使用されたと推定された。直近1年間の年度使用患者数は、米国が 1万人、その他の国又は地域で 1万人の計 1万人であった（図1.6.1-1）。

<table>
<thead>
<tr>
<th>国名</th>
<th>販売名</th>
<th>効能・効果ごとの承認日</th>
<th>販売</th>
</tr>
</thead>
<tbody>
<tr>
<td>ブラジル</td>
<td>-</td>
<td>1998年1月12日</td>
<td>市場から撤退、承認取り下げ</td>
</tr>
<tr>
<td>アルゼンチン</td>
<td>-</td>
<td>1998年2月13日</td>
<td>市場から撤退、承認取り下げ</td>
</tr>
<tr>
<td>ウルグアイ</td>
<td>-</td>
<td>1998年9月2日</td>
<td>市場から撤退、承認取り下げ</td>
</tr>
<tr>
<td>ペルー</td>
<td>-</td>
<td>1998年11月30日</td>
<td>市場から撤退、承認取り下げ</td>
</tr>
<tr>
<td>チリ</td>
<td>-</td>
<td>1999年2月26日</td>
<td>市場から撤退、承認取り下げ</td>
</tr>
<tr>
<td>コロンビア</td>
<td>-</td>
<td>1999年11月12日</td>
<td>市場から撤退、承認取り下げ</td>
</tr>
<tr>
<td>フィリピン</td>
<td>-</td>
<td>2000年3月</td>
<td>市場から撤退、承認取り下げ</td>
</tr>
<tr>
<td>再発葉芽腫</td>
<td>初発悪性神経膠腫</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図1.6.1-1 全世界におけるカルムスチン脳内留置剤の推定使用患者数の年次推移
カルムスチン脳内留置用剤

1.6 外国における使用状況等に関する資料

米国における本剤の添付文書（原文及び和訳）、英国における本剤の製品特性概要書（Summary of Product Characteristics ; SmPC）（原文及び和訳）、企業中核データシート（Company Core Data Sheet ; CCDS）の原文を以下に添付する。
ギリアデル脳内留置用剤 7.7 mg

1.6.2 外国の添付文書

米国の添付文書（原文・和文）
英国の添付文書（原文・和文）

ノーベルファーマ株式会社
米国における添付文書原文
GLIADEL® Wafer
(polifeprosan 20 with carmustine implant) Rx only

DESCRIPTION
GLIADEL® Wafer (polifeprosan 20 with carmustine implant) is a sterile, off-white to pale yellow sugar approximately 1.5 cm in diameter and 3 mm thick. Each wafer contains 103.3 mg of a biodegradable polymeric ethyl cypophosphate and 7.7 mg of carmustine (1:200, 2-chloroethyl-N-1-ethylnitrosourea, or BCNU). Carmustine is a nitrosourea oncolytic agent. The copolymer, polifeprosan 20, consists of poly(2-oxazolone) (N-carboxyanhydride) propanoic anhydride (1:1) in a 20:80 molar ratio and is used to control the local delivery of carmustine. Carmustine is homogeneously distributed in the copolymer matrix.

The structural formula for polifeprosan 20 is:

\[
\begin{align*}
\text{O} & \quad \text{O} & \quad \text{O} & \quad \text{O} \\
\text{C} & \quad \text{CH}_2 & \quad \text{CH}_2 & \quad \text{C} \\
\end{align*}
\]

Ratio m:n = 20:80; random copolymer

The structural formula for carmustine is:

\[
\begin{align*}
\text{Cl} & \quad \text{CH}_2 & \quad \text{CH}_2 & \quad \text{NHCH}_2 & \quad \text{CH}_2 & \quad \text{Cl} \\
\end{align*}
\]

CLINICAL PHARMACOLOGY
GLIADEL® Wafer is designed to deliver carmustine directly into the surgical cavity created when a brain tumor is resected. Co-exposure to the hypoxic environment of the resection cavity, the nitrosourea bonds in the copolymer are hydrolyzed, releasing carmustine, carbaphenoxynapine, and sebacic acid. The carmustine released from GLIADEL® Wafer diffuses into the surrounding brain tissue and produces an antineoplastic effect by alkylating DNA and RNA.

Carmustine has been shown to degrade both spontaneously and metabolically. The production of an alkylating moiety, hypothesized to be chloroethyl carbamion, leads to the formation of DNA cross-links.

The tumoricidal activity of GLIADEL® Wafer is dependent on release of carmustine to the tumor cavity in concentrations sufficient for effective cytotoxicity. More than 70% of the copolymer degrades by three weeks. The metabolic disposition and excretion of the monomers differ. Carbaphenoxynapine is eliminated by the kidney and sebacic acid, an endogenous fatty acid, is metabolized by the liver and excreted as CO₂ in animals.

The absorption, distribution, metabolism, and excretion of the copolymer in humans is unknown. Carmustine concentrations delivered by GLIADEL® Wafer in human brain tissue have not been determined. Plasma levels of carmustine after GLIADEL® Wafer implant were not determined. In rabbits implanted with wafers containing 3.0% carmustine, no detectable levels of carmustine were found in the plasma or cerebrospinal fluid.

Following an intracerebral infusion of carmustine at doses ranging from 30 to 179 mg/m², the average terminal half-life, clearance, and steady-state volume of distribution were 22 minutes, 56 ml/min/m², and 3.25 L/kg, respectively. Approximately 60% of the intravenous 200 mg/m² dose of "C carmustine was excreted in the urine over 96 hours and 6% was excreted as CO₂.

GLIADEL® Wafer is biodegradable in human brain tissue when implanted into the cavity after tumor resection. The rate of biodegradation is variable from patient to patient. During the biodegradation process, the wafer remnants may be observed on brain imaging scans or at re-operation even though extensive degradation of all components has occurred. Data obtained from review of CT scans obtained 49 days after implantation of GLIADEL® Wafer demonstrated that images consistent with wafers were visible to varying degrees in the scans of 11 of 16 patients. Data obtained at re-operation and autopsies have demonstrated wafer remnants up to 235 days after GLIADEL® Wafer implantation.

GLIADEL® Wafer remnants are biodegradable in human brain tissue when implanted into the cavity after tumor resection. The rate of biodegradation is variable from patient to patient. During the biodegradation process, the wafer remnants may be observed on brain imaging scans or at re-operation even though extensive degradation of all components has occurred. Data obtained from review of CT scans obtained 49 days after implantation of GLIADEL® Wafer demonstrated that images consistent with wafers were visible to varying degrees in the scans of 11 of 16 patients. Data obtained at re-operation and autopsies have demonstrated wafer remnants up to 235 days after GLIADEL® Wafer implantation.

COMPOSITION OF WAFER REMNANTS REMOVED FROM TWO PATIENTS ON RE-OPERATION

<table>
<thead>
<tr>
<th>Component</th>
<th>Patient A</th>
<th>Patient B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days After GLIADEL® Wafer Implantation</td>
<td>64</td>
<td>92</td>
</tr>
<tr>
<td>Antihemide Bonds</td>
<td>None detected</td>
<td>None detected</td>
</tr>
<tr>
<td>Water Content (% of wafer remnant weight)</td>
<td>96-97%</td>
<td>74-86%</td>
</tr>
<tr>
<td>Carmustine Content (% of initial)</td>
<td><0.003%</td>
<td>0.034%</td>
</tr>
<tr>
<td>Carbaphenoxynapine Content (% of initial)</td>
<td>9%</td>
<td>14%</td>
</tr>
<tr>
<td>Sebacic Acid Content (% of initial)</td>
<td>4%</td>
<td>3%</td>
</tr>
</tbody>
</table>

The wafer remnants consisted mostly of water and monomeric components with minimal detectable carmustine present.

CLINICAL STUDIES
Primary Surgery

A randomized, double-blind, placebo-controlled clinical trial was conducted in adult patients with newly-diagnosed high-grade malignant glioma undergoing initial craniotomy for tumor resection. This trial determined the safety and efficacy of GLIADEL® Wafer implants plus surgery and radiation therapy compared to placebo implants plus surgery and radiation therapy. Two hundred and forty-four patients with newly-diagnosed malignant glioma were enrolled. The most common tumor type was glioblastoma multiforme (GBM) (33%), followed by anaplastic glioma (11%), anaplastic oligodendroglioma (5%), and anaplastic astrocytoma (5%). GLIADEL® Wafers were implanted at the time of surgery in 120 patients and placebo wafers were implanted in 120 patients. The majority of patients received 6-9 weeks. The majority of patients received radiation therapy (50.0 to 60.0 Gy) typically starting 3 weeks after surgery. There were 177 patients (14.0%) in the GLIADEL® Wafer group and 172 patients (10.0%) in the placebo group who received systemic chemotherapy during the study. All six patients with anaplastic oligodendroglioma received chemotherapy within 30 days of GLIADEL® Wafer implantation. Patients were followed for at least three years or until death. Only one patient was lost to follow-up. Median survival increased from 11.6 months with placebo to 13.6 months with GLIADEL® Wafer (p-value <0.05, log-rank test). The hazard ratio for GLIADEL® Wafer treatment was 0.73 (95% CI 0.55-0.96).

Kaplan-Meier Overall Survival Curves for Patients Undergoing Initial Surgery for a High-Grade Malignant Glioma

When only patients with glioblastoma multiforme were included in the analysis, the hazard ratio with GLIADEL® Wafer treatment was 0.78 (95% CI: 0.55–1.03, p=0.08, log-rank test).

Surgery for Recurrent Disease

A randomized, double-blind, placebo-controlled clinical trial was conducted in adult patients with recurrent malignant glioma. This trial determined the safety and efficacy of GLIADEL® Wafer implants plus surgery compared to placebo implants plus surgery.

Ninety-five percent of the patients treated with GLIADEL® Wafer had 7-8 weeks implants. Chemotherapy was withheld at least four weeks (six weeks for nitrosoureas) prior to and two weeks after surgery in patients undergoing re-operation for malignant glioma. In 227 patients with recurrent malignant glioma who had failed initial surgery and radiation therapy, the six-month survival rate after rapid surgery increased from 47% (53/115) for patients receiving placebo to 66% (69/105) for patients treated with GLIADEL® Wafer. Median survival increased by 32%, from 24 weeks (5.5 months) with placebo to 22 weeks (7.4 months) with GLIADEL® Wafer treatment. In patients with GBM, the six-month survival rate increased from 36% (25/73) with placebo to 56% (42/75) with GLIADEL® Wafer treatment. Median survival of GBM patients increased by 41% from 26 weeks (6.6 months) with placebo to 36 weeks (8.4 months) with GLIADEL® Wafer treatment. In patients with pathologic diagnoses other than GBM at the time of surgery for tumor recurrence, GLIADEL® Wafer produced no survival prolongation.

5-MONTH KAPLAN-MEIER SURVIVAL CURVES FOR PATIENTS UNDERGOING SURGERY FOR RECURRENT GBM
Nursing Mothers: It is not known if either carmustine, carmustine hydroxypropyl, or sodium acid is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions from carmustine in nursing infants, it is recommended that patients receiving GLIADE³⁶ Wafer discontinue nursing.

ADVERSE REACTIONS
Adverse reactions for the trials are described in the tables below.

Primary Surgery
The following data are the most frequently occurring adverse events observed in 5% or more of the newly-diagnosed malignant glioma patients during the trial.

COMMON ADVERSE EVENTS OBSERVED IN 5% OF PATIENTS RECEIVING GLIADE³⁶ WAFER AT INITIAL SURGERY

<table>
<thead>
<tr>
<th>Body System</th>
<th>GLIADE³⁶ Wafer N=120 n (%)</th>
<th>Placebo N=120 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body as a whole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>11 (92)</td>
<td>10 (83)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>5 (42)</td>
<td>4 (33)</td>
</tr>
<tr>
<td>Constipation</td>
<td>20 (17)</td>
<td>17 (14)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>5 (4)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Liver function tests abnormal</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Endocrine system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>6 (5)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>Gushings syndrome</td>
<td>4 (3)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Metabolic and nutritional disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>19 (16)</td>
<td>16 (13)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>11 (9)</td>
<td>9 (8)</td>
</tr>
<tr>
<td>Musculoskeletal system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myalgia</td>
<td>6 (5)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>Nervous system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>40 (41)</td>
<td>44 (37)</td>
</tr>
<tr>
<td>Constipation</td>
<td>20 (20)</td>
<td>25 (21)</td>
</tr>
<tr>
<td>Brain edema</td>
<td>21 (21)</td>
<td>23 (19)</td>
</tr>
<tr>
<td>Apathy</td>
<td>21 (21)</td>
<td>22 (18)</td>
</tr>
<tr>
<td>Somnolence</td>
<td>13 (11)</td>
<td>18 (15)</td>
</tr>
<tr>
<td>Speech disorder</td>
<td>13 (11)</td>
<td>10 (9)</td>
</tr>
<tr>
<td>Anorexia</td>
<td>11 (9)</td>
<td>12 (10)</td>
</tr>
</tbody>
</table>

*Adverse events noted at the COSTART term "adipose reaction" were usually events involving tethered, distance progression or general deterioration of condition (e.g., condition/health/renal/mediastinal/physical deterioration).
<table>
<thead>
<tr>
<th>Body System</th>
<th>GLUADEL® Wafer N=120 (n (%))</th>
<th>Placebo N=120 (n (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurological system (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracranial hypertension</td>
<td>11 (9)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Personality disorder</td>
<td>10 (8)</td>
<td>9 (8)</td>
</tr>
<tr>
<td>Headache</td>
<td>8 (17)</td>
<td>5 (4)</td>
</tr>
<tr>
<td>Facial paresthesia</td>
<td>5 (4)</td>
<td>5 (4)</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>5 (4)</td>
<td>12 (10)</td>
</tr>
<tr>
<td>Abnormal gait</td>
<td>7 (6)</td>
<td>10 (8)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>6 (5)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>6 (5)</td>
<td>11 (9)</td>
</tr>
<tr>
<td>Gallbladder stone</td>
<td>6 (5)</td>
<td>5 (4)</td>
</tr>
<tr>
<td>Gallbladder stone</td>
<td>6 (5)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Incontinence</td>
<td>5 (4)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>Tinnitus</td>
<td>5 (4)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>Cough</td>
<td>5 (4)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>Infection</td>
<td>3 (3)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>3 (3)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>4 (3)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>Respiratory system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>10 (8)</td>
<td>9 (8)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>4 (3)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>Skin and appendages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>14 (12)</td>
<td>13 (11)</td>
</tr>
<tr>
<td>Keratitis</td>
<td>12 (10)</td>
<td>14 (12)</td>
</tr>
<tr>
<td>Special senses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjunctival edema</td>
<td>8 (7)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>Abnormal vision</td>
<td>7 (6)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>Visual field defect</td>
<td>6 (5)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>Eye disorder</td>
<td>3 (3)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>Diplopia</td>
<td>1 (1)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>10 (8)</td>
<td>13 (11)</td>
</tr>
<tr>
<td>Urinary incontinence</td>
<td>5 (4)</td>
<td>9 (8)</td>
</tr>
</tbody>
</table>

Surgery for Recurrent Disease

The following post-operative adverse events were observed in 4% or more of the patients receiving GLUADEL® Wafer at recurrent surgery. Except for nervous system effects, where there is a possibility that the placebo wafer could have been responsible, only events more common in the GLUADEL® Wafer group are listed. These adverse events were either not present pre-operatively or worsened post-operatively during the follow-up period. The follow-up period was up to 7 months.

COMMON ADVERSE EVENTS OBSERVED IN ≥ 4% OF PATIENTS RECEIVING GLUADEL® WAFER AT SURGERY FOR RECURRENT DISEASE

<table>
<thead>
<tr>
<th>Body System</th>
<th>GLUADEL® Wafer with Carmustine (N=110) (n (%))</th>
<th>PLACEBO Wafer without Carmustine (N=112) (n (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body as a Whole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>13 (12)</td>
<td>9 (8)</td>
</tr>
<tr>
<td>Pain*</td>
<td>8 (7)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Digestive System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea or Vomiting</td>
<td>9 (8)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>Metabolic and Nutritional Disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healing Abnormal*</td>
<td>15 (14)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>Nervous System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convulsion</td>
<td>21 (19)</td>
<td>21 (19)</td>
</tr>
<tr>
<td>Hemiplegia</td>
<td>21 (19)</td>
<td>22 (19)</td>
</tr>
<tr>
<td>Headache</td>
<td>16 (14)</td>
<td>14 (12)</td>
</tr>
<tr>
<td>Somnolence</td>
<td>15 (14)</td>
<td>12 (11)</td>
</tr>
<tr>
<td>Confusion</td>
<td>11 (10)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>Agitation</td>
<td>10 (9)</td>
<td>12 (11)</td>
</tr>
<tr>
<td>Stupor</td>
<td>7 (6)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>Brain Edema</td>
<td>4 (4)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Intracranial Hypertension</td>
<td>4 (4)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>Meningitis or Abscess</td>
<td>4 (4)</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

COMMON ADVERSE EVENTS OBSERVED IN ≥ 4% OF PATIENTS RECEIVING GLUADEL® WAFER AT SURGERY FOR RECURRENT DISEASE (continued)

<table>
<thead>
<tr>
<th>Body System</th>
<th>GLUADEL® Wafer with Carmustine (N=110) (n (%))</th>
<th>PLACEBO Wafer without Carmustine (N=112) (n (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse Event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body as a Whole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and Appendages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>6 (5)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Urogenital System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary Tract Infection</td>
<td>23 (21)</td>
<td>19 (17)</td>
</tr>
</tbody>
</table>

*P < 0.05 for comparison of GLUADEL® Wafer versus placebo groups.

Post-marketing experience includes spontaneous reports of cyst formation after GLUADEL® wafer implantation. These occurred at varying time intervals post-implantation. Cyst formation has also been reported in patients following resection of malignant gliomas who have not had GLUADEL® implanted.

The following four categories of adverse events are possible related to treatment with GLUADEL® Wafer. The frequency of which they occurred in the randomized trials along with descriptive details is provided below.

1. **Seizures:** In the initial surgery trial, the incidence of seizures was 33.5% in patients receiving GLUADEL® Wafer and 27.5% in patients receiving placebo. Grand mal seizures occurred in 5% of GLUADEL® Wafer-treated patients and 4.2% of placebo-treated patients. The incidence of seizures within the first 3 days after wafer implantation was 2.5% in the GLUADEL® Wafer group and 4.2% in the placebo group. The time from surgery to the onset of the first post-operative seizure did not differ between the GLUADEL® Wafer and placebo treated patients.

In the surgery for recurrent disease trial, the incidence of post-operative seizures was 19.6% in both patients treated with GLUADEL® Wafer and 19.6% of patients treated with placebo. Development of brain edema with mass effect (due to tumor recurrence, intracranial infection, or resection) may exacerbate re-operation and, in some cases, removal of GLUADEL® Wafer or its remnants.

3. **Healing Abnormalities:** The following healing abnormalities have been reported in clinical trials of GLUADEL® Wafer: wound dehiscence, delayed wound healing, subdural, subgaleal, or wound effusions, and cerebral fluid leak. In the initial surgery trial, healing abnormalities occurred in 15.8% of GLUADEL® Wafer-treated patients and in 11.7% of placebo recipients. Cerebrospinal fluid leaks occurred in 6% of GLUADEL® Wafer recipients and 6.8% of those given placebo. During surgery, a water-tight dural closure should be obtained to minimize the risk of cerebrospinal fluid leak.

In the surgery for recurrent disease trial, the incidence of healing abnormalities was 14% in GLUADEL® Wafer-treated patients and 5% in patients receiving placebo wafer.

4. **Intracranial Infections:** In the initial surgery trial, the incidence of brain abscess or meningitis was 5% in patients treated with GLUADEL® Wafer and 6% in patients receiving placebo. In the recurrent setting, the incidence of brain abscess or meningitis was 4% in patients treated with GLUADEL® Wafer and 1% in patients receiving placebo wafer.

The following adverse events, not listed in the table above, were reported in less than 4% but at least 1% of patients treated with GLUADEL® Wafer in all studies. The events listed were either not present pre-operatively or worsened post-operatively. Whether GLUADEL® Wafer caused these events cannot be determined.

Body as a Whole: peripheral edema (2%); neck pain (2%); accidental injury (1%); back pain (1%); allergic reaction (1%); asthenia (1%); chest pain (1%); eosin (1%)

Cardiovascular System: hypertension (3%); hypotension (1%)

Digestive System: diarrhea (6%); constipation (2%); dysphagia (1%); gastrointestinal hemorrhage (1%); fecal incontinence (1%)

Hemic and Lymphatic System: thrombocytopenia (1%); leukocytosis (1%)

Metabolic and Nutritional Disorders: hypoglycemia (3%); hyperglycemia (3%); hypokalemia (1%)

Musculoskeletal System: infection (1%)

Nervous System: hypotension (3%); depression (3%); abnormally low thinking (2%); dizziness (2%); insomnia (2%); monoparesis (2%); coma (1%); amnesia (1%); diplopia (1%); paroxysmal reaction (1%). In addition, cerebral hemorrhage and cerebral infarct were each reported in less than 1% of patients treated with GLUADEL® Wafer.

Respiratory System: infection (2%); aspiration pneumonia (1%)

Skin and Appendages: rash (2%)

Special Senses: visual field defect (2%); eye pain (1%)

Urogenital System: urinary incontinence (2%)
OVERDOSE

There is no clinical experience with use of more than eight GLIADEL® Wafers per surgical procedure.

DOSE AND ADMINISTRATION

Each GLIADEL® Wafer contains 7.7 mg of carmustine, resulting in a dose of 61.6 mg when eight wafers are implanted. It is recommended that eight wafers be placed in the resection cavity if the size and shape of it allow. Should the size and shape not accommodate eight wafers, the maximum number of wafers as allowed should be placed. Since there is no clinical experience, no more than eight wafers should be used per surgical procedure.

Handling and Disposal:

Wafers should only be handled by personnel wearing surgical gloves because exposure to carmustine can cause severe burning and hyperpigmentation of skin. Use of double gloves is recommended and the outer gloves should be discarded into a biohazard waste container after use. A surgical instrument dedicated to the handling of the wafers should be used for wafer implantation. If repeat neurosurgical intervention is indicated, any wafer or wafer remnant should be handled as a potentially cytotoxic agent.

GLIADEL® Wafer should be handled with care. The aluminum foil laminate pouches containing GLIADEL® Wafer should be delivered to the operating room and remain unopened until ready to implant the wafers. The outside surface of the outer foil pouch is not sterile.

Instructions for Opening Pouch Containing GLIADEL® Wafer

Figure 1: To remove the sterile inner pouch from the outer pouch, locate the folded corner and slowly pull in an outward motion.

Figure 2: Do NOT pull in a downward motion rolling knuckles over the pouch. This may exert pressure on the wafer and cause it to break.

Figure 3: Remove the inner pouch by grabbing hold of the cramped edge and pulling upward.

Figure 4: To open the inner pouch, gently fold the cramped edge and cut in an arc-like fashion around the wafer.

Figure 5: To remove the GLIADEL® Wafer, gently grasp the wafer with the aid of forceps and place it onto a designated sterile field.

Once the tumor is resected, tumor pathology is confirmed, and histopathology is obtained, up to eight GLIADEL® Wafer (Gliadel® wafer implant) may be placed to cover as much of the resection cavity as possible. Slight overlapping of the wafers is acceptable. Wafers broken in half may be used, but wafers broken in more than two pieces should be discarded in a biohazard container. Oxidized regenerated cellulose (Surgispon®) may be placed near the wafers to secure them against the cavity surface. After placement of the wafers, the resection cavity should be irrigated and the dura closed in a watertight fashion.

Unopened foil pouches may be kept at ambient room temperature for a maximum of six hours at a time.

HOW SUPPLIED

GLIADEL® Wafer is available in a single dose treatment box containing eight individually pouched wafers. Each wafer contains 7.7 mg of carmustine and is packaged in two-aluminum foil laminate pouches. The inner pouch is sterile and is designed to maintain product sterility and protect the product from moisture. The outer pouch is a sealable overwrap. The outside surface of the outer pouch is not sterile.

GLIADEL® Wafer must be stored at or below -20°C (-4°F).

REFERENCES

3. National Study Commission on Cytotoxic Exposure — Recommendations for Handling Cytotoxic Agents. Available from: John B. Jeffrey, Sol. (Chairman), National Study Commission on Cytotoxic Exposure, Massachusetts College of Pharmacy and Allied Health Sciences, 179 Longwood Avenue, Boston, Massachusetts 02115.

NDC: 62866-172-68

CAUTION: FEDERAL LAW PROHIBITS DISPENSING WITHOUT PRESCRIPTION.

Manufactured by
Eisai Inc.
Woodcliff Lake, NJ 07677
Rev. 04/2019 201241R1
米国における添付文書和訳
GLIADEL® WAFFER (Polifeprosan 20 with carmustine implant)

グリアデル® ウェハー（カルムスチン含有ポリフェプロサン 20 インプラント）

処方専用

製品概要

グリアデル® ウェハー（カルムスチン含有ポリフェプロサン 20 留置剤）は滅菌された灰白色～淡黄色を呈する直径約 1.45cm、厚さ1mmのウェハーである。各ウェハーには192.3mgの生分解性的ポリアクリル酸無水物共重合体と7.7mgのカムスチン（1,3-ビス（2-クロロエチル）1-ニトロソ尿素、略してBCNU）が含まれている。カルムスチンはニトロソウレア系殺腫瘍薬である。ポリフェプロサン20は、ビスマルクールから成るポリアクリル酸無水物共重合体であり、カルムスチンの局所送達をコントロールするのに用いられる。カルムスチンは共重合体基剤に均一に分布している。

ポリフェプロサン 20 の構造式は以下の通りである:

ポリフェプロサン 20 の構造式は以下の通りである:

![ポリフェプロサン 20 の構造式](./image)

カルムスチンの構造式は以下の通りである:

![カルムスチンの構造式](./image)

臨床薬理

グリアデル® ウェハーは脳腫瘍の切除後の、切除腔にカルムスチンを直接送達できるように設計されている。切除腔の水分の多い環境にさらされると、共重合体の酸無水物結合が加水分解され、カルムスチン、カルボキシフェノキシプロパンとセバシン酸が放出される。グリアデル® ウェハーから放出されたカルムスチンは周囲の脳組織に拡散し、DNAやRNAをアルキル化することにより抗腫瘍効果を発揮する。

カルムスチンは自然に、また代謝によっても分解することが報告されている。クロロエチルカ
ルボニウムイオンと想定されているアルキル化反応部位が生成し、これが DNA 架橋を形成させる。

グリアデル®ウェハーの抗癌患活性は、細胞毒性を発揮するのに十分な濃度のカルムスチンを腫瘍腔に放出できるかどうかに依存している。

共重合体基剤の 70%以上は 3 週間以内に分解される。各モノマー（カルボキシフェノキシプロパン、セバシン酸）の代謝と排泄はそれぞれ異なっている。動物ではカルボキシフェノキシプロパンは腎から排泄され、内在性脂肪酸であるセバシン酸は肝臓で代謝され、二酸化炭素として呼気中に放出される。

ヒトでの共重合体の吸収・分布・代謝・排泄は不明である。またヒト脳内のグリアデル®ウェハーによりもたらされるカルムスチンの濃度は確定されていない。グリアデル®ウェハーの留置後の血漿中カルムスチン濃度も確定されていない。3.85%のカルムスチンを含むウェハーを留置したウサギでは、血漿と脳脊髄液中のカルムスチン濃度は検出限界以下であった。

30～170mg/m² の濃度範囲でカルムスチンを静脈内に点滴投与した場合の平均消失半減期、クリアランス及び、定常状態での分布容積は、それぞれ、22 分、56mL/分/kg と 3.25 L/kg であった。200mg/m² 用量の 14C 標識カルムスチンを静脈内投与した場合、その約 60%が 96 時間以内に排泄され、6%は二酸化炭素として呼気中に放出された。

グリアデル®ウェハーは脳腫瘍の切除腔に留置されると、脳内で生分解される。生分解の速度は患者によって異なる。生分解の過程ではすべての成分が広範に分解された場合であっても、ウェハーの遺残物が脳画像スキャンや再手術時に認められることがある。グリアデル®ウェハー留置後 49 日目に撮影された CT 画像を検討したデータでは、18 名中 11 名の患者で、程度はさまざまなものの、ウェハーに合致する画像が観察されている。再手術や剖検の時点で得られたデータでは、グリアデル®ウェハーの留置後の 232 日目までもウェハーの遺残物が認められている。

再発悪性神経腫瘍 2 名の患者から、再手術時に（各々留置後 64 日目と 92 日目）取り出したウェハー遺残物について、その内容物の分析が行われている。これらの遺残物についての解析結果を次の表に示した。
2名の再手術患者から取り出しさしウェハー遺残物の組成

<table>
<thead>
<tr>
<th>成分</th>
<th>患者A</th>
<th>患者B</th>
</tr>
</thead>
<tbody>
<tr>
<td>グリアデル®ウェハー留置後日数</td>
<td>64</td>
<td>92</td>
</tr>
<tr>
<td>酸無水物結合</td>
<td>検出せず</td>
<td>検出せず</td>
</tr>
<tr>
<td>水分量（遺残物重量％）</td>
<td>95-97%</td>
<td>74-86%</td>
</tr>
<tr>
<td>カルムスチン量（％：対初期値）</td>
<td><0.0004%</td>
<td>0.034%</td>
</tr>
<tr>
<td>カルボキシフェノキシプロパン量（％：対初期値）</td>
<td>9%</td>
<td>14%</td>
</tr>
<tr>
<td>セバシン酸量（％：対初期値）</td>
<td>4%</td>
<td>3%</td>
</tr>
</tbody>
</table>

ウェハー遺残物の大部分は水分と単量体類であり、ごく少量のカルムスチンが検出されている。

臨床試験
初回手術

初発の高グレードの悪性神経膠腫と診断され、初回の脳腫瘍切除術を受ける成人患者を対象に、無作為化、二重盲検、プラセボ対照臨床試験を行った。この試験ではグリアデル®ウェハーの留置と手術及び放射線治療の組み合わせによる安全性と有効性を、プラセボウェハー留置と手術及び放射線治療の組み合わせを比較して確認した。初発の悪性神経膠腫患者240名が登録された。最も多かった腫瘍は膠芽腫（207例）、次いで退形成性乏突起星細胞腫（11例）、退形成性乏突起膠腫（11例）、退形成性星細胞腫（2例）であった。手術の際に120名の患者にグリアデル®ウェハーが留置され、プラセボウェハーも120名に留置された。大部分の患者は6～8枚のウェハーの留置を受けた。患者の大部分（グリアデル®ウェハー群では120名中93名（77.5%）プラセボ群では120名中98名（81.7%）は、通常、術後3週間後から開始する標準的な放射線治療（55～60グレイ）を受けていた。試験中に全身化学療法を受けた患者はグリアデル®ウェハー群の17名（14.2%）とプラセボ群の12名（10.0%）であった。退形成性乏突起膠腫患者6名はいずれも、グリアデル®ウェハーの留置後30日以内に化学療法を受けていた。患者の経過観察は最低3年間若しくは死亡するまで行われた。脱落した患者は1名のみであった。生生存期間中央値はプラセボ群では11.6ヵ月であったが、グリアデル®ウェハー群では13.8ヵ月まで増加した（p<0.05、Log-rank検定）。グリアデル®ウェハー治療のハザード比は0.73（95%信頼区間：0.56～0.95）であった。膠芽腫の患者のみの解析では、グリアデル®ウェハー治療のハザード比は0.78（95%信頼区間：0.59～1.03、p=0.08、Log-rank検定）であった。
高グレードの悪性神経膠腫患者に対する初回手術施行例の Kaplan-Meier 全生存曲線

再発疾患に対する手術
再発の高グレードの悪性神経膠腫成人患者を対象に、無作為化、二重盲検、プラセボ対照試験を行った。この試験では、グリアデル®ウェハーの留置と手術療法による安全性と有効性を、プラセボの留置と手術療法の組み合わせと比較して確認した。グリアデル®ウェハーの治療を受けた患者の 95%は 7〜8 枚のウェハーが留置された。悪性神経膠腫の再手術を受ける患者では、手術前の最低 4 週間（ニトロソウレアの場合は 6 週間）と、術後の 2 週間における化学療法は中止された。再発した腫瘍の手術時の病理組織検査で膠芽腫以外と診断された患者では、グリアデル®ウェハーの使用による生存期間の延長は認められなかった。
再発膠芽腫患者の手術施行例での Kaplan-Meier 全生存曲線

適応及び用量
グリアデル®ウェハーは、初発の高グレードの悪性神経膠腫患者に対し、手術と放射線治療に付加療法としての適応を有する。グリアデル®ウェハーは、再発の膠芽腫患者に対し、手術の付加療法としての適応を有する。

禁忌
グリアデル®ウェハーは、カルムスチンを含有する。カルムスチンやグリアデル®ウェハーの成分に対して過敏症の既往歴のある患者にはグリアデル®ウェハーを使用してはならない。

警告
悪性神経膠腫のため開頭術とグリアデル®ウェハーの留置を受ける患者では、けいれん、頭蓋内感染、創傷治癒の異常、脳浮腫など、開頭術に伴う既知の合併症について慎重に観察しなければならない。グリアデル®ウェハーで治療された患者では、副腎皮質ホルモン無効の脳内の腫瘤効果（浮腫など）を呈した症例が数例報告されており、脳ヘルニアに至った症例が 1 例ある。

妊娠時の使用：グリアデル®ウェハーの生殖器系への毒性を評価した試験はない。グリアデル®ウェハーの活性成分であるカルムスチンは妊娠に投与した場合に胎児に害を及ぼしうる。カルムスチンを、ラットの妊娠 6 〜 15 日目にかけて 0.5、1、2、4 または 8mg/kg/日の用量で腹腔内投与した場合、胎児毒性と催奇形性が認められている。カルムスチンは 1mg/kg/日の用量 [mg/m² で計算してヒトでの推奨用量（1 ユヘーあたり 7.7mg のカルムスチンとして 8 ユヘー分）の約 6 分の 1] で胎児の奇形（無眼球症、小顎症、臍帯ヘルニア）を発現した。カルムスチンをウサギに 4.0mg/kg/日（mg/m² で計算してヒトでの推奨用量の 1.2 倍）の用量で静脈内投与した場合には胎児毒性が発現した。胎児毒性の特徴は胚・胎児死亡の增加、同腹仔の数の減少、同腹仔の大きさの減少などであった。

グリアデル®ウェハーを妊娠に使用した試験はない。グリアデル®ウェハーを妊娠中に用いたり、
患者がグリアデル®ウェハーの留置後に妊娠した場合には、潜在的な胎児への危害について患者に警告しなければならない。

注意事項
一般：ウェハーが脳室系に移動して閉塞性水頭症を来たすことを防止するために、手術後の切除腔と脳室系との連絡を避けなくてはならない。ウェハーの直径より大きい開腔部が存在する場合には、ウェハーを留置する前に開腔部を閉鎖しなくてはならない。

頭部のCT及びMRIには、グリアデル®ウェハーの留置後の切除腔周囲の脳組織に造影増強が認められることがある。この造影増強画像は、グリアデル®ウェハーによって生じた浮腫や炎症を示すこともあれば、腫瘍の進展を示すこともある。

薬物相互作用：
グリアデル®ウェハーと他薬剤との相互作用については公式な評価は行われていない。
化学療法と組み合わせて用いた際のグリアデル®ウェハーの短期と長期の毒性プロファイルはこれまで完全には調査されていない。放射線治療と組み合わせて用いた際には、グリアデル®ウェハーは短期又は慢性の毒性を示さない。

がん原性、変異原性、生殖毒性：
グリアデル®ウェハーに関しては、発がん性、変異原性、あるいは生殖毒性についての研究は行われていないが、グリアデル®ウェハーの活性成分であるカルムスチンに関しては、発がん性、変異原性、生殖毒性の試験が行われている。スイスマウスにカルムスチンを2.5と5mg/kg（mg/m²で計算してヒトでの推奨用量（1ウェハーあたり7.7mgのカルムスチンとして8ウェハー分）の約5分の1と3分の1）の用量で、また、SDラットには1.5mg/kg（mg/m²で計算してヒトでの推奨用量の約4分の1）の用量で週3回、6カ月間腹腔内投与した後、12カ月観察されている。投与したすべての動物で腫瘍の発生率が増加し、特に皮下と肺の腫瘍が多く認められた。変異原性：カルムスチンはin vitro試験（Ames試験、ヒトリンパ芽球HGPRT試験）で変異原性がみられ、またin vitro（V79ハムスターを用いる細胞小核試験）in vivo（齧歯類脳腫瘍を用いるSCE試験、マウス骨髄小核試験）の両試験では染色体異常誘発性がみられた。
生殖毒性：雄ラットに8mg/kg/週（mg/m²で計算してヒトでの推奨用量の約1.3倍）の用量でカルムスチンを8週間腹腔内投与した場合には、精巣の萎縮が発現した。

妊娠：妊娠カテゴリーD：警告を参照
授乳婦：カルムスチン、カルボキシフェノキシプロバン又は、セパシン酸が母乳中に排泄されるかどうかは不明である。多くの薬剤が母乳中に排泄されており、授乳中の乳児に対してカルムスチンが深刻な副作用を発現する可能性があるため、グリアデル®ウェハーを留置している
患者では授乳を中止するよう推奨されている。

小児の使用: 小児に対するグリアデル®ウェハーの安全性と、有効性は確立していない。

有害事象
臨床試験での有害事象を以下の表に示した。

初回手術
以下のデータは、臨床試験中に初発の悪性神経膠腫患者の5%以上にみられた最も頻度の高かった有害事象である。

<table>
<thead>
<tr>
<th>部位/有害事象名</th>
<th>グリアデル®ウェハー N=120</th>
<th>プラセボ N=120</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n(%)</td>
<td>n(%)</td>
</tr>
<tr>
<td>全身系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>反応増悪</td>
<td>98 (82)</td>
<td>95 (79)</td>
</tr>
<tr>
<td>頭痛</td>
<td>33 (28)</td>
<td>44 (37)</td>
</tr>
<tr>
<td>無力症</td>
<td>26 (22)</td>
<td>18 (15)</td>
</tr>
<tr>
<td>感染</td>
<td>22 (18)</td>
<td>24 (20)</td>
</tr>
<tr>
<td>発熱</td>
<td>21 (18)</td>
<td>21 (18)</td>
</tr>
<tr>
<td>疼痛</td>
<td>16 (13)</td>
<td>18 (15)</td>
</tr>
<tr>
<td>腹痛</td>
<td>10 (8)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>背部痛</td>
<td>8 (7)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>顔面浮腫</td>
<td>7 (6)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>腫瘍</td>
<td>6 (5)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>事故による損傷</td>
<td>6 (5)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>胸痛</td>
<td>6 (5)</td>
<td>0</td>
</tr>
<tr>
<td>過敏症</td>
<td>2 (2)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>循環器系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>深部血栓性静脈炎</td>
<td>12 (10)</td>
<td>11 (9)</td>
</tr>
<tr>
<td>肺塞栓症</td>
<td>10 (8)</td>
<td>10 (8)</td>
</tr>
<tr>
<td>出血</td>
<td>8 (7)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>消化器系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>悪心</td>
<td>26 (22)</td>
<td>20 (17)</td>
</tr>
<tr>
<td>嘔吐</td>
<td>25 (21)</td>
<td>19 (16)</td>
</tr>
<tr>
<td>便秘</td>
<td>23 (19)</td>
<td>14 (12)</td>
</tr>
<tr>
<td>下痢</td>
<td>6 (5)</td>
<td>5 (4)</td>
</tr>
<tr>
<td>肝機能検査異常</td>
<td>1 (1)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>内分泌系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>糖尿病</td>
<td>6 (5)</td>
<td>5 (4)</td>
</tr>
<tr>
<td>クッシング症候群</td>
<td>4 (3)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>代謝及び栄養</td>
<td></td>
<td></td>
</tr>
<tr>
<td>治瘻異常</td>
<td>19 (16)</td>
<td>14 (12)</td>
</tr>
<tr>
<td>末梢性浮腫</td>
<td>11 (9)</td>
<td>11 (9)</td>
</tr>
<tr>
<td>筋骨格系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>筋力低下</td>
<td>5 (4)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>神経系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>片麻痺</td>
<td>49 (41)</td>
<td>53 (44)</td>
</tr>
<tr>
<td>瘤発</td>
<td>40 (33)</td>
<td>45 (38)</td>
</tr>
<tr>
<td>症状</td>
<td>薬剂群</td>
<td>プラセボ群</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>錯乱</td>
<td>28 (23)</td>
<td>25 (21)</td>
</tr>
<tr>
<td>脳浮腫</td>
<td>27 (23)</td>
<td>23 (19)</td>
</tr>
<tr>
<td>失語症</td>
<td>21 (18)</td>
<td>22 (18)</td>
</tr>
<tr>
<td>うつ病</td>
<td>19 (16)</td>
<td>12 (10)</td>
</tr>
<tr>
<td>傾眠</td>
<td>13 (11)</td>
<td>18 (15)</td>
</tr>
<tr>
<td>会話障害</td>
<td>13 (11)</td>
<td>10 (8)</td>
</tr>
<tr>
<td>健忘</td>
<td>11 (9)</td>
<td>12 (10)</td>
</tr>
<tr>
<td>頭蓋内圧亢進</td>
<td>11 (9)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>人格障害</td>
<td>10 (8)</td>
<td>9 (8)</td>
</tr>
<tr>
<td>不安</td>
<td>8 (7)</td>
<td>5 (4)</td>
</tr>
<tr>
<td>顔面麻痺</td>
<td>8 (7)</td>
<td>5 (4)</td>
</tr>
<tr>
<td>ニューロパチー</td>
<td>8 (7)</td>
<td>12 (10)</td>
</tr>
<tr>
<td>運動失調</td>
<td>7 (6)</td>
<td>5 (4)</td>
</tr>
<tr>
<td>感覚麻痺</td>
<td>7 (6)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>錯覚</td>
<td>7 (6)</td>
<td>10 (8)</td>
</tr>
<tr>
<td>思考異常</td>
<td>7 (6)</td>
<td>10 (8)</td>
</tr>
<tr>
<td>異常歩行</td>
<td>6 (5)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>浮動性めまい</td>
<td>6 (5)</td>
<td>11 (9)</td>
</tr>
<tr>
<td>大発作症候群</td>
<td>6 (5)</td>
<td>5 (4)</td>
</tr>
<tr>
<td>幻覚</td>
<td>6 (5)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>不眠症</td>
<td>6 (5)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>振戦</td>
<td>6 (5)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>昏睡</td>
<td>5 (4)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>協調運動異常</td>
<td>3 (3)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>運動低下</td>
<td>2 (2)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>呼吸器系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>肺炎</td>
<td>10 (8)</td>
<td>9 (8)</td>
</tr>
<tr>
<td>呼吸困難</td>
<td>4 (3)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>皮膚付属器官系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>発疹</td>
<td>14 (12)</td>
<td>13 (11)</td>
</tr>
<tr>
<td>脱毛症</td>
<td>12 (10)</td>
<td>14 (12)</td>
</tr>
<tr>
<td>特殊感覚器</td>
<td></td>
<td></td>
</tr>
<tr>
<td>結膜浮腫</td>
<td>8 (7)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>視覚異常</td>
<td>7 (6)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>視野欠損</td>
<td>6 (5)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>眼の障害</td>
<td>3 (3)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>視覚</td>
<td>1 (1)</td>
<td>6 (5)</td>
</tr>
<tr>
<td>泌尿生殖器系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>尿路感染</td>
<td>10 (8)</td>
<td>13 (11)</td>
</tr>
<tr>
<td>尿失禁</td>
<td>9 (8)</td>
<td>9 (8)</td>
</tr>
</tbody>
</table>

再発手術
再発した腫瘍の手術時にグリアデル®ウェハーを留置した患者の 4%以上にみられた術後の有害事象を以下に示した。プラセボウェハーが原因となった可能性のある中枢神経系への影響を除いて、グリアデル®ウェハー群でより多くみられた有害事象のみを列挙した。これらの有害事象は術前にはみられなかったものか、もしくは術後の経過観察中に増悪したものである。経過観察を最長 71 ヶ月まで実施した。
再発手術患者の4%以上に発現した有害事象

<table>
<thead>
<tr>
<th>部位/有害事象名</th>
<th>グリアデル®ウェハー N=110</th>
<th>プラセボ N=112</th>
</tr>
</thead>
<tbody>
<tr>
<td>全身系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>発熱</td>
<td>13(12)</td>
<td>9(8)</td>
</tr>
<tr>
<td>疼痛*</td>
<td>8(7)</td>
<td>1(1)</td>
</tr>
<tr>
<td>消化器系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>悪心及び嘔吐</td>
<td>9(8)</td>
<td>7(6)</td>
</tr>
<tr>
<td>代謝及び栄養</td>
<td>15(14)</td>
<td>6(5)</td>
</tr>
<tr>
<td>神経系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>痙攣</td>
<td>21(19)</td>
<td>21(19)</td>
</tr>
<tr>
<td>片麻痺</td>
<td>21(19)</td>
<td>22(20)</td>
</tr>
<tr>
<td>頭痛</td>
<td>16(15)</td>
<td>14(13)</td>
</tr>
<tr>
<td>傾眠</td>
<td>15(14)</td>
<td>12(11)</td>
</tr>
<tr>
<td>錯乱</td>
<td>11(10)</td>
<td>9(8)</td>
</tr>
<tr>
<td>失語症</td>
<td>10(9)</td>
<td>12(11)</td>
</tr>
<tr>
<td>昏迷</td>
<td>7(6)</td>
<td>7(6)</td>
</tr>
<tr>
<td>腦浮腫</td>
<td>4(4)</td>
<td>1(1)</td>
</tr>
<tr>
<td>頭蓋内圧亢進</td>
<td>4(4)</td>
<td>7(6)</td>
</tr>
<tr>
<td>髄膜炎あるいは膿瘍</td>
<td>4(4)</td>
<td>1(1)</td>
</tr>
<tr>
<td>皮膚付属器官系</td>
<td></td>
<td></td>
</tr>
<tr>
<td>発疹</td>
<td>6(5)</td>
<td>4(4)</td>
</tr>
<tr>
<td>泌尿生殖器系</td>
<td>23(21)</td>
<td>19(17)</td>
</tr>
</tbody>
</table>

*: グリアデル®ウェハーとプラセボ比較で統計学的有意差あり（P<0.05）

以下の4種の有害事象が、グリアデル®ウェハー治療に関連している可能性がある。無作為化臨床試験中に生じた有害事象の頻度とその詳細を以下に示した。

1. けいれん発作：初回手術を受けた患者における発作の頻度は、グリアデル®ウェハー留置患者では33.3%、プラセボ留置患者では37.5%であった。大発作はグリアデル®ウェハー治療群では5%、プラセボ群では4.2%であった。留置後の5日以内の発作発現率は、グリアデル®ウェハー留置群では2.5%、プラセボ群では4.2%であった。手術の開始から術後の初回の発作までの期間に関しては、グリアデル®ウェハー留置群とプラセボ群で差はみられなかった。
再発腫瘍の手術患者を対象とした臨床試験では、術後のけいれん発作の発現率はグリアデル®ウェハー留置群、プラセボ群ともに19%であった。この試験では、グリアデル®ウェハー留置群22名中12名（54%）と、プラセボ群22名中2名（9%）で術後5日以内に初回発作もしくは発作の増悪が認められた。初回発作もしくは増悪した発作が起るまでの期間の中央値はグリアデル®ウェハー留置群では3.5日、プラセボ群では61日であった。

2. 脳浮腫：初回手術を受けた患者を対象とした試験では、脳浮腫はグリアデル®ウェハー留置患者の22.5%、プラセボ群の患者の19.2%にみられた。腫瘍効果（腫瘍再発、頭蓋内感染、壊死による）伴う脳浮腫の発症により、再手術が必要、又は、場合によってはグリアデル®ウェ
3. 創傷治癒異常: 臨床試験において、グリアデル®ウェハーは、以下に挙げるような治癒異常が報告されている：創傷の離開、創傷治癒の遅延、硬膜下、脳脊髄液の漏出。初回手術患者を対象とした試験では、創傷治癒異常はグリアデル®ウェハー治療群の15.8%と、プラセボ群の11.7%にみられた。脳脊髄液の漏出はグリアデル®ウェハー群の5%と、プラセボ群の0.8%にみられた。手術中は、硬膜閉鎖を確保する方法で脳脊髄液の漏出を最小限に抑えるため、防水性のある方法で硬膜閉鎖を確保するべきである。

再発腫瘍の手術患者を対象とした試験では、創傷治癒異常の発現率はグリアデル®ウェハー群では14%、プラセボ群では5%であった。

4. 脳内感染: 初回手術患者を対象とした試験において、脳膿瘍又は髄膜炎の発現率は、グリアデル®ウェハー群では5%、プラセボ群では6%であった。再発腫瘍の手術患者を対象とした試験においては、脳膿瘍又は髄膜炎の発現率はグリアデル®ウェハー群では4%、プラセボ群では1%であった。

前出の表にはないが、グリアデル®ウェハー留置患者中、1%以上かつ4%未満の患者に以下に示す有害事象がみられたと報告されている。これらの事象は術前にはみられなかったか、もしくは術後の経過観察中に増悪したものである。これらの事象がグリアデル®ウェハーによって起こったものかどうかは確定できていない。

全身: 末梢性浮腫(2%); 頸部痛(2%); 事故による外傷(1%); 背部痛(1%); アレルギー反応(1%); 無力症(1%); 胸痛(1%); 発熱(1%)
循環器系: 高血圧(3%); 低血圧(1%)
消化器系: 下痢(2%); 便秘(2%); 嘔吐(1%); 消化管出血(1%); 便失禁(1%)
血液・リンパ系: 血小板減少症(1%); 白血球増加症(1%)
代謝・栄養異常: 低ナトリウム血症(3%); 高血糖(3%); 低カリウム血症(1%)
筋骨格系: 感染(1%)
神経系: 水頭症(3%); うつ病(3%); 思考異常(2%); 運動失調(2%); 浮動性めまい(2%); 不眠症(2%); 単間節痛(2%); 昏睡(1%); 健忘症(1%); 複視(1%); 妄想様反応(1%)。これらに加えて、グリアデル®ウェハー留置患者の1%未満ではあるが、脳内出血を来たした症例、脳梗塞を呈した症例が報告されている。
呼吸器系: 感染(2%); 嘔下性肺炎(1%)
皮膚および皮膚付属器: 発疹(2%)
特殊感覚: 視野欠損(2%); 眼痛(1%)

特殊感覚: 視野欠損(2%); 眼痛(1%)

10
泌尿生殖器系：尿失禁（2％）

過量投与 1 回の手術の際に 8 枚をこえるグリアデル®ウェハーを使った臨床例はない。

用量及び投与
1 枚のグリアデル®ウェハーは 7.7mg のカルムスチンを含有しているので、8 枚のウェハーを留
置した場合は 61.6mg の用量となる。切除腔の大きさと形状により、可能な限り 8 個のウェハ
ーを留置することが推奨される。切除腔の大きさと形状から、8 枚のウェハーが留置できない
場合でも、可能な限り多くのウェハーを留置すべきである。臨床例がないため、1 回の手術の
際に 8 枚を超えるウェハーを用いるべきではない。

取扱い及び廃棄：カルムスチンに皮膚が曝露されると重度の熱傷と過剰色素沈着を来たす可能
性があるため、ウェハーの取り扱いは、手術用の手袋を着用した者のみに限るべきである。手
袋を 2 重に着用し、外側の手袋は使用後に医療用廃棄物容器に廃棄しなければならない。ウェ
ハーの留置には、専用の手術器具を用いないければならない。もし脳外科的な再処置が適応とな
った場合、ウェハーまたはウェハーの遺残物はいずれも細胞毒性を示す可能性のある物質とし
て取り扱わなければならない。

グリアデル®ウェハーの取り扱いには注意せねばならない。グリアデル®ウェハーを包むアルミ
ホイルラミネート袋を手術室に運び、ウェハー留置の準備ができるまで未開封にしておかねば
ならない。外袋の外表は、滅菌されていない。

グリアデル®ウェハーの開封手順

図 1
外袋の開封用の角を右図の
ように、ゆっくりと外側に
引っ張り内袋を取り出す。

図 2
勢いよく下方に引っ張っ
たり、荒々しくしないこと。
ウェハーに外圧がかから
ため破損する可能性がありま
す。
腫瘍を切除して腫瘍の病理を確認し、止血した後、切除腔をできるだけ被覆するように最大8枚のグリアデル®ウェハー（カルムスチン含有ポリフェプロサン20インプラント）を留置する。ウェハーがわずかに重なりあうのは許容される。半分に割れたウェハーは使用可能であるが、3つ以上に割れたウェハーは医療用廃棄物容器に廃棄しなければならない。切除腔面にウェハーを固定するため、酸化再生セルロース（surgicel®）を上からかぶせてもよい。ウェハーの留置後は、切除腔を洗浄し、液の漏出を防ぐ方法で硬膜を閉鎖すべきである。

未開封のホイルポーチは室温で最大6時間保存することができる。

供給方法
グリアデル®ウェハーは1枚ずつ包装された8枚のポーチが治療1回分の使用量として1箱に入っている。1個のウェハーは7.7mgのカルムスチンを含む2重のアルミニウムホイルラミネート袋に入っている。内袋は滅菌されており、製品を滅菌状態に保ち湿気から防護されている。外袋は手で開封可能である。外袋の外表は滅菌されていない。

グリアデル®ウェハーはマイナス20℃または、それ以下で保存しなくてはならない。
英国における製品特性概要書原文
SUMMARY OF PRODUCT CHARACTERISTICS
1. NAME OF THE MEDICINAL PRODUCT

GLIADEL 7.7 MG IMPLANT

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each implant contains 7.7 mg of carmustine.

For a full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Implant
Off-white to pale yellow flat discoid implant.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

GLIADEL Implant is indicated in newly-diagnosed high-grade malignant glioma patients as an adjunct to surgery and radiation.

GLIADEL Implant is indicated for use as an adjunct to surgery in patients with recurrent histologically proved glioblastoma multiforme for whom surgical resection is indicated.

4.2 Posology and method of administration

For intralesional use in adults only.

Each GLIADEL Implant contains 7.7 mg of carmustine, resulting in a dose of 61.6 mg when eight implants are placed in the tumour resection cavity.

It is recommended that a maximum of eight implants be placed if the size and shape of the resection cavity allows it. Implants broken in half may be used, but implants broken in more than two pieces should be discarded in the dedicated biohazard waste containers (see section 6.6).

It is recommended that the placement of the implants should be directly from the product’s inner sterile packaging into the resection cavity. Oxidised regenerated cellulose may be placed over the implants to secure them to the cavity surface (see section 6.6).

4.3 Contraindications

Hypersensitivity to the active substance carmustine or to any of the excipients of GLIADEL Implant.

4.4 Special warnings and precautions for use

Patients undergoing craniotomy for glioblastoma and implantation of GLIADEL Implant should be monitored closely in view of known complications of craniotomy which includes convulsions, intracranial infections, abnormal wound healing, and brain oedema (see section 4.8). Cases of intracerebral mass effect unresponsive to corticosteroids have been described in patients treated with GLIADEL Implant, including one case leading to brain herniation. Careful monitoring of GLIADEL Implant-treated patients for cerebral oedema/intracranial hypertension with consequent steroid use is warranted (see section 4.8).
CSF leak was more common in GLIADEL Implant-treated patients. Attention to a water-tight dural closure and local wound care is indicated (see section 4.8).

Development of brain oedema with mass effect (due to tumour recurrence, intracranial infection, or necrosis) may necessitate re-operation and, in some cases, removal of GLIADEL Implant or its remnants.

Communication between the surgical resection cavity and the ventricular system should be avoided to prevent the implants from migrating into the ventricular system and possibly causing obstructive hydrocephalus. If a communication larger than the diameter of the implant exists, it should be closed prior to GLIADEL Implant implantation.

Computed tomography and magnetic resonance imaging may demonstrate enhancement in the brain tissue surrounding the resection cavity after placement of GLIADEL Implants. This enhancement may represent oedema and inflammation caused by GLIADEL Implants or tumour progression.

4.5 Interaction with other medicinal products and other forms of interaction

Interactions of GLIADEL Implant with other drugs or chemotherapy have not been formally evaluated.

4.6 Pregnancy and lactation

Pregnancy:

There are no studies of GLIADEL Implant in pregnant women and no studies assessing the reproductive toxicity of GLIADEL Implant.

Carmustine, the active component of GLIADEL Implant, when administered systemically, can have genotoxic effects and can adversely affect foetal development. GLIADEL Implant, therefore, should not be used during pregnancy. If the use of GLIADEL Implant during pregnancy is still considered, the patient should be informed of the potential risk to the foetus. Women of childbearing potential should be advised to avoid pregnancy while receiving GLIADEL Implant. In case of patients getting pregnant during treatment with GLIADEL Implant, the opportunity for genetic advice should be seized.

Lactation:

It is not known if GLIADEL Implant components are excreted in human milk. Since some drugs are excreted in human milk and because of the potential risk of serious adverse reactions of carmustine in nursing infants, breast-feeding is contra-indicated.

4.7 Effects on ability to drive and use machines

No effects on ability to drive and use machines have been observed. However, driving is not advisable following treatment.

4.8 Undesirable effects

The spectrum of undesirable effects observed in patients with newly-diagnosed high-grade malignant glioma and recurrent malignant gliomas was generally consistent with that encountered in patients undergoing craniotomy for malignant gliomas.

Very common (≥ 1/10), common (≥ 1/100 to < 1/10) and uncommon (≥ 1/1,000 to < 1/100) adverse reactions reported in patients receiving GLIADEL Implant during the clinical trials are listed below.
Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness.

Primary Surgery
The following data are the most frequently occurring adverse events observed in 5% or more of the 120 newly-diagnosed malignant glioma patients receiving GLIADEL Implant during the trial.

Common Adverse Events Observed in ≥ 5% of Patients Receiving GLIADEL Implant at Initial Surgery

<table>
<thead>
<tr>
<th>Class organ</th>
<th>Adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endocrine disorders</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Healing abnormal, Peripheral oedema</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Hemiplegia, convulsion, confusion, brain oedema, aphasia, depression, somnolence, speech disorder, Amnesia, intracranial hypertension, personality disorder, anxiety, facial paralysis, neuropahty, ataxia, hypoesthesia, paresthesia, thinking abnormal, abnormal gait, dizziness, grand mal convulsion, hallucinations, insomnia, tremor</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Conjunctival oedema, abnormal vision, visual field defect</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Deep thrombophebitis, Pulmonary embolism, haemorrhage</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Pneumonia</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea, vomiting, constipation, Diarrhoea</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Rash, alopecia</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td>Urinary tract infection, urinary incontinence</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Aggravation reaction, headache, asthenia, infection, fever, pain, Abdominal pain, back pain, face oedema, chest pain, abscess, accidental injury</td>
</tr>
</tbody>
</table>

Intracranial hypertension was present in more GLIADEL Implant-treated patients than in Placebo patients (9.2% vs. 1.7%). It was typically observed late, at the time of tumour recurrence, and was unlikely to be associated with GLIADEL Implant use (see section 4.4).

CSF leak was more common in GLIADEL Implant-treated patients than in placebo patients. However intracranial infections and other healing abnormalities were not increased (see section 4.4).

Surgery for Recurrent Disease
The following post-operative adverse events were observed in 4% or more of the 110 patients receiving GLIADEL Implant at recurrent surgery in a controlled clinical trial. Except for nervous system effects, where there is a possibility that the placebo implants could have been responsible, only events more common in the GLIADEL Implant group are listed. These adverse events were either not present pre-operatively or worsened post-operatively during the follow-up period. The follow-up period was up to 71 months.

Common Adverse Events in ≥4% of Patients Receiving GLIADEL Implant at Recurrent Surgery

Gliadel, April 2009
Class organ	Adverse events
Blood and lymphatic system disorders | common
Metabolism and nutrition disorders | very common
Nervous system disorders | very common
Cardiac disorders | common
Respiratory, thoracic and mediastinal disorders | common
Gastrointestinal disorders | common
Skin and subcutaneous tissue disorders | common
Renal and urinary disorders | very common
General disorders and administration site conditions | very common

Blood and lymphatic system disorders: common Anaemia

Metabolism and nutrition disorders: very common Healing abnormal
common Hyponatraemia

Nervous system disorders: very common Convulsion, hemiplegia, headache, somnolence, confusion
common Aphasia, stupor, brain oedema, intracranial hypertension, meningitis or abscess

Cardiac disorders: common Deep thrombophlebitis, Pulmonary embolism

Respiratory, thoracic and mediastinal disorders: common

Gastrointestinal disorders: common Nausea, nausea and vomiting, oral moniliasis

Skin and subcutaneous tissue disorders: common

Renal and urinary disorders: very common Urinary tract infection

General disorders and administration site conditions: very common Fever
common Infection, pain

The following adverse events, not listed in the table above, were reported in less than 4% but at least 1% of patients treated with GLIADEL Implant in all studies. The events listed were either not present pre-operatively or worsened post-operatively. Whether GLIADEL Implant caused these events cannot be determined.

Common Adverse Events in 1% to 4% of Patients Receiving GLIADEL Implant

Class organ	Adverse events
Blood and lymphatic system disorders | common Thrombocytopenia, leukocytosis
Metabolism and nutrition disorders | common Hyponatraemia, hyperglycaemia, hypokalaemia
Nervous system disorders | common Hydrocephalus, depression, abnormal thinking, ataxia, dizziness, insomnia, hemiplegia, coma, amnesia, diplopia, paranoid reaction
Eye Disorders | common Cerebral haemorrhage, cerebral infarct
Cardiac and vascular Disorders | common Hypertension, hypotension
Respiratory, thoracic and mediastinal disorders | common Infection, aspiration pneumonia
Gastrointestinal disorders | common Diarrhoea, constipation, dysphagia, gastrointestinal haemorrhage, faecal incontinence
Skin and subcutaneous tissue disorders | common Rash
Musculoskeletal and connective tissue disorders | common Infection
Renal and urinary disorders | common Urinary incontinence
General disorders and administration site conditions | common Peripheral oedema, neck pain, accidental injury, back pain, allergic reaction, asthenia, chest pain, sepsis

The following four categories of adverse events are possibly related to treatment with GLIADEL Implant.

Seizures:

In the initial surgery trial, the incidence of seizures within the first 5 days after implantation was 2.5% in the GLIADEL Implant group.

In the surgery for recurrent disease trial, the incidence of post-operative seizures was 19% in patients receiving GLIADEL Implant. 12/22 (54%) of patients treated with GLIADEL Implant experienced the
first new or worsened seizure within the first five post-operative days. The median time to onset of the first new or worsened post-operative seizure was 3.5 days in patients treated with GLIADEL Implant.

Brain Oedema:

Development of brain oedema with mass effect (due to tumour recurrence, intracranial infection, or necrosis) may necessitate re-operation and, in some cases, removal of GLIADEL Implant or its remnants (see section 4.4).

Healing Abnormalities:

The following healing abnormalities have been reported in clinical trials of GLIADEL Implant: wound dehiscence, delayed wound healing, subdural, subgaleal or wound effusions, and cerebrospinal fluid leak.

In the initial surgery trial, cerebrospinal fluid leaks occurred in 5% of GLIADEL Implant recipients. During surgery, a water-tight dural closure should be obtained to minimise the risk of cerebrospinal fluid leak (see section 4.4).

Intracranial Infection:

In the initial surgery trial, the incidence of brain abscess or meningitis was 5% in patients treated with GLIADEL Implant.

In the recurrent setting, the incidence of brain abscess or meningitis was 4% in patients treated with GLIADEL Implant.

In a published clinical study, cyst formation after GLIADEL Implant treatment has been reported. This reaction occurred in 10% of the patients observed in the study, however, the formation of cysts is possible after resection of a malignant glioma.

4.9 Overdose

Not applicable.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antineoplastic agents, ATC Code: L01AD01

Preclinical data

GLIADEL Implant delivers carmustine directly into the surgical cavity created after tumoural resection. On exposure to the aqueous environment of the cavity the anhydride bonds in the copolymer are hydrolysed, releasing carmustine, carboxyphenoxypropane and sebacic acid. The carmustine released from GLIADEL Implant diffuses into the surrounding brain tissue and produces an antineoplastic effect by alkylating DNA and RNA.

Carmustine is spontaneously both degraded and metabolised. The alkylating moiety thus produced and presumed to be chloroethyl carbonium ion, leads to the formation of irreversible DNA cross-links.

The tumourcidal activity of GLIADEL Implant is dependent on release of carmustine into the tumour cavity in concentrations sufficient for effective cytotoxicity.
More than 70% of the copolymer degrades by three weeks. The metabolic disposition and excretion of the monomers differ. Carboxyphenoxypropane is predominantly eliminated by the kidney and sebacic acid, an endogenous fatty acid, is metabolised by the liver and expired as CO₂ in animals.

Clinical data

Primary surgery
In a randomised, double-blind, placebo-controlled clinical trial in 240 adults with newly-diagnosed high grade malignant glioma undergoing initial craniotomy for tumour resection median survival increased from 11.6 months with placebo to 13.9 months with GLIADEL Implant (p-value 0.079, unstratified log-rank test) in the original study phase. The most common tumour type was Glioblastoma Multiforme (GBM) (n=207), followed by anaplastic oligoastrocytoma (n=11), anaplastic oligodendroglioma (n=11), and anaplastic astrocytoma (n=2). The hazard ratio for GLIADEL Implant was 0.77 (95% CI: 0.57 to 1.03). In the long term follow-up phase, patients still alive at the completion of the original phase were followed for up to at least three years or until death. Median survival increased from 11.6 months with placebo to 13.9 months with GLIADEL Implant (p-value <0.05, log-rank test). The hazard ratio for GLIADEL Implant treatment was 0.73 (95% CI: 0.56 to 0.95).

Surgery for Recurrent Disease
In a randomised, double-blind, placebo-controlled clinical trial in 145 adults with recurrent glioblastoma (GBM), GLIADEL Implant prolonged survival in these patients. Ninety-five percent of the patients treated with GLIADEL Implant received 7 to 8 implants.

The six-month survival rate was 36% (26/73) with placebo compared to 56% (40/72) with GLIADEL Implant treatment. Median survival of GBM patients is 20 weeks with placebo versus 28 weeks with GLIADEL Implant treatment.

5.2 Pharmacokinetic properties

The absorption, distribution, metabolism, and excretion of the copolymer in humans is unknown. Carmustine concentrations delivered by GLIADEL Implant in human brain tissue have not been determined. Plasma levels of carmustine after GLIADEL Implant implantation cannot be assayed. In rabbits that had implants containing 3.85% carmustine placed, carmustine is not detected in the blood or cerebrospinal fluid.

Following an intravenous infusion of carmustine at doses ranging from 30 to 170mg/m², the average terminal half-life, clearance, and steady-state volume of distribution are 22 minutes, 56mL/min/kg, and 3.25L/kg, respectively. Approximately 60% of the intravenous 200mg/m² dose of ¹⁴C-carmustine is excreted in the urine over 96 hours and 6% is expired as CO₂.

GLIADEL Implants are biodegradable in human brain when placed into the cavity after tumour resection. The rate of biodegradation is variable from patient to patient. During the biodegradation process an implant remnant may be observed on brain imaging scans or at re-operation even though extensive degradation of all components has occurred.

5.3 Preclinical safety data

No carcinogenicity, mutagenicity, embryo-foetal toxicity, pre- and post-natal toxicity and impairment of fertility studies have been conducted with GLIADEL Implants.
Carmustine, the active component of GLIADEL Implant, when administered systemically, has embryotoxic, genotoxic and carcinogenic effects and can cause testicular degeneration in several animal models.

6. **PHARMACEUTICAL PARTICULARS**

6.1 **List of Excipients**

Polifeprosan 20

6.2 **Incompatibilities**

Not applicable.

6.3 **Shelf-life**

3 years

6.4 **Special precautions for storage**

Store in a freezer at or below -20°C.

Unopened outer sachets may be kept at a temperature of not more than 22°C for a maximum of six hours.

The product may be refrozen only once if the sachets have been unopened and kept for a maximum of 6 hours at a temperature of not more than 22°C. After refreezing, the product should be used within 30 days.

6.5 **Nature and contents of container**

GLIADEL Implant is available in a box containing eight implants. Each implant is individually packaged in two aluminium foil laminate sachets.

6.6 **Special precautions for disposal and handling**

Implants should be handled by personnel wearing surgical gloves because exposure to carmustine can cause severe burning and hyperpigmentation of the skin. Use of double gloves is recommended and the outer gloves should be discarded into a dedicated biohazard waste container after use. A surgical instrument dedicated to the handling of the implants should be used for implant placement. If repeat neurosurgical intervention is indicated, any implant or implant remnant should be handled as a potentially cytotoxic agent. Any unused product or waste material should be disposed of in accordance with local requirements.

GLIADEL Implants should be handled with care. The sachets containing GLIADEL Implants should be delivered to the operating room and remain unopened until ready to place the implants in the resection cavity. Only the outside surface of the outer sachet is not sterile. In any case, if an implant is dropped, it should be discarded accordingly.
Instructions for opening sachets containing the implant:

- To open the outer sachet, locate the folded corner and slowly pull in an outward motion. Do not pull in a downward motion rolling knuckles over the sachet. This may exert pressure on the implant and cause it to break.
- Remove the inner sachet by grabbing with the aid of forceps and pulling upward.
- To open the inner sachet, gently hold it and cut in an arc-like fashion around the implant.
- To remove the implant, gently grasp the implant with the aid of forceps and place it directly into the resection cavity.

In any case, if an implant is dropped, it should be discarded accordingly.

Once the tumour is resected, tumour pathology is confirmed and haemostasis is obtained, up to eight implants may be placed to cover as much of the resection cavity as possible. Slight overlapping of the implants is acceptable. Implants broken in half may be used, but implants broken in more than two pieces should be discarded in the dedicated biohazard waste containers.

Oxidised regenerated cellulose may be placed over the implants to secure them to the cavity surface. After placement of the implants, the resection cavity should be irrigated and the dura closed in a water-tight fashion.

Any unused product or waste material should be disposed of in accordance with local requirements for biohazardous waste.

7. MARKETING AUTHORISATION HOLDER

MGI PHARMA LIMITED
Holborn Gate, 1st Floor
330 High Holborn
London, WC1V 7QT
United Kingdom

8. MARKETING AUTHORISATION NUMBER

PL 18753/0001

9. DATE OF FIRST AUTHORISATION/RENEWAL OF AUTHORISATION

Date of first authorisation: 28/05/1999
Date of last renewal: 10/12/2008

10. DATE OF REVISION OF THE TEXT

December 2008
英国における製品特性概要書和訳
グリアデル 7.7 mg インプラント

1. 医薬品の名称
グリアデル 7.7 mg インプラント

2. 定性的及び定量的組成
グリアデルインプラントは1インプラントあたりカルムスチン 7.7 mg を含有する。
添加物リストは、6.1 に記載。

3. 剤形
インプラント
灰白色～淡黄色の平らな円盤状インプラント

4. 臨床上の事項
4.1 治療適応
グリアデルインプラントは、初発の高度の悪性神経膠腫患者における外科手術及び放射線療法の付加療法として使用する。
グリアデルインプラントは、外科的切除が適応となる再発の組織学的に確定された多形性神経膠芽細胞腫を認める患者における外科手術の付加療法として使用する。

4.2 用法・用量
成人の病巣内投与に限る。
グリアデルインプラントは1インプラントあたりカルムスチン 7.7 mg を含有し、8 枚のインプラントを腫瘍切除腔に留置した場合 61.6 mg の用量となる。
切除腔の大きさ及び形状より可能な限り、最大8枚のインプラントを留置することが望ましい。
インプラントを半分に分割して使用してもよいが、3つ以上に分割されたインプラントは生体有害廃棄物専用容器に廃棄すること（6.6 参照）。
各インプラントは、滅菌済み内袋から切除腔内へ直接留置することが望ましい。インプラントを切除腔面に固定するため、酸化再生セルロースをインプラントに被せてもよい（6.6 参照）。

4.3 禁忌
グリアデルインプラントの有効成分カルムスチン、または添加物に対する過敏症

4.4 警告及び使用上の注意
神経膠芽細胞腫に対する開頭術とグリアデルインプラントの留置を受けた患者は、痘撲、頭蓋内感染、創傷治癒異常、脳浮腫（4.8 参照）等を含む既知の開頭術合併症を考慮して綿密にモニタリングすること（4.8 参照）。コレステロイド反応しない脳内腫瘍効果を示す症例がグリアデルインプラントを留置された患者において記載されており、そのうちの1例は脳ヘルニアに至っている。脳浮腫／頭蓋内圧亢進症に関してグリアデルインプラント留置患者を注意深くモニタリングし、必要な場合はステロイドを使用すること（4.8 参照）。脳脊髄液漏はグリアデルインプラント留置患者においてより多くみられた。防水性のある方法で硬膜閉鎖と局所の創傷ケアに留意することが推奨される（4.8 参照）。

1
腫瘍効果（腫瘍再発、頭蓋内感染、または壊死による）を伴う脳浮腫の進展により、再手術や、症例によってはグリアデルインプラントまたはその残遺物の除去を必要とすることがある。インプラントが脳室系に移動して閉塞性水頭症を引き起こす可能性を排除するため、腫瘍切除腔と脳室系の間の連絡は避けること。インプラントの直径よりも大きな開口部があれば、留置前に閉鎖すること。

CT 及びMRI 画像において、グリアデルインプラント留置後の切除腔周囲の脳組織に造影増強を認めることがある。この造影増強はグリアデルインプラントの留置または腫瘍の進行に起因する浮腫や炎症を表している可能性がある。

4.5 他の医薬品との相互作用、他の形態の相互作用
グリアデルインプラントと他の医薬品または化学療法との相互作用に関して、公式な評価は行われていない。

4.6 妊婦、授乳婦等への投与
妊娠：
妊娠を対象とするグリアデルインプラントの試験、及びグリアデルインプラントの生殖毒性を評価する試験は行われていない。
カルムスチン（グリアデルインプラントの有効成分）は全身投与した場合、遺伝毒性を示す恐れや胎児の発育に悪影響を及ぼす恐れがある。従ってグリアデルインプラントは妊娠に留置すべきではない。それでもグリアデルインプラントの妊娠への留置を考慮する場合は、胎児への潜在的危害について患者に知らせること。妊娠する可能性のある婦人には、グリアデルインプラントの妊娠を留置されている間は避妊すること。グリアデルインプラント留置中に患者が妊娠した場合は、遺伝カウンセリングの機会を設けること。

授乳婦：
グリアデルインプラントの成分がヒト乳汁中に排泄されるかどうかは不明である。一部の薬剤はヒト乳汁中に排泄されること、及び乳児に起こり得るカルムスチンの重篤な副作用の危険性を考慮し、本剤留置患者の授乳は禁忌とする。

4.7 自動車運転及び機械操作能力への影響
自動車運転能力や機械操作能力への影響は認めていない。しかしながら、本剤留置後の自動車運転は勧められない。

4.8 副作用
初発の高度の悪性神経膠腫患者、及び再発性悪性神経膠腫患者にみられる一連の副作用は、悪性神経膠腫に対する開頭術を受けた患者に生じるそれとおおむね一致していた。
臨床試験中にグリアデルインプラントの留置を受けた患者における、ごく一般的（≧1/10）、一般的（≧1/100 から＜1/10）及びまれ（≧1/1,000 から＜1/100）な副作用を以下に示す。同一の発現頻度群内では、副作用の重症度の高いものから順に示す。

初回手術
以下のデータは、初発の悪性神経膠腫と診断されたグリアデルインプラント留置患者 120 例の
5%以上において、治験中に最も頻繁に認めた有害事象である。

<table>
<thead>
<tr>
<th>器官による分類</th>
<th>有害事象</th>
</tr>
</thead>
<tbody>
<tr>
<td>内分泌障害</td>
<td>糖尿病</td>
</tr>
<tr>
<td>代謝及び栄養障害</td>
<td>末梢性浮腫</td>
</tr>
<tr>
<td>神経系障害</td>
<td>片麻痺、痙攣、錯乱、脳浮腫、失語症、うつ病、傾眠、会話障害</td>
</tr>
<tr>
<td>眼障害</td>
<td>結膜浮腫、視覚異常、視野欠損</td>
</tr>
<tr>
<td>心臓障害</td>
<td>深部血栓性静脈炎</td>
</tr>
<tr>
<td>呼吸器、胸郭及び縦隔障害</td>
<td>肺炎</td>
</tr>
<tr>
<td>胃腸障害</td>
<td>悪心、嘔吐、便秘</td>
</tr>
<tr>
<td>皮膚及び皮下組織障害</td>
<td>発疹、脱毛症</td>
</tr>
<tr>
<td>腎及び尿路障害</td>
<td>尿路感染、尿失禁</td>
</tr>
<tr>
<td>一般・全身障害及び投与部位の状態</td>
<td>反応増悪、頭痛、無力症、感染、発熱、疼痛</td>
</tr>
<tr>
<td></td>
<td>腹痛、背部痛、顔面浮腫、胸痛、膿瘍、事故による外傷</td>
</tr>
</tbody>
</table>

頭蓋内圧亢進症はグリアデルインプラント留置患者において、プラセボ留置患者よりも高い割合で認められた（9.2% vs. 1.7%）。これは腫瘍再発時に通常みられる発現率であり、グリアデルインプラントの留置との関連性はないと思われる（4.4参照）。
脳脊髄液漏はグリアデルインプラント留置患者において、プラセボ患者よりも多く認められた。しかし、頭蓋内感染やその他の治癒異常の増加は認めなかった（4.4参照）。

再発疾患に対する手術
比較対照臨床試験における再発手術時に、グリアデルインプラント留置患者110例の4%以上に以下の術後有害事象を認めた。プラセボの留置が原因であった可能性のある神経系への影響を除き、グリアデルインプラント留置群においてより多く認められた事象のみ記載してある。これらの有害事象は術前には認めなかったが、または術後の追跡調査期間に増悪した事象である。追跡調査期間は最大71ヶ月であった。
再発手術時にグリアデルインプラント留置患者の4%以上に認めた一般的な有害事象

<table>
<thead>
<tr>
<th>器官による分類</th>
<th>有害事象</th>
</tr>
</thead>
<tbody>
<tr>
<td>血液及びリンパ系障害</td>
<td>一般的 感染症、貧血</td>
</tr>
<tr>
<td>代謝及び栄養障害</td>
<td>一般的 治癒異常</td>
</tr>
<tr>
<td>神経系障害</td>
<td>一般的 低ナトリウム血症</td>
</tr>
<tr>
<td>心臓障害</td>
<td>一般的 深部血栓性静脈炎、肺塞栓症</td>
</tr>
<tr>
<td>呼吸器、胸郭及び縦隔障害</td>
<td>一般的 肺炎</td>
</tr>
<tr>
<td>腸腸障害</td>
<td>一般的 息切れ、息詫まり、口腔モニリア症</td>
</tr>
<tr>
<td>皮膚及び皮下組織障害</td>
<td>一般的 発疹</td>
</tr>
<tr>
<td>臀及び尿路障害</td>
<td>一般的 腎炎</td>
</tr>
<tr>
<td>一般・全身障害及び投与部位の状態</td>
<td>一般的 発熱</td>
</tr>
</tbody>
</table>

上表には記載していないが、すべての試験におけるグリアデルインプラント留置患者の4%未満（ただし1%以上）において以下のような有害事象が報告された。これらの事象は術前には認めなかったか、または術後に増悪した事象である。グリアデルインプラントの留置がこれらの事象の原因であったかどうかは判定できない。

グリアデルインプラント留置患者の1〜4%未満に認めた一般的有害事象

<table>
<thead>
<tr>
<th>器官による分類</th>
<th>有害事象</th>
</tr>
</thead>
<tbody>
<tr>
<td>血液及びリンパ系障害</td>
<td>一般的 血小板減少症、白血球増加症</td>
</tr>
<tr>
<td>代謝及び栄養障害</td>
<td>一般的 低ナトリウム血症、高血糖、低カリウム血症</td>
</tr>
<tr>
<td>神経系障害</td>
<td>一般的 水頭症、うつ病、思考異常、運動失調、浮動性めまい、不眠症、片麻痺、昏睡、健忘、複視、妄想反応</td>
</tr>
<tr>
<td>眼障害</td>
<td>一般的 視覚障害、眼痛</td>
</tr>
<tr>
<td>心臓及び血管障害</td>
<td>一般的 高血圧、低血圧</td>
</tr>
<tr>
<td>呼吸器、胸郭及び縦隔障害</td>
<td>一般的 感染、風性肺炎</td>
</tr>
<tr>
<td>腸腸障害</td>
<td>一般的 下痢、便秘、嘔下障害、胃腸出血、便失禁</td>
</tr>
<tr>
<td>皮膚及び皮下組織障害</td>
<td>一般的 発疹</td>
</tr>
<tr>
<td>筋骨格系及び結合組織障害</td>
<td>一般的 感染</td>
</tr>
<tr>
<td>臀及び尿路障害</td>
<td>一般的 尿路感染</td>
</tr>
<tr>
<td>一般・全身障害及び投与部位の状態</td>
<td>一般的 末梢性浮腫、頭痛、熱害</td>
</tr>
</tbody>
</table>

以下の4種類の有害事象は、グリアデルインプラントの留置に関係している可能性がある。

発作：
初回手術の治験では、術後5日間の発作発現率はグリアデルインプラント留置群において2.5%であった。
再発患者の手術の治験では、術後発作の発現率はグリアデルインプラント留置群において19%
であった。グリアデルインプラント留置患者22例中12例（54%）は、術後5日以内に新たな（または増悪した）発作を初めて経験していた。新たな（または増悪した）術後発作が初めて現れるまでの時間は、グリアデルインプラント留置群において中央値で3.5日であった。

脳浮腫:
腫瘍効果（腫瘍再発、頭蓋内感染、または壊死による）を伴う脳浮腫の進展により、再手術や、症例によってはグリアデルインプラントまたはその遺物の除去を必要とすることがある（4.4参照）。

治癒異常:
グリアデルインプラントの臨床試験において報告されている治癒異常は、創傷開創、創傷治癒の遅延、細胞膜下、軟骨膜下または創傷の滲出液、及び脳脊髄液漏である。
初回手術の治験では、脳脊髄液漏がグリアデルインプラント留置患者の5%に認められた。脳脊髄液漏の危険性を最小限に抑えるため、術中は防水性のある方法で硬膜閉鎖を確保すること（4.4参照）。

頭髪内感染:
初回手術の治験では、脳膿瘍または脳炎の発現率はグリアデルインプラント留置群において5%であった。
再発手術の検討では、脳膿瘍または脳炎の発現率はグリアデルインプラント留置群において4%であった。
公表された臨床試験において、グリアデルインプラント留置後の嚢胞形成が報告されている。
この事象は頭髪の10%に発現したが、嚢胞形成は悪性神経膠腫の切除後である可能性がある。

4.9過量投与
該当しない。

5.薬理学的特性
5.1薬力学的特性
医薬品分類：抗腫瘍薬、ATCコード：L01AD01

前臨床データ
グリアデルインプラントは腫瘍切除腔に直接、カルムスチンを送達する。腫瘍切除腔の水分の多い環境に曝露すると、共重合体の酸無水物結合が水分解され、カルムスチン、カルボキシフェノキシプロパン、及びセバシン酸を放出する。グリアデルインプラントから放出されたカルムスチンは周囲の脳組織に拡散し、DNA及びRNAをアルキル化することによって抗腫瘍効果を発揮する。

カルムスチンは自然に、分解・代謝される。こうして産生されたアルキル化成分（クロロエチルカルボニウムイオンと考えられている）によって不可逆性DNA架橋が形成される。
グリアデルインプラントの殺腫瘍活性は、細胞毒性の発揮に十分な濃度でカルムスチンを腫瘍切除腔に放出できるかどうかに依存している。
共重合体の70%以上は3週間以内に分解される。各単量体の代謝動態と排泄はそれぞれに異なる。
動物では、カルボキシフェノキシプロバンは主として腎臓から排泄され、内在性脂肪酸の一つであるセバシン酸は肝臓で代謝され、二酸化炭素として呼気中に排出される。

臨床データ

初回手術

新たに高度の悪性神経膠腫と診断され、腫瘍切除のための初回開頭術を受けた成人患者240例を対象とする無作為化二重盲検プラセボ対照臨床試験では、本来の試験期間において、生存期間の中央値はプラセボ留置の11.6ヵ月からグリアデルインプラント留置の13.9ヵ月に延長した（p=0.079、非層別化ログランク検定）。最も一般的な腫瘍型は多形性神経膠芽細胞腫（GBM）（207例）であった。以下、退形成乏星細胞腫（11例）、退形成乏多形星細胞腫（2例）と続いた。グリアデルインプラント留置のハザード比は0.77（95%CI：0.57～1.03）であった。また長期追跡調査期間において、設定した試験期間終了時に生存していた患者を最低でも3年間（または死亡するまで）追跡調査した。生存期間の中央値は、プラセボ留置の11.6ヵ月からグリアデルインプラント留置の13.9ヵ月に延長した（p<0.05、ログランク検定）。グリアデルインプラント留置のハザード比は0.73（95%CI：0.56～0.95）であった。

再発疾患に対する手術

再発神経膠芽細胞腫（GBM）患者145例を対象とする無作為化二重盲検プラセボ対照臨床試験において、グリアデルインプラントはこれらの患者の生存期間を延長させた。グリアデルインプラント留置患者の95%が7～8枚のインプラントを留置された。

6ヵ月生存率は、プラセボによる36%（73例中26例）に対して、グリアデルインプラントでは56%（72例中40例）であった。GBM患者の生存期間中央値は、プラセボによる20週に対して、グリアデルインプラント留置では28週である。

5.2薬物動態特性

ヒトにおける共重合体の吸収、分布、代謝及び排泄は不明である。グリアデルインプラントによるヒト脳組織に送達されるカルムスチンの濃度は確定されていない。グリアデルインプラント留置後の血漿カルムスチン濃度は測定することができない。カルムスチン3.85%含有インプラントを留置したウサギにおいて、カルムスチンは血液や脳脊髄液中から検出されない。30〜170mg/m²の用量範囲で静注したカルムスチンの平均消失半減期は22分、クリアランスは56mL/min/kg、定常状態での分布容積は3.25L/kgである。200mg/m²という用量で静注した14C標識カルムスチンの約60%が96時間以内に尿中に排泄され、6%が二酸化炭素として呼気中に排出される。

グリアデルインプラントはヒト脳において、腫瘍切除腔に留置されると生分解される。生分解の速度は患者によって異なる。生分解の過程においては、全成分が広範に分解された場合であっても、インプラント残遺物を脳画像スキャンや再手術時に認めることがある。

5.3前臨床安全性データ

グリアデルインプラントについては、発癌性、変異原性、胚・胎児毒性、出生前・出生後毒性、及び生産能障害に関する試験は実施されていない。

カルムスチン（グリアデルインプラントの有効成分）を全身投与した場合、胚・胎児毒性、遺
伝毒性及び発癌作用を示し、数種の動物モデルでは精巣変性を引き起こすことがある。

6. 製剤に関する事項
6.1 医薬品添加物のリスト
ポリフェプロサン 20

6.2 配合禁忌
既知の配合禁忌はない。

6.3 保存期間
3年

6.4 保存に関する注意
冷凍庫にて、-20℃以下で保存する。
外袋が未開封であれば、22℃以下で最大6時間保存することができる。
袋が未開封であり、22℃以下で保存した時間が6時間以内であれば、一度だけ再凍結してもよい。再凍結後、30日以内に使用すること。

6.5 容器の性質及び内容物
グリアデルインプラントは1箱に8枚のインプラントが入っている。
各インプラントは、二重のアルミホイルラミネート袋に入れて個別包装されている。

6.6 廃棄・その他の取扱いに関する注意
カルムスチンに触れると重症の熱傷や皮膚の色素沈着過剰をもたらす恐れがあるので、インプラントは手術用手袋を着用して取り扱うこと。手袋の二重着用が望ましい。使用後、外側の手袋は生体有害廃棄物専用容器に廃棄すること。インプラントの留置には、その取扱いに特化した手術器具を使用する。再度の神経外科的処置が適応となった場合、インプラントまたはその残遺物は潜在的細胞毒性物質として取り扱うこと。
グリアデルインプラントの取扱いは慎重に行うこと。インプラントの入った袋は、手術室に運んだら、腫瘍切除腔に留置する準備が整うまで開封しないこと。外袋の外面のみは滅菌されていない。どんな場合でも、誤って落としたインプラントは適切に処分すること。

インプラントの入った袋の開封方法：
・外袋を開封するには、折り畳まれた角をつまみ、ゆっくりと外側に引っ張る。
袋に沿って指の関節をてこにして下方に引っ張らないこと。こうするとインプラントを圧迫し、破損させる恐れがある。
・内袋をピンセットでつかみ、上方に引っ張って取り出す。
・内袋を開封するには、袋をそっと持ち、インプラントの周囲で円弧状に切り取る。
・ピンセットでインプラントをそっとつかみ、インプラントを取り出し、腫瘍切除腔にインプラントを直接留置する。

どんな場合でも、誤って落としたインプラントは適切に処分すること。
腫瘍を切除してその病理学的検査が完了し、止血が得られたら、切除腔をできる限り覆うようにインプラントを8枚まで留置することができる。インプラントがわずかに重なり合うことは構わない。インプラントを半分に分割して使用してもよいが、3つ以上に分割されたインプラントは生体有害廃棄物専用容器に廃棄すること。

インプラントを切除腔面に固定するため、酸化再生セルロースをインプラントに被せてもよい。インプラント留置後は切除腔を洗浄し、硬膜を防水性のある方法で閉鎖すること。

未使用品や廃材は、生体有害廃棄物に関する現地の規制に従って処分すること。

7. 製造販売業者
MGI PHARMA LIMITED
Holborn Gate, 1st Floor
330 High Holborn
London, WC1V 7QT
United Kingdom

8. 製造販売承認番号
PL 18753/0001

9. 初回承認/承認更新年月日
初回承認：1999年5月28日
最終更新：2008年12月10日

10. 本文改訂年月
2008年12月
ギリアデル脳内留置用剤 7.7 mg

1.6.3 企業中核データシート

ノーベルファーマ株式会社
企業中核シート原文
Gliadel Implant
(polifeprosan 20 mg with carmustine implant)
Company Core Data Sheet

30 July 2009

「以下、□頁を省略。」
ギリアデル脳内留置用剤 7.7 mg

1.7 同種同効品一覧表

ノーベルファーマ株式会社
1.7 同種同効品一覧表

カルムスチン脳内留置用剤は、悪性神経膠腫の腫瘍切除術時の切除腔に留置する局所投与の化学療法剤であり、本剤と同様に脳内留置を用法とする類薬はない。

しかし、投与経路が異なり、全身投与の薬剤注射剤及び経口剤で類似の効能・効果を有している化学療法剤としては、以下の同種同効品がある。

用法・用量、効能・効果及び使用上の注意の一覧を表1.7-1〜2に示した。

(1) カルムスチン脳内留置用剤（ギリアデル®脳内留置用剤 7.7 mg）（今回申請）
(2) テモソロミド（テモダール®点滴静注用 100mg）
(3) テモソロミド（テモダール®カプセル 20mg、テモダール®カプセル 100mg）
(4) ラニムスチン（注射用サイメリン®50mg、注射用サイメリン®100mg）
(5) 塩酸ニムスチン（ニドラン®注射用 25mg、ニドラン®注射用 50mg）
表1.7-1 同種同効品一覧（カルムスチン脳内留置用剤、注射用テモソロミド、テモソロミド）

<table>
<thead>
<tr>
<th>表形式</th>
<th>カルムスチン脳内留置用剤</th>
<th>注射用テモソロミド</th>
<th>テモソロミド</th>
</tr>
</thead>
<tbody>
<tr>
<td>販売名</td>
<td>ギリアデルⓇ脳内留置用剤 7.7 mg</td>
<td>テモダールⓇ点滴静注用 100 mg</td>
<td>テモダールⓇカプセル 20 mg</td>
</tr>
<tr>
<td>会社名</td>
<td>ノーベルファーマ株式会社</td>
<td>MSD株式会社</td>
<td>MSD株式会社</td>
</tr>
<tr>
<td>承認年</td>
<td>2010年1月20日</td>
<td>2006年7月26日</td>
<td></td>
</tr>
<tr>
<td>再審査年</td>
<td>該当しない（再審査期間（10年）中）</td>
<td>該当しない（再審査期間（2016年7月25日まで）中）</td>
<td></td>
</tr>
<tr>
<td>副付文書</td>
<td>2011年1月改訂（第4版）</td>
<td>2011年1月改訂（第5版）</td>
<td></td>
</tr>
<tr>
<td>規制区分</td>
<td>处方箋医薬品：注意-医師等の処方箋により使用すること</td>
<td>毒薬</td>
<td>处方箋医薬品：注意-医師等の処方箋により使用すること</td>
</tr>
<tr>
<td>化学構造式</td>
<td>Cl
N
N
Cl
O
NO
C5H9Cl2N3O2:214.05</td>
<td>C5H4ClN3O2:194.15</td>
<td>C5H4ClN3O2:194.15</td>
</tr>
<tr>
<td>剤型・含量</td>
<td>微黄白色〜微黄色の円盤状の脳内留置用徐放性製剤
1枚中にカルムスチンとして7.7 mg含有</td>
<td>凍結乾燥注射剤（バイアル中のテモソロミド含有量は104.5 mg、日本薬局方「注射用水」41 mLで溶解した溶液40 mLに含まれる量として100 mg）</td>
<td></td>
</tr>
<tr>
<td>効能・効果</td>
<td>悪性神経膠腫</td>
<td>悪性神経膠腫</td>
<td>悪性神経膠腫</td>
</tr>
</tbody>
</table>
| 用法・用量 | 1.本剤は、術中迅速病理組織診断等により組織型を確認の上、留置すること。
2.本剤からのカルムスチンの浸透範囲、臨床試験に組み入れた患者の腫瘍切除率及び組織型等について、【薬物動態】及【臨床成績】の項の内容を熟知し、本剤の有効性及び安全性を十分に理解した上で適応患者の選択を行うこと。 | 通常、成人では、テモソロミドとして75 mg/m²（体表面積）を1日1回42日間投与し、4週間休薬する。その後、本剤単独にて、テモソロミドとして1回150 mg/m²を1日1回5日間投与し、23日間休薬する。この28日を1クールとし、次クールでは1回200 mg/m²に増量することができる。 | 通常、成人ではテモ
カルムスチン脳内留置用剤

<table>
<thead>
<tr>
<th>一般的な名称</th>
<th>カルムスチン脳内留置用剤</th>
<th>注塗用デモゾロミド</th>
<th>テモゾロミド</th>
</tr>
</thead>
</table>
| に増量することができる。 | 2. 再発の場合：通常、成人ではデモゾロミドとし て150mg/m²（体表面積）を1日1 回5日間投与し、23日間休薬す る。この28日を1クールとし、次クールで1回200mg/m²に増量す ることができる。 | 1. 一般的注意 | ゾロミドとして1回150mg/m²（体 表面積）を1日1回5日間、 経口投与し、23日間休薬す る。
この28日を1クールとし、次クールで1回200mg/m²に増量す ることができる。
| 2. 本剤を分割して使用した場合の 有効性及び安全性は確立して いない。 | 2. 本剤を2回以上留置した場合の 有効性及び安全性は確立して いない。 | (用法・用量に関連する使用上の注意) |
| （注1）脱毛、悪心、嘔吐は含まない。 | | 1. 一般的注意 |
| 注1）脱毛、悪心、嘔吐は含まない。 | | (1) 本剤は空腹時に投与することが 望ましい（【薬物動態】「血中濃 度」食事の影響の項参照）。 |
| (2) 本剤と他の抗悪性腫瘍剤との併 用療法に関して、有効性及び安全 性は確立していない。 | | (2) 本剤と他の抗悪性腫瘍剤との併 用療法に関して、有効性及び安全 性は確立していない。 |

2. 初発の場合
放射線照射との併用時

<table>
<thead>
<tr>
<th>項目</th>
<th>繰返し 基準</th>
<th>休養 基準</th>
<th>中止 基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>好中球数</td>
<td>1,500/mm³以上</td>
<td>500/mm³未満</td>
<td>500/mm³未満</td>
</tr>
<tr>
<td>血小板数</td>
<td>100,000/mm³以上</td>
<td>10,000/mm³未満</td>
<td>10,000/mm³未満</td>
</tr>
</tbody>
</table>

注1）脱毛、悪心、嘔吐は含まない。

用法・用量に関連する使用上の注意

1. 一般的注意

(1) 本剤と他の抗悪性腫瘍剤との併用療法に関して、有効性及び安全性は確立していない。

2. 初発の場合
放射線照射との併用時

(1) 本剤の投与開始にあたっては次の条件をすべて満たすこと。

1) 好中球数が1,500/mm³以上
2) 血小板数が100,000/mm³以上

(2) 少なくとも週1回の頻度で血液検査を実施し、本剤継続の可否を判断すること。以下の副作用発現時は投与量の増減を行わず、下記の基準に基づき休薬又は中止すること。

<table>
<thead>
<tr>
<th>項目</th>
<th>繰返し 基準</th>
<th>休養 基準</th>
<th>中止 基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>好中球数</td>
<td>1,500/mm³以上</td>
<td>500/mm³未満</td>
<td>500/mm³未満</td>
</tr>
<tr>
<td>血小板数</td>
<td>100,000/mm³以上</td>
<td>10,000/mm³未満</td>
<td>10,000/mm³未満</td>
</tr>
</tbody>
</table>

注1）脱毛、悪心、嘔吐は含まない。

放射線照射後の単剤投与時

(1) 本剤の投与開始にあたっては次の条件をすべて満たすこと。

放射線照射後の単剤投与時

(2) 少なくとも週1回の頻度で血液検査を実施し、本剤継続の可否を判断すること。以下の副作用発現時は投与量の増減を行わず、下記の基準に基づき休薬又は中止すること。

<table>
<thead>
<tr>
<th>項目</th>
<th>繰返し 基準</th>
<th>休養 基準</th>
<th>中止 基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>好中球数</td>
<td>1,500/mm³以上</td>
<td>500/mm³未満</td>
<td>500/mm³未満</td>
</tr>
<tr>
<td>血小板数</td>
<td>100,000/mm³以上</td>
<td>10,000/mm³未満</td>
<td>10,000/mm³未満</td>
</tr>
</tbody>
</table>
一般的名称 | カルムチン脳内留置用剤 | 注射用テモゾロミド | テモゾロミド
--- | --- | --- | ---
1. 好中球数が1,500/mm³以上
2. 血小板数が100,000/mm³以上
(2)第1クールの期間中、次の条件をすべて満たした場合に限り、第2クールで投与量を200mg/m²/日に増量すること。なお、第2クール開始時に増量できなかった場合、それ以後のクールでは増量しないこと。
1) 好中球数の最低値が1,500/mm³以上
2) 血小板数の最低値が100,000/mm³以上
3) 脱毛、悪心、嘔吐を除く非血液学的な副作用の程度がGrade 2（中等度）以下
(3) 各クールの期間中、血液検査を適切な時期に実施し、好中球数及び血小板数の最低値に基づいて次クールでの用量調整の必要性について判断すること。なお、好中球数及び血小板数が最低値に達する場合は本剤投与後22日以降と比較的遅いことが知られている。
また、各クールの開始にあたっては、適切な時期に血液検査を実施し、好中球数が1,500/mm³以上、血小板数が100,000/mm³以上になるまで投与を開始しないこと。
(4) 各クール開始にあたっては、直前のクールにおいて以下の場合には本剤を50mg/m²減量とするところ。
1) 好中球数の最低値が1,000/mm³未満
2) 血小板数の最低値が50,000/mm³未満
3) 脱毛、悪心、嘔吐を除くGrade 3の非血液学的な副作用が出現した場合
(5) 次の場合は本剤の投与を中止すること。
1) 脱毛、悪心、嘔吐を除くGrade 4の非血液学的な副作用が出現した場合
2) 100mg/m²/日未満に減量が必要となった場合
3) 脱毛、悪心、嘔吐を除く、減量後に直前のクールと同じGrade 3の非血液学的な副作用が再度出現した場合
3. 再発の場合
(1) 本剤の投与開始にあたっては次の条件をすべて満たすこと。
1) 好中球数が1,500/mm³以上
2) 血小板数が100,000/mm³以上
(2) 第1クールの期間中、次の条件をすべて満たした場合に限り、第2クールで投与量を200mg/m²/日に増量すること。なお、第2クール開始時に増量できなかった場合、それ以後のクールでは増量しないこと。
1) 好中球数の最低値が1,500/mm³以上
2) 血小板数の最低値が100,000/mm³以上
3) 脱毛、悪心、嘔吐を除く非血液学的な副作用の程度がGrade 2（中等度）以下
(3) 各クールの期間中、血液検査を適切な時期に実施し、好中球数及び血小板数の最低値に基づいて次クールでの用量調整の必要性について判断すること。なお、好中球数及び血小板数が最低値に達するのは本剤投与後22日以降と比較的遅いことが知られている。
また、各クールの開始にあたっては、適切な時期に血液検査を実施し、好中球数が1,500/mm³以上、血小板数が100,000/mm³以上になるまで投与を開始しないこと。
(4) 各クール開始にあたっては、直前のクールにおいて以下の場合には本剤を50mg/m²減量とするところ。
1) 好中球数の最低値が1,000/mm³未満
2) 血小板数の最低値が50,000/mm³未満
3) 脱毛、悪心、嘔吐を除くGrade 3の非血液学的な副作用が出現した場合
(5) 次の場合は本剤の投与を中止すること。
1) 脱毛、悪心、嘔吐を除くGrade 4の非血液学的な副作用が出現した場合
2) 100mg/m²/日未満に減量が必要となった場合
3) 脱毛、悪心、嘔吐を除く、減量後に直前のクールと同じGrade 3の非血液学的な副作用が再度出現した場合
3. 再発の場合
(1) 本剤の投与開始にあたっては次の条件をすべて満たすこと。
一般的

<table>
<thead>
<tr>
<th>カルムスチン脳内留置用剤</th>
<th>注射用テモゾロミド</th>
<th>テモゾロミド</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)第1クール以後、次の条件をすべて満たした場合に限り、次クールの投与量を200mg/m²/日に増量することができる。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 好中球数の最低値が1,500/mm³以上</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) 血小板数の最低値が100,000/mm³以上</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)各クールの期間中、血液検査を適切な時期に実施し、好中球数及び血小板数の最低値に基づいて次クールでの用量調整の必要性について判断すること。なお、好中球数及び血小板数が最低値に達するのは本剤投与後22日以降と比較的遅いことが知られている。また、各クールの開始にあたっては、適切な時期に血液検査を実施し、好中球数が1,500/mm³以上、血小板数が100,000/mm³以上になるまで投与を開始しないこと。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) 好中球数の最低値が1,000/mm³未満</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) 血小板数の最低値が50,000/mm³未満</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) 脱毛、悪心、嘔吐を除くGrade 3の非血液学的な副作用が出現した場合</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)100mg/m²/日未満に減量が必要な場合は本剤の投与を中止すること。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>警告</td>
<td>本剤の投与にあたっては、緊急時に十分対応できる医療施設において、悪性脳腫瘍の外科手術及び薬物療法に十分な知識・経験を持つ医師のもとで、本剤の留置が適切と判断される症例についてのみ実施すること。</td>
<td></td>
</tr>
<tr>
<td>(1)本剤による治療は、緊急時に十分対応できる医療施設において、悪性脳腫瘍の外科手術及び薬物療法に十分な知識・経験を持つ医師のもとで、本剤が適切と判断される症例についてのみ実施すること。また、治療開始前に先立ち、患者又はその家族に有効性及び危険性を十分説明し、同意を得てから投与すること。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)本剤と放射線照射を併用する場合に、重篤な副作用や放射線照射による合併症が発現する可能性</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
カルムスチン脳内留置用剤

注射用スズロモド

<table>
<thead>
<tr>
<th>一般的な名稱</th>
<th>カルムスチン脳内留置用剤</th>
<th>注射用スズロモド</th>
<th>テモゾロミド</th>
</tr>
</thead>
<tbody>
<tr>
<td>があるため、放射線照射とがん化学療法の併用治療に十分な知識・経験を持つ医師のもとで実施すること。</td>
<td>注射用スズロモド</td>
<td>テモゾロミド</td>
<td></td>
</tr>
<tr>
<td>(3) 本剤の投与後にニューモシスチン肺が発生することがあるため、適切な措置の実施を考慮すること（「重要かつ基本的注意」、「重大な副作用」及び【臨床成績】の項参照）。</td>
<td>注射用スズロモド</td>
<td>テモゾロミド</td>
<td></td>
</tr>
<tr>
<td>(次の患者には投与しないこと)</td>
<td>注射用スズロモド</td>
<td>テモゾロミド</td>
<td></td>
</tr>
<tr>
<td>本剤の成分に対し過敏症の既往歴のある患者</td>
<td>注射用スズロモド</td>
<td>テモゾロミド</td>
<td></td>
</tr>
<tr>
<td>妊娠又は妊娠している可能性のある婦人（「妊婦、産婦、授乳婦等への投与」の項参照）</td>
<td>注射用スズロモド</td>
<td>テモゾロミド</td>
<td></td>
</tr>
<tr>
<td>(次の患者には投与しないこと)</td>
<td>注射用スズロモド</td>
<td>テモゾロミド</td>
<td></td>
</tr>
<tr>
<td>本剤又はダカルバジンに対し過敏症の既往歴のある患者</td>
<td>注射用スズロモド</td>
<td>テモゾロミド</td>
<td></td>
</tr>
<tr>
<td>妊娠又は妊娠している可能性のある婦人（「妊婦、産婦、授乳婦等への投与」の項参照）</td>
<td>注射用スズロモド</td>
<td>テモゾロミド</td>
<td></td>
</tr>
</tbody>
</table>

組成・性状

<table>
<thead>
<tr>
<th>販売名</th>
<th>ギリアステリン脳内留置用剤 7.7 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>成分・含有</td>
<td>1枚中にカルムスチンとして 7.7 mg</td>
</tr>
<tr>
<td>添加物</td>
<td>ポリフェプロサン20 192.3 mg</td>
</tr>
<tr>
<td>剤型・色調</td>
<td>微黄白色〜微黄色の円盤状の脳内留置用徐放性製剤</td>
</tr>
<tr>
<td>大きさ</td>
<td>直径：約14.0 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>販売名</th>
<th>テモダール®点滴静注用剤 100mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>剤形</td>
<td>凍結乾燥注射剤</td>
</tr>
<tr>
<td>有効成分</td>
<td>1 バイアル中の含有量 104.5 mg</td>
</tr>
<tr>
<td>日本薬局方「注射用水」41 mLで溶解した溶液40 mLに含まれる量 100 mg</td>
<td></td>
</tr>
<tr>
<td>添加物</td>
<td>その他 クエン酸ナトリウム水和物、塩酸を含有する。</td>
</tr>
<tr>
<td>本剤は上記成分を含む凍結乾燥剤でおり、日本薬局方「注射用水」41 mLで溶解したときのテモゾロミド濃度は2.5 mg/mLである。</td>
<td></td>
</tr>
<tr>
<td>2. 性状</td>
<td>販売名</td>
</tr>
<tr>
<td>剤形</td>
<td>硬カプセル剤</td>
</tr>
<tr>
<td>色</td>
<td>キャップ 白色不透明</td>
</tr>
<tr>
<td>ボディ キャップ 白色不透明</td>
<td></td>
</tr>
<tr>
<td>20号 100mg</td>
<td></td>
</tr>
<tr>
<td>本剤は白色～微紅色の粉末で、用時溶解して用いる注射剤である。注射用水で溶解したときの溶液、pH及び不純物は以下のとおりである。</td>
<td></td>
</tr>
<tr>
<td>溶媒</td>
<td>pH</td>
</tr>
<tr>
<td>水</td>
<td>3.0〜4.5</td>
</tr>
</tbody>
</table>

使用上の注意

<table>
<thead>
<tr>
<th>使用上の注意</th>
<th>（本剤は慎重投与を推奨される適応はない）</th>
</tr>
</thead>
<tbody>
<tr>
<td>慎重投与（次の患者には慎重に投与すること）</td>
<td>慎重投与（次の患者には慎重に投与すること）</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>一般的な名称</th>
<th>カルムスチン脳内留置用剤</th>
<th>注射用テモゾロミド</th>
<th>テモゾロミド</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 骨髄機能抑制のある患者 [骨髄機能抑制が増強するおそれがある。]</td>
<td>(1) 骨髄機能抑制のある患者 [骨髄機能抑制が増強するおそれがある。]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) 重度の肝機能障害又は重度の腎機能障害のある患者 [副作用が強くあらわれるおそれがある。]</td>
<td>(2) 重度の肝機能障害又は重度の腎機能障害のある患者 [副作用が強くあらわれるおそれがある。]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) 感染症を合併している患者 [骨髄機能抑制により、感染症が悪化するおそれがある。]</td>
<td>(3) 感染症を合併している患者 [骨髄機能抑制により、感染症が悪化するおそれがある。]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) 小児 [重要な基本的注意]、(5) 水痘患者 [致命的な全身障害があらわれるおそれがある。]</td>
<td>(4) 小児 [重要な基本的注意]、(5) 水痘患者 [致命的な全身障害があらわれるおそれがある。]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) 高齢者 [「高齢者への投与」の項参照]</td>
<td>(6) 高齢者 [「高齢者への投与」の項参照]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

使用上の注意

1. 重要な基本的注意
 (1) 腫瘍切除術後に切除腔から脳室内至る間隔が認められる場合には、本剤の留置前にその間隔を閉鎖する等の対応を行った上で本剤を留置すること。〔本剤が脳室系に移行して水頭症が発症するおそれがある。〕
 (2) 本剤留置患者において、脳脊髄液の漏出が認められるので、手術時の硬膜閉鎖等の処置を適切に実施すること。
 (3) 本剤留置後のCT及びMRI検査において、切除腔周囲の脳組織に造影増強が認められた場合には、本剤の留置又は腫瘍の増大に起因する可能性があることに留意し、適切な処置を検討すること。

2. 重要な基本的注意
 (1) 本剤の投与にあたっては、骨髄機能抑制等の重篤な副作用が起こることがあるので、頻回に臨床検査(血液検査、肝機能・腎機能検査等)を行うなど、患者の状態を十分に観察すること。異常が認められた場合には、適切な処置を行うこと。
 (2) 感染症・出血傾向の発現又は増悪に十分に注意すること。
 (3) 本剤による治療後に、骨髄異形症候群(MDS)や骨髄性白血病を含む二次性悪性腫瘍が報告されている。
 (4) 小児及び生殖可能な年齢の患者に投与する必要がある場合に、性腺に対する影響を考慮すること。
 (5) 本剤の投与では放射線照射との併用期間中は、リンパ球数にかかわらず、ニューモシスチス肺炎に十分注意し、あらかじめ適切な措置を講ずること。また、リンパ球減少が認められた場合には、リンパ球数が回復(Grade 1以下)するまでニューモシスチス肺炎に対する措置を継続すること(【臨床成績】の項参照)。
 (6) 本剤の投与では、悪心、嘔吐、食欲不振等の消化器症状が高頻度に認められるため、患者の状態を十分に観察し、適切な処置を行うこと(【臨床成績】の項参照)。

2. 副作用

<国内臨床試験>
国内で行われた臨床試験(24例)において副作用(臨床検査値異常を含む)発現症例は13例(54.2%)で、主な副作用は、脳浮腫6例(25.0%)、発熱3例(12.5%)、

国内の承認時までの臨床試験38例(単剤投与)において、副作用は37例(97%)に認められた。主な副作用は、リンパ球減少16例(42%)、好中球減少16例(42%)、白血球減少13例(34%)、
カルムスチン脳内留置用剤

1.7 同種同効品一覧表

一般的な名称
カルムスチン脳内留置用剤
注射用ヘモロジド
テモゾロミド

| 症候群 | 漏出症 | 血行障害 | 感染症 | カプセル剤との合併症 | 脳機能障害 | 肝機能障害 | 肺機能障害 | 乳児 | 全身障害 | 皮膚障害 | 眼障害 | 骨格筋障害 | 味覚障害 | 口腔障害 | 外科的合併症 |
|---------|--------|--------|--------|-----------------|---------|---------|---------|------|--------|--------|--------|--------|--------|--------|--------|--------|

<table>
<thead>
<tr>
<th>症状</th>
<th>原因</th>
<th>他剤との関連性</th>
<th>以下に記載</th>
</tr>
</thead>
</table>

(1) 重大な副作用
1) 騒音・発作性騒音(頻度不明注)

(2) その他の副作用

(3) その他の副作用

(4) 感副作用(頻度不明注)

(5) 痛風症変性(頻度不明注)

(6) 血栓塞栓症(頻度不明注)

(7) 出血(頻度不明注)

(8) 全身状態

(9) 注意

(10) 増悪\(5\% \)未満

(11) 頻度不明注
カルムスチン脳内留置用剤

<table>
<thead>
<tr>
<th>一般的名称</th>
<th>カルムスチン脳内留置用剤</th>
<th>注射用テモソロミド</th>
<th>テモソロミド</th>
</tr>
</thead>
</table>

4) 脳出血（10%未満）：本剤の投与により血小板減少を認めた症例で脳出血があらわれたものので、観察を十分に行い異常が認められた場合には適切な処置を行うこと。
5) アナフィラキシー様症状（頻度不明）：アナフィラキシー様症状があらわれることがあるので、観察を十分に行い異常が認められた場合には投与を中止し適切な処置を行うこと。
6) 肝機能障害、黄疸（頻度不明）：AST (GOT) ALT (GPT)、AI-P、γ-GTP の著しい上昇等を伴う肝機能障害、黄疸があらわれる可能性があるので、観察を十分に行い異常が認められた場合には投与を中止し、適切な処置を行うこと。

注 3) 海外の臨床試験（カプセル剤）では、Grade 3 又は4の臨床検査値異常として好中球減少、血小板減少、リンパ球減少、白血球減少が10%以上認められている。

注 4) 海外での頻度：0.01%未満

(2)その他の副作用
次のような副作用が認められた場合には、必要に応じ適切な処置を行うこと。

<table>
<thead>
<tr>
<th>全身症状</th>
<th>10%</th>
<th>10%</th>
<th>頻度不明</th>
</tr>
</thead>
<tbody>
<tr>
<td>眩虚</td>
<td>未満</td>
<td>発熱</td>
<td>悪寒</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>精神神経系</th>
<th>顔色</th>
<th>眠り</th>
<th>意識障害</th>
</tr>
</thead>
<tbody>
<tr>
<td>抜け感</td>
<td>未満</td>
<td>不安定</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>消化器</th>
<th>10%</th>
<th>10%</th>
<th>頻度不明</th>
</tr>
</thead>
<tbody>
<tr>
<td>下痢</td>
<td>未満</td>
<td>発熱</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>皮膚</th>
<th>10%</th>
<th>10%</th>
<th>頻度不明</th>
</tr>
</thead>
<tbody>
<tr>
<td>皮膚炎</td>
<td>未満</td>
<td>発熱</td>
<td></td>
</tr>
</tbody>
</table>

注 5) 海外での頻度（カプセル剤）：0.01%未満
<table>
<thead>
<tr>
<th>一般的な名稱</th>
<th>カルムスチン脳内留置用剤</th>
<th>注射用テモゾロミド</th>
<th>テモゾロミド</th>
</tr>
</thead>
<tbody>
<tr>
<td>血液</td>
<td>貧血</td>
<td>貧血</td>
<td>貧血</td>
</tr>
<tr>
<td></td>
<td>(ヘモグロビン減少)</td>
<td>(ヘモグロビン減少)</td>
<td>(ヘモグロビン減少)</td>
</tr>
<tr>
<td></td>
<td>赤血球減少</td>
<td>赤血球減少</td>
<td>赤血球減少</td>
</tr>
<tr>
<td></td>
<td>白血球減少</td>
<td>白血球減少</td>
<td>白血球減少</td>
</tr>
<tr>
<td></td>
<td>リンパ球減少</td>
<td>リンパ球減少</td>
<td>リンパ球減少</td>
</tr>
<tr>
<td></td>
<td>血小板減少</td>
<td>血小板減少</td>
<td>血小板減少</td>
</tr>
<tr>
<td></td>
<td>單球減少</td>
<td>單球減少</td>
<td>單球減少</td>
</tr>
<tr>
<td></td>
<td>白血球増多</td>
<td>白血球増多</td>
<td>白血球増多</td>
</tr>
<tr>
<td></td>
<td>好中球増多</td>
<td>好中球増多</td>
<td>好中球増多</td>
</tr>
<tr>
<td></td>
<td>好酸球増多</td>
<td>好酸球増多</td>
<td>好酸球増多</td>
</tr>
<tr>
<td></td>
<td>好塩基球増多</td>
<td>好塩基球増多</td>
<td>好塩基球増多</td>
</tr>
<tr>
<td></td>
<td>肝臓</td>
<td>AST (GOT)</td>
<td>AST (GOT)</td>
</tr>
<tr>
<td></td>
<td>ALT (GPT)</td>
<td>ALT (GPT)</td>
<td>ALT (GPT)</td>
</tr>
<tr>
<td></td>
<td>BUN上昇</td>
<td>BUN上昇</td>
<td>BUN上昇</td>
</tr>
<tr>
<td></td>
<td>クレアチニン上昇</td>
<td>クレアチニン上昇</td>
<td>クレアチニン上昇</td>
</tr>
<tr>
<td></td>
<td>尿潜血</td>
<td>尿潜血</td>
<td>尿潜血</td>
</tr>
<tr>
<td></td>
<td>尿蛋白</td>
<td>尿蛋白</td>
<td>尿蛋白</td>
</tr>
<tr>
<td></td>
<td>尿検査異常</td>
<td>尿検査異常</td>
<td>尿検査異常</td>
</tr>
<tr>
<td></td>
<td>消化器</td>
<td>飲食不快感</td>
<td>飲食不快感</td>
</tr>
<tr>
<td></td>
<td>吐血、嘔血、下痢、下痢</td>
<td>吐血、嘔血、下痢、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹部不快感</td>
<td>腹部不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>喘鳴、喘鳴</td>
<td>喘鳴、喘鳴</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹痛、下痢、下痢</td>
<td>腹痛、下痢、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃腸炎</td>
<td>胃腸炎</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃不快感</td>
<td>胃不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>食欲不振</td>
<td>食欲不振</td>
<td></td>
</tr>
<tr>
<td></td>
<td>便秘、下痢</td>
<td>便秘、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹痛、下痢</td>
<td>腹痛、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹部不快感</td>
<td>腹部不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>嘔吐、嘔吐</td>
<td>嘔吐、嘔吐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃腸炎</td>
<td>胃腸炎</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃不快感</td>
<td>胃不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>食欲不振</td>
<td>食欲不振</td>
<td></td>
</tr>
<tr>
<td></td>
<td>便秘、下痢</td>
<td>便秘、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹痛、下痢</td>
<td>腹痛、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹部不快感</td>
<td>腹部不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>嘔吐、嘔吐</td>
<td>嘔吐、嘔吐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃腸炎</td>
<td>胃腸炎</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹痛、下痢</td>
<td>腹痛、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹部不快感</td>
<td>腹部不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>嘔吐、嘔吐</td>
<td>嘔吐、嘔吐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃腸炎</td>
<td>胃腸炎</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹痛、下痢</td>
<td>腹痛、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹部不快感</td>
<td>腹部不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>嘔吐、嘔吐</td>
<td>嘔吐、嘔吐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃腸炎</td>
<td>胃腸炎</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹痛、下痢</td>
<td>腹痛、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹部不快感</td>
<td>腹部不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>嘔吐、嘔吐</td>
<td>嘔吐、嘔吐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃腸炎</td>
<td>胃腸炎</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹痛、下痢</td>
<td>腹痛、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹部不快感</td>
<td>腹部不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>嘔吐、嘔吐</td>
<td>嘔吐、嘔吐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃腸炎</td>
<td>胃腸炎</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹痛、下痢</td>
<td>腹痛、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹部不快感</td>
<td>腹部不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>嘔吐、嘔吐</td>
<td>嘔吐、嘔吐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃腸炎</td>
<td>胃腸炎</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹痛、下痢</td>
<td>腹痛、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹部不快感</td>
<td>腹部不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>嘔吐、嘔吐</td>
<td>嘔吐、嘔吐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃腸炎</td>
<td>胃腸炎</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹痛、下痢</td>
<td>腹痛、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹部不快感</td>
<td>腹部不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>嘔吐、嘔吐</td>
<td>嘔吐、嘔吐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃腸炎</td>
<td>胃腸炎</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹痛、下痢</td>
<td>腹痛、下痢</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腹部不快感</td>
<td>腹部不快感</td>
<td></td>
</tr>
<tr>
<td></td>
<td>嘔吐、嘔吐</td>
<td>嘔吐、嘔吐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>胃腸炎</td>
<td>胃腸炎</td>
<td></td>
</tr>
</tbody>
</table>
同種同効品一覧表

<table>
<thead>
<tr>
<th>一般的名称</th>
<th>カルムスチン脳内留置用剤</th>
<th>注射用テモゾロミド</th>
<th>テモゾロミド</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

呼吸器
- 上気道炎、胸水、しゃっくり
- 呼吸困難

眼
- 眼の刺激、眼瞼炎

投与部位
- 注射部位反応（疼痛、発赤、腫脹、熱感、紅斑、搔痒、そう痒感）

その他
- 疲労、浮腫、熱感、CRP上昇、血糖値上昇、ヘモグロビンA1C上昇、血清総蛋白減少、アルブミン減少、血中ナトリウム減少、水頭症
- 味覚異常、体重減少、疼痛、血腫

注5) 海外のみで認められている副作用で企業中核データシートに記載のあるものは頻度不明とした。

[海外臨床試験における副作用（単剤投与）(400例)]

<table>
<thead>
<tr>
<th>10%以上</th>
<th>10%未満</th>
</tr>
</thead>
<tbody>
<tr>
<td>全身症状</td>
<td>発熱、倦怠感</td>
</tr>
<tr>
<td>精神神経系</td>
<td>不眠、めまい、錯乱、健忘、失神、傾眠、うつ病</td>
</tr>
<tr>
<td>血液</td>
<td>血小板減少、白血球減少、好中球減少、貧血</td>
</tr>
<tr>
<td>脳神経</td>
<td>悪心、嘔吐、便意</td>
</tr>
<tr>
<td>消化器系</td>
<td>食欲不振、口内炎、下痢、消化不良、腹痛</td>
</tr>
<tr>
<td>皮膚</td>
<td>脱毛、発疹、皰疹</td>
</tr>
<tr>
<td>呼吸器</td>
<td>呼吸困難、気管支炎、肺炎、鬱血</td>
</tr>
<tr>
<td>その他</td>
<td>疲労</td>
</tr>
</tbody>
</table>

注6) 副作用発現頻度はカプセル剤の臨床試験成績に基づく。

注7) 海外のみで認められている副作用（注射剤における臨床薬物動態試験結果を含む）で企業中核データシートに記載のあるものは頻度不明とした。
<table>
<thead>
<tr>
<th>一般的な名称</th>
<th>カルムスチン脳内留置用剤</th>
<th>注射用テモゾロミド</th>
<th>テモゾロミド</th>
</tr>
</thead>
<tbody>
<tr>
<td>神経・筋</td>
<td>血、顔面、帯状疱疹</td>
<td>注 6) 4 例（1%）以上の発現が認められた副作用</td>
<td></td>
</tr>
<tr>
<td>呼吸器</td>
<td>呼吸困難、気管支炎、肺炎、鼻出血</td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td>血腫、味覚異常、感覚症、疼痛、体重減少、カンジダ症</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注8) 4 例（1%）以上の発現が認められた副作用

〔放射線照射併用時の海外臨床試験（初発膠芽腫）における有害事象注9〕（288例）

<table>
<thead>
<tr>
<th>10%以上</th>
<th>10%未満注10）</th>
</tr>
</thead>
<tbody>
<tr>
<td>全身症状</td>
<td>発熱、悪寒</td>
</tr>
<tr>
<td>精神神経系</td>
<td>不眠、めまい、失語症、意識障害、睡眠障害、喪失、不眠、無情さ、行動障害、うつ病、幻覚、認知障害、意識障害、集中力障害、認知障害、認知障害、認知障害、認知障害</td>
</tr>
<tr>
<td>血液</td>
<td>貧血、発熱性好中球減少症、好中球減少、白血球減少、リンパ球減少、血小板減少、出血</td>
</tr>
<tr>
<td>肝臓</td>
<td>AST(GOT)上昇、ALT(GPT)上昇、γ-GTP上昇、Al-P上昇</td>
</tr>
<tr>
<td>腎臓</td>
<td>尿失禁、頻尿</td>
</tr>
<tr>
<td>循環器</td>
<td>高血圧、動悸、潮紅</td>
</tr>
<tr>
<td>消化器</td>
<td>悪心、嘔吐、便祕、食欲不振</td>
</tr>
<tr>
<td>皮膚</td>
<td>脱毛、発疹</td>
</tr>
<tr>
<td>神経・筋</td>
<td>血腫、皮膚乾燥、発疹、光線過敏症、色素沈着、そう痒、皮膚障害</td>
</tr>
<tr>
<td>呼吸器</td>
<td>咳嗽、呼吸困難、喘息、肺炎、上気道感染</td>
</tr>
<tr>
<td>眼</td>
<td>眼痛、視覚異常、霧視、視力低下、</td>
</tr>
</tbody>
</table>

12
カルムスチン脳内留置用剤

1.7 同種同効品一覧表

<table>
<thead>
<tr>
<th>一般的な名称</th>
<th>カルムスチン脳内留置用剤</th>
<th>注射用テモゾロミド</th>
<th>テモゾロミド</th>
</tr>
</thead>
<tbody>
<tr>
<td>呼吸器</td>
<td>咳、呼吸困難、発熱、肺炎、上気道感染</td>
<td>その他</td>
<td>疲労</td>
</tr>
<tr>
<td>眼</td>
<td>鼻塞、視覚異常、出血、視力低下、視野欠損</td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td>疲労</td>
<td>状態悪化、疼痛、浮腫、血糖値上昇、低カリウム血症、体重減少、体重增加、カンジダ症、単純疱疹、感染症、中耳炎、アレルギー反応、クッシング様症状、耳痛、聴覚障害、耳鳴、放射線損傷、視覚異常、味覚異常、静脈血栓症</td>
<td></td>
</tr>
</tbody>
</table>

注7) 本剤との因果関係に関わらず発現した事象
注8) 2例(1%)以上の発現が認められた有害事象
注9) 2例(1%)以上の発現が認められた有害事象
注10) 2例(1%)以上の発現が認められた有害事象
注11) 2例(1%)以上の発現が認められた有害事象
注12) 2例(1%)以上の発現が認められた有害事象

使用上の注意

4. 高齢者への投与

海外の臨床試験において、高齢者（70歳超）では、70歳以下の患者と比較すると、好中球減少及び血小板減少の発現が増加する傾向があるため、注意が必要である。

4. 高齢者への投与

海外の臨床試験において、高齢者（70歳超）では、70歳以下の患者と比較すると、好中球減少及び血小板減少の発現が増加する傾向があるため、注意が必要である。
一般的名称
カルムスチン脳内留置用剤

注射用テモゾロミド

使用上の注意

4. 妊婦、産婦、授乳婦等への投与

1. 妊婦又は妊娠している可能性のある婦人には、留置しないこと。妊娠可能な婦人には、本剤留置後最低2週間は適切な避妊法を用いるよう指導する。パートナーが妊娠する可能性のある男性についても最低3ヶ月間は適切な避妊法を用いるよう指導する。[本剤の有効成分であるカルムスチンを妊娠動物(ウサギ、ラット)に投与したときに胎児毒性や催奇形性が、雄動物(ラット)に投与したときに授胎能の低下、胚死亡の増加が認められたとの報告がある。]

2. 授乳中の婦人に留置する場合は、授乳を中止させること。[動物実験(ラット)で14C標識カルムスチンを静脈内投与したときに、放射能の乳汁移行が認められている。]

5. 小児等への投与

6. 小児等への投与

5. 妊婦、産婦、授乳婦等への投与

1. 妊婦又は妊娠している可能性のある婦人には投与しないこと。妊娠する可能性のある婦人に投与する場合には、妊娠を避けるよう指導すること。[ラット、ウサギにおいて、胚・胎児死亡及び奇形(50mg/m2/日)が報告されている。]

2. 授乳中の婦人には授乳を避けさせること。[安全性は確立していない。]

6. 小児等への投与

7. 過量投与

6. 小児等への投与

6. 小児等への投与

7. 過量投与

8. 適用上の注意

使用上の注意

6. 適用上の注意

6. 適用上の注意

8. 適用上の注意

8. 適用上の注意

(1) 薬剤交付時

(1)調製時

1) 本剤を調製する際、手袋を使用すること。本剤が皮膚又は粘膜に接触した場合、直ちに水及び石鹸で十分に洗うこと。
<table>
<thead>
<tr>
<th>一般的な 名称</th>
<th>カルムスチン脳内留置用剤</th>
<th>注射用テモゾロミド</th>
<th>テモゾロミド</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) 使用上の 注意</td>
<td>1) 本剤は室温（約25℃）で注射用水にて溶かす必要に応じて生理食塩水にて希釈して用いることができる。調製後は14時間以内に投与を終了すること。また残液は使用しないこと。</td>
<td>2) 服用時：カプセルを割らず、また、かみ砕かずに十分量の水と共に服用させること。カプセルの内容物を曝露した場合、曝露部分は速やかに洗浄すること。</td>
<td>2) 投与時</td>
</tr>
</tbody>
</table>
カルムスチン脳内留置用剤

1.7 同種同効品一覧表

表1.7-2 同種同効品一覧（ラニムスチン、塩酸ニムスチン）

<table>
<thead>
<tr>
<th>一般的名称</th>
<th>ラニムスチン</th>
<th>塩酸ニムスチン</th>
</tr>
</thead>
<tbody>
<tr>
<td>販売名</td>
<td>注射用サイメリン®50mg</td>
<td>ニドラン®注射用25mg</td>
</tr>
<tr>
<td></td>
<td>注射用サイメリン®100mg</td>
<td>ニドラン®注射用50mg</td>
</tr>
<tr>
<td>会社名</td>
<td>田辺三菱製薬株式会社</td>
<td>第一三共株式会社</td>
</tr>
<tr>
<td>承認年月日</td>
<td>1987年1月12日</td>
<td>1979年5月22日</td>
</tr>
<tr>
<td>再審査年月</td>
<td>再審査公表年月日：1994年3月4日</td>
<td>該当しない</td>
</tr>
<tr>
<td>役割区分</td>
<td>副腫腺、薬剤品</td>
<td>副腫腺、指定薬剤</td>
</tr>
<tr>
<td>化学構造式</td>
<td></td>
<td></td>
</tr>
<tr>
<td>種型・含量</td>
<td>注射用サイメリン®50mg：一瓶中ラニムスチン50mg</td>
<td>ニドラン®注射用25mg：6バイアル</td>
</tr>
<tr>
<td></td>
<td>注射用サイメリン®100mg：一瓶中ラニムスチン100mg</td>
<td>ニドラン®注射用50mg：6バイアル</td>
</tr>
<tr>
<td>効能・効果</td>
<td>胴芽腫、骨髄腫、悪性リンパ腫、慢性骨髄性白血病、真性多血症、本態性血小板増多症</td>
<td>下記疾患の自覚的ならびに他覚的症候の覚解</td>
</tr>
<tr>
<td></td>
<td>腦腫瘍、消化器癌（胃癌、肝臓癌、結腸・直腸癌）、肺腫、悪性リンパ腫、慢性自血病</td>
<td></td>
</tr>
</tbody>
</table>
| 用法・用量 | 通常、下記用量を生理食塩液又は5%ブドウ糖注射液100〜250mLに溶解し、30〜90分で点滴静注するか、又は10〜20mLに溶解し、ゆっくり（30〜60秒）静脉内に投与する。ラニムスチンとして1回投与量は50〜90mg/m²とし、次回の投与は血液所見の推移に応じて6〜8週後に行う。
なお、年齢、症状により適宜増減する。 | 通常、下記用量を本剤5mgあたり日本薬局方注射用水1mLに溶解し、静脈内又は動脈内に投与する。
1. ニムスチン塩酸塩として2〜3mg/kgを1回投与し、投与後末梢血液所見により4〜6週間休薬する。
2. ニムスチン塩酸塩として1回2mg/kgを1週間隔で2〜3週投与し、投与後末梢血液所見により4〜6週間休薬する。尚、年齢・症状により適宜増減する。 |
| 警告 | （なし） | 本剤を含むがん化学療法は、緊急時に十分対応できる医療設置において、がん化学療法に十分な知識・経験を持つ医師のもとで、本療法が適切で判断される症例についてのみ実施すること。適応適否の選択にあたっては、各併用薬剤の添付文書を参照して十分注意すること。また、治療開始に先立ち、患者又はその家族に有効性及び危険性を十分説明し、同意を得てから投与すること。 |
善評同効品一覧表

<table>
<thead>
<tr>
<th>一般名称</th>
<th>ラニムスチン</th>
<th>塩酸ニムスチン</th>
</tr>
</thead>
<tbody>
<tr>
<td>禁忌</td>
<td>(なし)</td>
<td>(次の患者には投与しないこと)</td>
</tr>
<tr>
<td>1. 骨髄機能抑制のある患者</td>
<td>副作用として白血球減少等の骨髄機能抑制の報告があり、これらの増悪を防止するため。</td>
<td></td>
</tr>
<tr>
<td>2. 本剤の成分に対し重篤な過敏症の既往歴のある患者</td>
<td></td>
<td></td>
</tr>
<tr>
<td>組成・性状</td>
<td>組成は以下の表のとおりである。</td>
<td></td>
</tr>
<tr>
<td>販売名</td>
<td>注射用サイメリン50mg</td>
<td>注射用サイメリン100mg</td>
</tr>
<tr>
<td>有効成分</td>
<td>ラニムスチン50mg</td>
<td>ラニムスチン100mg</td>
</tr>
<tr>
<td>色・剤形</td>
<td>淡黄色の結晶又は結晶性の固形物の注射剤（褐色瓶）</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>4.0～6.0（水溶液1→100、溶解後5分）</td>
<td></td>
</tr>
<tr>
<td>浸透圧比</td>
<td>約1（生理食塩液に対する比）</td>
<td></td>
</tr>
</tbody>
</table>

1. 組成

1パイアル中にそれぞれ次の成分を含有

<table>
<thead>
<tr>
<th>販売名</th>
<th>有効成分</th>
<th>添加物</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニドラン注射用25mg</td>
<td>ニムスチン塩酸塩25mg</td>
<td></td>
</tr>
<tr>
<td>ニドラン注射用50mg</td>
<td>ニムスチン塩酸塩50mg</td>
<td></td>
</tr>
</tbody>
</table>

2. 製剤の性状

<table>
<thead>
<tr>
<th>有効成分</th>
<th>25mg</th>
<th>50mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>3.0～4.5</td>
<td>約2</td>
</tr>
<tr>
<td>浸透圧比</td>
<td>(注)ニドラン注射用25mgの1バイアルに注射用水5mLを、ニドラン注射用50mgの1バイアルに注射用水10mLを加えて溶解した場合</td>
<td></td>
</tr>
</tbody>
</table>

使用上の注意

1. 慎重投与（次の患者には慎重に投与すること）

(1) 骨髄機能抑制のある患者（骨髄機能抑制が増悪するおそれがある。）
(2) 肝障害のある患者（副作用が強くあらわれるおそれがある。）
(3) 腎障害のある患者（副作用が強くあらわれるおそれがある。）
(4) 感染症を合併している患者（骨髄機能抑制により、感染症が増悪するおそれがある。）

2. 慎重投与（次の患者には慎重に投与すること）

(1) 肝障害のある患者（副作用として肝機能障害の報告があり、症状を悪化させる。）
(2) 腎障害のある患者（副作用として腎機能障害の報告があり、症状を悪化させる。）
(3) 感染症を合併している患者（白血球減少により感染に対する抵抗力が低下することがある。）
(4) 水痘患者（致命的な全身障害があらわれることがある。）
(5) 低出生体重児、新生児、乳児、幼児又は小児（「小児等への投与」の項参照）

使用上の注意

1. 重要な基本的注意

(1) 遅延性の骨髄機能抑制等の重篤な副作用が起こることがあるので、投与後少なくとも6週間は、1週間に1回臨床検査（血液検査、肝機能・腎機能検査等）を行うなど、患者の状態を十分に観察すること。異常が認められた場合には減量、休薬、輸血等の適切な処置を行うこと。また、使用が長期間にわたると副作用が強くあらわれ、遅延性に推移することがあるので、投与は慎重に行うこと。
(2) 感染症、出血傾向の発現又は増悪に十分注意すること。
(3) 第三者悪性腫瘍として骨髄異形成症候群（MDS）、急性白血病、骨髄線維症、慢性骨髄性白血病を起こすことがあるので、これらの発現には十分注意すること。
(4) 小児等に投与する場合には、副作用の発現に特に注意し、慎重に投与すること。

使用上の注意

2. 重要な基本的注意

(1) 遅延性の骨髄機能抑制等の重篤な副作用が起こることがあるので、各投与後少なくとも6週間は、1週間に1回臨床検査（血液検査、肝機能・腎機能検査等）を行うなど、患者の状態を十分に観察すること。異常が認められた場合には減量、休薬、輸血等の適切な処置を行うこと。また、使用が長期間にわたると副作用が強くあらわれ、遅延性に推移することがあるので、投与は慎重に行うこと。
(2) 本剤を長期投与した患者に骨髄異形成症候群（MDS）、急性白血病等の二次発癌が発生したと報告があるので、十分注意し投与すること。
(3) 感染症、出血傾向の発現又は増悪に十分注意すること。
(4) 小児及び生殖可能な年齢の患者に投与する場合には、性腺に対する影響を考慮すること。
<table>
<thead>
<tr>
<th>一般的名称</th>
<th>ラニムスチン</th>
<th>塩酸ニムスチン</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5)小児等及び生殖可能な年齢の患者に投与する必要がある場合には、性腺に対する影響を考慮すること。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

使用上の注意

3. 相互作用

<table>
<thead>
<tr>
<th>併用注意（併用に注意すること）</th>
</tr>
</thead>
<tbody>
<tr>
<td>薬剤名等</td>
</tr>
<tr>
<td>他の抗悪性腫瘍剤</td>
</tr>
<tr>
<td>放射線照射</td>
</tr>
<tr>
<td>他の抗悪性腫瘍剤</td>
</tr>
<tr>
<td>放射線照射</td>
</tr>
<tr>
<td>他の抗悪性腫瘍剤と放射線照射の一般的な副作用として骨髄抑制等</td>
</tr>
</tbody>
</table>

使用上の注意

4. 副作用

| 総症例数1,015例中370例(36.5%)、1,119件の副作用報告されている。主な副作用は白血球減少203件(22.2%)、血小板減少185件(20.6%)、食欲不振110件(10.8%)、悪心・嘔吐103件(10.1%)、赤血球減少85件(8.65%)、血色素量減少80件(8.14%)、貧血42件(4.64%)、血色素量減少80件(8.14%)、贫血72件(7.32%)、ALT(GPT)上昇63件(6.27%)、AST(GOT)上昇57件(5.67%)、全身倦怠感57件(5.62%)等であった。 |

(1) 重大な副作用

1) 骨髄抑制: 白血球減少(22.2%)、血小板減少(20.6%)、貧血、出血傾向があらわれることがあるので、投与後少なくとも6週間は1週毎に末梢血液検査を行い、異常が認められた場合には、適切な処置を行うこと。

2) 間質性肺炎: 間質性肺炎(0.10%)があらわれることがあるので観察を十分に行い、異常が認められた場合には、適切な処置を行うこと。

(2) その他の副作用

4. 副作用

286施設、総症例1,970例中副作用が報告されたのは1,208例(61.32%)であった。その主なものは、白血球減少(31.52%)、血小板減少(30.00%)等の造血器障害、嘔吐(13.40%)、食欲不振(12.49%)、悪心(8.93%)、嘔気(7.92%)等の消化器症状であった。 [新開発薬品の副作用のまとめ(その64)]

なお、造血器障害はその回復が投与回数が増加するほど遅延する傾向があり、現在のところ他の制癌剤との併用により造血障害を軽減する方法は見出されていない。

(1) 重大な副作用

1) 骨髄抑制(1.12%)、出血傾向(0.56%): 白血球減少、血小板減少、貧血、出血傾向があらわれることがあるので、投与後少なくとも6週間は1週毎に末梢血液検査を行い、異常が認められた場合には、適切な処置を行うこと。

2) 間質性肺炎(頻度不明)、肺線維症(頻度不明): 間質性肺炎、肺線維症があらわれることがあるので観察を十分に行い、異常が認められた場合には、適切な処置を行うこと。

(2) その他の副作用

注)投与を中止すること。
<table>
<thead>
<tr>
<th>一般的名称</th>
<th>ラニムスチン</th>
<th>塩酸ニムスチン</th>
</tr>
</thead>
<tbody>
<tr>
<td>使用上の注意</td>
<td>5. 高齢者への投与</td>
<td>5. 高齢者への投与</td>
</tr>
<tr>
<td></td>
<td>高齢者では、生活機能が低下していることが多く、副作用があらわれやすいので、用量並びに投与間隔に留意すること。</td>
<td>減量するなど注意すること。 [一般に高齢者では、生活機能が低下している。]</td>
</tr>
<tr>
<td>使用上の注意</td>
<td>6. 妊婦、産婦、授乳婦等への投与</td>
<td>6. 妊婦、産婦、授乳婦等への投与</td>
</tr>
<tr>
<td></td>
<td>(1) 妊婦又は妊娠している可能性のある婦人には投与しないことが望ましい。 [ラットを用いた器官形成期投与試験 (妊娠 7 ～11 日) で、ラニムスチン 5.0mg/kg の投与により外観異常 (頭頂部水疱形成、水頭症、全身性浮腫等) が、10.0mg/kg の投与により骨格異常 (骨の癒着、肋骨の癒着等) が報告されている。]</td>
<td>(1) 妊婦又は妊娠している可能性のある婦人には投与しないことが望ましい。 [妊娠7 ～17日目のラットに投与した実験 (0.1/0.5mg/kg/日) で、多症状等の発症形態が認められている。]</td>
</tr>
<tr>
<td></td>
<td>(2) 授乳婦に投与する場合には授乳を中止させることが。 [動物実験 (ラット) で、乳汁中への移行が報告されている。]</td>
<td>(2) 授乳婦に投与する場合には授乳を中止させることが。 [授乳中の投与に関する安全性は確立していな。]</td>
</tr>
<tr>
<td>使用上の注意</td>
<td>7. 小児等への投与</td>
<td>7. 小児等への投与</td>
</tr>
<tr>
<td></td>
<td>小児等に投与する場合には代謝系が未発達であるため、副作用 (血小板・白血球減少等) があらわれやすいので、観察を十分に行い、慎重に投与すること。</td>
<td>小児等に投与する場合には代謝系が未発達であるため、副作用 (血小板・白血球減少等) があらわれやすいので、観察を十分に行い、慎重に投与すること。</td>
</tr>
<tr>
<td>使用上の注意</td>
<td>8. 適用上の注意</td>
<td>8. 適用上の注意</td>
</tr>
<tr>
<td></td>
<td>(1) 投与時: 皮下又は筋肉内に投与しないこと。</td>
<td>(1) 投与時: 皮下又は筋肉内に注射しないこと。</td>
</tr>
<tr>
<td></td>
<td>(2) 静脈内投与時: 1) 静脈内投与に際し、薬液が血管外に漏れると、注射部位に腫脹、硬結・壊死を起こすことがあるので、慎重に投与すること。</td>
<td>(2) 静脈内投与時: 他剤と配合した場合は変化することがあるので注意すること。</td>
</tr>
<tr>
<td></td>
<td>2) 本剤稀漬液は速やかに使用すること。</td>
<td>(3) 投与時: 調製後は速やかに使用すること。</td>
</tr>
<tr>
<td></td>
<td>(3) 調製時：他剤と配合した場合は変化することがあるので注意すること。特に、中性～アルカリ性を示す薬剤との配合では分解しやすく、また、構造上アミノ基を有する化合物を含む薬剤との配合では反応生成物が認められることがあるので注意すること。</td>
<td>静脈内投与に際し、薬液が血管外に漏れると注射部位に腫脅・壊死を起こすことがあるので、薬液が血管外に漏れないように慎重に投与すること。</td>
</tr>
<tr>
<td></td>
<td>(4) その他：眼に接触させない。眼に入った場合は、直ちに水で洗浄すること。</td>
<td></td>
</tr>
<tr>
<td>使用上の注意</td>
<td>9. その他の注意</td>
<td>9. その他の注意</td>
</tr>
<tr>
<td></td>
<td>ラット・イヌに投与した実験で精巣の重量減少・萎縮が発現したとの報告がある。</td>
<td>ラット・イヌに投与した実験で精巣の重量減少・萎縮が発現したとの報告がある。</td>
</tr>
<tr>
<td>備考</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ギリアデル脳内留置用剤 7.7 mg

1.8.1 添付文書（案）

ノーベルファーマ株式会社
抗悪性腫瘍剤

処方箋医薬品

【警告】
本剤の投与にあたっては、緊急時に十分対応できる医療施設において、悪性腫瘍の外科手術及び薬物療法に十分な知識・経験を持つ医師のもとで、本剤の留置が適切と判断される症例についてのみ実施すること。

【禁忌（次の患者には投与しないこと）】
1. 本剤の成分に対し過敏症の既往歴のある患者
2. 妊婦又は妊娠している可能性のある婦人（「妊娠、産婦、授乳婦等への投与」の項参照）

【組成・性状】
販売名 ギリアデル脳内留置用剤7.7 mg
成分・含量 1枚中にカルムスチンとして 7.7 mg
添加物 ポリフェプロサン20 192.3 mg
剤形・色調 微黄白色~微黄色の円盤状の脳内留置用徐放性製剤
直径：約14.0 mm
厚さ：約1.3 mm

【効能・効果】
悪性神経膠腫
<効能・効果に関連する使用上の注意>
1. 本剤は、術中迅速病理組織診断等により組織型を確認の上、留置すること。
2. 本剤からのカルムスチンの浸透範囲、臨床試験に組み入れられた患者の腫瘍切除率及び組織型等について、【薬物動態】及び【臨床成績】の項の内容を熟知し、本剤の有効性及び安全性を十分に理解した上で適応患者の選択を行うこと。

【用法・用量】
通常、成人には、腫瘍切除腔の大きさや形状に応じて、本剤8枚（カルムスチンとして61.6mg）又は適宜減じた枚数を脳腫瘍切除術時の切除面を被覆するように留置する。
<用法・用量に関連する使用上の注意>
1. 本剤は、切除腫瘍の大きさや形状により、わずかに重なりあって留置することは可能であるが、組織表面と接しない切除腫瘍に充填しないこと。
2. 本剤を分割して使用した場合の有効性及び安全性は確立していない。
3. 本剤を2回以上留置した場合の有効性及び安全性は確立していない。

【使用上の注意】
1. 重要な基本的注意
(1) 腫瘍切除術後に切除腫瘍を問わず留置される場合、本剤の留置後にその間隔を隔週する等の対応を行った上で本剤を留置すること。[本剤が腫瘍組織に移行して腫瘍を発症するおそれがある。]

【貯法】遮光して、-15℃以下で保存
【使用期限】外箱又はラベルに表示の使用期限内に使用すること
【注意】医師等の処方せんにより使用すること
【警告】本剤留置の結果、脳室内にカルムスチンが浸透し、脳組織への影響を及ぼす可能性があるため、脳室系への浸透を避けて使用すること。

(2) 本剤留置患者において、脳脊髄液の漏出が認められることがあるので、頭蓋内圧の増高を防ぐ目的で、適切な処置を行うこと。
(3) 本剤留置後のCT及びMRI検査において、転移が認められない場合には、本剤の留置が腫瘍の増大を防止する可能性があることに留意し、適切な処置を行うこと。

2. 副作用
<国内臨床試験>
国内で行われた臨床試験（24例）において副作用（臨床検査値異常を含む）発現症例は13例（54.2％）で、主な副作用は、脳浮腫（25.0％）、発熱（12.5％）、髄液球数減少（12.5％）、薬品麻痺（不全薬品麻痺を含む）（3例）、心2例（8.3％）、脳動脈硬化（8.3％）、食雑吸収不全（8.3％）、頭痛（8.3％）、ALT（GPT）増加（2例）であった。

(1) 重大な副作用
1) 発熱
発熱があらわれることがあるので、観察を行い、異常が認められた場合には、症候対策を行うこと。
2) 脳浮腫、頭蓋内圧上昇、水頭症、脳ヘルニア
脳浮腫（25.0％）、頭蓋内圧上昇（頻度不明）、水頭症（頻度不明）、脳ヘルニア（頻度不明）があらわれることがあるので、観察を行い、異常が認められた場合には、適切な処置を行うこと。
3) 創傷治療不良（頻度不明）
創傷治療に影響を及ぼす可能性が考えられ、創傷治癒に影響を及ぼす可能性が考えられるので、観察を十分に行い、異常が認められた場合には、適切な処置を行うこと。
4) 感染症（頻度不明）
創傷感染症、創傷治癒障害などの感染症があらわれることがあるので、観察を行い、異常が認められた場合には、適切な処置を行うこと。
5) 血栓塞栓症（頻度不明）
脳梗塞、深部静脈血栓症、肺塞栓症などの血栓塞栓症があらわれることがあるので、観察を行い、異常が認められた場合には、適切な処置を行うこと。

(2) その他の副作用
次のような副作用があらわれた場合には、症状に応じて適切な処置を行うこと。

【使用上の注意】
1. 重要な基本的注意
(1) 本剤の留置前にその間隔を隔週する等の対応を行った上で本剤を留置すること。 [本剤が脳室系に移行して脳脊髄液を発症するおそれがある。]

【注意】医師等の処方せんにより使用すること
【警告】本剤の投与にあたっては、緊急時に十分対応できる医療施設において、悪性腫瘍の外科手術及び薬物療法に十分な知識・経験を持つ医師のもとで、本剤の留置が適切と判断される症例についてのみ実施すること。

【禁忌（次の患者には投与しないこと）】
1. 本剤の成分に対し過敏症の既往歴のある患者
2. 妊婦又は妊娠している可能性のある婦人（「妊娠、産婦、授乳婦等への投与」の項参照）

【組成・性状】
販売名 ギリアデル脳内留置用剤7.7 mg
成分・含量 1枚中にカルムスチンとして 7.7 mg
添加物 ポリフェプロサン20 192.3 mg
剤形・色調 微黄白色～微黄色の円盤状の脳内留置用徐放性製剤
直径：約14.0 mm
厚さ：約1.3 mm

【効能・効果】
悪性神経膠腫
<効能・効果に関連する使用上の注意>
1. 本剤は、術中迅速病理組織診断等により組織型を確認の上、留置すること。
2. 本剤からのカルムスチンの浸透範囲、臨床試験に組み入れられた患者の腫瘍切除率及び組織型等について、【薬物動態】及び【臨床成績】の項の内容を熟知し、本剤の有効性及び安全性を十分に理解した上で適応患者の選択を行うこと。

【用法・用量】
通常、成人には、腫瘍切除腔の大きさや形状に応じて、本剤8枚（カルムスチンとして61.6mg）又は適宜減じた枚数を脳腫瘍切除術時の切除面を被覆するように留置する。
<用法・用量に関連する使用上の注意>
1. 本剤は、切除腫瘍の大きさや形状により、わずかに重なりあって留置することは可能であるが、組織表面と接しない切除腫瘍に充填しないこと。
2. 本剤を分割して使用した場合の有効性及び安全性は確立していない。
3. 本剤を2回以上留置した場合の有効性及び安全性は確立していない。

【使用上の注意】
1. 重要な基本的注意
(1) 腫瘍切除術後に切除腫瘍から脳室系に至る間隔が認められる場合には、本剤の留置前にその間隔を隔週する等の対応を行った上で本剤を留置すること。[本剤が脳室系に移行して脳室系に発症するおそれがある。]
<table>
<thead>
<tr>
<th>5%以上</th>
<th>1〜5%未満</th>
<th>頻度不明(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>頭痛、神経麻痺、めまい、一部感覚、片頭痛、末梢性ニューロパチー、発汗</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5%以上 1〜5%未満 頻度不明(1)

6. その他の注意
本剤の有効成分であるカルムスチンは、他のアルキル化剤と同様に遺伝毒性を有し、マウス、ラットのリンパ組織、肝等において腫瘍が発生したとの報告がある。

【薬物動態】
本剤は、腫瘍切除時に留置後、ポリフェプロサン20の加水分解とともにカルムスチン、1,3-ビス(4-カルボキシフェノキシ)プロパン(CPP)及びセバシン酸(SA)を放出すると考えられている。

1. カルムスチン
(1) 吸収
日本人初発悪性神経膠腫患者及び再発膠芽腫患者6例に、本剤を平均7.3枚(5〜8枚)留置して全血中カルムスチン濃度を測定した結果、留置後約3時間に6.5〜19.4ng/mLの濃度が得られたが、24時間以降は定量下限(2.0ng/mL)未満であった。なお、本剤留置後10日間組織に移行するカルムスチンの濃度は確認されていない。

(2) 分布

【臨床成績】
1. 国内臨床試験成績
初発悪性神経膠腫患者16例及び再発膠芽腫患者8例を対象に、非対照、非盲検臨床試験を実施した。この試験では、腫瘍摘出術時に本剤を留置した後の摘出率及び生存率について評価した。中央病理診断による24例の病理組織型は、初発例では膠芽腫9例、膠芽腫以外7例(内訳:退形成性乏突起神経膠腫3例、乏突起神経膠腫2例、退形成性神経節腫及び乏突起星細胞腫各1例）、再発例では膠芽腫4例、膠芽腫以外4例(内訳:退形成性乏突起神経腫2例、退形成性乏突起神経腫及び乏突起星細胞腫各1例)であり、本剤留置時の腫瘍摘出率は平均56.1%であった。

(2) 排泄

【代謝】
ヒト肝ミクロソーム及びサイトオゾールを用いたin vitro代謝試験結論から、カルムスチンは、モノオゾームの脱ニトロソ反応によって1,3-ビス(2-クロロエチル)ウレアに代謝されると推察された。また、非酵素的に2-クロロエチルイソシアネートに分解してゴウ酸(またはCS)と熟成によって形成されるとも推察された。

(4) 排泄

【臨床成績】
1. 国内臨床試験成績
初発悪性神経膠腫患者16例及び再発膠芽腫患者8例を対象に、非対照、非盲検臨床試験を行った。この試験では、腫瘍摘出術時に本剤を留置した後の有効率及び安全性について評価した。中央病理診断による24例の病理組織型は、初発例では膠芽腫9例、膠芽腫以外7例(内訳:退形成性乏突起神経膠腫3例、乏突起神経膠腫2例、退形成性乏突起神経腫及び乏突起星細胞腫各1例)、再発例では膠芽腫4例、膠芽腫以外4例(内訳:退形成性乏突起神経腫2例、退形成性乏突起神経腫及び乏突起星細胞腫各1例)であり、本剤留置時の腫瘍摘出率(平均値±標準偏差)は、初発例で91±5.5%、再発例で93±1.8%であった。初発例では、本剤留置後にテモゾロミドと放射線療法を併用療法を行った。

(2) 排泄

【臨床成績】
1. 国内臨床試験成績
初発悪性神経膠腫患者16例及び再発膠芽腫患者8例を対象に、非対照、非盲検臨床試験を行った。この試験では、腫瘍摘出術時に本剤を留置した後の有効率及び安全性について評価した。中央病理診断による24例の病理組織型は、初発例では膠芽腫9例、膠芽腫以外7例(内訳:退形成性乏突起神経膠腫3例、乏突起神経膠腫2例、退形成性乏突起神経腫及び乏突起星細胞腫各1例)、再発例では膠芽腫4例、膠芽腫以外4例(内訳:退形成性乏突起神経腫2例、退形成性乏突起神経腫及び乏突起星細胞腫各1例)であり、本剤留置時の腫瘍摘出率(平均値±標準偏差)は、初発例で91±5.5%、再発例で93±1.8%であった。初発例では、本剤留置後にテモゾロミドと放射線療法を併用療法を行った。
った。本剤の留置枚数は24例中21例に8枚が留置され、その他の3例は5枚、6枚、7枚であった。
その結果、Kaplan-Meier法による初発例の12ヵ月生存率は100.0%であり、再発例の6ヵ月生存率は87.5%、12ヵ月生存率は62.5%であった。12ヵ月時点の生存期間中央値は、初発例及び再発例ともに算出できなかった。
無増悪生存率は、初発例の6ヵ月で75.0%（95%信頼区間：46.3–89.8）、12ヵ月で62.5%（95%信頼区間：34.9–81.1）、無増悪生存期間中央値は、12ヵ月時点では算出できなかった。再発例の6ヵ月無増悪生存率は、37.5%（95%信頼区間：8.7–67.4）、12ヵ月では、25.0%（95%信頼区間：3.7–55.8）、無増悪生存期間中央値は170日であった。

【薬効薬理】
1. 抗腫瘍効果
カルムスチンは、ヒト神経膠芽腫由来U-87MG細胞株を移植したマウスに対し、その生存期間を延長することが示されている。

2. 作用機序
カルムスチンは、DNAをアルキル化し、核酸合成を阻害すると考えられている。

【有効成分に関する理化学的知見】
一般名：カルムスチン（JAN）、Carmustine（JAN、INN）
化学名：1,3-bis(2-chloroethyl)-1-nitrosourea
分子式：C₅H₉Cl₂N₃O₂
分子量：214.05
構造式：

Cl
O
N
H
NO

性状：淡黄色の粉末である。ジメチルスルホキシド、エタノール（95）、ジクロロメタン又はアセトニトリルに極めて溶けやすく、プロピレングリコール、メタノール又は無水ジエチルエーテルに溶けやすく、水に溶けにくい。
融点：約31℃

【包装】
ギリアデル脳内留置用剤7.7mg：8枚（分包1枚×8）

【主要文献】
1) 社内資料：第Ⅰ/Ⅱ相試験
4) 社内資料：カルムスチンのヒト肝代謝実験
6) 社内資料：ラット及びレサギにおけるポリフェプロサン20の薬物動態
7) 社内資料：脳腫瘍移植マウスにおけるカルムスチンの抗腫瘍効果
8)Chabner BA, et al.: Goodman & Gilman’s The pharmacological basis of therapeutics 11th ed. 2006; 1324

【文献請求先】
ノーベルファーマ株式会社 カスタマーセンター
〒103-0024 東京都中央区日本橋小舟町12番地10
TEL:03-5651-1329

【製造販売業者等の氏名又は名称及び住所】
製造販売元
ノーベルファーマ株式会社
「ギリアデル脳内留置用剤 7.7 mg」の開封時の留意点について

① 本剤の開封前に、手術用手袋を二重に着用すること。
② 本剤の取扱いが終了するまで、手袋を着用したままにすること。
（本剤が皮膚に接触すると重度の熱傷と色素沈着をきたすおそれがある）

①の注意

外袋を勢いよくはがさないこと。
本剤に外圧がかかったりと破損する可能性がある。

内袋（滅菌済み）の端を慎重に、指又は滅菌済みのピンセットでしっかりつまんで取り出す。（つまんだまま、次の操作で内袋をカットするため）

内袋の端をつまんで、滅菌済みのハサミで内袋を円弧状にカットする。
（円弧状にすると本剤を取り出しやすい）

本剤を、内袋からゆっくりと滅菌済みのピンセットで取り出し、腫瘍切除腔へ留置する。

注：本剤の開封に使用したピンセット、ハサミは、手術に使用しないこと。

「ギリアデル脳内留置用剤 7.7 mg」の廃棄について

以下のように扱われた本剤及びその他廃材は、廃棄物専用容器に廃棄すること。
① 開封後、脳内に留置する前に誤って本剤を落としたもの
② 室温で6時間を超過した未開封の本剤
③ 再凍結後30日を超過した未開封の本剤
④ 本剤の留置時に使用した二重の手術用手袋の外側の手袋及びその他廃材
「ギリアデル脳内留置用剤 7.7 mg」の腫瘍切除面への留置について

① 本剤の留置前に、腫瘍切除面が十分に止血できていることを確認する。

② 腫瘍切除面を被覆するように、本剤を留置する。（最大8枚まで）

③ 腫瘍切除腔の大きさ・形状により、本剤がわずかに重なり合って留置することは可能である。

注意：腫瘍切除面を被覆するように本剤を留置したら、それ以上、本剤の留置は行わないこと。
留置枚数が7枚以下の場合、残った本剤を組織表面と接しない切除腔に充填すること。
1.8.2 効能・効果、用法・用量（案）に関する設定根拠
1.8.2 効能・効果、用法・用量（案）に関する設定根拠

1.8.2.1 効能・効果
悪性神経膠腫

1.8.2.2 効能・効果に関する設定根拠
以下の外国での臨床試験結果及び効能・効果並びに国内試験結果を基に、設定した。

① 本剤は、悪性神経膠腫の治療薬として、外国の承認申請において採用されたエビデンスレベルの高いプラセボ対照二重盲検比較試験でその有効性は検証されている。

米国での承認申請時の成績は、初発悪性神経膠腫患者では、プラセボ対照二重盲検比較試験（Study T-301）で、プラセボ群に比べて有意な生存期間の延長が確認されている（P=0.027）。再発悪性神経膠腫患者を対象としたプラセボ対照二重盲検比較試験（Study 8802）では、留置後6ヵ月間における累積死亡率は本剤群において低いものの、Fisher直接確率法での有意差検出までには至らず（P=0.061）、Log-rank検定及び一般化Wilcoxon検定の結果でも、統計的有意差検出まで至らなかった（それぞれP=0.063及びP=0.077）が、最も悪性度の高い膠芽腫患者の本剤留置後6ヵ月間の累積死亡率がプラセボ群に比べて有意に減少しており（P=0.013）、予後因子を調整した追加解析で、留置後6ヵ月間及び全生存期間に対し本剤群で有意な死亡率の減少が認められている。これら米国の承認申請に使用された臨床試験成績は、欧州を含む他の国の承認申請に利用され、治療ライン（初発／再発）別での本剤の反応性に差異はないと考えられ、いずれの国においても新たな臨床試験を実施せずに、「初発の悪性神経膠腫患者における手術及び放射線療法との併用」、「再発膠芽腫患者における手術との併用」の効能・効果を取得している。

② 米国NCCN及びCNCIガイドライン、並びに英国NICE治療ガイダンス、コクランレビュー、公表文献、教科書では、本剤の初発及び再発の悪性神経膠腫での使用を推奨している。

外国での主要な治療ガイドラインである米国NCCN及びCNCIガイドラインと並びに英国NICE治療ガイダンス、コクランレビュー、公表文献、教科書では、初発時の悪性神経膠腫では、腫瘍切除術で最大限に腫瘍を切除し、その後本剤を腫瘍切除腔に留置し、術後療法として、放射線療法や化学療法を実施することが推奨されている。また、再発時の悪性神経膠腫の治療では、再手術で局所腫瘍が切除可能であれば、再切除術と本剤の使用を推奨している。

③ 本剤の国内での試験成績は、外国試験と比較して良好な成績が得られ、初発及び再発の悪性神経膠腫の腫瘍切除術時に本剤を投与する治療を付加することにより、患者が最も期待する有効性評価である生存率が向上することを期待できる結果であった。

国内では、本剤が脳内局所留置製剤であるため、外国臨床成績が日本人にも外挿できると考え、外国での適応症に準じ初発悪性神経膠腫及び再発膠芽腫を対象とした国内第Ⅰ/Ⅱ相臨床試験（Study NPC-08-1）を実施した。その結果、初発悪性神経膠腫での本剤留置後12ヵ月の生存率は100％であり、外国Study T-301での報告59.2％を大きく上回る成績であった。また、再発膠芽腫での本剤留置後6ヵ月の生存率は、国内Study NPC-08-1では87.5％であり、外国Study 8802での報告56.0％を上回った。また、本剤は、外国でのプラ
カルムスチン脳内留置用剤

1.8.2 効能・効果、用法・用量(案)に関する設定根拠

セボ対照二重盲検比較試験の結果からは、膠芽腫以外の組織型の症例数が少なく有効性について明確な検証結果は得られなかったが、膠芽腫以外の組織型を含めた悪性神経膠腫では、有意な生存期間の延長効果が示唆された。

本剤の開発段階での外国試験の実施当時は、悪性神経膠腫に対して有効性のエビデンスのあるテモゾロミドが未承認等であったが、本剤留置後にテモゾロミドを併用した国内Study NPC-08-1では、非膠芽腫患者において、他剤との有効性比較においても良好な傾向が認められたことから、腫瘍切除時に本剤の治療を付加することにより、膠芽腫以外の悪性神経膠腫に関しても、本剤の有効性が期待できると判断している。

このように、国内での試験成績は、外国試験と比較して良好な成績が得られ、初発及び再発の悪性神経膠腫の腫瘍切除時に本剤の治療を付加することにより、患者が最も期待する有効性評価である生存率が上がることを期待できる結果であり、国内における本疾患に対する有効性を示唆するものであると考える。

④ 悪性神経膠腫としてまとめられる腫瘍群は、稀少な疾患であり病理組織診断にかかわらず同じ治療原則が採用されていることから、組織型により更に分類する臨床的意義は小さく、限定する必要性が乏しい。

WHOの組織分類（第4版、WHO 2007）によるGrade分類における悪性神経膠腫（Grade Ⅲ及びIV）の代表的な病理診断である退形成性星細胞腫（Grade Ⅲ）と膠芽腫（Grade Ⅳ）では、他臓器帯に比べると稀な腫瘍（肺癌の1/10以下）に属する。さらに、悪性神経膠腫のその他の腫瘍型（退形成性突起星細胞腫、退形成性突起星細胞腫など）は、さらに稀少な疾患である。骨軟部腫瘍など他の稀少癌でも同様であるが、患者数が少ないものも含めた一つ一つの腫瘍型に対して臨床試験により有効性及び安全性を検討することは、当該疾患の患者数を考慮すると困難である。また、退形成性星細胞腫（Grade Ⅲ）と膠芽腫（Grade Ⅳ）との差は、癌細胞の増殖能力及び浸潤能力の差異による悪性度及び進行度の違いによるものであるが、とともに星細胞由来の腫瘍であり、同じ系統の疾患とみなすことができる。このため、臨床現場では、悪性神経膠腫としてまとめられる腫瘍群は組織型にかかわらず同じ治療原則（手術＋放射線治療＋化学療法）が採用されていることから、病理組織診断により更に分類する臨床的意義は小さい。

また、本剤は、腫瘍切除術時に摘出腔に直接留置されるため、術後の永久標本による最終病理診断を確認してから留置することはできない。再発患者の場合は、前回の手術時の病理診断やMRI画像を参考できるものの、初発患者の場合は、術後の永久標本による最終病理診断を確認できないため術中迅速診断で本剤投与の適応があるか否かの判断を基に本剤留置が決定される。

術中迅速診断の目的は、術中に病変部の性質（腫瘍か否か、腫瘍とすれば良性か悪性かなど）や病変部の取り残しがないかについて調べることである。従って、術中迅速診断では、採取される組織片が少量であり、術手中の限られた時間内で染色も限られるなどから詳細な情報が得られないため、術中迅速診断と最終病理診断とは異なることは起こりうる。このように、術中迅速診断による悪性神経膠腫の組織型診断は、採取される組織片の問題や限られた染色法のみでの判定が求められるため正診率は低い。しかし、神経膠腫病
変が存在するか否かと悪性所見（Grade III以上）であるか否かは、高い確率で判断可能と考えられる。

以上のことから、本剤は、初発及び再発の悪性神経膠腫患者での腫瘍切除時の切除腔に本剤を留置することで、臨床効果が期待できるものと考え、効能・効果を「悪性神経膠腫」と設定した。

1.8.2.3 用法・用量
腫瘍切除術時の切除腔に、本剤を、最大8枚（カルムスチンとして61.6mg）を留置する。腫瘍切除腔の大きさと形状によるが、できる限り多くの枚数を留置することが望ましい。

1.8.2.4 用法・用量に関する設定根拠
以下の外国での臨床試験結果及び用法・用量並びに国内試験結果を基に、設定した。
① 本剤は、外国の臨床試験において、同様の用法・用量での有効性及び安全性は検証されている。
外国の用量設定試験（Study 8701）では、再発悪性神経膠腫患者に対して、腫瘍切除腔内に最大8枚のカルムスチン含有量の異なる製剤（1.925%、3.85%及び6.35%含有カルムスチン含有製剤）を留置し評価した。その結果、治験薬留置後の生存期間中央値は、1.925%カルムスチン含有製剤群（n=5）で65週間、3.85%カルムスチン含有製剤群（n=5）では47週間、6.35%カルムスチン含有製剤群（n=11）では23週間であった。治療群間で生存データには違いが認められたが、用量依存性はないものの患者背景を考慮し、3.85%カルムスチン含有製剤が望ましいと判断され、以後の臨床試験用製剤としてカルムスチン3.85%含有製剤（本剤）が選択された。同用法用量で実施されたプラセボ対照二重盲検比較試験（Study 8802、Study CL-190、Study T-301）では、有意な生存期間の延長など有効性の検証だけではなく、いずれの試験でも安全性プロファイルはプラセボとほぼ同様であり、骨髄抑制及び肺線維症など重篤な副作用は認められていないなど、本用法・用量での安全性が確認されている。

② 本剤は、脳内に直接留置される局所投与法であるため民族間差を考慮する必要性が低く、同様な用法・用量の設定が可能であると考えられる。
本剤は、脳内に直接留置する局所投与法であり、体内への薬物の移行はほとんど認められていない。脳内で腫瘍細胞に直接作用すると考えられるため民族間差（日本人と外国人）を考える必要性が低いと考えられる。また、国内及び外国の悪性神経膠腫の治療体系に大きな差異はなく腫瘍切除術の手技も同様で、本剤の使用方法は同様である。外国承認申請資料等においても、人種による有効性及び安全性の違いは検討されていない。さらに、本用法・用量は、アメリカ、イギリスを含む欧米諸外国だけではなく、香港、台湾及びインドなどのアジア諸外国においても、同様の用法・用量で承認されている。なお、医薬品医療機器総合機構との医薬品第I相試験開始前相談（薬機審長発第0121002号：#P1290）において、国内での臨床試験での用法・用量の適切性について、以下の見解が示された。
カルムスチン脳内留置用剤 1.8.2 効能・効果、用法・用量(案)に関する設定根拠

用法・用量の適切性
本剤1.925%、3.85%及び6.35%製剤の検討が行われた海外第Ⅰ/Ⅱ相試験（Study 8701）の成績から、本剤の濃度として3.85%が選択された経緯・理由について、相談者は「高濃度を積極的に選択する理由が見あたらないことなどが推察される」と説明しており、国内臨床試験で検討する本剤濃度の設定根拠は極めて脆弱であると考える。

しかしながら、これまでに得られている海外臨床試験成績を踏まえると、国内臨床試験の用法・用量として3.85%製剤を最大8シートまでと設定することは可能と考える。

③ 国内試験では、本剤の用法・用量を外国試験と同様に設定したが、ほぼ同様の枚数が留置され、国内と外国試験での副作用発現率は、ほぼ同率であるなど類似した結果であった。

国内Study NPC-08-1においては、本剤の留置最大枚数を外国試験と同様に、8枚と設定した。その結果、国内Study NPC-08-1の留置枚数は、24例中8枚が21例、7枚、6枚、5枚が各1例で、平均7.8枚であった。外国試験では、Study T-301が平均留置枚数6.3枚とやや少なかったが、他の試験では、平均留置枚数7.1～7.9枚とほぼ同様の枚数が留置された。国内Study NPC-08-1は、生存率などの有効性評価の外国試験データとの比較検討での良好な成績だけではなく、副作用発現率において、国内Study NPC-08-1は54.2%（13/24例）であり、外国二重盲検比較試験3試験の併合は、本剤留置例で56.5%（139/246例）、プラセボ留置例で59.7%（148/248例）で、国内外ではほぼ同率であった。

④ 「できる限り多くの枚数を留置することが望ましい」と設定した理由
再発の悪性神経膠腫に対するプラセボ対照二重盲検比較試験（Study 8802）及び初発の悪性神経膠腫に対するプラセボ対照二重盲検比較試験（Study T-301）において、生存に関する予後因子が検討されている（CTD 2.7.6.2.2及び2.7.6.7）。これら解析結果から、生存に関する予後因子の一つは、本剤の留置枚数であり、治験薬の留置枚数が初発及び再発の悪性神経膠腫の予後因子の一つであることが判明した。また、Study 8701の結果、治験薬中のカルムスチン含有量と有害事象発現率との間に明らかな関連性は認められず、血液学的に骨髄抑制、血球減少などは認められず、また肝、腎臓障害も認められず用法に依存する有害事象は認められていない。このことから、本剤留置を最大8枚とした場合、その枚数（カルムスチン含有量）による有害事象発現率との間に明らかに関連性は認められなかったこと、及び本剤の対象となる悪性神経膠腫患者にとって臨床上最も重要で意義のある「生命予後」が、適切な留置枚数により期待できる要因であると考えられることから、国外の用法用量では、「切除腔の大きさと形状から、8枚のウェハーが留置できない場合でも、可能な限り多くのウェハーを留置すべきである。」と設定されている。
以上のことから、本邦においても、用法・用量において「できる限り多くの枚数を留置することが望ましい」と設定することとした。

海外の用法・用量に準じ、国内で初発悪性神経膠腫及び再発膠芽腫を対象とした第Ⅰ/Ⅱ相臨床試験（Study NPC-08-1）で設定した本用法・用量において、有効性及び安全性が確認されたことか
カルムスチン脳内留置用剤

1.8.2 効能・効果、用法・用量(案)に関する設定根拠

カラムスチン脳内留置用剤

ら、承認申請時の用法・用量は、「腫瘍切除術時の切除腔に、本剤を、最大8枚（カルムスチンとして61.6mg）を留置する。腫瘍切除腔の大きさと形状によるが、できる限り多くの枚数を留置することが望ましい。」と設定したが、審査の結果、「通常、成人には、腫瘍切除腔の大きさや形状に応じて、本剤8枚（カルムスチンとして61.6mg）又は適宜減じた枚数を腫瘍切除術時の切除面を被覆するように留置する。」とした。
ギリアデル脳内留置用剤 7.7 mg

1.8.3 使用上の注意（案）に関する設定根拠

ノーベルファーマ株式会社
1.8.3 使用上の注意（案）に関する設定根拠

本剤の使用上の注意は、本剤の開発時に得られた情報、本剤の外国の添付文書（1.6.2 項参照）及びCompany Core Data Sheet（CCDS）（1.6.3 項参照）の情報を参考にして作成した。審査の過程において以下の設定となった。

1.8.3.1 警告

本事項は、患者の安全性確保並びに適正使用の観点から、がん化学療法における一般的な記載に準じ、また、本剤の使用に際しては、がん化学療法の十分な知識と経験が必要であることから、本剤を使用する医療施設及び医師の用件などについて示しました。

本剤の投与にあたっては、緊急時に十分対応できる医療施設において、悪性脳腫瘍の外科手術及び薬物療法に十分な知識・経験を持つ医師のもとで、本剤の留置が適切と判断される症例についてのみ実施すること。

1.8.3.2 禁忌

本事項は、Company Core Data Sheet（CCDS）及び海外の添付文書に基づいて、以下のよう設定した。

1. 本剤の成分に対し過敏症の既往歴のある患者
2. 妊婦又は妊娠している可能性のある婦人（「妊娠、産婦、授乳婦等への投与」の項参照）

1.8.3.3 効能・効果に関する使用上の注意

本事項は、脳腫瘍切除術時における病理組織診断の実施及び本剤を留置する患者選択時の注意として以下のとおり設定した。

＜効能・効果に関する使用上の注意＞
1. 本剤は、術中迅速病理組織診断等により組織型を確認の上、留置すること。
2. 本剤からのカルムスチンの浸透範囲、臨床試験に組み入れられた患者の腫瘍切除率及び組織等について、薬物動態及び臨床成績の項の内容を熟知し、本剤の有効性及び安全性を十分に理解した上で適応患者の選択を行うこと。

1.8.3.4 用法・用量に関連する使用上の注意

本事項は、Company Core Data Sheet（CCDS）及び海外の臨床試験成績・添付文書を基に、以下のとおり設定した。

＜用法・用量に関連する使用上の注意＞
1. 本剤は、切除腔の大きさ・形状により、わずかに重なりあって留置することは可能であるが、組織表面と接しない切除腔に充填しないこと。
2. 本剤を分割して使用した場合の有効性及び安全性は確立していない。
3. 本剤を2団以上留置した場合の有効性及び安全性は確立していない。
1.8.3 使用上の注意(案)に関する設定根拠

1.8.3.5 使用上の注意

1. 慎重投与（次の患者には慎重に投与すること）
 慎重に投与すること。

2. 重要な基本的注意
 本事項は、本剤の脳内留置による重大な副作用の発現を回避するための注意喚起を、Company Core Data Sheet (CCDS) 及び海外の臨床試験成績・添付文書に基づいて、以下のように作成した。

3. 相互作用
 該当しない。

4. 副作用
 副作用発生状況の概要」については、国内の患者（24例）を対象とした第Ⅰ/Ⅱ相試験でみられた副作用（臨床検査値異常を含む）で、2例以上に発現した事象を記載した。
 重大な副作用は、国内第Ⅰ/Ⅱ相試験、Company Core Data Sheet (CCDS) 及び海外の臨床試験成績・添付文書を基に記載した。
 その他の副作用の頻度表には、国内第Ⅰ/Ⅱ相試験でみられた副作用（臨床検査値異常を含む）を記載し、海外でのみ認められている副作用については頻度不明として記載した。

＜国内臨床試験＞
国内で行われた臨床試験（24例）において副作用（臨床検査値異常を含む）発現症例は13例（54.2％）で、主な副作用は、脳浮腫6例（25.0％）、発熱3例（12.5％）、リノベ球数減少3例（12.5％）、片麻痺（不全片麻痺を含む）3例（12.5％）、嘔吐2例（8.3％）、食欲減退2例（8.3％）、頭痛2例（8.3％）、ALT (GPT) 増加2例（8.3%）であった。（承認時）

(1) 重大な副作用

1） 発作、大発作発作（頻度不明）
 発作、大発作発作が発現することがあるので、観察を十分に行い、異常が認められた場合には、抗発作剤投与など適切な処置を行うこと。
2) 脳浮腫、頭蓋内圧上昇、水頭症、脳ヘルニア
脳浮腫（25.0%）、頭蓋内圧上昇（頻度不明[注]）、水頭症（頻度不明[注]）、脳ヘルニア（頻度不明[注]）があらわれることがあるので、観察を十分に行い、異常が認められた場合には、適切な処置を行うこと。

3) 創傷治癒不良（頻度不明[注]）
創傷治癒に影響を及ぼす可能性が考えられ、脳脊髄液の漏出、創傷治癒遅延による創裂開、創合併症があらわれることがあるので、観察を十分に行い、異常が認められた場合には、適切な処置を行うこと。

4) 感染症（頻度不明[注]）
創傷感染、膿瘍、髄膜炎などの感染症があらわれることがあるので、観察を十分に行い、異常が認められた場合には、適切な処置を行うこと。

5) 血栓塞栓症（頻度不明[注]）
脳梗塞、深部静脈血栓症、肺塞栓症などの血栓塞栓症があらわれることがあるので、観察を十分に行い、異常が認められた場合には、適切な処置を行うこと。

6) 出血（頻度不明[注]）
腫瘍出血、脳出血、頭蓋内出血などの出血症状があらわれることがあるので、観察を十分に行い、異常が認められた場合には、適切な処置を行うこと。

(2) その他の副作用
次のような副作用があらわれた場合には、症状に応じて適切な処置を行うこと。

<table>
<thead>
<tr>
<th></th>
<th>5%以上</th>
<th>1～5%未満</th>
<th>（頻度不明[注]）</th>
</tr>
</thead>
<tbody>
<tr>
<td>全身症状</td>
<td>発熱</td>
<td>低体温、浮腫</td>
<td>顔面浮腫、無力症、倦怠感、腫脹、腫瘤、囊胞、疼痛、胸痛、体重減少</td>
</tr>
<tr>
<td>精神神経系</td>
<td>頭痛、片麻痺</td>
<td>失語症、感覚純麻、記憶障害、半盲、単麻痺</td>
<td>錯乱状態、うつ病、解離、感情不安定、激越、幻覚、思考異常、人格障害、不安、失見当識、不眠症、妄想症、認知症、傾眠、昏迷、ジスキュレジア、異常感覚、会話障害、協調運動異常、構語障害、昏睡、錯覚、刺激無反応、視野欠損、振戦、脳神経麻痺、めまい、部分発作、片頭痛、未梢性ニューロパチー、嘔吐</td>
</tr>
<tr>
<td>感覚器</td>
<td>斜視</td>
<td></td>
<td>眼筋麻痺、散瞳、視神経乳頭浮腫、視力障害、失明、弱視、複視、聴覚、羞明、耳鳴</td>
</tr>
<tr>
<td>血液</td>
<td>リンパ球数減少</td>
<td>血小板数減少、白血球数増加</td>
<td>白血球数減少、プロトロンピン量減少、汎血球減少症、貧血、血液量減少症</td>
</tr>
<tr>
<td>肝臓</td>
<td>ALT(GPT)増加</td>
<td></td>
<td>肝機能検査異常、AI-P増加</td>
</tr>
<tr>
<td>腎臓・泌尿器</td>
<td>尿失禁</td>
<td></td>
<td>尿閉、膀胱感覚消失、頻尿、多尿、尿糖</td>
</tr>
<tr>
<td>循環器</td>
<td>ショック、高血圧、低血圧、チアノーゼ、頻脈、心電図異常、心拍出量異常</td>
<td></td>
<td></td>
</tr>
<tr>
<td>消化器</td>
<td>悪心、嘔吐、食欲不振</td>
<td>腹部不快感</td>
<td>下痢、便秘</td>
</tr>
<tr>
<td>皮膚</td>
<td>そう痒症、皮膚変色、蕁麻疹、多汗症、発疹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>筋骨格系</td>
<td>筋緊張、筋骨格着硬、頚部痛、背部痛、四肢痛、筋力低下</td>
<td></td>
<td></td>
</tr>
<tr>
<td>呼吸器</td>
<td>しっかり、呼吸困難、誤嚥性肺炎</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
カルムスチン脳内留置用剤

1.8.3 使用上の注意(案)に関する設定根拠

<table>
<thead>
<tr>
<th>代謝・内分泌</th>
<th>5%以上</th>
<th>1～5%未満</th>
<th>(頻度不明注)</th>
</tr>
</thead>
<tbody>
<tr>
<td>感染症</td>
<td>尿崩症、高血糖、脱水、低ナトリウム血症、低マグネシウム血症</td>
<td></td>
<td></td>
</tr>
<tr>
<td>その他</td>
<td>尿崩症、カンジダ症、帯状疱疹、尿路感染、蜂巢炎</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>不規則月経、CRP増加、CK（CPK）増加</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>処置後血腫、切開部位痛、切開部位浮腫、切開部位紅斑、帽状腱膜下血腫、創腐敗、創部炎症、髄液貯留、髄液細胞増加</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注: 海外でのみ認められている副作用については頻度不明とした。

5. 高齢者への投与
該当しない。

6. 妊婦、産婦、授乳婦等への投与
妊娠、産婦、授乳婦等への投与は、本剤の国内臨床試験では使用経験がないが、本剤の有効成分であるカルムスチンの非臨床試験(毒性試験)において、胎児毒性や催奇形性が認められたとの報告がある。
また、カルムスチンの胎児毒性や催奇形性は、カルムスチンが有する突然変異誘発能を考慮すれば、生殖細胞に突然変異が生じていた可能性も否定できないことから、本剤留置後の血中カルムスチン濃度が定量限界値（2.0 ng/mL）未満になる2週間の避妊期間を、また、雄動物で確認された授胎能及び初期胚発生へ及ぼす影響から、パートナーが妊娠する可能性のある男性についても最低3ヵ月間は適切な避妊法を用いるよう指導することを記載した。

更に、ラットを用いた乳汁移行性試験成績に基づき、妊娠、産婦、授乳婦等への注意喚起を以下のとおり記載した。

(1) 妊婦又は妊娠している可能性のある婦人には、留置しないこと。妊娠可能な婦人には、本剤留置後最低2週間は適切な避妊法を用いるよう指導する。パートナーが妊娠する可能性のある男性についても最低3ヵ月間は適切な避妊法を用いるよう指導する。[本剤の有効成分であるカルムスチンを妊娠動物(ウサギ、ラット)に投与したときに胎児毒性や催奇形性が、雄動物(ラット)に投与したときに授胎能の低下、胚死亡の増加が認められたとの報告がある。]
(2) 授乳中の婦人に留置する場合は、授乳を中止させること。[動物実験（ラット）で14C標識カルムスチンを静脈内投与したとき、放射能の乳汁移行が認められている。]

7. 小児等への投与
小児への投与は、本剤の国内臨床試験では使用経験がないので、以下のように記載した。

小児に対する安全性は確立していない。[使用経験がない。]

8. 過量投与
該当しない。

注: 後注
9. 適用上の注意
本剤の組成・性状に基づき注意喚起すべき事項として、凍結保存の本剤及び割れやすい本剤の取扱い上の注意並びに脳内留置時の注意を以下のように記載し、更に開封時の注意及び脳内留置方法を図で示した。

(1) 薬剤交付時
1) 本剤（二重のアルミラミネート袋入り）は、保存庫（-15℃以下）から、未開封のまま手術室に運び、脳内留置の準備が出来るまで開封しない。
2) 本剤は、室温で6時間まで安定である。（未開封時）
3) 室温で6時間以内の本剤（未開封）は、1回のみ再凍結（-15℃以下）保存できるが、再凍結後の本剤は、30日以内に使用すること。

(2) 二重のアルミラミネート袋の開封
本剤は、割れやすいため、開封時の留意点などを別に示す。〔説明図参照〕

(3) 脳内留置時
1) 腫瘍を切除して十分に止血した後、切除面をできるだけ被覆するように、本剤を留置する。なお、切除腔の大きさ・形状により、本剤がわずかに重なり合って留置することは可とする。〔説明図参照〕
2) 搬送による衝撃などにより、開封時に本剤が割れていた場合は、原則使用せずに廃棄すること。〔本剤をほぼ同じ大きさに2分割したとき、カルムスチン放出性は未分割の製剤と同様であったが、分割して使用した場合の有効性及び安全性は確立していない。「用法・用量に関連する使用上の注意」の項参照〕
「ギリアデル脳内留置用剤 7.7 mg」の開封時の留意点について

① 本剤の開封前に、手術用手袋を二重に着用すること。
② 本剤の取扱いが終了するまで、手袋を着用したままにすること。
（本剤が皮膚に接触すると重度の熱傷と色素沈着をきたすおそれがある）

注: 本剤の開封に使用したピンセット、ハサミは、手術に使用しないこと。

ギリアデル脳内留置用剤 7.7 mg」の廃棄について

以下のように扱われた本剤及びその他廃材は、廃棄物専用容器に廃棄すること。
① 開封後、脳内に留置する前に誤って本剤を落としたもの
② 室温で6時間を経過した未開封の本剤
③ 再凍結後30日を経過した未開封の本剤
④ 本剤の留置時に使用した二重の手術用手袋の外側の手袋及びその他廃材
「ギリアデル脳内留置用剤 7.7 mg」の腫瘍切除面への留置について

① 本剤の留置前に、腫瘍切除面が十分に止血できていることを確認する。

② 腫瘍切除面を被覆するように、本剤を留置する。（最大8枚まで）

③ 腫瘍切除腔の大きさ・形状により、本剤がわずかに重なり合って留置することは可能である。

注意：腫瘍切除面を被覆するように本剤を留置したら、それ以上、本剤の留置は行わないこと。
留置枚数が7枚以下の場合、残った本剤を組織表面と接しない切除腔に充填しないこと。

10. 臨床検査結果に及ぼす影響

該当しない。

11. その他の注意

カルムスチンは他のアルキル化剤と同様に遺伝毒性を有し、マウス、ラットのリンパ組織、肺などにおいて腫瘍発生が報告されていることを注意喚起した。

本剤の有効成分であるカルムスチンは、他のアルキル化剤と同様に遺伝毒性を有し、マウス、ラットのリンパ組織、肺等において腫瘍が発生したとの報告がある。
ギリアデル脳内留置用剤 7.7 mg

1.9 一般的名称に係る文書

ノーベルファーマ株式会社
薬食審査発 0830 第 1 号
平成 22 年 8 月 30 日

各都道府県衛生主管部（局）長 殿

厚生労働省医薬食品局審査管理課長

医薬品の一般的名称について

標記については、「医薬品の一般的名称の取扱いについて（平成 18 年 3 月 31 日薬食発第 0331001 号厚生労働省医薬食品局長通知）」等により取り扱っているところであるが、今般、我が国における医薬品一般的名称（以下「JAN」という。）について、新たに別添のとおり定めたので、御了知の上、貴管下関係業者に周知方よろしく御配慮願いたい。

なお、本件写しについては、日本製薬団体連合会あて通知していることを申し添える。
別表2 INNに収載された品目の我が国における医薬品一般的名称
（平成18年3月31日薬食審査発第0331001号厚生労働省医薬品食品局審査管理課長通知に示す別表2）

登録番号：21-2-B4
JAN（日本名）：ランレオチド酢酸塩
JAN（英名）：Lanreotide Acetate

登録番号：21-3-B3
JAN（日本名）：ロチゴチン
JAN（英名）：Rotigotine

登録番号：21-3-B6
JAN（日本名）：カルムスチン
JAN（英名）：Carmustine
医薬品一般的名称届出書（INN収載品目）

<table>
<thead>
<tr>
<th>医薬品一般的名称</th>
<th>英 名</th>
<th>日本名</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmustine</td>
<td>カルムスチン</td>
<td></td>
</tr>
</tbody>
</table>

INN収載名称

<table>
<thead>
<tr>
<th>英名</th>
<th>日本名（字訳）</th>
</tr>
</thead>
<tbody>
<tr>
<td>carmustine</td>
<td>カルムスチン</td>
</tr>
</tbody>
</table>

化学名

1,3-Bis(2-chloroethyl)-1-nitrosourea

化学構造式

化学名又は本質記載

1,3-ビス(2-クロロエチル)-1-ニトロソ尿素

分子式及び分子量

化学式C₅H₉Cl₂N₃O₂ (分子量214.05)

CAS登録番号

154-93-8

薬理作用

抗悪性腫瘍 (薬効分類番号) 429

備考

承認申請予定:平成年月日
届出書の改訂日:平成年月日

上記INN収載済みの品目に係る医薬品の一般的名称について、参考資料を添えて届け出ます。

平成年月日

住所 東京都中央区日本橋小舟町12番10号

名称 ノーベルファーマ株式会社

氏名 代表取締役社長 塩村仁

連絡先（担当者）研究開発本部

TEL 03-5651boo FAX 03-5651boo

厚生労働省医薬食品局長 殿
International Nonproprietary Names for Pharmaceutical Substances

In accordance with paragraph 7 of the Procedure for the Selection of Recommended International Nonproprietary Names for Pharmaceutical Substances, notice is hereby given that the following are selected as recommended international nonproprietary names. The inclusion of a name in the lists of recommended international nonproprietary names does not imply any recommendation for the use of the substance in medicine or pharmacy.

RECOMMENDED INTERNATIONAL NONPROPRIETARY NAMES (REC. I.N.N.): LIST 11

<table>
<thead>
<tr>
<th>Chemical Name or Description</th>
<th>Molecular Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>acidum brometicum</td>
<td>(E)-3-p-anisoyl-3-bromoacrylic acid</td>
</tr>
<tr>
<td>brometic acid</td>
<td></td>
</tr>
<tr>
<td>acidum capobenicum</td>
<td>6-(3,4,5-trimethoxybenzamido)hexanoic acid</td>
</tr>
<tr>
<td>capobenic acid</td>
<td></td>
</tr>
<tr>
<td>acidum cinameticum</td>
<td>4-(2-hydroxyethoxy)-3-methoxycinnamic acid</td>
</tr>
<tr>
<td>cinametic acid</td>
<td></td>
</tr>
<tr>
<td>acidum izomicum</td>
<td>3,3'-[tetramethylethylenediamineoxy(2-hydroxytrimethylene)(acetyl)iminio]-bis[2,4,5,6-tetrahydro-N-(N-methylacetamido)benzoic acid]</td>
</tr>
<tr>
<td>izomic acid</td>
<td></td>
</tr>
<tr>
<td>acidum mycophenolicum</td>
<td>(E)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-5-phtalanyll)-4-methyl-4-hexenoic acid</td>
</tr>
<tr>
<td>mycophenolic acid</td>
<td></td>
</tr>
<tr>
<td>acidum polyglycolicum</td>
<td>poly(oxycarboxymethylene)</td>
</tr>
<tr>
<td>polyglycolic acid</td>
<td>(C_{2}H_{5}O_{2})_{n}</td>
</tr>
<tr>
<td>acidum tienilicum</td>
<td>[2,3-dichloro-4-(2-thienyl)phenoxy]acetic acid</td>
</tr>
<tr>
<td>tienilic acid</td>
<td></td>
</tr>
<tr>
<td>acidum tolfenamicum</td>
<td>N-3-chloro-o-tolylanthranilic acid</td>
</tr>
<tr>
<td>tolfenamic acid</td>
<td></td>
</tr>
<tr>
<td>adipheninum</td>
<td>2-diethylaminomethyl diphenylacetate</td>
</tr>
<tr>
<td>adiphenine</td>
<td></td>
</tr>
<tr>
<td>ephendolium</td>
<td>5-ethyl-N-(2-hydroxyethyl)-3-methoxyasilineamide</td>
</tr>
<tr>
<td>ephendol</td>
<td></td>
</tr>
<tr>
<td>allatrophenium</td>
<td>17-allatol-17-demethyl-7a-({R})-1-hydroxy-1-methylbutyl]-6,14-endo-threnotetrahydrociclopavine</td>
</tr>
<tr>
<td>allatrophenin</td>
<td></td>
</tr>
<tr>
<td>amadinum</td>
<td>6-chloro-17-hydroxy-19-norpregna-4,6-diene-3,20-dione</td>
</tr>
<tr>
<td>amadine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical Name or Description</th>
<th>Recommended International Nonproprietary Name (Latin, English)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-fluoro-11β,16α,17,21-tetrahydroxyprogna-1,4-diene-3,20-dione cyclic 16,17-acetel with 3-pentanone</td>
<td>amcinafallum</td>
</tr>
<tr>
<td>9-fluoro-11β,16α,17,21-tetrahydroxyprogna-1,4-diene-3,20-dione cyclic 16,17-acetel with acetophenone</td>
<td>amcinafidum</td>
</tr>
<tr>
<td>3-methyl-3-[3-(methylamino)propyl]-1-phenyl-2-indolinone</td>
<td>amcinafide</td>
</tr>
<tr>
<td>C16H23FNO5</td>
<td>amedalinum</td>
</tr>
<tr>
<td>C16H23FNO5</td>
<td>emedalin</td>
</tr>
<tr>
<td>2-chloro-11-(1-piperazinyl) dibenz[b,f][1,4]oxazepine</td>
<td>emoxapinum</td>
</tr>
<tr>
<td>C16H19ClN4O2</td>
<td>emoxapine</td>
</tr>
<tr>
<td>3-amino-N-(α-carboxyphenethyl)succinamic acid N-methyl ester</td>
<td>aspartemum</td>
</tr>
<tr>
<td>C16H13N2O3</td>
<td>aspartame</td>
</tr>
<tr>
<td>3-cinnamyl-8-propionyl-3,8-diazabicyclo[3.2.1]octan</td>
<td>azaprocinum</td>
</tr>
<tr>
<td>C16H13N2O3</td>
<td>azaprocin</td>
</tr>
<tr>
<td>8-(aminomethyl)-p-chlorhydroxamic acid</td>
<td>baclofenum</td>
</tr>
<tr>
<td>C16H13N2O3</td>
<td>baclofen</td>
</tr>
<tr>
<td>kenamycin B or l-O-3-amino-3-deoxy-a-D-glucopyranosyl-(1→4)-O-[2,6-diamino-2,6-dideoxy-a-D-glucopyranosyl-(1→6)]-2-dideoxystreptamine</td>
<td>bekamycinum</td>
</tr>
<tr>
<td>bekamycin</td>
<td>benzobutarilum</td>
</tr>
<tr>
<td>C16H13N2O4</td>
<td>benzoborbalil</td>
</tr>
<tr>
<td>2,3-butanedione bis[4-(2-piperidinoethyl)thiosemicarbazone</td>
<td>bitipazonum</td>
</tr>
<tr>
<td>C20H22N4S</td>
<td>bitipazon</td>
</tr>
<tr>
<td>O-(4-bromo-2,5-dichlorophenyl) O,O-dimethyl phosphorothioate</td>
<td>bromofosum</td>
</tr>
<tr>
<td>CeHsBrCl8O2PS</td>
<td>bromofos</td>
</tr>
<tr>
<td>butylmalonic acid mono(1,2-diphenylhydrazide)</td>
<td>bumadizonium</td>
</tr>
<tr>
<td>C16H13N2O3</td>
<td>bumadizone</td>
</tr>
<tr>
<td>3-(butylamino)-4-phenoxy-5-sulfamoylbenzoic acid</td>
<td>bumetanidum</td>
</tr>
<tr>
<td>C16H13N2O5</td>
<td>bumetanide</td>
</tr>
<tr>
<td>O-2,6-diamino-2,6-dideoxy-a-D-glucopyranosyl-(1→4)-O-[β-D-xylouranosyl-(1→5)]-N4-(4-amino-2-hydroxybutyryl)-2-dideoxystreptamine (A form) mixture with O-2,6-diamino-2,6-dideoxy-a-D-glucopyranosyl-(1→4)-O-[β-D-ribofuranosyl-(1→5)]-N4-(4-amino-2-hydroxybutyryl)-2-dideoxystreptamine (B form)</td>
<td>butirosinum</td>
</tr>
<tr>
<td>C20H22N4O5</td>
<td>butirosin</td>
</tr>
<tr>
<td>1,3-bis(2-chloroethyl)-1-nitrosourea</td>
<td>carmustinum</td>
</tr>
<tr>
<td>C16H13N2O2</td>
<td>carmustine</td>
</tr>
<tr>
<td>isopropylcarbamic acid ester with 4'-fluoro-4-(4-hydroxypropenyl)butyrophenone</td>
<td>carperonum</td>
</tr>
<tr>
<td>Carperone</td>
<td></td>
</tr>
<tr>
<td>[3-(chloromercurium-197Hg)-2-methoxypropyl]urea</td>
<td>chloromerodrinum (197Hg)</td>
</tr>
<tr>
<td>C16H13N2O2</td>
<td>chloromerodrin (197Hg)</td>
</tr>
<tr>
<td>1-cinnamoyl-5-methoxy-2-methylindole-3-acetic acid</td>
<td>cinmetacinnum</td>
</tr>
<tr>
<td>C21H17NO4</td>
<td>cinmetacin</td>
</tr>
<tr>
<td>4-[p-chloro-N-(p-methoxyphenyl) benzamide] butyric acid</td>
<td>clancbutinum</td>
</tr>
<tr>
<td>C16H13N2O4</td>
<td>clancbutin</td>
</tr>
<tr>
<td>7-chloro-1-methyl-5-phenyl-1H-1,5-benzodiazepine-2,4(3H,5H)-dione</td>
<td>clobazamum</td>
</tr>
<tr>
<td>C16H13N2O3</td>
<td>clobazam</td>
</tr>
<tr>
<td>ethyl 5,6-bis-O-(p-chlorobenzyl)-3-O-propyl-D-glucosaminide</td>
<td>clobenosidum</td>
</tr>
<tr>
<td>C21H17O22N4S</td>
<td>clobenoside</td>
</tr>
</tbody>
</table>
ギリアデル脳内留置用剤 7.7 mg

1.10 毒薬・劇薬等の指定審査資料のまとめ

ノーベルファーマ株式会社
毒薬・劇薬等の指定審査資料のまとめ

<table>
<thead>
<tr>
<th>化学名・別名</th>
<th>1,3-ビス(2-クロロエチル)-1-ニトロソ尿素及びその製剤</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>構造式</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>効能・効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>悪性神経膠腫</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>用法・用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>通常、成人には、腫瘍切除腔の大きさや形状に応じて、本剤 8 枚（カルムスチンとして 61.6mg）又は適宜減じた枚数を腫瘍切除術時の切除面を被覆するように留置する。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>剧薬等の指定</th>
</tr>
</thead>
<tbody>
<tr>
<td>市販名及び有効成分・分量</td>
</tr>
<tr>
<td>市販名: ギリアデル脳内留置用剤 7.7 mg (Gliadel Wafer 7.7 mg Implant)</td>
</tr>
<tr>
<td>有効成分: カルムスチン、分量: 本剤 1 枚中にカルムスチンとして 7.7 mg</td>
</tr>
</tbody>
</table>

毒性

<table>
<thead>
<tr>
<th>毒性</th>
<th>單回投与毒性</th>
</tr>
</thead>
<tbody>
<tr>
<td>動物</td>
<td>投与経路</td>
</tr>
<tr>
<td>マウス</td>
<td>静脈内</td>
</tr>
<tr>
<td>イヌ</td>
<td>静脈内</td>
</tr>
<tr>
<td>サル</td>
<td>静脈内</td>
</tr>
</tbody>
</table>

反復投与毒性

<table>
<thead>
<tr>
<th>毒性</th>
<th>反復投与毒性</th>
</tr>
</thead>
<tbody>
<tr>
<td>動物</td>
<td>投与経路</td>
</tr>
<tr>
<td>イヌ</td>
<td>静脈内</td>
</tr>
<tr>
<td>サル</td>
<td>静脈内</td>
</tr>
</tbody>
</table>

副作用

- [副作用発現率（臨床検査値異常を含む）]
 国内: 13/24 例 (54.2%)、外国: 279/676 例 (41.3%)
- [副作用の種類（臨床検査値異常を含む）]
 国内: 腦浮腫 6 件、発熱 3 件、リンパ球数減少 3 件、頭痛 2 件など
 外国: 病状 52 件、頭痛 49 件、片麻痺 29 件、脳浮腫 26 件、発熱 24 件など

会社

ノーベルファーマ株式会社
ギリアデル脳内留置用剤 7.7 mg

1.12 添付資料一覧

ノーベルファーマ株式会社
第3部（モジュール3） 品質に関する文書 添付資料一覧

3.2.データ又は報告書

3.2.S 原薬（カルムスチン）

<table>
<thead>
<tr>
<th>資料番号</th>
<th>著者</th>
<th>表題</th>
<th>掲載誌・その他</th>
<th>評価/参考の別</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.S.1</td>
<td>一般情報（カルムスチン）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.1-1</td>
<td></td>
<td>3.2.S.1 General Information</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.1.1</td>
<td>名称（カルムスチン）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.1.1-1</td>
<td></td>
<td>3.2.S.1.1 Nomenclature</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.1.1-3</td>
<td></td>
<td>登録番号: 21-3-B6，医薬品の一般的名称について 薬食審査第0830号（平成22年8月30日，厚生労働省医薬食品局審査管理課長）</td>
<td>課長通知</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.1.2</td>
<td>構造（カルムスチン）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.1.2-1</td>
<td></td>
<td>3.2.S.1.2 Structure</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.1.2-2</td>
<td>カルムスチン</td>
<td>医薬品一般的名称届出書（INN収載品目） [21-3-B6]</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>3.2.S.1.3-1</td>
<td></td>
<td>3.2.S.1.3 General Properties (社内資料, 社内資料, December 2005 から抜粋)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.1.3-2</td>
<td></td>
<td>カルムスチンの溶解性(追加検討)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.1.3-3</td>
<td></td>
<td>Elucidation of Structure of Reference Standard</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.2.1-1</td>
<td></td>
<td>医薬品外国製造業者認定証</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.2.1-2</td>
<td></td>
<td>3.2.S.2.1 Manufacturer</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.2.2-1</td>
<td></td>
<td>3.2.S.2.2.1.1 Flow Diagram of the Manufacturing Process</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.2.2-2</td>
<td></td>
<td>製造方法の流れ図</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.2.2-3</td>
<td></td>
<td>Preparation of (Document No. から抜粋)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.2.2-4</td>
<td></td>
<td>Preparation of (Document No. から抜粋)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表 題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.2.2.2-5</td>
<td></td>
<td>Preparation of 1, Recrystallization of 2 (Document No.: 3)から抜粋</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.2.2-6</td>
<td></td>
<td>3.2.S.2.2.3 Reprocessing Procedure (4, May 2008)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.2.2-7</td>
<td></td>
<td>Preparation of 1, OF 2 (Document No.: 3)から抜粋</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.2.2-8</td>
<td></td>
<td>Final Packaging Using 3 (Document No.: 4)から抜粋</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.2.2-9</td>
<td></td>
<td>3.2.S.2.4 Controls of Critical Steps and Intermediates (5, December 2005)及び3.2.S.2.4.2 Quality and Controls of Intermediates (6, May 2008)から抜粋), Preparation of 7 (Document No.: 8)から抜粋</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.2.3</td>
<td></td>
<td>原材料の管理（カルムスチン, 9）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.2.3-1</td>
<td></td>
<td>3.2.S.2.3.1.1 Starting materials (10, May 2008から抜粋), カルムスチンから抜粋, カルムスチンから抜粋, カルムスチンから抜粋, カルムスチンの参照スペクトル</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価/参考の別</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>3.2.S.2.4</td>
<td></td>
<td>重要工程及び重要中間体の管理（カルムスチン,)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.2.2-9</td>
<td>参照</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.2.5</td>
<td></td>
<td>プロセス・バリデーション/プロセス評価（カルムスチン,)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.2.5-1</td>
<td></td>
<td>VALIDATION REPORT(Production of , Document No.:)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.2.5-2</td>
<td></td>
<td>VALIDATION REPORT(Production of , Document No.:)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.2.5-3</td>
<td></td>
<td>VALIDATION REPORT(Production of , Document No.:)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.2.5-4</td>
<td></td>
<td>Regarding temperature control of step (Production of) and Step (Production of)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.2.6</td>
<td></td>
<td>製造工程の開発の経緯（カルムスチン, ）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.2.6-1</td>
<td></td>
<td>3.2.S.2.5 Process Validation and/or Evaluation (, December 2005 から抜粋)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表 題</td>
<td>掲載誌・その他</td>
<td>評価/参考の別</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.2.S.3 特性（カルムスチン, ）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.3.1 構造その他の特性の解明（カルムスチン, ）</td>
<td></td>
<td>3.2.S.3.1 Elucidation of Structure and Other Characteristics (, December 2005 から抜粋)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.3.1-2</td>
<td></td>
<td>3.1.1 PHYSICAL AND CHEMICAL CHARACTERISTICS AND STABILITY ()</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.3.2 不純物（カルムスチン, ）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.3.2-1</td>
<td></td>
<td>3.2.S.3.2 Impurities (, December 2005) 3.2.S.3.2 Impurities (, May 2008)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.3.2-2</td>
<td></td>
<td>Impurity Profile (3.1.5 SPECIFICATIONS AND ANALYTICAL METHODS FOR THE DRUG SUBSTANCE, December 22,2010)</td>
<td>社内資料</td>
<td>参考</td>
</tr>
<tr>
<td>3.2.S.3.2-3</td>
<td></td>
<td>Protocol for the Forced Degradation Study of () (の から抜粋)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.3.2-4</td>
<td></td>
<td>MSDS of</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.2.S.4</td>
<td>原薬の管理（カルムスチン、）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.4.1</td>
<td>規格及び試験方法（カルムスチン、）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.4.1-1</td>
<td></td>
<td>3.2.S.4.1 Specifications（、, December 2005）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.1-2</td>
<td></td>
<td>規格及び試験方法の SOP（、）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.1-3</td>
<td></td>
<td>規格及び試験方法の SOP（Specification、, ）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.2</td>
<td>試験方法（分析方法）（カルムスチン、）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.4.2-1</td>
<td>ノーベルファーマ㈱</td>
<td>試験方法（分析方法）（、, ）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.2-2</td>
<td></td>
<td>3.2.S.4.2 Analytical Procedures（、, 、, December 2005）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.2-3</td>
<td></td>
<td>DETERMINATION OF WATER CONTENT BY KARL FISCHER ANALYSIS, SOP 番号：</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.2-4</td>
<td>ノーベルファーマ㈱</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.4.2-5</td>
<td>ノーベルファーマ㈱</td>
<td>日本薬局方への対応（、が、製薬会社向けに配布している製品説明資料より抜粋）</td>
<td>社内資料</td>
<td>参考</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価/参考の別</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>3.2.S.4.3-1</td>
<td></td>
<td>3.2.S.4.3 Validation of Analytical Procedures</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.3-2</td>
<td>ノーベルファーマ㈱</td>
<td>3.2.S.4.3 試験方法（分析方法）のバリデーション（カルムスチン, NPC-08 原薬の類縁物質()及び定量法の分析法バリデーション (試験番号:)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.3-3</td>
<td></td>
<td>NPC-08 原薬の類縁物質()及び定量法の分析法バリデーション (試験番号:)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.3-4</td>
<td></td>
<td>NPC-08 原薬の類縁物質 (アセトアルデヒド及び 2-クロロエタノール)の分析法バリデーション (試験番号:)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.4-1</td>
<td></td>
<td>3.2.S.4.4 Batch Analysis</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.4-2</td>
<td>ノーベルファーマ㈱</td>
<td>US Clinical Used lot</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.4-3</td>
<td>ノーベルファーマ㈱</td>
<td>Japan Used lot</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.2.S.4.5-1</td>
<td>ノーベルファーマ㈱</td>
<td>規格及び試験方法の妥当性（カルムスチン，）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.5-2</td>
<td></td>
<td>Determination of the of</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.5-3</td>
<td></td>
<td>カルムスチンのがかかの液体クロマトグラフィーによる確認 (試験番号：)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.5-4</td>
<td></td>
<td>NPC-08原薬／カルムスチンの (試験番号：)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.4.5-5</td>
<td></td>
<td>カルムスチンの測定 (試験番号：)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.5-1</td>
<td></td>
<td>3.2.S.5 REFERENCE STANDARDS OR MATERIALS (，)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.5-2</td>
<td></td>
<td>及び の</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.5-3</td>
<td></td>
<td>Qualification Report for Reference Material (，, Effective Date: 20)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表 題</td>
<td>掲載誌・その他</td>
<td>評価/参考の別</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>3.2.S.5-4</td>
<td></td>
<td>Characterization of Reference Material</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.5-5</td>
<td></td>
<td>Qualification Report for Reference Material</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.5-6</td>
<td></td>
<td>Determination of and by HPLC</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.5-7</td>
<td></td>
<td>FTIR ANALYSIS OF</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.5-8</td>
<td></td>
<td>Determination of in</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.5-9</td>
<td></td>
<td>GENERAL METHOD FOR</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.5-10</td>
<td></td>
<td>Nuclear Magnetic Resonance Spectroscopy</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.5-11</td>
<td>ノーベルファーマ㈱</td>
<td>3.2.S.5 標準品又は標準物質</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.6</td>
<td>容器及び施栓系（カルムスチン, ）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.6-1</td>
<td></td>
<td>3.2.S.6 Container Closure System</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.6-2</td>
<td></td>
<td>容器及び施栓系</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表 題</td>
<td>掲載誌・その他</td>
<td>評価/参考の別</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.2.S.7</td>
<td>安定性（カルムスチン, ）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.S.7.1 安定性のまとめ及び結論（カルムスチン, ）</td>
<td>ノーベルファーマ㈱</td>
<td>安定性のまとめ及び結論（カルムスチン, ）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.7.2 承認後の安定性試験計画の作成及び実施（カルムスチン,Ampac Fine Chemicals LLC）</td>
<td>ノーベルファーマ㈱</td>
<td>承認後の安定性試験計画の作成及び実施（カルムスチン, ）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.7.3 安定性データ（カルムスチン, ）</td>
<td>ノーベルファーマ㈱</td>
<td>安定性データ（カルムスチン, ）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.7.3-1</td>
<td>ノーベルファーマ㈱</td>
<td>安定性データ（カルムスチン, ）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.S.7.3-2</td>
<td>3.2.S.7 Stability（, December 2005）</td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.S.7.3-3</td>
<td>Annual Report（, 2007（ ））</td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.S.7.3-4</td>
<td>Annual（, 2008（ ））</td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.S.7.3-5</td>
<td>3.1.6 Stability（ December 22, 2010）</td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
</tbody>
</table>
第3部（モジュール3）品質に関する文書 添付資料一覧
3.2 P 製剤（ギリアデル脳内留置用剤7.7mg,徐放性製剤）

<table>
<thead>
<tr>
<th>資料番号</th>
<th>著者</th>
<th>表題</th>
<th>掲載誌・その他</th>
<th>評価／参考の別</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.P.1</td>
<td></td>
<td>3.2.P.1 DESCRIPTION AND COMPOSITION OF THE DRUG PRODUCT (GLIADL, IMPLANT)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.2</td>
<td></td>
<td>3.2.P.2.1 Formulation Development</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.3</td>
<td></td>
<td>3.2.P.2.1.1 Drug Substance (抜粋)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Choice of Excipients (抜粋)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concentration of Active Component (抜粋)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.2.P.2.2-2</td>
<td>過量仕込み（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.2.3-7</td>
<td>参照</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.2.3</td>
<td>物理的化学的及び生物学的性質（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.2.2-4</td>
<td>3.2.P.2.3.3 Mechanism of Degradation</td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.P.2.3-1</td>
<td>3.2.P.2.3.2 Method and Dissolution Method</td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.P.2.3-2</td>
<td>3.2.P.2.3.4 Choice of In Vitro Release Method（2010/12）</td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.P.2.3-3</td>
<td>3.2.P.2.3.5.4 and Physical Characteristics</td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.P.2.3-4</td>
<td>3.2.P.2.3.5.5 and</td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.P.2.3-5</td>
<td>3.2.P.2.3.6 Choice of Terminal Sterilization</td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.P.2.3-6</td>
<td>Rationale for the gamma irradiation kGy</td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.P.2.3-7</td>
<td>Change Control</td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.2.P.2.3-8</td>
<td></td>
<td>Exposure of GLIADEL® Wafers to a kGy Radiation Dose</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.2.3-9</td>
<td></td>
<td>3.2.P.2.3.7 Residual Solvents</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.2.3-10</td>
<td></td>
<td>Performance Qualification(Protocol No.)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.2.3-11</td>
<td></td>
<td>3.2.P.2.3.8 of Gliadel Packaging(GLIADEL, IMPLANT)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.2.3-12</td>
<td></td>
<td>Test rationale</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.2.3-13</td>
<td></td>
<td>Replacement of the current GLIADEL® Wafer(polifeprosan20 with carmustine implant)Chemistry, Manufacturing, Controls Supplement</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.2.3-14</td>
<td></td>
<td>3.2.P.2.4 CONTAINER AND CLOSURE SYSTEM(GLIADEL, IMPLANT)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価/参考の別</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>3.2.P.2.4</td>
<td></td>
<td>容器及び施栓系（ギリアデル脳内留置用剤7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.2.4-1</td>
<td></td>
<td>3.2.7 CONTAINER-CLOSURE SYSTEM (GLIADEL:2010 December 22, 2010)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.2.5</td>
<td></td>
<td>微生物学的観点からみた特徴（ギリアデル脳内留置用剤7.7 mg, 徐放性製剤）</td>
<td></td>
<td>該当なし</td>
</tr>
<tr>
<td>3.2.P.2.6</td>
<td></td>
<td>溶解液や使用時の容器／用具との適合性（ギリアデル脳内留置用剤7.7 mg, 徐放性製剤）</td>
<td></td>
<td>該当なし</td>
</tr>
<tr>
<td>3.2.P.3</td>
<td></td>
<td>製造（ギリアデル脳内留置用剤7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.3.1</td>
<td></td>
<td>製造者（ギリアデル脳内留置用剤7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.3.1-1</td>
<td>ノーベルファーマ㈱</td>
<td>3.2.P.3.1-1製造者（ギリアデル脳内留置用剤7.7 mg, 徐放性製剤）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.3.2</td>
<td></td>
<td>製造処方（ギリアデル脳内留置用剤7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.3.2-1</td>
<td></td>
<td>3.2.P.3.2 Batch Formula</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.3.3</td>
<td></td>
<td>製造工程及びプロセス・コントロール（ギリアデル脳内留置用剤7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.3.3-1</td>
<td>ノーベルファーマ㈱</td>
<td>製造方法の流れ図</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.3.3-2</td>
<td></td>
<td>3.2.5 METHOD(S) OF MANUFACTURING AND PACKAGING</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.3.3-3</td>
<td></td>
<td>2.3.P.3.3 Description of Manufacturing Process and Process Control In-process controls</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.3.3-4</td>
<td></td>
<td></td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.3.3-5</td>
<td></td>
<td>Determination of in</td>
<td>社内資料</td>
<td>評価</td>
</tr>
</tbody>
</table>
3.2.P.3.3-3～3-6 参照

<table>
<thead>
<tr>
<th>資料番号</th>
<th>著者</th>
<th>表 題</th>
<th>掲載誌・その他</th>
<th>評価/参考の別</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.P.3.3-6</td>
<td></td>
<td>In-process Test for 社内資料 評価 and Bioburden Monitoring Program For GLIADEL® wafer 社内資料 評価</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.P.3.5 プロセス・バリデーション/プロセス評価（ギリアデル脳内留置用剤 7.7 mg、徐放性製剤）

<table>
<thead>
<tr>
<th>資料番号</th>
<th>著者</th>
<th>表 題</th>
<th>掲載誌・その他</th>
<th>評価/参考の別</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.P.3.5-1</td>
<td></td>
<td>PRODUCTION VALIDATION SUMMARY DOCUMENT, OPERATIONAL QUALIFICATION PROTOCOL</td>
<td></td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.3.5-2</td>
<td></td>
<td>PRODUCTION BATCH RECORD</td>
<td></td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.3.5-3</td>
<td></td>
<td>PRODUCTION BATCH RECORD</td>
<td></td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.3.5-4</td>
<td></td>
<td>Revalidation Protocol for the GLIADEL® wafer Product Validation (Validation Protocol Number 社内資料 評価</td>
<td></td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.3.5-5</td>
<td></td>
<td>Revalidation Protocol for the GLIADEL® wafer Product Validation (Validation Protocol Number 社内資料 評価</td>
<td></td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表 題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>3.2.P.4</td>
<td></td>
<td>添加剤の管理（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.4-1</td>
<td>ノーベルファーマ㈱</td>
<td>添加剤の管理（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.4.1</td>
<td></td>
<td>規格及び試験方法（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.4.2</td>
<td></td>
<td>試験方法（分析方法）（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.P.4.3</td>
<td></td>
<td>試験方法（分析方法）のバリデーション（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.4.4</td>
<td></td>
<td>規格及び試験方法の妥当性（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.4.5</td>
<td></td>
<td>ヒト又は動物起源の添加剤（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.4.6</td>
<td></td>
<td>新規添加剤（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.4-1</td>
<td></td>
<td>参照</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.P.4 添加剤の管理（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）

該当なし

3.2.P.4.1 規格及び試験方法（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）

該当なし

3.2.P.4.2 試験方法（分析方法）（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）

該当なし

3.2.P.4.3 試験方法（分析方法）のバリデーション（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）

該当なし

3.2.P.4.4 規格及び試験方法の妥当性（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）

該当なし

3.2.P.4.5 ヒト又は動物起源の添加剤（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）

該当なし

3.2.P.4.6 新規添加剤（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）

該当なし

3.2.P.4-1 参照
<table>
<thead>
<tr>
<th>資料番号</th>
<th>著者</th>
<th>表題</th>
<th>掲載誌・その他</th>
<th>評価/参考の別</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.P.5</td>
<td>製剤の管理（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.5.1</td>
<td>規格及び試験方法（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.5.1-1</td>
<td>ノーベルファーマ㈱</td>
<td>3.2.P.5.1 規格及び試験方法（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.1-2</td>
<td></td>
<td>Specification Release (), Specification Shelf life (), Specification Shelf life (Jun 20 2011 改訂版)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.1-3</td>
<td></td>
<td>Specification Release (), Specification</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.2</td>
<td>試験方法（分析方法）（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.5.2-1</td>
<td>ノーベルファーマ㈱</td>
<td>3.2.P.5.2 試験方法（分析方法）（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.2-2</td>
<td></td>
<td>Visual Assessment of the Color and Appearance of GLIADEL wafers</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.2-3</td>
<td></td>
<td>Polifeprosan 20 (NPC-08 の添加剤)の測定(試験番号:)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.2-4</td>
<td></td>
<td>Infrared (IR) Spectroscopic Identification of GLIadel® Wafers</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.2-5</td>
<td></td>
<td>Assessment of the Solubility of GLIadel® wafers in</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.2-6</td>
<td></td>
<td>Determination of the Melting Range of</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価/参考の別</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>3.2.P.5.2-7</td>
<td></td>
<td>Determination of the Purity (Area %) of by</td>
<td></td>
<td>社内資料</td>
</tr>
<tr>
<td>3.2.P.5.3</td>
<td></td>
<td>試験方法（分析方法）のバリデーション（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.P.5.3-1</td>
<td>ノーベルファーマ㈱</td>
<td>分析法バリデーションの再解析</td>
<td></td>
<td>社内資料</td>
</tr>
<tr>
<td>3.2.P.5.3-2</td>
<td></td>
<td>Determination of in GLIADEL® wafers by</td>
<td></td>
<td>社内資料</td>
</tr>
<tr>
<td>3.2.P.5.3-3</td>
<td></td>
<td>Determination of in GLIADEL® wafers by</td>
<td></td>
<td>社内資料</td>
</tr>
<tr>
<td>3.2.P.5.3-4</td>
<td></td>
<td>Determination of in GLIADEL® wafers by</td>
<td></td>
<td>社内資料</td>
</tr>
<tr>
<td>3.2.P.5.3-5</td>
<td></td>
<td>Determination of in GLIADEL® wafers by</td>
<td></td>
<td>社内資料</td>
</tr>
<tr>
<td>3.2.P.5.3-6</td>
<td></td>
<td>Determination of in GLIADEL® wafers by</td>
<td></td>
<td>社内資料</td>
</tr>
<tr>
<td>3.2.P.5.3-7</td>
<td></td>
<td>Release Testing of GLIADEL® Wafers Using a System</td>
<td></td>
<td>社内資料</td>
</tr>
<tr>
<td>3.2.P.5.3-8</td>
<td></td>
<td>Test (LAL) for GLIADEL® wafers</td>
<td></td>
<td>社内資料</td>
</tr>
<tr>
<td>3.2.P.5.3-9</td>
<td></td>
<td>for GLIADEL® wafers</td>
<td></td>
<td>社内資料</td>
</tr>
<tr>
<td>3.2.P.5.3-10</td>
<td></td>
<td>NPC-08製剤の無菌試験の適合性試験（試験番号：）</td>
<td></td>
<td>社内資料</td>
</tr>
<tr>
<td>3.2.P.5.3-11</td>
<td></td>
<td>Determination of in GLIADEL® wafers by</td>
<td></td>
<td>社内資料</td>
</tr>
<tr>
<td>3.2.P.5.3-12</td>
<td></td>
<td>の及ぶ ののののののの</td>
<td></td>
<td>社内資料</td>
</tr>
</tbody>
</table>
| 資料番号 | 著者 | 表 題 | 掲載誌・その他 | 評価
|---------|------|-------|---------------|------|
| 3.2.P.5.3-13 | ノーベルファーマ㈱ | の室内再現精度 | 社内資料 | 評価
| 3.2.P.5.3-14 | ノーベルファーマ㈱ | 類縁物質 1 (1,3-ビス(2-クロロエチル)尿素)の室内再現精度 | 社内資料 | 評価
| 3.2.P.5.3-15 | ノーベルファーマ㈱ | 類縁物質 2 (アセトアルデヒド, 2-クロロエタノール及び2-クロロエチルイソシアナート)の室内再現精度 | 社内資料 | 評価
| 3.2.P.5.3-16 | ノーベルファーマ㈱ | 類縁物質 3 (2-クロロエチルアミン)の室内再現精度 | 社内資料 | 評価
| 3.2.P.5.3-17 | ノーベルファーマ㈱ | の室内再現精度 | 社内資料 | 評価
| 3.2.P.5.3-18 | ノーベルファーマ㈱ | 定量法の室内再現精度 | 社内資料 | 評価
<table>
<thead>
<tr>
<th>資料番号</th>
<th>著者</th>
<th>表題</th>
<th>掲載誌・その他の情報</th>
<th>評価／参考の別</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.P.5.4-1</td>
<td>番号</td>
<td>3.2.P.5.4 Batch</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.4-2</td>
<td>ノーベルファーマ㈱</td>
<td>海外臨床試験に使用したロットの分析結果:ロット一覧</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.4-3</td>
<td>番号</td>
<td>本邦にて使用したロットの分析結果</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.4-4</td>
<td>番号</td>
<td>NPC-08 治験薬の品質試験（試験番号:）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.4-5</td>
<td>番号</td>
<td>NPC-08 治験薬（製造番号:）の品質試験（試験番号:）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.4-6</td>
<td>番号</td>
<td>3.2.P.5.4 Batch Analyses (変更に伴う改訂版)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.5</td>
<td>番号</td>
<td>不純物の特性</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.5-1</td>
<td>ノーベルファーマ㈱</td>
<td>不純物の特性（ギリアデル脳内留置用剤7.7mg、徐放性製剤）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.5-2</td>
<td>番号</td>
<td>3.2.P.5.5 characterisation impurities</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表 題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.2.P.5.6-1</td>
<td>ノーベルファーマ㈱</td>
<td>3.2.P.5.6 規格及び試験方法の妥当性（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.6-2</td>
<td></td>
<td>3.2.P.5.6 Justification of Specifications (ノーベルファーマ㈱)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.6-3</td>
<td></td>
<td>3.2.6 SPECIFICATIONS AND ANALYTICAL METHODS FOR THE DRUG PRODUCT (ノーベルファーマ㈱ 2010)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.6-4</td>
<td></td>
<td>NPC-08 製剤の申請用実測値取得（その 1）（試験番号：）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.6-5</td>
<td></td>
<td>NPC-08 製剤の確認試験（定量法の保持時間による）（試験番号：）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.6-6</td>
<td></td>
<td>NPC-08 製剤の申請用実測値取得（質量平均分子量及び類縁物質）（試験番号：）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.6-7</td>
<td></td>
<td>The Effect of GLIADEL® Wafer on its Performance Effect of GLIADEL® Wafer Performance (ノーベルファーマ㈱ 2010)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.6-8</td>
<td></td>
<td>NPC-08 製剤の類縁物質（アセトアルデヒド, 2-クロロエタノール及び2-クロロエチルイソシアナート）のガスクロマトグラフィーによる測定／申請用実測値取得（試験番号：）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価/参考の別</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>3.2.P.6-9</td>
<td>フィルム</td>
<td>NPC-08製剤の類縁物質（2-クロロエチルアミン）の申請用実測値取得（試験番号：）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.6-10</td>
<td>フィルム</td>
<td>NPC-08製剤の純度試験（）／申請用実測値取得（試験番号：）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.6-11</td>
<td>フィルム</td>
<td>NPC-08製剤のエンドトキシン及び無菌／申請用実測値取得（試験番号：）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.6-12</td>
<td>フィルム</td>
<td>NPC-08製剤の溶出性／申請用実測値取得（試験番号：）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.6-13</td>
<td>フィルム</td>
<td>Final Physical Inspection of Gliadel Wafer（）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.6-14</td>
<td>フィルム</td>
<td>Determination of the of GLIADELSE® Wafers（）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.6-15</td>
<td>フィルム</td>
<td>NPC-08製剤のエンドトキシン及び無菌／申請用実測値取得（試験番号：）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.6-16</td>
<td>フィルム</td>
<td>Determination of by USP（）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.6-17</td>
<td>フィルム</td>
<td>Test Method, Assessment of in Gliadel(R) Wafers.</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.6-18</td>
<td>フィルム</td>
<td>NPC-08製剤の溶出性（）の測定（試験番号：）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.6-19</td>
<td>フィルム</td>
<td>Dosimetry Record（）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>3.2.P.5.6-21</td>
<td></td>
<td>Quarterly Dose Audit of GLIADEL wafers</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.P.5.6-22</td>
<td></td>
<td>社内資料</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.P.5.6-23</td>
<td></td>
<td>製剤の試験</td>
<td>社内資料</td>
<td>評価</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.2.P.6</th>
<th>標準品又は標準物質（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤）</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.P.6-1</td>
<td>Reference Standard Qualification Reports for and</td>
</tr>
<tr>
<td></td>
<td>(2010 December 22, 2010)</td>
</tr>
<tr>
<td>3.2.P.6-2</td>
<td>Infrared (IR) Spectroscopic Identification of</td>
</tr>
<tr>
<td></td>
<td>()</td>
</tr>
<tr>
<td>3.2.P.6-3</td>
<td>Determination of in</td>
</tr>
<tr>
<td></td>
<td>by ()</td>
</tr>
<tr>
<td>3.2.P.6-5</td>
<td>Determination of in</td>
</tr>
<tr>
<td></td>
<td>by ()</td>
</tr>
<tr>
<td>3.2.P.6-6</td>
<td>Determination of and</td>
</tr>
<tr>
<td></td>
<td>by ()</td>
</tr>
<tr>
<td>3.2.P.6-7</td>
<td>Determination of of</td>
</tr>
<tr>
<td></td>
<td>by ()</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>3.2.P.6-8</td>
<td></td>
</tr>
<tr>
<td>3.2.P.6-9</td>
<td></td>
</tr>
<tr>
<td>3.2.P.6-10</td>
<td></td>
</tr>
<tr>
<td>3.2.P.6-11</td>
<td></td>
</tr>
<tr>
<td>3.2.P.6-12</td>
<td></td>
</tr>
<tr>
<td>3.2.P.6-13</td>
<td></td>
</tr>
<tr>
<td>3.2.P.6-14</td>
<td></td>
</tr>
<tr>
<td>3.2.P.6-15</td>
<td>ノーベルファーマ㈱</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>3.2.P.7</td>
<td></td>
</tr>
<tr>
<td>3.2.P.7-1</td>
<td></td>
</tr>
<tr>
<td>3.2.P.7-2</td>
<td></td>
</tr>
<tr>
<td>3.2.P.7-3</td>
<td></td>
</tr>
<tr>
<td>3.2.P.7-4</td>
<td></td>
</tr>
<tr>
<td>3.2.P.7-5</td>
<td>ノーベルファーマ㈱</td>
</tr>
<tr>
<td>3.2.P.7-6</td>
<td>ノーベルファーマ㈱</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3.2.P.8</td>
<td>安定性（ギリアデル脳内留置用剤7.7mg,徐放性製剤）</td>
</tr>
<tr>
<td>3.2.P.8.1</td>
<td>安定性のまとめ及び結論（ギリアデル脳内留置用剤7.7mg,徐放性製剤）</td>
</tr>
<tr>
<td>3.2.P.8.1-1</td>
<td>ノーベルファーマ㈱</td>
</tr>
<tr>
<td>3.2.P.8.2</td>
<td>承認後の安定性試験計画の作成及び実施（ギリアデル脳内留置用剤7.7mg,徐放性製剤）</td>
</tr>
<tr>
<td>3.2.P.8.2-1</td>
<td>ノーベルファーマ㈱</td>
</tr>
<tr>
<td>3.2.P.8.3</td>
<td>安定性データ（ギリアデル脳内留置用剤7.7mg,徐放性製剤）</td>
</tr>
<tr>
<td>3.2.P.8.3-1</td>
<td>3.2.8 STABILITY（抜粋）</td>
</tr>
<tr>
<td>3.2.P.8.3-2</td>
<td>2.3.P.1〜2.3.P.3 STABILITY for のための承認申請資料から抜粋</td>
</tr>
<tr>
<td>3.2.P.8.3-3</td>
<td>3.2.8.3 STABILITY DATA（Freeze Thaw stability Study：使用時の安定性試験結果）</td>
</tr>
<tr>
<td>3.2.P.8.3-4</td>
<td>Final Report for the stability of Gliadel wafers when subjected to thermal cycling between -80℃ and -20℃ から入手</td>
</tr>
<tr>
<td>3.2.P.8.3-5</td>
<td>STABILITY STUDYの長期保存試験，N</td>
</tr>
</tbody>
</table>
第3部（モジュール3） 品質に関する文書 添付資料一覧

3.2.A その他

<table>
<thead>
<tr>
<th>資料番号</th>
<th>著者</th>
<th>表題</th>
<th>掲載誌・その他</th>
<th>評価/参考の別</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.A.1</td>
<td>製造施設及び設備（ギリアデル脳内留置用剤 7.7 mg, ）</td>
<td></td>
<td></td>
<td>該当なし</td>
</tr>
<tr>
<td>3.2.A.2</td>
<td>外来性感性物質の安全性評価（ギリアデル脳内留置用剤 7.7 mg, 徐放性製剤 ）</td>
<td></td>
<td></td>
<td>該当なし</td>
</tr>
</tbody>
</table>

3.2.A.3 添加剤

<table>
<thead>
<tr>
<th>資料番号</th>
<th>著者</th>
<th>表題</th>
<th>掲載誌・その他</th>
<th>評価/参考の別</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.A.3.1</td>
<td>一般情報（ポリフェプロサン 20, ）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.1-1</td>
<td></td>
<td>MSDS</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.1.1</td>
<td>名称（ポリフェプロサン 20, ）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.1.1-1</td>
<td></td>
<td></td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.1.1-2</td>
<td></td>
<td></td>
<td>WHO Drug Information</td>
<td>参考</td>
</tr>
<tr>
<td>3.2.A.3.1.2</td>
<td>構造（ポリフェプロサン 20, ）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.1.2-1</td>
<td></td>
<td></td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.1.3</td>
<td>一般特性（ポリフェプロサン 20, ）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.1.3-1</td>
<td></td>
<td></td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2</td>
<td>製造（ポリフェプロサン 20, ）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.2.1</td>
<td></td>
<td></td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>--------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>3.2.A.3.2.2-1</td>
<td>ノーベルファーマ㈱</td>
<td>製造方法の流れ図</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.2-2</td>
<td></td>
<td>GLIADEL 2010 December 22, 2010</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.2-3</td>
<td></td>
<td>Determination of the of and</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.2-4</td>
<td></td>
<td>Determination of the of by</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.3-1</td>
<td></td>
<td>3.2.P.4.6.1.4 Quality Control during Manufacture</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.3-2</td>
<td></td>
<td>Infrared (IR) Spectroscopic Identification of and</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.3-3</td>
<td></td>
<td>Determination of the Melting Range of</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.3-4</td>
<td></td>
<td>Determination of the (Area %) of by</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表 題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.2.A.3.2.3-5</td>
<td></td>
<td>Determination of the (Area %) of () and () by ()</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.3-6</td>
<td></td>
<td>Infrared (IR) Spectroscopic Identification of ()</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.3-7</td>
<td></td>
<td>Infrared (IR) Spectroscopic Identification of () and ()</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.3-8</td>
<td></td>
<td>Determination of () in (), (), and ()</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.3-9</td>
<td></td>
<td>Infrared (IR) Spectroscopic Identification of ()</td>
<td>社内資料</td>
<td>評価</td>
</tr>
</tbody>
</table>

3.2.A.3.2.4 重要工程及び重要中間体の管理（ポリフェプロサン 20, ）

3.2.A.3.2.5 プロセス・バリデーション／プロセス評価（ポリフェプロサン 20, ）

<table>
<thead>
<tr>
<th>資料番号</th>
<th>著者</th>
<th>表 題</th>
<th>掲載誌・その他</th>
<th>評価／参考の別</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.A.3.2.3-8</td>
<td></td>
<td>Determination of () in (), (), and ()</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.5-1</td>
<td></td>
<td>PRODUCTION BATCH RECORD of Preparation of (CPP:SA, 20:80), Lot No. から抜粋</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.2.5-2</td>
<td></td>
<td>Revalidation Protocol for the GLIADEL wafer Product Validation(Validation Protocol Number から抜粋)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
</tbody>
</table>

3.2.A.3.2.6 製造工程の開発の経緯（ポリフェプロサン 20, ）

<table>
<thead>
<tr>
<th>資料番号</th>
<th>著者</th>
<th>表 題</th>
<th>掲載誌・その他</th>
<th>評価／参考の別</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.A.3.2.6-1</td>
<td></td>
<td>Summary of the preparation（3.2.P.4.6.1.3 Manufacture より抜粋）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>評価/参考の別</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>3.2.A.3.3</td>
<td>特性 (ポリフェプロサン 20,)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.3.1</td>
<td>構造その他の特性の解明 (ポリフェプロサン 20,)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.3.1-1</td>
<td>ノーベルファーマ㈱</td>
<td></td>
<td></td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.3.2</td>
<td>不純物 (ポリフェプロサン 20,)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.3.2-1</td>
<td>ノーベルファーマ㈱</td>
<td></td>
<td></td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.3.4</td>
<td>新添加物の管理 (ポリフェプロサン 20,)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.4.1</td>
<td>規格及び試験方法 (ポリフェプロサン 20,)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.4.2</td>
<td>試験方法（分析方法） (ポリフェプロサン 20,)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.4.2-1</td>
<td>ノーベルファーマ㈱</td>
<td></td>
<td></td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.2-2</td>
<td></td>
<td></td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.2-3</td>
<td></td>
<td>Assessment of the</td>
<td>社内資料</td>
<td>評価</td>
</tr>
</tbody>
</table>

30
<table>
<thead>
<tr>
<th>資料番号</th>
<th>著者</th>
<th>表題</th>
<th>掲載誌・その他</th>
<th>評価／参考の別</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.A.3.4.3-1</td>
<td></td>
<td>Determination of the Composition of CPP:SA Copolymer Materials by社内資料</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.3-2</td>
<td></td>
<td>Determination of the Composition of CPP:SA Copolymer Materials by社内資料</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.3-3</td>
<td></td>
<td>Intermediate Precision of Molecular Weight社内資料</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.3-4</td>
<td></td>
<td>Intermediate Precision of社内資料</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.4-1</td>
<td></td>
<td>3.2.P.4.7 Certification of analysis of excipients from抜粋, Lot No.:社内資料</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.4-2</td>
<td>ノーベルファーマ㈱</td>
<td>Used in Clinical Study (製剤のLot No.:社内資料</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.4-3</td>
<td>ノーベルファーマ㈱</td>
<td>Used in Japan (毒性試験:社内資料</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表 題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.2.A.3.4.5-1</td>
<td>ノーベルファーマ㈱</td>
<td>3.2.A.3.4.5 規格及び試験方法の妥当性（ポリフェプロサン 20, ネブロン）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.5-2</td>
<td>ノーベルファーマ㈱</td>
<td>Response Document</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.5-3</td>
<td>ノーベルファーマ㈱</td>
<td>specification on and precipitated copolymer (November 8, 1994)</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.5-4</td>
<td>ノーベルファーマ㈱</td>
<td>% Monomer: Document Creation/Change Request No.</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.5-5</td>
<td>ノーベルファーマ㈱</td>
<td>製剤の 及び の分析法バリデーション（試験番号：）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.4.5-6</td>
<td>ノーベルファーマ㈱</td>
<td>製剤の 及び の実測値（試験番号：）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2.A.3.5 標準品又は標準物質（ポリフェプロサン 20, ネブロン）</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2.A.3.6 容器及び施栓系（ポリフェプロサン 20, ネブロン）</td>
<td>評価</td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.6-1</td>
<td>ノーベルファーマ㈱</td>
<td>3.2.A.3.6 容器及び施栓系（ポリフェプロサン 20, ネブロン）</td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表 題</td>
<td>掲載誌・その他</td>
<td>評価／参考の別</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3.2.A.3.7</td>
<td>安定性</td>
<td>ノーベルファーマ㈱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.7.1</td>
<td>安定性のまとめ及び結論</td>
<td>ノーベルファーマ㈱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.7.1-1</td>
<td></td>
<td></td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.7.2</td>
<td>承認後の安定性試験計画の作成及び実施</td>
<td>ノーベルファーマ㈱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.7.2-1</td>
<td></td>
<td></td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.7.3</td>
<td>安定性データ</td>
<td>ノーベルファーマ㈱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.7.3-1</td>
<td></td>
<td></td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.7.3-2</td>
<td></td>
<td></td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.7.3-3</td>
<td></td>
<td></td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.A.3.8</td>
<td>安全性に関する考察</td>
<td>ノーベルファーマ㈱</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.A.3.8-1</td>
<td></td>
<td></td>
<td>社内資料</td>
<td>評価</td>
</tr>
<tr>
<td>3.2.R</td>
<td>各極の要求資料</td>
<td></td>
<td></td>
<td>評価</td>
</tr>
</tbody>
</table>

該当なし
第3部（モジュール3） 品質に関する文書 添付資料一覧

3.3 参考文献

<table>
<thead>
<tr>
<th>資料番号</th>
<th>著者</th>
<th>表題</th>
<th>掲載誌・その他</th>
<th>引用 CTD No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3-1</td>
<td>European Directorate for the Quality of Medicines & HealthCare</td>
<td>CARMUSTINE, European Pharmacopoeia 7.0</td>
<td>EP7.0</td>
<td>2.3.S</td>
</tr>
<tr>
<td>3.3-2</td>
<td>The United States Pharmacopeial Convention, Inc</td>
<td>CARMUSTINE, USP34 (Official from May 1, 2011)</td>
<td>USP34</td>
<td>2.3.S</td>
</tr>
<tr>
<td>3.3-3</td>
<td>The United States Pharmacopeial Convention, Inc</td>
<td>Carmustine for Injection, USP34 (Official from May 1, 2011)</td>
<td>USP34</td>
<td>2.3.S</td>
</tr>
<tr>
<td>3.3-4</td>
<td>The United States Pharmacopeial Convention, Inc</td>
<td>CARMUSTINE, Merck Index 14</td>
<td>Merck Index 14</td>
<td>2.3.S</td>
</tr>
<tr>
<td>3.3-5</td>
<td>The United States Pharmacopeial Convention, Inc</td>
<td>‹197› SPECTROPHOTOMETRIC IDENTIFICATION TESTS</td>
<td>USP34</td>
<td>2.3.S</td>
</tr>
<tr>
<td>資料番号</td>
<td>著者</td>
<td>表題</td>
<td>掲載誌・その他</td>
<td>引用 CTD No.</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>3.3-9</td>
<td>W. Dang, T. Daviau, P. Ying, Y. Zhao, D. Nowotnik, C.S. Clow, B. Tyler, H. Brem</td>
<td>Effects of GLIADEL® wafer initial molecular weight on the erosion of wafer and release of BCNU</td>
<td>Journal of Controlled Release, 42, pp. 83–92, 1997</td>
<td>2.3.P.2.2.3</td>
</tr>
<tr>
<td>3.3-10</td>
<td>R. Gary Hollenbeck, Nancy A. Baros</td>
<td>Procedure for the in vitro Determination of Carmustine (BCNU) Release from BIODEL TM Wafers Containing BCNU.</td>
<td>Journal of Controlled Release, 42, pp. 83–92, 1996</td>
<td>2.3.P.2.3.2</td>
</tr>
<tr>
<td>3.3-11</td>
<td>International Organization for Standardization</td>
<td>Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization</td>
<td>ISO11137</td>
<td>2.3.P.2.3.5</td>
</tr>
<tr>
<td>3.3-12</td>
<td></td>
<td>Polifeprosan, Merck Index 14</td>
<td>Merck Index 14</td>
<td>2.3.A.3.1.3</td>
</tr>
<tr>
<td>3.3-14</td>
<td>The United States Pharmacopeial Convention, Inc</td>
<td><761> NUCLEAR MAGNETIC RESONANCE</td>
<td>USP34</td>
<td>2.3.A.3</td>
</tr>
<tr>
<td>3.3-15</td>
<td>The United States Pharmacopeial Convention, Inc</td>
<td><927> Water Determination METHOD I</td>
<td>USP34</td>
<td>2.3.S.4.2</td>
</tr>
</tbody>
</table>
第4部 非臨床試験報告書

4.1 第4部目次

4.2 試験報告書

4.2.1 薬理試験

4.2.1.1 効力を裏付ける試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1.1-2</td>
<td>ヒト神経膠芽腫細胞株(U-87MG)の頭蓋内移植モデルに対するカルムスチンの抗腫瘍効果。ノーベルファーマ社 社内資料</td>
</tr>
<tr>
<td>4.2.1.1-9参</td>
<td>Chabner B.A. Goodman & Gilman’s The pharmacological basis of therapeutics. 11th ed. 2006 :1324</td>
</tr>
</tbody>
</table>
4.2.1.2 副次的薬理試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
</table>

4.2.1.3 安全性薬理試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1.3-1</td>
<td>カルムスチン(BCNU)の安全性薬理試験:ラットの一般症状および行動に及ぼす作用, 20, ノーベルファーマ社, 社内資料</td>
</tr>
<tr>
<td>4.2.1.3-2</td>
<td>カルムスチン(BCNU)の安全性薬理試験:無麻醉・無拘束イヌの呼吸系および心血管系に及ぼす作用, 20, ノーベルファーマ社, 社内資料</td>
</tr>
<tr>
<td>4.2.1.3-3</td>
<td>カルムスチン(BCNU)の安全性薬理試験:hERG電流に及ぼす作用, 20, ノーベルファーマ社, 社内資料</td>
</tr>
</tbody>
</table>

4.2.1.4 薬力学的薬物相互作用試験（該当なし）
4.2.2 薬物動態試験

4.2.2.1 分析法及びバリデーション報告書（該当なし）

4.2.2.2 吸収

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2.2-1参</td>
<td>Bartošek I., et al. Pharmacokinetics of Nitrosoureas: Levels of 1,3-Bis-(2-Chloroethyl)-1-Nitrosourea (BCNU) in Organs of Normal and Walker 256/B Carcinoma Bearing Rats after I.V. bolus. Tumori, 1984; 70: 491-498</td>
</tr>
<tr>
<td>4.2.2.2-3参</td>
<td>Devita V.T., et al. The physiological disposition of the carcinostatic 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in man and animals. Clinical Pharmacology and Therapeutics 1967; 8: 566-577</td>
</tr>
</tbody>
</table>

4.2.2.3 分布

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2.3-1参</td>
<td>Devita V.T., et al. The physiological disposition of the carcinostatic 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in man and animals. Clinical Pharmacology and Therapeutics 1967; 8: 566-577</td>
</tr>
<tr>
<td>4.2.2.3-2参</td>
<td>Wheeler G.P., et al. Distribution of 14C From 14C-Labeled 1,3-bis(2-chloroethyl)-1-nitrosourea (NSC-409962) in Tissues of Mice and Hamsters after Intraperitoneal Administration of the Agent. Cancer chemotherapy reports 1964; 42: 9-12.</td>
</tr>
</tbody>
</table>
4.2.2.4 代謝

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2.4-3参</td>
<td>Lin H.-S., et al. Metabolism of 1,3-Bis(2-chloroethyl)-1-nitrosourea by Rat Hepatic Microsomes. J Med Chem 1981; 24: 761-763.</td>
</tr>
<tr>
<td>4.2.2.4-5参</td>
<td>Smith M.T., et al. Denitrosation of 1, 3-Bis(2-chloroethyl)-1-nitrosourea by Class Mu Glutathione Transferases and Its Role in Cellular Resistance in Rat Brain Tumor Cells. Cancer Res 1989; 49: 2621-2625</td>
</tr>
<tr>
<td>4.2.2.4-8参</td>
<td>Davis MR, et al. Glutathione and N-acetylcysteine conjugates of 2-chloroethyl isocyanate. Identification as metabolites of N,N′-bis(2-chloroethyl)-N-nitrosourea in the rat and inhibitory properties toward glutathione reductase in vitro. CHEM RES TOXICOL 1993; 6: 376-383</td>
</tr>
<tr>
<td>4.2.2.4-9參</td>
<td>Weinkam RJ, et al. Reactions of 1,3-bis(2-chloroethyl)-1-nitrosoourea and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosoourea in aqueous solution. J MED CHEM 1979; 22: 1193-1198</td>
</tr>
<tr>
<td>4.2.2.4-10参 (5.3.2.2-1)</td>
<td>カルムスチンのヒト肝ミクロソーム及びヒト肝サイトソールを用いた代謝試験 , 20 , ノーベルファーマ社 社内資料</td>
</tr>
</tbody>
</table>

4.2.2.5 排泄

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2.5-1参 (4.2.2.3-3參)</td>
<td>Devita V.T., et al. The physiological disposition of the carcinostatic 1,3-bis(2-chloroethyl)-1-nitrosourea(BCNU) in man and animals. Clinical Pharmacology and Therapeutics 1967; 8: 566-577</td>
</tr>
<tr>
<td>4.2.2.5-2</td>
<td>Mitoma C, Rebert CS, Shinsky N, Gordon GR, Romero ML, et al. Absorption, Distribution, and Excretion of Radiolabeled Polymer Miniwafers with and without BCNU, SRI Study No. LSC 2047-D01-91.</td>
</tr>
<tr>
<td>4.2.2.5-4参 (4.2.2.4-8參)</td>
<td>Davis MR, et al. Glutathione and N-acetylcysteine conjugates of 2-chloroethyl isocyanate. Identification as metabolites of N,N′-bis(2-chloroethyl)-N-nitrosourea in the rat and inhibitory properties toward glutathione reductase in vitro. CHEM RES TOXICOL 1993; 6: 376-383</td>
</tr>
<tr>
<td>4.2.2.5-5参 (5.3.2.2-1)</td>
<td>[14C]カルムスチンのラットにおける乳汁移行試験 , 20 , ノーベルファーマ社 社内資料</td>
</tr>
</tbody>
</table>
4.2.2.6 薬物相互作用（非臨床）

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2.6-1 参</td>
<td>Solzenbach JC, et al. BCNU-induced quantitative and qualitative changes in hepatic cytochrome P-450 can be correlated with cholestasis. Cancer Chemther Pharmacol 1990; 25: 227-235</td>
</tr>
<tr>
<td>4.2.2.6-3 参</td>
<td>Ren S., Slatterly J.T., Inhibition of carboxyethylphosphoramide mustard formation from 4-hydroxycyclophosphamide by carmustine. AAPS Pharmsci 1999; 1(3): article 14.</td>
</tr>
</tbody>
</table>

4.2.2.7 その他の薬物動態試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2.7-1 (4.2.2.5-2 参)</td>
<td>Mitoma C, Rebert CS, Shinsky N, Gordon GR, Romero ML, et al. ABSORPTION\ DISTRIBUTION\ AND EXCRETION OF RADIOLABELED POLYMER MINIWAFERS WITH AND WITHOUT BCNU, SRI Study No. LSC 2047-D01-91.</td>
</tr>
</tbody>
</table>
4.2.3 毒性試験

4.2.3.1 単回投与毒性試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.1-1参</td>
<td>A toxicologic evaluation of BCNU(NSC-409962) in dogs, monkeys and mice. Midwest Research Institute(NIH), 1978, NTIS PB282265</td>
</tr>
<tr>
<td>4.2.3.1-2参</td>
<td>4.2.3.1-1参を参照</td>
</tr>
<tr>
<td>4.2.3.1-3参</td>
<td>4.2.3.1-1参を参照</td>
</tr>
</tbody>
</table>

4.2.3.2 反復投与毒性試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.2-1参</td>
<td>4.2.3.1-1参を参照</td>
</tr>
<tr>
<td>4.2.3.2-2参</td>
<td>4.2.3.1-1参を参照</td>
</tr>
<tr>
<td>4.2.3.2-3参</td>
<td>A study of the effects of polymer and polymer containing BCNU implanted into the brain of the albino rabbit for up to 28 days, Bio-Research laboratories, 社内資料</td>
</tr>
<tr>
<td>4.2.3.2-4参</td>
<td>Evaluation of the effects of various combinations of radiation treatment and a polymer brain implant impregnated with BCNU on delayed brain necrosis in albino rabbits, Bio-Research laboratories, 社内資料</td>
</tr>
<tr>
<td>4.2.3.2-5参</td>
<td>Bratton-Marshall analysis for quantitation of 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) levels in blood, cerebrospinal fluid(CSF) and brain of rabbits implanted with Gliadel, Nova pharmaceutical Co., 社内資料</td>
</tr>
<tr>
<td>4.2.3.2-6参</td>
<td>Gliadel 20%: intracranial tolerance study in cynomolgus monkeys, Guilford study No. RD-95-003, Johns Hopkins Hospital, 社内資料</td>
</tr>
</tbody>
</table>

4.2.3.3 遺伝毒性試験

4.2.3.3.1 In vitro 試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.3.1-1参</td>
<td>Suling WJ., et al. Increased mutagenicity of chloroethylnitrosoureas in the presence of a rat liver S9 microsome mixture. J Natl Cancer Inst 1983; 70: 767-9</td>
</tr>
<tr>
<td>4.2.3.3.1-2参</td>
<td>Tates AD., et al. A correlative study on the genetic damage induced by chemical mutagens in bone marrow and spermatogonia of mice. Mut Res 1977; 44: 87-95</td>
</tr>
</tbody>
</table>

4.2.3.3.2 In vivo 試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.3.2-1参</td>
<td>4.2.3.3.1-2参を参照</td>
</tr>
<tr>
<td>4.2.3.3.2-2参</td>
<td>4.2.3.3.1-2参を参照</td>
</tr>
</tbody>
</table>

4.2.3.4 がん原性試験（該当なし）

4.2.3.5 生殖発生毒性

4.2.3.5.1 受胎能及び着床までの初期胚発生に関する試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.5.1-1参</td>
<td>Thompson, DJ., et al. Reproduction and teratology studies with oncolytic agents in the rat and rabbit. I. 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). Toxicol Appl Pharmacol 1974; 30(3): 422-39</td>
</tr>
<tr>
<td>4.2.3.5.1-2参</td>
<td>4.2.3.5.1-1参を参照</td>
</tr>
</tbody>
</table>
4.2.3.5.2 胚・胎児発生に関する試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.5.2-1参</td>
<td>4.2.3.5.1-1参を参照</td>
</tr>
<tr>
<td>4.2.3.5.2-2参</td>
<td>4.2.3.5.1-1参を参照</td>
</tr>
</tbody>
</table>

4.2.3.5.3 出生前及び出生後の発生並びに母体の機能に関する試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.5.3-1参</td>
<td>4.2.3.5.1-1参を参照</td>
</tr>
</tbody>
</table>

4.2.3.5.4 新生児を用いた試験（該當なし）

4.2.3.6 局所刺激性試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.6-1参</td>
<td>Intramuscular biocompatibility study in rabbits. 社内資料</td>
</tr>
</tbody>
</table>

4.2.3.7 その他の毒性試験

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3.7-1</td>
<td>NPC-08 添加物（Polifeprosan20）のラットを用いる単回皮下投与による2週間毒性試験 社内資料</td>
</tr>
<tr>
<td>4.2.3.7-2参</td>
<td>The biocompatibility of a polyanhydride biopolymer subcutaneously implanted in the rat. Nova, 社内資料</td>
</tr>
<tr>
<td>4.2.3.7-3參</td>
<td>Brem H., et al. Biocompatibility of a biodegradable, controlled-release polymer in the rabbit brain. Selective Cancer Ther 1989;5:55-65 社内資料</td>
</tr>
<tr>
<td>4.2.3.7-4</td>
<td>NPC-08 添加物（Polifeprosan20）の細菌を用いる復帰突然変異試験 社内資料</td>
</tr>
<tr>
<td>4.2.3.7-5</td>
<td>NPC-08 添加物（Polifeprosan20）の培養細胞を用いる染色体異常試験 社内資料</td>
</tr>
<tr>
<td>4.2.3.7-6</td>
<td>NPC-08 添加物（Polifeprosan20）のラットを用いる皮下投与による胚・胎児発生に関する試験 社内資料</td>
</tr>
<tr>
<td>4.2.3.7-7</td>
<td>セバシン酸のラットを用いた皮下投与による胚・胎児発生への影響に関する試験 社内資料</td>
</tr>
<tr>
<td>4.2.3.7-8</td>
<td>Intramuscular implantation study in rabbits with placebo wafers, SR042-45-21C, SR042-45-23C, and SR042-45-24C. Hazleton, 社内資料</td>
</tr>
<tr>
<td>4.2.3.7-9</td>
<td>NPC-08 の原薬及び製剤の類縁物質のラットを用いた単回腹腔内投与による毒性試験 社内資料</td>
</tr>
</tbody>
</table>

4.3 参考文献（該当なし）
第 5 部 臨床試験報告書
5.1 第 5 部目次
<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>第 5 部目次</td>
</tr>
</tbody>
</table>

5.2 臨床試験一覧表
<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>臨床試験一覧</td>
</tr>
</tbody>
</table>

5.3 試験報告書及び関連情報
5.3.1 生物薬剤学試験報告書
5.3.1.1 バイオアベイラビリティ（BA）試験報告書（該当なし）
5.3.1.2 比較 BA 試験及び生物学的同等性（BE）試験報告書（該当なし）
5.3.1.3 In Vitro–In Vivo の関連を検討した試験報告書（該当なし）
5.3.1.4 生物学的及び理化学的分析法検討報告書
<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1.4-1</td>
<td>LC-MS/MS によるヘパリン添加全血中のカルムスチンの測定法バリデーション (Study: ZZ25189-01)</td>
</tr>
<tr>
<td></td>
<td>Report: 2010 年 4 月 8 日</td>
</tr>
<tr>
<td>5.3.1.4-2</td>
<td>Guilford Pharmaceuticals 特有のクエン酸及びアセトニトリルで安定化させたヘパリン添加ヒト全血中の BCNU の測定における HPCL 質量分析法バリデーション</td>
</tr>
<tr>
<td></td>
<td>Report: 1998 年 8 月 6 日</td>
</tr>
</tbody>
</table>

5.3.2 ヒト生体試料を用いた薬物動態関連の試験報告書
5.3.2.1 血漿蛋白結合試験報告書（該当なし）
5.3.2.2 肝代謝及び薬物相互作用試験報告書
<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.2.2-1</td>
<td>カルムスチンのヒト肝ミクロソーム及びヒト肝サイトソームを用いた代謝実験</td>
</tr>
<tr>
<td></td>
<td>社内資料</td>
</tr>
</tbody>
</table>

5.3.2.3 他のヒト生体試料を用いた試験報告書（該当なし）

5.3.3 臨床薬物動態（PK）試験報告書
5.3.3.1 健康被験者における PK 及び初期耐容性試験報告書（該当なし）
5.3.3.2 患者におけるPK及び初期忍容性試験報告書

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.3.2-1参</td>
<td>再発悪性神経膠腫患者におけるグリアデルの非盲検、多施設用量漸増第Ⅰ相臨床試験 (Study 9601、外国) Phase I, Open-Label, Multi Center Dose Escalation study of Gliadel in Patients with Recurrent Malignant Glioma (Study 9601) 報告日：1998年8月10日 公表論文：Oliv A. J Clin Oncol. 2003;21(9):1845-9.</td>
</tr>
<tr>
<td>5.3.3.2-2</td>
<td>初発の悪性神絨腫及び再発の膠芽腫患者を対象としたNPC-08留置の第Ⅰ/Ⅱ相、多施設共同、非無作為、オープンラベル試験におけるLC-MS/MSによるヘパリン添加ヒト全血中のカルムスチンの測定 LC-MS/MS Determination of Carmustine in Human Whole Blood (Heparin) (Study AA81552-01) for A Phase 1/2, Multicenter, Non-Randomized, Open Label Trial of NPC-08 Implant in Patients Undergoing Surgery for Newly-Diagnosed Malignant Glioma and Recurrent Glioblastoma Multiforme 報告日：20年月日</td>
</tr>
</tbody>
</table>

5.3.3 内因性要因を検討したPK試験報告書（該当なし）

5.3.4 外因性要因を検討したPK試験報告書（該当なし）

5.3.5 ポピュレーションPK試験報告書（該当なし）

5.3.4 臨床薬力学(PD)試験報告書

5.3.4.1 健康被験者におけるPD試験及びPK/PD試験報告書（該当なし）

5.3.4.2 患者におけるPD試験及びPK/PD試験報告書（該当なし）

5.3.5 有効性及び安全性試験報告書

5.3.5.1 申請する適応症に関する比較対照試験報告書

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.5.1-1参</td>
<td>再発悪性神経膠腫の治療のために外科的に留置した生分解性ポリマーBIODELから放出されるカルムスチンの二重盲検プラセボ対照試験 (Study 8802、外国) A Double-Blind, Placebo-Controlled Study of BCNU Delivered from BIODEL®, a Biodegradable, Surgically Implantable Polymer for the Treatment of Recurrent, Malignant Glioma (Study 8802) 試験期間：1989年3月1日～1995年11月10日 報告日：1996年2月1日 公表論文：Brem H. Lancet. 1995;345(8956):1008-12.</td>
</tr>
<tr>
<td>資料番号</td>
<td>添付資料</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5.3.5.1-3 参</td>
<td>初発の悪性神経膠腫に対する初回手術を施行する患者を対象とした、カルムスチン3.85%含有ポリフェプロサン20の第Ⅲ相、多施設共同、無作為化、二重盲検、プラセボ対照試験（Study T-301、外国）
A Phase III, Multicenter Randomised Double-Blind, Placebo-Controlled Trial of Polifeprosan 20 with Carmustine 3.85% Implant in Patients Undergoing Initial Surgery for Newly-diagnosed Malignant Glioma (Study T301)
試験期間：1997年12月19日～2000年6月30日
報告日：2001年3月9日
公表論文：Westphal M. Neuro Oncol. 2003:5(2):79-88.</td>
</tr>
<tr>
<td>5.3.5.1-4 参</td>
<td>Study T-301の長期追跡調査（Study T-301 Follow-Up、外国）
Gliadel Study T-301 Long-Term Follow-Up (Study T-301 Follow-Up)
試験期間：1997年12月19日～2002年8月16日
報告日：2002年9月12日
公表論文：Westphal M. Acta Neurochir (Wien). 2006;148(3):269-75.</td>
</tr>
<tr>
<td>5.3.5.2 参</td>
<td>初発の悪性神経膠腫及び再発の膠芽腫患者を対象とした NPC-08 第Ⅰ/Ⅱ相臨床試験（Study NPC-08-1、日本）
試験期間：2009年6月■日～2011年5月■日
報告日：2012年月日</td>
</tr>
<tr>
<td>5.3.5.2-2 参</td>
<td>グレードⅢ又はⅣの再発悪性神経膠腫治療のため手術時に留置した生分解性ウェーハーから放出されるカルムスチンの安全性と有効性（Study 8701、外国）
Safety and Efficacy of BCNU Delivered from a Biodegradable, Surgically Implanted Polymer for the Treatment of Grade III or IV Astrocytoma: A Phase I/II Clinical Study (Study 8701)
試験期間：1987年9月24日～1991年2月27日
報告日：1995年12月18日
公表論文：Brem H. J Neurosurg. 1991;74:441-6.</td>
</tr>
<tr>
<td>5.3.5.2-3 参</td>
<td>再発悪性神経膠腫治療に対するグリアデルの安全性及び忍容性（Study 9115、外国）
The Safety and Tolerability of the Use of GLIADEL® for the Treatment of Recurrent, Malignant Glioma(Study 9115)
試験期間：1992年1月30日～1995年11月10日
報告日：1995年12月19日</td>
</tr>
<tr>
<td>5.3.5.2-5 参</td>
<td>再発悪性神経膠腫患者を対象としたグリアデルの多施設非盲検試験（Study 9501、外国）
Open-Label, Multi-center, Clinical Trial of GLIADEL® For Patients With Recurrent Malignant Glioma(Study 9501)
試験期間：1995年11月9日～1998年2月27日
報告日：1999年5月12日</td>
</tr>
</tbody>
</table>
5.3.5.3 複数の試験成績を併せて解析した報告書（該当なし）
5.3.5.4 その他の試験報告書

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.5.4-1 参</td>
<td>MGI PHARMA Investigator’s Brochure (Edition No.5) 作成日：2007年5月25日</td>
</tr>
</tbody>
</table>

5.3.6 市販後の使用経験に関する報告書

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.6.1-1 参</td>
<td>PSUR（1998年9月-1999年3月）</td>
</tr>
<tr>
<td>5.3.6.1-2 参</td>
<td>PSUR（1999年3月-1999年9月）</td>
</tr>
<tr>
<td>5.3.6.1-3 参</td>
<td>PSUR（1999年10月-2000年3月）</td>
</tr>
<tr>
<td>5.3.6.1-4 参</td>
<td>PSUR（2000年4月-2000年9月）</td>
</tr>
<tr>
<td>5.3.6.1-5 参</td>
<td>PSUR（2000年9月-2001年9月）</td>
</tr>
<tr>
<td>5.3.6.1-6 参</td>
<td>PSUR（2001年9月-2002年9月）</td>
</tr>
<tr>
<td>5.3.6.1-7 参</td>
<td>PSUR（2002年9月-2003年7月）</td>
</tr>
<tr>
<td>5.3.6.1-8 参</td>
<td>PSUR（2003年7月-2005年9月）</td>
</tr>
<tr>
<td>5.3.6.1-9 参</td>
<td>PSUR（2005年9月-2006年9月）</td>
</tr>
<tr>
<td>5.3.6.1-10 参</td>
<td>PSUR（2006年9月-2009年9月）</td>
</tr>
<tr>
<td>5.3.6.1-11 参</td>
<td>PSUR（2009年9月-2010年9月）</td>
</tr>
</tbody>
</table>

5.3.7 患者データ一覧表及び症例記録

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.7-1 参</td>
<td>国内患者データ一覧表</td>
</tr>
<tr>
<td>5.3.7-2 参</td>
<td>外国患者データ一覧表</td>
</tr>
</tbody>
</table>

5.4 参考文献

5.4.1 臨床に関する概要評価（2.5）で引用した文献

5.4.1.1 関連するガイドライン、ガイダンス、コクランレビュー、主な文献、教科書

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1.1-2 参</td>
<td>Cancer Information Japan ホームページ NCI Cancer Information Physician Data Query (NCI-PDQ®) 日本語版 専門家向け（http://www.cancer.gov/）（2010年9月29日）</td>
</tr>
<tr>
<td>5.4.1.1-3 参</td>
<td>National Institute for Health and Clinical Excellence ホームページ：（http://www.nice.org.uk/TA121） Issued：June 2007</td>
</tr>
<tr>
<td>5.4.1.1-6 参</td>
<td>Harrison’s Principles of Internal Medicine (16th Edition) Chapter 358, p2452-61</td>
</tr>
</tbody>
</table>
5.4.1.2 本剤とテモソロミドとの併用療法に関する文献

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1.2-1参</td>
<td>La Rocca RV, Vitaz TW, Morassutti DJ, et al. A Phase II Study of Radiation with Concomitant and then Sequential Temozolomide(TMZ) in Patients with Newly Diagnosed Supratentorial High-grade Malignant Glioma Who Have Undergone Surgery with Carmustine (BCNU) Wafer Insertion. Neuro-Oncology 8:445, 2006</td>
</tr>
</tbody>
</table>

5.4.1.3 その他の引用文献

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1.3-1参</td>
<td>5.4.1.1-2参を参照</td>
</tr>
<tr>
<td>5.4.1.3-3参</td>
<td>日本脳神経外科学会・日本病理学会編. 頭部・神経 腫瘍原発症例, 第 2 版, 金原出版; 2002</td>
</tr>
<tr>
<td>5.4.1.3-4参</td>
<td>総務省統計局ホームページ：(http://www.stat.go.jp/data/jinsui/)（2010年10月1日)</td>
</tr>
<tr>
<td>5.4.1.3-6参</td>
<td>(社)日本脳神経外科学会 脳神経外科疾患情報 ホームページ：(http://square.umin.ac.jp/neuroinf/medical/204.html)</td>
</tr>
<tr>
<td>5.4.1.3-9参</td>
<td>Chabner B. A. et al.: Goodman Gilman’s The pharmacological basis of therapeutics 11th ed. 2006; p1324</td>
</tr>
</tbody>
</table>
カルムスチン脳内留置用剤

1.12 添付資料一覧

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.1.3-16</td>
<td>Devita V.T., et al. The physiological disposition of the carcinostatic 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in man and animals. Clinical Pharmacology and Therapeutics 1967; 8: 566-577</td>
</tr>
<tr>
<td>5.4.1.3-27</td>
<td>師田信人、三原千恵、伊達裕昭. Part 4 術前術後のケア pp177-199. 脳神経外科ケアマニュアル (2002) (大井静雄編) 株式会社照林社</td>
</tr>
<tr>
<td>資料番号</td>
<td>添付資料</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>5.4.1.3-28 参</td>
<td>藤巻高光、鈴木智成．脳実質性悪性腫瘍：テント下腫瘍（小脳、脳幹）．pp132-137．改訂第3版 脳神経外科 周術期管理のすべて（松谷雅生、田村晃）2009．株式会社メジカルビュー社</td>
</tr>
<tr>
<td>5.4.1.3-29 参</td>
<td>Engelhard HH．Tumor bed cyst formation after BCNU wafer implantation: report of two cases．Surg Neurol．2000 Mar; 53(3):220-4．</td>
</tr>
<tr>
<td>5.4.1.3-31 参</td>
<td>Hammoud DA, et al．The surgical bed after BCNU polymer wafer placement for recurrent glioma: serial assessment on CT and MR imaging．AJR 2003; 180(5):1469-75．</td>
</tr>
<tr>
<td>5.4.1.3-32 参</td>
<td>LaRocca RV et al．High-Grade Glioma Treated With Surgery; Carmustine Wafer; Postoperative Radiation; and Procarbazine, Lomustine, and Vincristine Chemotherapy．Neurosurgery Quarterly．2005,15(3):167-171</td>
</tr>
<tr>
<td>5.4.1.3-33 参</td>
<td>Limentani SA et al．A phase I trial of surgery, Gliadel wafer implantation, and immediate postoperative carboplatin in combination with radiation therapy for primary anaplastic astrocytoma or glioblastoma multiforme．J Neurooncol．2005 May;72(3):241-4．</td>
</tr>
<tr>
<td>5.4.1.3-34 参</td>
<td>Iacopo Sardi, Massimiliano Sanzo, Flavio Giordano, et al．Intracavity chemotherapy (Gliadel) and oral low-dose etoposide for recurrent anaplastic ependymoma．Oncology Reports 19: 1219-1223, 2008</td>
</tr>
<tr>
<td>5.4.1.3-35 参</td>
<td>Torres-Trejo A, Collins J．Stabilization for 9 months of rapidly progressive malignant glioma using bevacizumab, irinotecan, and temozolomide in a previously heavily treated 15-year-old female [abstract]．Neuro Oncol. 9: 536．Abstract MP-03, 2007</td>
</tr>
<tr>
<td>5.4.1.3-37 参</td>
<td>Ollero-Ortiz A, Márquez-Rivas J, Ramírez G, et al．Long survival in a pediatric glioblastoma multiforme (GBM) case with first and second treatment with carmustine (BCNU) wafers and temozolomide [poster]．8th Congress of The European Association of Neuro-oncology; September 12-14, 2008</td>
</tr>
<tr>
<td>5.4.1.3-39 参</td>
<td>Mónica Rivero-Garvia, Márquez-Rivas J, et.al．Treatment of glioblastoma multiforme with high doses of carmustine intracavitary, in an infant．Childs Nerv Syst. 28:747-750, 2012</td>
</tr>
</tbody>
</table>

5.4.2 生物薬剤学及び関連する分析法の概要（2.7.1）で参考とした資料

<table>
<thead>
<tr>
<th>資料番号</th>
<th>添付資料</th>
</tr>
</thead>
</table>