Researcher's Perspective on Quality and Non-Clinical Evaluation of Cell/Tissue-based Products

<u>Center for iPS cell Research and Application (CiRA)</u> Kyoto University

Takashi Aoi

PMDA 5th International Symposium on Biologics Aug. 26th /2010 Tokyo

Embryonic Stem (ES) Cells

Mouse ES cells; 1981, Sir Martin Evans

Early embryo (fertilized egg) ES cells

Property of ES Cells

 Infinite proliferation maintaining the same property (including genetic change)

Self-Renew

Property of ES Cells

Pluripotency

Human ES Cells

1998, James. A.

teratoma

Regenerative medicine using ES cells

Parkinson disease

Dopaminergic neuron Spinal cord injury — Cholinergic neuron Cardiac failure —Cardiac muscle **ES** cells Liver dysfunction - Hepatocyte Muscular dystrophy Skeletal muscle patients immune rejection (+)embryo destruction of embryo (+) Fertilized egg 6

To Overcome Issues with ES cells

iPS cells from characterized persons

What can iPS cells?

Cell Therapy using iPS cells

Mouse iPS cell 2006

Human/ mouse iPS cell ~2010

Variation in Generation of iPS cells

Different methods → different quality?

Chimera formation

c-Myc transgene

tumorigeensity

Positive effects of cMyc

Mouse iPS cell→neurosphare→transplant

K. Miura Nat.biotech

iPS cells contributes to the CNS

Mature Neuron

Astrocyte

Oligodendrocyte

Tumor in recipient mice

After 4 weeks

K. Miura Nat.biotech²⁰

Tumor = teratoma

Muscle

Duct

Neural cells

Keratinized epithelium

Cartilage

Undifferentiated cells

Diameter of teratoma

Tumorigenecity depend on undiff. cells in neuroshare

Proportion of Undiff. Cells depend on origin of iPS

Generated from the same dish

K. Miura et al. Nat.biotech.

Variation of iPS cells of a single donor.

Strategy to select good clones is important!

Two Paradigms to judge "good iPS"

Evaluation of iPS cells and their derivatives

<u>Summary</u>

➢iPS cell therapy consists of many processes and spends long time.

Methods to generate iPS cells affect their quality (e.g., two-sided effect of c-Myc, impact of origin)

Optimization of generation methods

Even iPS clones with the same genetic background and generated with the same methods vary in quality

Optimization of selection methods

Selected iPS cells can be manufactured in large scale.

Well-managed comprehensive evaluations should be required to select "good" iPS cells

Aknowlegement

CiRA

o Univ.	Tokyo Univ.	
K. Okita	M. Nakagawa	S. Yamanaka
A.Fukuhara	A. Watanabe	K. Iwabuchi
M. Kajihara	T. Yamamoto	M. Koyanagi
K. Takahashi	T. Ichisaka	K. Tanabe

S. Ogawa

Keio Univ. Tok H. Okano K. Miura

32