EVOLVING ROLE OF MODELING & SIMULATION IN RESEARCH, DEVELOPMENT AND APPROVAL OF MEDICINES

AMED SYMPOSIUM

September 3rd, 2019
Tokyo, Japan

Vikram Sinha PhD
Quantitative Pharmacology & Pharmacometrics
PPDM
Merck Research Laboratories
Disclosures & Acknowledgements

- I am an employee of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA and shareholder of Merck & Co., Inc., Kenilworth, NJ, USA

- Ideas and concepts here from colleagues at the research laboratories of Merck & Co., Inc., Kenilworth, NJ, USA
 - IQ QSP WG
 - Brian Topp for his concepts around Virtual Patients and Tumor growth

- Examples: Published and accordingly attributed
Modalities in Therapeutic Interventions

A Decade Ago
- Small Chemicals/Peptides
- Biologics – mAB
- Early Combinations
- Many areas of unmet medical need
- Establishing predictive approaches in decision-making
- Limited tailoring of medicines for patients

Now
- Biologics – mAB
- Bispecific/Targeted Molecules
- Combination Treatments
- Gene and Cell Based Treatments
- Vaccines as Treatments
- Mechanistic Models
- Establishing Proof of Concept
- Getting the Dose Right
- Adaptive Trials – Drug-Disease Models
- Precision Medicine

While many of the quantitative approaches can be applied, a key difference for biotherapeutics versus small molecules is the interplay with the disease state.
Framework for the Application of M&S

Accelerate Therapeutic Development and Differentiation

- Bring translational, quantitative thinking as early as practical and useful for decision-making on whether each new target, molecule and development in a portfolio has the right amount of risk for development

- Influence portfolio decisions
 - Develop a Quantitative framework of Causal Human Biology *(Mechanistic platforms, Disease progression models, Translational PK/PD)*

- Opportunity to influence the path to the clinic through clinical plans and study designs including model-informed fast to Clinical POC trajectories

- Balance *post-hoc* analysis to *a priori* design of clinical trials using simulation and probabilistic prediction of outcomes

- **Detect negative results in trials earlier and adapt (dose, study design) and learn from failed trials (target biology, wrong dose or endpoints)**
Patients vary widely in their susceptibility to disease and response to drugs.

“...the appreciation of controllable sources of variability in drug action and potential injury to patients should be achieved prior to the marketing of new pharmaceutical products.”

- JAMA, March 31, 1993
Rowland TED, FDA 2015
Pharmacometrics: Where We Were ~Two Decades Ago

- Early Research and Adopters on Physiological Based Pharmacokinetics
- Early Research in Systems Approach in Pharmacology
Where We Are Now

- **Translational Pharmacokinetics and Pharmacodynamics – Biomarkers and Use of Pharmacodynamic Endpoints**
- **Model based Meta-Analysis**
- **Quantitative Systems Pharmacology**

“...In silico clinical trials use computer models and simulations to develop and evaluate devices and drugs. Modeling and simulation play a critical role in organizing diverse data sets and exploring alternate study designs. This enables safe and effective new therapeutics to advance more efficiently through the different stages of clinical trials. FDA’s efforts in modeling and simulation are enabled through multiple collaborations with external parties that provide additional expertise and infrastructure to advance the development of these state-of-the-art technologies...” FDA Commissioner’s Blog, July 2017

<table>
<thead>
<tr>
<th>Dose Adjustments in subpopulations based on Exposure Response Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosing Adjustments Based of Population Pharmacokinetics and Integration of ER</td>
</tr>
<tr>
<td>Use of Concentration –QT Analysis in Assessing Cardiovascular Safety</td>
</tr>
<tr>
<td>World wide regulatory agencies using quantitative and predictive approaches</td>
</tr>
<tr>
<td>Devices</td>
</tr>
</tbody>
</table>
• **Contributions in:**
 – Dosage and Administration
 – Warnings and Contraindications
 – Clinical Pharmacology
 – Immunogenicity

 – Special Populations
 – Drug-Drug Interactions
Placental transfer and metabolized by uridine diphosphate glucuronosyltransferase (UGT) 1A1, and could displace unconjugated bilirubin from albumin, potentially increasing neonatal risk of kernicterus, as was seen with sulfisoxazole.

Pediatric Adolescent AIDS Clinical Trials (IMPAACT) P1110 Study Team
• Unprecedented competition in the field
• Expectation high for new IO drugs, however, challenging to demonstrate clinical benefit relative to the improved SoC
• Typical approach of individual studies for each new tested drug may not be efficient (time, resources)
• Speed vs certainty in results. Common to move from Phase 1 to Phase 3 directly
• Dose
 • Best Starting dose, not MABEL?
 • How best to ascertain therapeutic range whilst patient sparing and non-exposure of patients to sub-therapeutic doses.
Pembroluzimab (KEYTRUDA®)

• Potent and highly selective humanized monoclonal antibody (mAb) of the IgG4/kappa isotype

• Blocks interaction between programmed death (PD) -1 and its ligands, PD-L1 and PD-L2

• Unlike many of the historical mAbs in oncology, pembroluzimab binds to immune cells, not tumor cells. Blocks interaction of PD-1 on Tcells –enhancing T cells response against tumors
 – Global approvals in melanoma, NSCLC, HNSCC, HL, MSI-H, Bladder, metastatic squamous lung cancer, etc.

• Enhances functional activity of the target lymphocytes to facilitate tumor regression and ultimately immune rejection
Ex-vivo IL2 assay: Peripheral PK-PD in the Clinic to inform efficacious dose

Pembroluzimab Exposure is Associated with Complete Functional Blockade of PD-1 in the ex vivo IL-2 Release Assay at Doses of 1 mg/kg Q3W or Higher

J Elassaiss-Schaap, S Rossenu, A Lindauer, SP Kang, R de Greef, JR Sachs and DP de Alwis CPT:PSP, Jan 2017
Exploring the Opportunities and Challenges of Seamless Drug Development

By Caroline McNiel
February 25, 2017
Tweet this page

One prime example of a highly effective drug developed seamlessly is pembrolizumab (Keytruda), which targets the programmed cell death ligand 1 (PD-L1). This immunotherapy showed high efficacy in its earliest trial among patients with melanoma. Rather than conclude that trial and start on a phase II trial, investigators added expansion cohorts, first to test the drug in patients with non–small cell lung cancer and then to test lower doses in both groups and also to provide training and validation sets for the PD-L1 expression test. More cohorts were added as more information was collected. Several years later, the drug was approved for advanced melanoma without a randomized, controlled trial.

That was in 2014. Now there are more than 40 active, first-in-human cancer trials that are using this seamless strategy, according to members of the U.S. Food and Drug Administration (FDA), writing in The New England Journal of Medicine.

One reason for the increase in seamless trials is their usefulness in evaluating a targeted drug in many subgroups of patients.

“Traditional phase I, II, and III trials cannot provide enough information, as cancer therapies are splintered into multiple subgroups and treatment categories,” said Janet Woodcock, MD, Director of the Center for Drug Evaluation and Research at the FDA, speaking at the workshop. “I don’t think clinical development right now can keep up with the rapidly evolving science.”
Keynote 01: First in Human to Registration

From a small Phase I, expansion to a 655-patient study in Melanoma patients

Progression Free Survival from randomized studies confirmed 2 mg/kg as an optimal dose

Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial

- Increase in the use of drug–target binding models preclinically and in clinical development (measure of target engagement)
- Dosing requirements in early clinical development
- Assess fixed Dose versus Body-size-Based Dosing for Therapeutic Biologics
- Influence of Disease State in the characterization of pharmacokinetics
- Dose ranging and exposure-response analysis

Ribas et al, Lancet 2015
Pembrolizumab exposure-response assessments challenged by association of cancer cachexia and catabolic clearance. Cancer Clin. Research, 2018
Model-Based Approaches: Mechanistic and Physiologically Based Approaches

• Physiologically based PK models that can help inform “target” concentrations
 ➢ Complexity vs. “fit for purpose”

• Systems biology/pharmacology models that inform regarding the target (and use in combination treatments)
Characterization of target engagement (TE)

How much mAb/drug?

How much receptor/target?

TE reaction:

- \(mAb \) → \(R \) → \(RC \)
- \(k_{syn} \)
- \(k_{off} \)
- \(k_{on} \)
- \(k_{int} \)

Predict TE in blood & tumor

How much drug?

- **Blood:** Dose ranging PK data

Tumor: Predict concentration using a published tumor model (*Baxter et al*)
 - Heterogeneity/spatial gradients in tumor characterized using sensitivity analysis
 - e.g., some parts of tumor are poorly vascularized \(\rightarrow \) low mAb concentration

How much target?

- **Blood:** Estimated target expression & turnover
 - High clearance at low doses of mAb depends on target expression/turnover
 - Data on change in CL with escalating dose can be used to estimate target properties

- **Tumor:** Assumed similar to blood
 - Possibility of different target expression assessed using sensitivity analysis
Tumor Characterization

Structure and mAb penetration in the tumor is based on Baxter et al, Cancer Research 1995

Rakesh Jain’s lab, Harvard University (developed using concentration of a mAb in human colorectal cancer)

Tumors are complex.

Fit-for-purpose modeling approach:
- Assess the effect of this complexity using sensitivity analysis (i.e., what-if scenarios by changing model parameters)

Tumor-microenvironment heterogeneity (i.e. drug properties)

- e.g., lower mAb concentration \rightarrow higher dose for target saturation

Represents using simulations

Deeper parts of the tumor represented by changing tumor penetration: as low as 10%

Target expression in tumor can be different compared to blood (i.e. target properties)

- e.g., higher target expression \rightarrow higher dose for TIGIT saturation

Represents using simulations

High intra-tumoral target expression: up to 10-fold (a conservative scenario)

Heterogeneity/unknowns in tumor microenvironment considered using sensitivity analysis

- mAb penetration in tumor: As low as 10% (representing deep parts of the tumor)
- Target expression in tumor: As high as 10-fold higher
A Recent Experience

The European Medicines Agency’s Committee for Medicinal Products for Human Use (CHMP) has adopted a positive opinion for a new extended dosing schedule ...¹

“In the study, efficacy of the every-6-weeks dosing schedule was bridged via examining projections of both pharmacokinetic drivers of efficacy, such as the average concentration over the dosing interval (C_{avg} or AUC) and trough concentration (C_{min}). Additionally, an exposure-response analysis was conducted to predict overall survival at the longer dosing interval .. Moreover, safety was bridged based on an established exposure-safety analysisAdditionally, a PBPK model-based prediction of pembrolizumab tumor target engagement showed that, ... All doses maintained target engagement above 90% throughout the dosing interval suggesting physicians could have the flexibility to dose at a frequency that is tailored toward patients’ needs and/or personal preferences.”

¹European Medicines Agency Adopts Positive Opinion ..
Industrialization of QSP

1. Various consortiums, white papers, working groups, conferences or webinars focusing on quantitative and systems modeling

2. Systems and mathematical-based training programs

3. Industry examples of QSP based modeling

4. “Acceptance” of quantitative systems pharmacology (QSP) models by regulators
Integrating experimental and Models: Treatment of Hepatitis

Data

Discovery:
- In-vitro potency and washout experiments
- Preclinical animal experiments
- PET tracers
- Preclinical Safety Data

Clinical:
- Key PoC
- Published clinical efficacy and safety

- What is the clinical target concentration to achieve efficacy?
- What concentration of drug is necessary at the site of action to stop or eradicate?

How should a trial be designed?
Predicting response and identifying responders to combination Cancer Immunotherapy in using Quantitative Systems Pharmacology (QSP) models – Melanoma as an Example

Contributors: Vantage Research
Presented at PAGE 2018

Merck Research Laboratories
Median post-progression survival for NG-, NG+, MG, and AG subgroups were 16.0, 14.2, 9.1, and 7.5 months, respectively (p<0.001).

Topp, Robey et al., DOI: 10.1200/JCO.2018.36.15_suppl.3017 Journal of Clinical Oncology 36, no. 15_suppl (May 2018) 3017-3017
Integration of QSP and empirical modeling for simulation of novel treatment paradigms in oncology

Kumar et al, PAGE 2018
Approach to Model Design Varies With the Question

- 5 tumors/ VP
- Impact of within patient tumor heterogeneity, metastases
- Tumor ‘waterfall’ plots & RECIST scores
- Ideal to simulate clinical trials

Chen and Mellman, Immunity 2013
Creating Virtual Populations

E.g. Cancer Types, Stage of Disease, Biomarker Classes

Kumar et al, PAGE 2018
Tumor approximated to sphere
- Tumor density: \(~2 \times 10^8\) cells/mL
- Tumor diameter: 16mm

Initial immune cell densities as % of tumor cells
- CD8: 1-12%
- Tregs: 0-3%
- Thelpers: 0-8%

Rates of Tcells lifecycle
- Clearance: \(~1\%-4\%)/day
- Proliferation: \(~1\%)/day

Rates of interaction
- CD8 killing of Tumor: 0.2-2 target/effect/or/day
- Thelper incr of CD8 prolif: 2-4 fold increase
What are the kinds of data that are used to constrain the model?
1. Overall tumor volume, estimated from cell densities and used to estimate cell numbers; directly from melanoma literature
2. Initial condition, clearance rates, proliferation rates for cell types from multiple papers
3. Best available information on interaction between these components that can usually only be obtained from experimental data

- 1000s of Papers
- 100s of papers documented,
- 10s of papers used for direct parametrization
- Recorded for future evaluation as needed

1Erdag et al 2012, data from > 100 HUMAN, MELANOMA BIOPSIES
Virtual Population calibrated to match aPD1 and aCTLA4 clinical data

Robert et al., NEJM, 2015
Pembrolizumab

Robert et al., NEJM, 2015
Ipilimumab

DATA vs. SIMULATIONS
The Changing Regulatory Perspective
Regulatory agencies worldwide are investing in model-informed drug development

PDUFA6: Advancing Model-Informed Drug Development

a. FDA will develop its regulatory science and review expertise and capacity in MIDD approaches. This staff will support the highly-specialized evaluation of model-based strategies and development efforts.

b. FDA will convene a series of workshops to identify best practices for MIDD. Topics will include: (1) physiologically-based pharmacokinetic modeling; (2) design analysis and inferences from dose-exposure-response studies; (3) disease progression model development, including natural history and trial simulation; and (4) immunogenicity and correlates of protection for evaluating

Quantitative Modeling and Simulation in PMDA:
A Japanese Regulatory Perspective

Since quantitative M&S can be helpful for various types of decision-making during drug development and regulatory reviews (e.g., dosing regimens and sample size in clinical trials, appropriate language in product label, etc.), these analyses by PMDA reviewers themselves are expected to help improve both the quality of the PMDA’s reviews and consultations and contribute to improve the efficiency of new drug development.
Fit for Purpose Initiative and Model Qualification

<table>
<thead>
<tr>
<th>Disease Area</th>
<th>Submitter</th>
<th>Tool</th>
<th>Trial Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer's disease</td>
<td>The Coalition Against Major Diseases (CAMD)</td>
<td>Disease Model: Placebo/Disease Progression</td>
<td>Demographics, Drop-out</td>
</tr>
<tr>
<td></td>
<td>Multiple Janssen Pharmaceuticals and Novartis</td>
<td>Statistical Method: mcCP-Mod</td>
<td>Dose-Finding</td>
</tr>
</tbody>
</table>

EMA Qualification opinion 2013- A novel data-driven model of disease progression and trial evaluation in mild and moderate Alzheimer's disease

The future of drug development: the paradigm shift towards systems therapeutics

Meindert Danhof1,2, Kevin Klein3,4, Pieter Stolk5,6, Murray Aitken7 and Hubert Leufkens8

Interdisciplinary research teams
Shared knowledge infrastructure
Open innovation

Treatments applied in a pre-emptive and preventive manner
Monitoring of process quality
Monitoring of treatment response on basis of complex array of biomarkers

Data collection focus in real-world clinical usage space
‘Smart data’ to assess individualized drug treatments by accounting for interindividual variation
Iterative learning cycles for continuous evaluations based on RWD
Closing Thoughts

- Most (if not all) R&D establishments invest/apply Modeling & Simulation
- Established approaches – Population analysis, Exposure-response, PBPK
- Systems Pharmacology is varied; Use Of PBPK is high (DDIs)

- Established approaches have reached peak “applications”. Fundamental challenge with drug discovery are not being solved with established approaches.
- Newer science - will require a fundamentally new “organizations” and “scientists” with the broadest understanding of disease, quantitative sciences and drug development.
Thank You!

ご清聴ありがとうございました