Design of Tumorigenicity Test for Pluripotent Stem Cell-derived Cell Product

Shin Kawamata Foundation for Biomedical Research and Innovation (FBRI) Center for Cell Therapy

March 16, 2016

Introduction of FBRI (Foundation for Biomedical Research and Innovation) - A Leading Translational Research Center in Japan -

Translational Research Center in Kobe

PMDA Kobe office Children Hospital Hospital FBRI Kobe office FBRI Kobe office FBRI Kobe office FBRI Kiken CDB FBRI BRI BRI

Cell therapy developed and conducted in FBRI

Treatment of ischemic lower limb by mobilized peripheral CD34+ cells

Dr. Kawamoto IBRI Hospital PIIa investigator-led clinical trial \Rightarrow TT, sponsored pivotal clinical trial

Treatment of unhealed fracture with mobilized peripheral CD34+ cells

Dr. Kuroda Kobe Univ. Orthopedic Dept, IBRI hospital Clinical Study 14 cases \Rightarrow Investigator-led Clinuical Trial PIIa

Repair of cornea with autologous buccal mucosa sheet

Dr.Sotozono Kyoto Prefectural Medical College, IBRI Hospital Clinical study \Rightarrow TT and sponsored clinical trial PIIa

Treatment traumatic knee with cultured autologous cartilage

Dr. Kuroda Kobe Univ. Orthopedic Dept, IBRI hospital PIIa investigator-led clinical trial \Rightarrow TT, sponsored pivotal clinical trial

Treatment of wet type AMD with iPSC derived-RPE sheets

Dr. Takahashi, Team leader of Riken CDB, Dr. Kurimoto IBRI Hospital

Target disease

wet type Aged Macula Degeneration

Retina Pigment Epithelium (RPE) sheet from autologous iPSC from patient fibroblasts

Tumorigenicity test of iPSC-derived RPE has planned and conducted as preclinical test since 2010

However

There is No internationally recognized guideline for Tumorigenicity test for cell product used for cell transplantation.

WHO Technical Report Series No.878, Annex 1. 1998 Requirements for the Use of Animal Cells as in Vitro Substrates for the Production of Biologicals.

FDA commentary report Science Translational Medicine. 2012, *4*, 147fs28 Bailey A.M; Balancing tissue and tumor formation in regenerative medicine. Geron: GRNOPC1, ACT: RPE case by case appouch

Series of Tumorigenicity Tests have been conducted for iPS cell-derived RPE since 2010

Transplantation of HeLa to several immunodeficient mice to examine their tumor forming capability

Subcutaneous tumorigenicity test of positive control iPS cell, HeLa cell with NOG mouse

Cell type	Transplanted cell formula	Minimum number to form tumor	First / last weeks detected tumor	Number of mice	TPD50
iPSC 201B7	Embedded in Matrigel Single-cell suspension	10	5/ 40	30	132
HeLa	Embedded in Matrigel Single-cell suspension	10	5 /18	75	12.6

Teratoma generated by Transplantation of iPSC

Detection of residual iPSC in iPSC-derived RPE by qRT-PCR using primer for Lin28

Result of subcutaneous tumorigenicity test of iPS cell-derived RPE as quality control test

RPE line	Cell formula	Number cells transplanted	monitoring period (weeks)	Number of mice	Incident of tumor formation
59-G3				9	None
K21-G18	Embedded in Matrigel	1x10 ⁶	60	8	None
101-G25				10	None
59-G3				5	None
K21-G18	Embedded in Matrigel	1x10 ⁶	60	5	None
101-G25				5	None
primary RPE	Embedded in Matrigel RPE-cell suspension	1x10 ⁶	52	3	None
primary RPE	Embedded in Matrigel(-) RPE-cell suspension	1x10 ⁶	52	2	None

59-G3	Embedded in Matrigel RPE sheet		32	3	None
RNT10 RPE		1x10 ⁶	28	3	None
RNT9 RPE			20	3	None
101-EV3	Embedded in Matrigel RPE-cell suspension	1×10^{6}	39	5	None
K11-EV9		IXIU	39	3	None
K21-EV15	Embedded in Matrigel(-) RPE-cell suspension	4 4 0 6	39	4	None
K11-EV9		1x10°	39	2	None

Histological examination of subcutaneously transplanted iPS cell-derived RPE

Kanemura et al PLoS ONE 2014

Subretinal (clinical route) tumorigenicity test with Nude rat for positive control iPSC, HeLa cell

Cell line	Cell formula	Minimum number of cells to generate tumor	First / last week when detect tumor	Number of rats	TPD50
iPSC 201B7	Single-cell suspension	10 ⁴	7/ 33	20	5.0X10 ⁴
Hela	Single-cell suspension	10 ¹	5 / 33	13	21

teratoma

RPE secretes Pigment Epithelium derived-Factor (PEDF), which induces apoptosis in iPS/ESC

iPSC (in culture insert)

iPSC culture medium

Primary RPE or iPSC-derived RPE

Addition of α -PEDF Ab in media blocks apoptosis

rhPEDF induces Apoptosis in ESC khES-1

Kanemura et al Science Reports 2013

Scale bar, 200 µm

Result of subretinal (clinical route) tumorigenicity test of iPS cell-derived RPE

RPE line	Cell formula	Number cells transplanted	monitoring period (weeks)	Number of rats	Incident of Tumor formation
59-G3				4	None
K21-G18	RPE cell sheet	0.8-1.5x10 ⁴	60	5	None
101-G25				3	None
59-G3			32	8	None
RNT10 RPE	RPE cell sheet	0.8-1.5x10 ⁴	28	8	None
RNT9 RPE			20	8	None

Histological examination of iPS cell-derived RPE transplanted in subretinal space

Kanemura et al PLoS ONE 2014

Conclusion of tumorigenic tests of final product (suppose 4-8x10⁴ iPSC-derived RPE is transplanted in clinic)

- Inclusion of residual iPSC in iPSC-derived RPE was evaluated by qPCR. Inclusion will be less than two iPS cells in transplant in clinic.
 Quality Control Test for Purity of final product prior to shipping
- 2. Tumorgenic potential of not terminally differentiated cells was evaluated by subcutaneous transplantation using HeLa and iPSC transplantation as positive control. Tumorigenic cell inclusion will be less than ten cells in transplant in clinic.

Quality Control Test for Tumorigenic Potential of final product

3. Tumorigenic potential incident from not terminally differentiated cells was evaluated by subretinal transplantation using HeLa and iPSC transplantation as positive control. Tumorigenic event shall be negligible in clinical setting in the presence of PEDF in clinical route.

Tumorigenicity Test of final product by animal study

Then, what we have learned ...

Specific to RPE

Subretinal iPSC spike test may not be necessary or not informative at all due to microenvironment in subretinal space.

(TPD50 for iPSC is 5x10⁴ cells)...case by case approach is needed.

In general

1. We need genetic info for reprogrammed, final product cell, and also epigentic and phenotypic info and residual PSC number info of final product prior to conducting tumorigenicity tests.

2. We need to conduct a pilot study for tumorigenicity test to provide rationale for the design of tests and its interpretation of the result when extrapolate it to human.

Subretinal tumorigenicity test may not be informative to address iPS/ESC contamination in final product

Then, what we have learned ...

Specific to RPE

Subretinal iPSC spike test may not be necessary or not informative at all due to microenvironment in subretinal space.

(TPD50 for iPSC is 5x10⁴ cells)...case by case approach is needed.

In general

1. We need genetic info for reprogrammed, final product cell, and also epigentic and phenotypic info and residual PSC number info of final product prior to conducting tumorigenicity tests.

2. We need to conduct a pilot study for tumorigenicity test to provide rationale for the design of tests and its interpretation of the result when extrapolate it to human.

Instability of Gene in Pluripotent Stem Cell

552 iPS cells out of those derived from 219 lines 1,163 Es cells out of those derived from 40 lines

Chromosomal abnormality 12.9% of ES cells 12.5% of iPS cells (normal)250-300 sites variation.

Testing criteria proposed. Ex seq. G-band, mFISH CGH array, hot spot genomic PCR. No episode of tumor, family history Refer to cancer / gene Data bese No additional genomic aberration during manipulation and culture

Then, what we have learned ...

Specific to RPE

Subretinal iPSC spike test may not be necessary or not informative at all due to microenvironment in subretinal space . (TPD50 for iPSC is 5x10⁴ cells)...case by case approach is needed.

In general

1. We need genetic info for reprogrammed, final product cell, and also epigentic and phenotypic info and residual PSC number info of final product prior to conducting tumorigenicity tests.

2. We need to conduct a pilot study for tumorigenicity test to provide rationale for the design of tests and its interpretation of the result when extrapolate it to human.

Risk assessment based POC for Tumorigenicity Test of PSC derived-product

- not to overlook possible tumorigenic event and assess its risk in clinic -
- 1. Select animal model with rationale: ex. disease model or immuno-deficient rodent.
- 2. Determine the feasibility of subcutaneous transplantation test that serves as QC test.

3. Conduct a series of pilot studies with animal prior to the test to:

- 1) Train operators and make sure the delivery of transplant to the designated site.
- 2) Establish robust IHC to detect live human tissue, assess proliferation and maturation.
- 3) Set up test design by the assessment of microenvironment, dose, monitoring period.
- 4) Determine the frequency of metastasis and its detection method, if any.

Set up tests, considering item 1,2, 3, and genetic info and QC info of final product.

Acknowledgements

Riken CDB

Masayo Takahashi Michiko Mandai Hiroyuki Kamao Chikako Morinaga Noriko Sakai Hiroshi Akimaru **NIHS** National Institute of Health Sciences

Yoji Sato Satoshi Yasuda Takuya Kuroda Shinji Kusakawa Hiroyuki Nakashima FBRI

Masahiro J. Go Hoshimi Kanemura Takako Yamamoto Masayuki Shikamura Takashi Tamura Yasuhiko Tosa Masato Iwatsuki

CIEA

Central Institute for Experimental Animals Mamoru Ito