図6 症例数の推移及び中止理由

(1) 有効性主要評価項目
治療期1（ホイスト）、治療期2（本品とホイスト）の2分間歩行テストの改善率は、A群治療期1：9.30％、A群治療期2：9.99％、B群治療期1：5.44％、B群治療期2：24.87％（B群は治療期2を先に実施）であった。治療効果（d1 − d2）/2は−10.07±1.16％（p = 0.037, t検定）であり、d1/2とd2/2に有意差があり主要評価項目が達成された。2分間歩
行テストの結果を表9にまとめる。

<table>
<thead>
<tr>
<th>表9 2分間歩行テストの結果（平均±標準偏差）</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベースライン (m)</td>
</tr>
<tr>
<td>前期1直後 (m)</td>
</tr>
<tr>
<td>前期2変化量 (m)</td>
</tr>
<tr>
<td>前期1変化率 (%)</td>
</tr>
<tr>
<td>後期1直前 (m)</td>
</tr>
<tr>
<td>後期2直後 (m)</td>
</tr>
<tr>
<td>後期2変化量 (m)</td>
</tr>
<tr>
<td>後期2変化率 (%)</td>
</tr>
<tr>
<td>全期3変化率 (%)</td>
</tr>
<tr>
<td>4週後 (m)</td>
</tr>
<tr>
<td>4週後変化量*4 (m)</td>
</tr>
<tr>
<td>4週後変化率*4 (%)</td>
</tr>
</tbody>
</table>

*1 前期：A群治療期1（ホイスト）、B群治療期2（本品とホイスト）
*2 後期：A群治療期2（本品とホイスト）、B群治療期1（ホイスト）
*3 全期：ベースラインから後期末まで
*4 後期末からの変化

(2) 有効性副次評価項目
10m歩行テストでの速度の結果を表10に示す。治療効果（d1−d2）/2は−9.14±
<table>
<thead>
<tr>
<th>表10 10m歩行テスト（速度）の結果（平均±標準偏差）</th>
</tr>
</thead>
<tbody>
<tr>
<td>変化率</td>
</tr>
<tr>
<td>前期1 (%)</td>
</tr>
<tr>
<td>後期2 (%)</td>
</tr>
<tr>
<td>全期3 (%)</td>
</tr>
</tbody>
</table>

*1 前期：A群治療期1（ホイスト）、B群治療期2（本品とホイスト）
*2 後期：A群治療期2（本品とホイスト）、B群治療期1（ホイスト）
*3 全期：ベースラインから後期末まで
表11 10m歩行テスト（歩数）の結果（平均±標準偏差）

<table>
<thead>
<tr>
<th></th>
<th>変化率</th>
<th>A群</th>
<th>B群</th>
</tr>
</thead>
<tbody>
<tr>
<td>前期*1(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>後期*2(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>全期*3(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 前期：A群治療期1（ホイスト）、B群治療期2（本体とホイスト）
*2 後期：A群治療期2（本体とホイスト）、B群治療期1（ホイスト）
*3 全期：ベースラインから後期末まで

②患者自身による主観的歩行評価、③医療従事者による歩行評価、⑤ADL評価について、本品の治療効果はいずれの項目も有意ではなかった。①徒手筋力テストについては股関節屈曲（左）で治療効果が有意（*** p < 0.001）であったが、その他の11項目の個々の治療効果はいずれも p > 0.05（Mann-Whitney U検定）であり有意でなかった。

⑥操作者の評価について、使いにくさのスコアの合計は1回目の使用から9回目の使用まででの変動として10、10、10、10、10、10、10、10、10であった。

また、電極貼付けを含まない装着完了までの平均時間は、5回目12分4秒、7回目12分4秒、9回目12分4秒であった。

(3) 安全性評価
1) 全有害事象
有害事象はA群15例中13例（86.7%）に42件、B群15例中14例（93.3%）に59件発生した（表12）。

表12 全有害事象

<table>
<thead>
<tr>
<th></th>
<th>A群（15例中）</th>
<th>B群（15例中）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>例数</td>
<td>件数</td>
</tr>
<tr>
<td>全体</td>
<td>13</td>
<td>42</td>
</tr>
<tr>
<td>腸炎</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ウイルス性腸炎</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>陰部ヘルペス</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>インフルエンザ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>鼻咽頭炎</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>咽頭炎</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>肺炎</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>足部白癬</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>気道感染</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>食欲減退</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>不眠症</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>脳梗塞</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
これらのうち治療期に発生した有害事象は、治療期 1（ホイスト）に 16 例（55.2%）31件、治療期 2（本品とホイスト）に 24 例（80.0%）42件であった（表 13）。なお、治療期外の有害事象（表 12 から表 13 を引いたもの）は 28 件あり、筋肉痛 4 件、背部痛 3 件、
関節痛 2 件、転倒 1 件、靭帯捻挫 1 件、膝蓋骨骨折 1 件、挫傷 1 件、過角化 1 件、発疹 1 件等であった。

表 13 治療期に発生した有害事象

<table>
<thead>
<tr>
<th></th>
<th>治療期 1（29 例中）</th>
<th>治療期 2（30 例中）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>例数</td>
<td>件数</td>
</tr>
<tr>
<td>全体</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>ウイルス性胃腸炎</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>陰部ヘルペス</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>インフルエンザ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>鼻咽喉頭炎</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>肺炎</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>足部白癬</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>気道感染</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>不眠症</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>感覚鈍麻</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>上室性期外収縮</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>高血圧</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>喉頭浮腫</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>上気道の炎症</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>上腹部部痛</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>便秘</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>龋歯</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>胃炎</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>胃痛</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>接触性皮膚炎</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>紅斑</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>脂漏性皮膚炎</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>皮膚剥脱</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>関節痛</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>背部痛</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>筋骨格痛</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>筋肉痛</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>頭部痛</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>変形性関節症</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>骨粗鬆症</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>四肢痛</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>発育性股関節形成不全</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>疲労</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>腫瘤</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>転倒</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>痛過傷</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>挫傷</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>合計</td>
<td>29*</td>
<td>31</td>
</tr>
</tbody>
</table>

* 各項目の例数の合計であるため全体の例数と一致しない。
2) 死亡例
死亡は1例報告された（症例□□）。治療期1、治療期2及び後観察期の終了から約1か月後に脳梗塞により死亡した。本品使用後約7週、その後の步行テストから約4週経過後の発生であることから、因果関係は否定された。

3) 重篤な有害事象
重篤な有害事象（死に至るもの、入院又は入院期間の延長が必要となるもの、永続又は顕著な障害・機能不全に陥るもの、先天異常・先天性欠損を来すもの、その他医学的に重要な状態）は、上記の死亡例を含めて4例5件報告され、いずれも因果関係は否定された（表14）。

<table>
<thead>
<tr>
<th>事象</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>脳梗塞（症例□□）</td>
<td>上記死亡例と同一。</td>
</tr>
<tr>
<td>右膝蓋骨骨折（症例□□）</td>
<td>治療期1、2の終了後、自宅で電動昇降椅子より立ち上がるとスッパをかけ忘れ、膝折れ、膝から落ち転倒した。約1か月後に軽快し退院した。</td>
</tr>
<tr>
<td>脳炎（症例□□）</td>
<td>治療期1の終了後、治療期2中に肺炎を発症し、約10日後に回復した。</td>
</tr>
<tr>
<td>肺炎及び喉頭浮腫（症例□□）</td>
<td>治療期2中にインフルエンザに続発した肺炎を発症し、喉頭浮腫及び大量の咳を認めたため気管切開術を施行した。約1か月後に回復し集中治療室から一般病棟に転室した。</td>
</tr>
</tbody>
</table>

4) 本品との因果関係を否定できない有害事象
因果関係を否定できない有害事象はA群15例中4例（26.7%）に6件、B群15例中10例（66.7%）に13件発生し（表15）、合計30例中14例（46.7%）に19件であった。これらはすべて軽度（通常の日常生活が妨げられない程度）と判定された。
表15 因果関係を否定できない有害事象

<table>
<thead>
<tr>
<th></th>
<th>A群（15例中）</th>
<th>B群（15例中）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>例数</td>
<td>件数</td>
</tr>
<tr>
<td>全体</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>接触性皮膚炎</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>紅斑</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>皮膚剥脱</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>関節痛</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>腹部痛</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>筋肉痛</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>変形性関節症</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>四肢痛</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>疼痛</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>転倒</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>撞過傷</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>膝傷</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>合計</td>
<td>6*</td>
<td>6</td>
</tr>
</tbody>
</table>

* 各項目の例数の合計であるため全体の例数と一致しない場合がある。

因果関係を否定できない有害事象のうち治療期に発生した事象は、治療期1（ホイスト）には29例中2例（6.9%）に2件、治療期2（本品とホイスト）には30例中12例（40.0%）に15例であった（表16）。治療期2において筋肉痛、身体の痛み、皮膚障害等が多い傾向であった。なお、因果関係を否定できない有害事象は、治療期1にも本品との因果関係に基づき判定されている（ホイストとの因果関係でない）。治療期外に発生した因果関係を否定できない有害事象は、筋肉痛1件、転倒1件であった。

表16 治療期に発生した因果関係を否定できない有害事象

<table>
<thead>
<tr>
<th></th>
<th>治療期1（29例中）</th>
<th>治療期2（30例中）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>例数</td>
<td>件数</td>
</tr>
<tr>
<td>全体</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>接触性皮膚炎</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>紅斑</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>皮膚剥脱</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>関節痛</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>腹部痛</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>筋肉痛</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>変形性関節症</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>四肢痛</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>疼痛</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>撿過傷</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>膝傷</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>合計</td>
<td>2*</td>
<td>2</td>
</tr>
</tbody>
</table>

* 各項目の例数の合計であるため全体の例数と一致しない場合がある。
5) 不具合
不具合は22件報告され、これらに伴う有害事象はなかった。背面モジュール又はコントローラ異常による停止が1例1件、背面モジュール又はコントローラ異常による使用不能が1例1件、関節部異常音が1例1件、本体とコントロールパネルの異常停止が1例1件、下肢カフのネジが硬いが1例1件、エラーによる停止が1例4件、スライドプレート剥落が1例1件、パッドリク警告なく電源切が1例1件、軸用パッド破損が1例1件、腰部フレームずれが1例7件、下肢カフ開閉部脱落が1例1件、大腿支柱ロックレバー緩みが1例1件、画面表示消失が1例1件であった。

6) 動作モニタリングデータ（エラー履歴）
動作モニタリングデータにおいてエラーは202件報告された（表17）。うち170件は生体電位信号の異常であった。

<table>
<thead>
<tr>
<th>エラー</th>
<th>例数</th>
<th>件数</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>背面モジュール又はコントローラ異常</td>
<td>2</td>
<td>4</td>
<td>6.7</td>
</tr>
<tr>
<td>パワーユニット異常・右股関節</td>
<td>2</td>
<td>2</td>
<td>6.7</td>
</tr>
<tr>
<td>パワーユニット異常・左股関節</td>
<td>2</td>
<td>2</td>
<td>6.7</td>
</tr>
<tr>
<td>パワーユニット異常・右膝関節</td>
<td>4</td>
<td>8</td>
<td>13.3</td>
</tr>
<tr>
<td>パワーユニット異常・左膝関節</td>
<td>1</td>
<td>1</td>
<td>3.3</td>
</tr>
<tr>
<td>センサシューズ接続異常・右足</td>
<td>5</td>
<td>6</td>
<td>16.7</td>
</tr>
<tr>
<td>センサシューズ接続異常・左足</td>
<td>4</td>
<td>5</td>
<td>13.3</td>
</tr>
<tr>
<td>センサシューズ故障・右足</td>
<td>1</td>
<td>3</td>
<td>3.3</td>
</tr>
<tr>
<td>生体信号異常・右股関節</td>
<td>12</td>
<td>26</td>
<td>40.0</td>
</tr>
<tr>
<td>生体信号異常・左股関節</td>
<td>12</td>
<td>25</td>
<td>40.0</td>
</tr>
<tr>
<td>生体信号異常・右膝関節</td>
<td>17</td>
<td>74</td>
<td>56.7</td>
</tr>
<tr>
<td>生体信号異常・左膝関節</td>
<td>13</td>
<td>45</td>
<td>43.3</td>
</tr>
<tr>
<td>バッテリ残量なし</td>
<td>1</td>
<td>1</td>
<td>3.3</td>
</tr>
</tbody>
</table>

7) その他
治療前後で血圧及び脈拍数の変動はなく、治療期による有意差は認められなかった。中等度（通常の日常生活に一部支障をきたす程度）の高血圧が1例1件発現したが、因果関係を否定され、薬剤治療により回復した。心電図の異常所見は治験中に14例で認められたが問題なしと判断され、治療期前の「異常あり」の頻度において治療期間での差はなかった。

(4) 試験検体
臨床試験で使用した検体に不具合等への対応を含めて改良が行われたため申請品目と差
ある（表 18）。臨床試験の成績に影響するものではなく、安全性試験を最新の構成にて実施し合格した旨が報告された。

表 18 臨床試験検体に対して行われた変更

<table>
<thead>
<tr>
<th>変更部位</th>
<th>変更内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>各部基板</td>
<td>内部基板間通信に関連する信号の精度向上により、動作時のノイズによる通信不良発生率を低減した。</td>
</tr>
<tr>
<td>各部基板</td>
<td>重体電位信号ケーブルの本体内部コネクタ形状を Knee と Hip で異なる形状とし、組立時のツールフロープ対策とした。</td>
</tr>
<tr>
<td>各部基板</td>
<td>電子部品の製造中止対応と、EMC 対策のための調整を行った。</td>
</tr>
<tr>
<td>ソフトウェア</td>
<td>基板の更新に対応するためのソフトウェアの更新を行った。</td>
</tr>
<tr>
<td>ソフトウェア</td>
<td>ソフトウェアのバグフィックスを行った。なお、当該バグは使用時には顕現していない。</td>
</tr>
<tr>
<td>ソフトウェア</td>
<td>保守のための情報をサーバにアップロードする機能（リモートサポート機能）に対応した。本品の通常使用には影響しない。</td>
</tr>
<tr>
<td>ソフトウェア</td>
<td>外部モニタに機体の動作状態を表示させるための機能に対応した。本品の通常使用には影響しない。</td>
</tr>
<tr>
<td>足関節</td>
<td>端部形状の微調整と加工精度の向上により、部品の遊びを低減し、鳴りを少なくした。</td>
</tr>
<tr>
<td>カフ</td>
<td>固定ネジ穴の加工方法を指定し、加工方法によるバラツキをなくし形状を防止した。</td>
</tr>
<tr>
<td>カフ</td>
<td>開閉軸の固定構造を調整し、軸の抜け防止対策を行った。</td>
</tr>
<tr>
<td>背面モジュール</td>
<td>パッテリパック固定用のスライドプレートを一体成型として、剥がれ対策を行った。</td>
</tr>
<tr>
<td>背面モジュール</td>
<td>背面モジュール固定用の結束バンド用の穴位置を調整し、バンドの破断が起こらないよう対策した。</td>
</tr>
<tr>
<td>腰フレーム</td>
<td>腰幅調整機構を改良し、固定力を向上させた。</td>
</tr>
<tr>
<td>腰フレーム</td>
<td>一部のネジが緩む問題があったため、当該部位の構造の見取しを行い、ネジの緩みを低減した。</td>
</tr>
<tr>
<td>コントローラ</td>
<td>コントローラケースのケーブル固定機構を見直し、引っ張りに対する耐力を強化した。</td>
</tr>
<tr>
<td>コントローラ</td>
<td>液晶パネル製造中止対策として基板の修正と、ケースの修正を行った。</td>
</tr>
<tr>
<td>コントローラ</td>
<td>コントローラケーブルが長いため短いという双方の意見を考慮しケーブルの延長と、ケースへのケーブル留めの追加を行った。</td>
</tr>
<tr>
<td>足部フレーム</td>
<td>長期使用の際に摩耗する可能性のある部位（軸受部、内外転調整部）について、耐摩耗性を向上させた。</td>
</tr>
<tr>
<td>足部フレーム</td>
<td>下腿脚長調整部位が使用中にずれる問題を低減するための形状調整を行った。</td>
</tr>
<tr>
<td>ベルト</td>
<td>ベルト強度の向上と、固定方法の調整を行い、装着者と機体の固定力を向上した。</td>
</tr>
<tr>
<td>センサシューズ</td>
<td>本体とのコネクタの活線挿抜に対応した。</td>
</tr>
<tr>
<td>充電器</td>
<td>充電器の修了判定条件の調整、パッテリパックの自己セルバランス調整能力を確実に働かせるため、充電終了電圧を微調整した。</td>
</tr>
</tbody>
</table>
総合機構における審査の概要

総合機構は、以下に述べる点を中心に専門協議の議論を踏まえ、審査を行った。
なお、本品は構造、原理において新規性があること、希少疾病を対象としており、臨床試験における十分なデータ収集が困難であること、評価手法として既存の明確に定まった基準が確立されていないことから、現時点では試行的評価となざるを得ないと考えられる。
したがって、本品の審査にあたっては、収集された臨床試験の成績のみで本品の有効性、安全性を十分に評価することが困難であるものの、希少疾病に対する臨床上のベネフィットを念頭に、現時点で評価されている点、未評価に留まる点を明確した上で、承認後に収集される使用成績評価等のデータにより治療プログラムの最適化を行うという前提において、リスクとベネフィットとのバランスを総合的に評価し、承認の可否について審査を行う方針とした。

(1) 対象患者を一括して評価する妥当性について

臨床試験では8疾患を一括して評価しており、疾患ごとの分析等はなく、先天性ミオパチーは0例、封入体筋炎と筋萎縮側索硬化症はそれぞれ1例の登録であり、一番多く登録された筋ジストロフィーも7例であった（表8）。総合機構は、対象疾患の希少性から個々の疾患について十分な症例数を確保することが困難であったと考えられる点も念頭に、8疾患を一括して評価することの妥当性について、以下の観点から検討した。
1) 共通の奏効機序について
2) 歩行機能低下の進行度について
3) 主力モードであるCVCで用いる生体電位信号の測定について

1) 共通の奏効機序について

総合機構は、8疾患における步行機能低下の原因、症状の特徴、類似性を踏まえた本品の対応可能性について、申請者に説明を求めた。
申請者は、次のように回答した。対象疾患は運動単位（motor unit）を構成する下位運動ニューロン又は筋の障害を主とした疾患であり、筋萎縮と筋力低下が徐徐に進行し、歩行機能が徐々に低下する。下肢の著しい痙縮が認められないこと、小脳症状や基節体外路症状などがないことも共通する。これらの疾患に対する歩行に関する既存療法の意義は脊髄性筋萎縮症診療マニュアル、筋萎縮性側索硬化症診療ガイドライン、シャルコー・マリー・トゥース病診療マニュアル、デュシェンヌ型筋ジストロフィー診療ガイドライン等においても示されている。本品ではこれらの疾患による步行機能低下に対して、運動単位電位に対応する生体電位信号を利用して下肢関節運動をアシストするトルクを発生させ、運動をアシストしつつ歩行を行うことで、既存療法と比較してより大きな歩行機能改善効果を得ることが期待できる。
総合機構は、次のように考える。8疾患には筋萎縮性側索硬化症を除き上位運動ニューロン障害を含まず、下位運動ニューロン又は筋の障害によって生じた筋力低下に伴う歩行機能低下という共通性がある。これらに対する既存療法の奏効機序は、廃用に対する筋力回復、歩行動作の学習というメカニズムにおいて共通すると想定される。また、現行のガイドライン等において歩行機能低下に対する既存療法の意義が示されている疾患であり、本品による治療の効果が期待できると考える。この観点から8疾患への本品を用いた治療による歩行機能の改善を一括して評価することは可能と考える。本品の臨床的効果は、8疾患の異なる病因そのものに奏効するものではないが、8疾患による歩行機能低下に対して、生体電位信号を利用して歩行動作へのアシストを加えて歩行運動を繰り返すことで、通常の方法より効果的に改善効果を得ることを期待したものと考えられる。

なお、筋萎縮性側索硬化症については一般には上位運動ニューロン障害（痙攣等）もあり、臨床試験の組入れにおいて下肢症状が緩徐に進行する型に限定され、上位運動ニューロン障害が優位な場合は除外された。したがって総合機構は、添付文書の重要な基本的注意において、上位運動ニューロン障害が優位な筋萎縮性側索硬化症での有効性、安全性が確認されていない旨を記載することが適切と判断し、申請者の同意を得た。

2) 歩行機能低下の進行度について

総合機構は、8疾患において様々な進行度（病期）が想定され、有効性が期待できない、又はリスクが高まる病期も想定される中で、適切な対象病期、例えば臨床試験の対象とされた歩行機能低下の進行度（10mを自立歩行できず、介助や歩行器等を使うことで10m以上の歩行可能）等を設定する必要性について、申請者に見解を求めた。

申請者は、次のように回答した。臨床試験においては評価対象として適切な歩行障害の患者を対象とするため、10mを自立して歩行できないが、掴まったり、杖などを用いた歩行が可能である場合を選択基準に設定した。より早期、又は進行期にも効果がある可能性はあるが、それらの患者におけるデータは臨床試験では得られていない。

総合機構は、申請者の回答に基づき、臨床試験の対象とされた歩行機能低下の進行度よりも早期、あるいはより進行してしまった時期のデータが得られていない点を考慮し、「(4)使用目的又は効果について」にて後述するように、使用目的又は効果において歩行の介助又は歩行補助具を要する患者が対象であることを明示すると共に、有効性及び安全性のデータが上記の歩行機能低下の進行度の患者に限られる旨を添付文書の「使用目的又は効果に関連する使用上の注意」に記載することが適切と考え、申請者の同意を得た。総合機構は、歩行機能低下の進行度を揃えた患者選択を行うことで、8疾患共通して奏効が期待され、一括して評価することが可能と考える。
3) 主力モードである CVC で用いる生体電位信号の測定について

総合機構は、対象疾患に対して本品の有する生体電位信号の測定性能の適切性（健康人よりも弱まる生体電位信号に対応できるか、神経原性疾患と筋原性疾患のいずれに対応できるか、筋萎縮性側索硬化症等で見られる不随意の活動電位や筋強直性ジストロフィーでのミオトニア放電が混入した状況下で誤作動を起こさないか等）について申請者に説明を求めた。

申請者は、次のように回答した。本品の対象疾患のうち筋原性疾患（遠位型ミオパチー、封入体筋炎、先天性ミオパチー、筋ジストロフィー）では、運動単位電位は小さくなる特徴がある。神経原性疾患（脊髄性筋萎縮症、球脊髄性筋萎縮症、筋萎縮性側索硬化症、シャルコー・マリー・トゥーセ病）では、運動単位電位がまばらとなる可能性があるが、表面電極で測定した場合や筋萎縮が進んだ場合は測定される活動電位も小さくなる。本品は運動単位電位を生体電位信号として検出しているが、対象疾患において想定される測定された生体電位信号の振幅の大小及び信号の密度の違いに対し、フィルタ及び感度レベルの選定によって調整し対応が可能である。臨床試験においては、組入れ基準を満たした筋原性及び神経原性いずれの疾患の症例においても、生体電位信号を検出し、CVC モードに基づく動作が可能であることを前観察期において全症例（31 例）で確認できた。不随意の筋収縮等による生体電位信号に対しては、トルクチューナ及びトルクリミットにより、アシストトルクに換算する際に、誤動作と感じない強さのアシストトルクに抑えることで対応が可能である。また、フィルタにより不随意の筋収縮等による生体電位信号を除去する設定も可能である。なお、筋強直性ジストロフィーは臨床試験において 2 例登録されたが、随意収縮を検出し治療を実施することが可能であった。

総合機構は、申請者の回答と、2)において述べた患者選択基準（10 m を自立歩行できず、介助や歩行器等を使うことで 10 m 以上歩行可能）にある歩行機能を有する患者であれば、機能の残存する筋が存在し、活動電位も相応に生じると考えられることを考慮し、8 疾患での生体電位信号の測定は基本的に可能と考える。

総合機構は、以上の 1)～3)の観点から、本品を用いた歩行機能の改善の評価にあたっては、8 疾患を一括して評価することが可能として判断した。ただし、臨床試験において得られた疾患ごとのデータがきわめて限られることから、「下記の医療機器の製造販売後の調査及び試験の実施の基準に関する省令第 2 条第 1 項に規定する製造販売後調査等の計画に関する資料」において後述のように、承認後に追加のデータ収集を行い、本品の有効性が疾患ごとに異なる傾向が見られないことを確認することが適切とされる。

なお、対象疾患に含まれる筋ジストロフィーについて、総合機構は、臨床試験においてデュシェンヌ型の筋ジストロフィーが組み入れられていないものの、上記の 1)～3)の観点から、本品の効果が得られる可能性があると考える。またデュシェンヌ型の筋ジストロフィー
においては小児の患者が多いと想定され、2)で述べた歩行機能低下の進行度と、本品の装着に関する体格上の制限（体重 40〜100kg、身長 150〜190cm）に適合する小児も考えられる。このような小児の患者では、臨床試験の対象（選択基準において満 18 歳以上）と異なり、成長、倒れ歩、扁平足、拘縮の影響や積極的な歩行運動療法に伴う心不全の悪化等が想定され、これらの影響については臨床試験のデータからは未知である。以上のことから総合機構は、本品の小児又への使用の可否、注意事項等について、申請者に見解を求めた。

申請者は、次のように回答した。本品の適用サイズに該当する身長 150cm 以上は男女とも平均 12 歳に該当し、体重 40kg は平均 11.5 歳に該当する。臨床試験では 18 歳未満のデータはないものの、年齢以外の組入れ基準に合致する場合は有効性が期待できると考える。ただし、デュシェンヌ型筋ジストロフィーの小児では年齢とともに、足関節の拘縮、脊柱の変形、呼吸不全症状、心不全症状の悪化が進行するため、これらの症状に十分な注意を払い、コントロールした上で使用しなければならない。また臨床試験では、一度自立した歩行が獲得された後に歩行機能が低下した緩徐進行性の神経・筋疾患患者を対象として検証した。一度も自立歩行に到達していない脊髄性筋萎縮症（II型）、先天性筋強直性ジストロフィー、小児発症の先天性ミオパーキーを対象とした、新たに歩行を獲得する目的の臨床試験は実施されていない。以上より、添付文書の「妊婦、産婦、授乳婦及び小児等への適用」において、小児に対するデータがないこと、疾患特有の合併症に注意する必要があること、及び自立歩行を新たに獲得する目的での臨床試験は行われていないことを記載すると共に、適正使用ガイド等において小児の筋ジストロフィーで想定される心肺機能の低下、足関節の拘縮、脊柱の変形等に注意を要する点について情報提供していく。

総合機構は、現時点で小児への使用のデータはないものの、体格の適合する小児への使用を禁じるべきとまでは言えないと考え、情報提供等を行うとする申請者の対応は妥当と判断した。ただし、使用成績評価において未知の有害事象（心肺機能に関する事象等）に関する情報を収集し、新たな傾向が見られた場合は医療現場へ十分な情報提供を行う等の適切な措置を講じる必要があると考える。

(2) 有効性評価について
総合機構は、臨床試験で得られた有効性の成績について、以下の観点から検討した。

1) 評価指標の妥当性
2) 主要評価項目の成績
3) 副次評価項目の成績

1) 評価指標の妥当性
申請者は、臨床試験で採用した主要評価項目、副次評価項目について、次のように説明した。

主要評価項目に採用した 2 分間歩行テストは、歩行持久力（疲労耐久性）を評価する指標
である。同様の目的の指標に6分間歩行テストがあるが、本品の対象患者は神経・筋疾患であり、10mを自立歩行できない水準に歩行機能が限定され長時間の歩行は難しいことから、6分間の歩行は困難と考えられる。また、2分間歩行テストと6分間歩行テストは相関するとする報告6,7,8もある。

副次評価項目について、①10m歩行テストは、持久力は評価できないが歩行機能の分析として有用である。②患者自身による主観的歩行評価は、歩行に関わる患者の自覚症状、満足度を評価するため設定した。自覚症状のうち歩行時の疲労感、足の軽さ、安定性、安心感、楽しさを視覚アナログスケールで評価した。③医療従事者による歩行評価は、Rivermead Visual Gait Assessment®の立脚期、遊脚期の評価項目を用いて前後評価の尺度とし、2分間歩行テストと10m歩行テストのビデオ映像を視覚的歩行評価中央判定委員会が評価するものとした。④徒手筋力テストは、神経・筋疾患を含む筋力評価に有用と考えられ、歩行に関連する股関節、膝関節、足関節の伸展及び屈曲を評価した。⑤ADL評価（Barthel index）は、日常生活動作を構成する10項目について、生活の自立度評価として採用した。⑥操作者の評価は、臨床現場で使用する際に重要な評価として、装着着時及び歩行時の使用評価、装着時間（電極を貼付する時間を含まず）を測定した。

総合機構は、次のように考える。本品は歩行機能の改善を期待する製品であり、本品の有効性として歩行機能を評価する必要がある。したがって、活動機能回復装置に関する評価指標1においても示されている歩行能力の指標を評価項目として採用したことは妥当であり、歩行テストの時間について、本品の臨床試験においては2分間歩行テスト、活動機能回復装置に関する評価指標の例示は6分間歩行テストと相違しているものの、対象疾患で長時間の歩行が困難と考えられること等も踏まえ、2分間歩行テストを採用したことに関する申請者の説明は妥当と考える。本品の臨床試験においては主要評価項目として2分間歩行テスト、副次評価項目として10m歩行テスト、ADL評価（Barthel index）、患者自身及び医療従事者による歩行評価、徒手筋力テスト、操作者による使いやすさと装着時間の評価が行われ、QOLに関する項目がないものの、歩行機能の評価項目としては概ね充足していると考える。

2) 主要評価項目の成績
総合機構は、有効性主要評価の成績について、以下の観点から検討した。
① クロスオーバーによる評価の妥当性
② 患者背景、使用方法等の影響
③ A群とB群の効果の違い

① クロスオーバーによる評価の妥当性
申請者は、対象が希少疾病であり組入れ患者数が少ないことからクロスオーバー試験を採用した旨を説明した。
総合機構は、提出された臨床試験の成績から、ベースライン、前期の直後、後期の直前の
値を比較すると、A群で平均m→m→m、B群でm→m→mであり（表9）、両群ともに後期の終わりにおいて成績がベースラインまで戻らず、ウォッシュアウトされなかった（介入によって得られた歩行機能の改善が維持されていた）と考える。クロスオーバーデザインの採用は、希少疾病を対象としており症例数が限られたこと、組入れ症例の症状が比較的安定していると考えられたことから止むを得ないと考えるが、後期には前期で得られた歩行機能改善の維持を否定できないと考える。このため総合機構は、その影響を受けないと想定、すなわちA群の治療期1（ホイスト）とB群の治療期2（本品とホイスト）の比較結果を確認した。A群治療期1の改善率が平均930%、B群治療期2の改善率が平均2487%（p=、t検定）であり、本品群における有意な上乗せ効果を認めていた。一方、後期については、B群治療期1（ホイスト）の改善率が平均544%、A群治療期2（本品とホイスト）の改善率が平均999%であり、B群治療期1の効果が低い傾向が見られたが、これらの治療期においては、前期の介入による歩行機能改善の維持の影響が想定される。加えて総合機構は、平均値だけでなく個別データの推移と改善傾向を考察するよう申請者に求めた。

申請者は、次のように回答した。各症例の2分間歩行テストの測定値の推移を図7に示す。A群13例、B群11例において、前期のA群治療期1（ホイスト）では76.9%、前期のB群治療期2（本品とホイスト）では100%の症例で改善が見られた。B群治療期2の症例の72.7%においてA群治療期1の改善率の平均値を上回る改善率が見られた、後期を合わせると、治療期1で改善した症例は70.8%、治療期2で改善した症例は75.0%であった。

総合機構は、前期での比較も念頭に、全体の傾向として本品においては概ねホイスト群を上回る効果が得られたと判断した。なお、個別症例での影響因子等については「②患者背景、使用方法等の影響」で述べる。
図7 各症例の主要評価項目（2分間歩行テスト）の成績の推移
横軸：実施数（回目）、縦軸：距離（ｍ）
---- 治療期1（ホイスト）
---- 治療期2（本品とホイスト）

総合機構は、主要評価の2分間歩行テストの解析において、ベースラインをVisit3（3回目の来訪）とVisit4（4回目の来訪）の測定値のうち大きい方の値とした経緯について申請者に説明を求めた。

申請者は、次のように回答した。データ収集後にベースラインをVisit4から「Visit3とVisit4の大きい方」に変更した。これは症例検討会議事雑にあるように、Visit3とVisit4の間に治療はなく、被験者の歩行機能は同程度と判断できる一方、30例中9例においてVisit4での値がVisit3より小さかったため、被験者の最大歩行機能を評価する必要性があり、大きい方の値を採用することにした。なお、試験の途中においてVisit4の結果がVisit3から常識を超えて変動した症例を症例取扱い検討会にて検討するよう定めた上で（症例とデータの取扱いに関する基準）、統計解析計画書補遺において計画を改訂したものである。ベースラインを、(a)Visit4、(b)Visit3とVisit4の大きい方、(c)Visit3とVisit4の平均、(d)Visit3、とした場合のクロスオーバー及び前期での効果を算出し、表19に示す。いずれも傾向は同様であり、主解析結果との整合性は保たれていると考えられる。
表19 各ベースラインでの治療効果（平均±標準偏差）
(a) Visit 4、(b) Visit 3 と Visit 4 の大きい方、(c) Visit 3 と Visit 4 の平均値、(d) Visit 3

<table>
<thead>
<tr>
<th>ベースライン</th>
<th>クロスオーバー</th>
<th>前期（A群治療期1、B群治療期2）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>治療効果</td>
<td>有意確率</td>
</tr>
<tr>
<td></td>
<td>(平均値)</td>
<td>(両側)</td>
</tr>
<tr>
<td>(a)</td>
<td></td>
<td>p=</td>
</tr>
<tr>
<td>(b)</td>
<td>-10.07±</td>
<td>p=0.037</td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td>p=</td>
</tr>
<tr>
<td>(d)</td>
<td></td>
<td>p=</td>
</tr>
</tbody>
</table>

総合機構は、次のように考える。ベースラインの変更が事後的に行われたことについては適切性にやや欠くものと考えられる。一方、想定される様々なベースラインからいずれが最適なものであるのか選択することは困難であると考えられる。当初提出された(b)に基づく解析が不適切であるとは言えず、想定される各種ベースラインに基づく解析のいずれにおいても、有意差又は改善傾向が認められている。総合機構は、本品の対象が希少疾病であり、根治的な治療法は存在せず、症例数が限られることも念頭に、当初提出された(b)の結果、症例の詳細を審査し、総合的に本品の有効性を評価することとした。

② 患者背景、使用方法等の影響

総合機構は、治療期1、治療期2の間の患者背景や使用方法等における偏りの影響等について、申請者に説明を求めた。

申請者は、次のように回答した。影響因子と治療期1、治療期2の治療効果（改善率）の関係を図8及び表20に示す。
(a) 組入れ時の年齢（横軸、歳）と改善率（縦軸、％）

(b) ベースラインの2分間歩行距離（横軸、m）と改善率（縦軸、％）
図8 影響因子と改善率

○：A群治療期1（ホイスト）●：A群治療期2（本品とホイスト）
△：B群治療期1（ホイスト）▲：B群治療期2（本品とホイスト）
表 20 影響因子ごとの平均改善率

(a) 疾患

<table>
<thead>
<tr>
<th>群</th>
<th>影響因子</th>
<th>治療期 1 (%)</th>
<th>治療期 2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 群</td>
<td>脊髄性筋萎縮症（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>球脊髄性筋萎縮症（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>筋萎縮性側索硬化症（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMT 病（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>遠位型ミオパチー DMRV（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>遠位型ミオパチー 三好型（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>封入体筋炎（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>筋ジストロフィー（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 群</td>
<td>脊髄性筋萎縮症（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>球脊髄性筋萎縮症（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>筋萎縮性側索硬化症（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMT 病（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>遠位型ミオパチー DMRV（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>遠位型ミオパチー 三好型（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>封入体筋炎（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>筋ジストロフィー（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>全群</td>
<td>脊髄性筋萎縮症（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>球脊髄性筋萎縮症（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>筋萎縮性側索硬化症（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CMT 病（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>遠位型ミオパチー DMRV（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>遠位型ミオパチー 三好型（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>封入体筋炎（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>筋ジストロフィー（n=1）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) 筋原性／神経原性

<table>
<thead>
<tr>
<th>群</th>
<th>影響因子</th>
<th>治療期 1 (%)</th>
<th>治療期 2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 群</td>
<td>筋原性（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>神経原性（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 群</td>
<td>筋原性（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>神経原性（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>全群</td>
<td>筋原性（n=1）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>神経原性（n=1）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 20(a)の疾患ごとの改善率について、全体的には治療期 2（本品とホイスト）が治療期 1（ホイスト）を上回っているが、個々の症例数が少なく、疾患別の特徴を判断することは難しい。後述の治療頻度（間隔）、入院／外来の要因の影響も考えられ、さらなる情報収集が必要である。神経原性疾患、筋原性疾患に分けた場合（表 20(b)）には、A 群治療期 1 と B
群治療期2を比較して、神経原性、筋原性とも治療期2の改善率が大きい傾向であった。神経原性疾患に比較的有効性が高い傾向を認めた（神経原性疾患（n=13）の改善率の上乗せの平均は%、筋原性疾患（n=11）の改善率の上乗せの平均は%）。

その他、図8及び表20の多くの場合において、影響因子の値ごとの症例数が少ないものの、治療期2の改善率が治療期1の改善率を上回る傾向が見られた。この傾向は前A群治療期1とB群治療期2で比較した場合も同様であった。

一方、図8(c)の治療頻度（間隔）と改善率の間に相関傾向を認めた。間隔の短い症例で改善率が高かった。間隔の短い症例には入院が多く、長い症例には外来枚数多かった。入院症例における治療の実施頻度の平均は治療期1で週回、治療期2で週回、外来症例では治療期1、治療期2とも週回であった。表20(d)の入院/外来においては、入院症例での改善率が高かった。B群においてA群より間隔の短い症例、入院の症例が多かったが、間隔の短い症例、入院症例に限定した比較においても、治療期2の改善率は治療期1より高かったと推論された。入院症例において改善率が高かった理由は、治療の実施間隔の差によるものか、入院症例においてスケジュールの柔軟な調整や体調管理、薬物の調整が可能であることによるものかの判断はできなかったが、本薬で効果を得るために選択的な治療プログラムの実施が必要であることを示していると考える。

事前のリハビリテーションを行った症例での治療期1の効果の抑制の影響について、事前にリハビリテーションを実施した群で治療期2の上乗せ効果が高いという傾向はなかった（表20(c)）。併用療法としてリハビリテーションを行っていないA群の症例で治療期2の改善率が低かったが（表20(e)、5症例中4症例が外来患者だった。全体として併用療法としてリハビリテーションを行った症例で治療期2の改善率が治療期1より明らかに高い傾向はなかった。A群の不具合ありの症例で治療期2の改善率が低かったが、B群及び全群ではその傾向はなかった（表20(i)）。

総合機関は、次のように考えられる、A群、B群において主に治療頻度（間隔）の偏りがみられるものの、治療頻度が低い場合においてB群治療期2はA群治療期1に比べて高い改善を示したと見られる。また、入院症の偏りが想定されるものの、入院症例同士を比べてもB群治療期2の改善率が高い傾向がある。「（5）治療プログラム、使用方法について」で後述するように、臨床試験で得られた知見をもとに、本薬を適切なプログラムに基づき使用することで、高い効果が得られる可能性があると判断した。ただし臨床試験は症例数が限定されており、今後さらに影響因子に関する知見を積み重ねていく必要があると考えられる（「卜、医療機器の製造販売後の調査及び試験の実施の基準に関する省令第2条第1項に規定する製造販売後調査等の計画に関する資料」参照）。併用療法として実施されたリハビリテーションの影響については限られたデータからの判断は困難であるが、評価に大きな影響を与えたとまでは言えないと考える。