Calcium Disodium Edetate

Calcium Disodium Ethylenediaminetetraacetate.

 $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{CaN}_{2} \mathrm{Na}_{2} \mathrm{O}_{8} \cdot \chi \mathrm{H}_{2} \mathrm{O}$
 Disodium
 $\left[\left\{N, N^{\prime}\right.\right.$ ethane-1,2-diylbis $[N$ (carboxymethyl)glycinato $\left.\left.]\right\}(4-)-N, N^{\prime}, O, O^{\prime}, O^{N}, O^{N}\right]$ calciate(2-) hydrate【23411-34-9】

Calcium Disodium Edetate contains not less than 98.0 \% and not more than 102.0 \% of $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{CaN}_{2} \mathrm{Na}_{2} \mathrm{O}_{8}$ (374.27), calculated on the anhydrous basis.

Identification

(1) Evenly distribute 1.00 g of the substance to be examined in the crucible. Dry at about $105^{\circ} \mathrm{C}$ for 1 h , gently at first, and gradually increase the temperature to $600^{\circ} \mathrm{C} \pm 25^{\circ} \mathrm{C}$, and ignite in a muffle furnace, allowing the crucible to cool in a desiccator after each ignition. Flames should not be produced at any time during the procedure. After every ignition, compact the substance blown up to the sides of the crucible during ignition with a glass staff. The ignition is repeated until a full white color is achieved. If after prolonged ignition the ash still contains black particles, take up with hot water, filter through an ashless filter paper and ignite the residue and the filter paper. Combine the filtrate with the ash, carefully evaporate to dryness and ignite. Repeat the ignition until a full white color is obtained.
Take up 100 mg of residue in 20 mL of water and add 1.0 mL of 3 M Hydrochloric acid. The substance dissolves.
Add about 0.1 mL of methyl red and neutralize with 6 M ammonium hydroxide. Add 3 M hydrochloric acid, until the solution is acid to the indicator. Upon the addition of ammonium oxalate TS (about 0.6 mL), the solution becomes opalescent. Separate the suspension into equal portions. The addition of 6 M acetic acid (about 0.5 mL) to the half of this suspension does not affect the clearness of the solution, but it becomes clear when 3 M hydrochloric acid (about 1 mL) is added to the other half.
(2) Dissolve 0.5 g in 10 mL of water and add 10 mL of potassium pyroantimonate TS: a white, crystalline precipitate is formed. The formation of the precipitate is accelerated by rubbing the inside wall of the test tube with a glass rod.
(3) Infrared absorption spectrophotometry

Record the infrared absorption spectrum of Calcium Disodium Edetate and compare with the Reference Spectrum or the spectrum obtained with the Reference Standard: the transmission minima correspond in position and relative size.
pH Dissolve 2.0 g in water to make 10 mL : the pH of this solution is between 6.5 and 8.0.

Purity

(1) Chloride-Dissolve 0.70 g in water to make 20 mL . Add 30 mL of dilute nitric acid to this solution, allow to stand for 30 minutes and filter. To 10 mL of the filtrate add water to make 50 mL , and perform the test using this solution as the test solution. Prepare the control solution using 0.40 mL of 0.01 M hydrochloric acid Standard Solution for Volumetric Analysis, add 6 mL of dilute nitric acid and water to make 50 mL . Filter both solutions if necessary.
Add 1 mL of a $17 \mathrm{~g} / \mathrm{L}$ solution of silver nitrate to the test solution and the control solution. Allow to stand protected from light for 5 min . Any opalescence in the test solution is not more intense than that in the control solution (not more than 0.10%).
(2) Disodium edetate-Dissolve 1.00 g in 50 mL of water, add 5 mL of pH 10.7 ammonia-ammonium chloride buffer solution and titrate with 0.01 M magnesium chloride Standard Solution for Volumetric Analysis until the color of the solution changes from blue to red-violet (indicator: 0.04 g of eriochrome black T -Sodium chloride indicator): it is not more than 3.0 mL (not more than 1.0%).
(3) Nitrilotriacetic acid—Conduct this procedure using light-resistant vessels. Dissolve 0.100 g of Calcium Sodium Edetate in diluting solution to make exactly 25 mL , and use this solution as the sample solution. Separately, dissolve 40.0 mg of nitrilotriacetic acid in diluting solution to make exactly 100 mL . Pipet 1 mL of this solution, add 0.1 mL of the sample solution, then add diluting solution to make exactly 100 mL , and use this solution as the standard solution. Filter the sample solution and standard solution, and perform the test with exactly $20 \mu \mathrm{~L}$ each of the sample solution and standard solution as directed under Liquid Chromatography according to the following conditions, and determine the peak areas, A_{T} and A_{s}, of nitrilotriacetic acid in each solution: A_{T} is not larger than A_{S} (not more than 0.1%).

Diluting solution: Dissolve 10.0 g of iron (III) sulfate pentahydrate in 20 mL of 0.5 M solution of sulfuric acid and 780 mL of water, adjust to pH 2.0 with 1 M solution of sodium hydroxide, and add water to make 1000 mL .

Operating conditions-
Detector: An ultraviolet absorption photometer (wavelength: 273 nm).
Column: A stainless steel column 4.6 mm in inside diameter and 10 cm in length, packed with graphite carbon for liquid chromatography (mean pore size: 25 nm , specific surface: $120 \mathrm{~m}^{2} / \mathrm{g}, 5 \mu \mathrm{~m}$ in particle diameter).
Column temperature: A constant temperature of about $40^{\circ} \mathrm{C}$.
Mobile phase: Dissolve 50.0 mg of iron (III) sulfate pentahydrate in 50 mL of 0.5 M solution of sulfuric acid, add 750 mL of water, adjust to pH 1.5 with 0.5 M solution of sulfuric acid or 1 M solution of sodium hydroxide, and add 20 mL of ethylene glycol and water to make 1000 mL .
Flow rate: 1.0 mL per minute (the retention time of nitrilotriacetic acid is about 5 minutes).

System suitability-
Test for required detectability: When perform the test with $20 \mu \mathrm{~L}$ of the standard solution under the above operating conditions, the SN ratio of the peak of nitrilotriacetic acid is not less than 50 .
System performance: When the procedure is run with $20 \mu \mathrm{~L}$ of the standard solution under the above operating conditions, nitrilotriacetic acid and edetic acid are eluted in this order with the resolution between these peaks being not less than 7.
System repeatability: When the test is repeated 6 times with $20 \mu \mathrm{~L}$ of the standard
solution under the above operating conditions, the relative standard deviation of the peak area of nitrilotriacetic acid is not more than 1.0%.

Water $5.0-13.0$ \% (0.2 g, Karl Fischer method, Direct titration)
Assay Weigh accurately about 0.5 g and dissolve in water to make exactly 200 mL . Pipet 20 mL of this solution, add 80 mL of water, adjust with dilute nitric acid to a pH of 2 to 3 and titrate with 0.01 M bismuth nitrate Standard Solution for Volumetric Analysis until the color of the solution changes from yellow to red (indicator: 2 drops of xylenol orange TS).

> Each mL of 0.01 M bismuth nitrate Standard Solution for Volumetric Analysis $=3.743 \mathrm{mg}$ of $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{CaN}_{2} \mathrm{Na}_{2} \mathrm{O}_{8}$.

Reagent

Potassium pyroantimonate TS

Dissolve 2 g of potassium pyroantimonate in 95 mL of hot water. Cool quickly and add a solution containing 2.5 g of potassium hydroxide in 50 mL of water and 1 mL of $85 \mathrm{~g} / \mathrm{L}$ solution of sodium hydroxide. Allow to stand for 24 h , filter and dilute to 150 mL with water.

Nitrilotriacetic acid

Nitrilotriacetic acid $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{6}$
A white crystalline powder. Melting point: about $240^{\circ} \mathrm{C}$ (with decomposition).
Identification-Determine the infrared absorption spectrum of nitrilotriacetic acid as directed in the paste method under Infrared Spectrophotometry: it exhibits absorption at the wave numbers of about $1718 \mathrm{~cm}^{-1}, 1243 \mathrm{~cm}^{-1}, 1205 \mathrm{~cm}^{-1}, 968 \mathrm{~cm}^{-1}, 903 \mathrm{~cm}^{-1}, 746$ cm^{-1} and $484 \mathrm{~cm}^{-1}$.

Loss on drying: not more than $0.5 \%\left(1 \mathrm{~g}, 105^{\circ} \mathrm{C}, 3\right.$ hours $)$.
Content: not less than 97.0 \%.
Assay-Weigh accurately about 0.2 g of nitrilotriacetic acid, dissolve in 50 mL of water by heating, and titrate after cooling with 0.1 M sodium hydroxide Standard Solution for Volumetric Analysis (potentiometric titration). Perform a blank determination in the same manner, and make any necessary correction.

Each mL of 0.1 M sodium hydroxide Standard Solution for Volumetric Analysis $=9.557 \mathrm{mg}$ of $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{6}$

