末梢性神経障害治療剤

日本薬局方

メコバラミン錠

メコバラミン錠500 トーワ

MECOBALAMIN TABLETS 500 "TOWA"

貯 法:室温保存 有効期間:3年

承認番号	16100AMZ04409		
販売開始	1987年10月		

3. 組成・性状

3.1 組成

1錠中の 有効成分	日局 メコバラミン ······500μg
添加剤	乳糖水和物、結晶セルロース、バレイショデンプン、部分アルファー化デンプン、ヒドロキシプロピルセルロース、ステアリン酸マグネシウム、ヒプロメロース、マクロゴール6000、白糖、ポリオキシエチレン(105)ポリオキシプロピレン(5)グリコール、アラビアゴム末、タルク、沈降炭酸カルシウム、酸化チタン、カルナウバロウ

3.2 製剤の性状

性状・剤形	白色の糖衣錠				
識別コード	Tw307				
外形	表 (Tw 307)	裏	側面		
直径(mm)	6. 7				
厚さ(mm)		3. 9	3. 9		
質量(mg) 143					

4. 効能又は効果 末梢性神経障害

6. 用法及び用量

通常成人は、1日3錠(メコバラミンとして1日1,500 μ g)を3回にわけて経口投与する。

ただし、年齢及び症状により適宜増減する。

8. 重要な基本的注意

本剤投与で効果が認められない場合、月余にわたって漫然と使用 すべきでない。

9. 特定の背景を有する患者に関する注意

9.7 小児等

小児等を対象とした臨床試験は実施していない。

11. 副作用

次の副作用があらわれることがあるので、観察を十分に行い、異常 が認められた場合には投与を中止するなど適切な処置を行うこと。

11.2 その他の副作用

11.2 C () (E() E() (1)						
	0.1~5%未満	0.1%未満				
消化器	食欲不振、悪心・嘔吐、下痢					
過敏症		発疹				

注) 発現頻度は製造販売後調査を含む。

14. 適用上の注意

14.1 薬剤交付時の注意

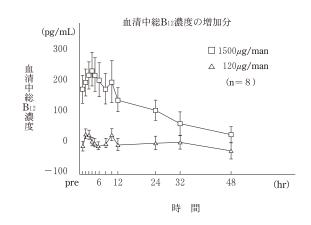
PTP包装の薬剤はPTPシートから取り出して服用するよう指導すること。PTPシートの誤飲により、硬い鋭角部が食道粘膜へ刺入し、更には穿孔をおこして縦隔洞炎等の重篤な合併症を併発することがある。

15. その他の注意

15.2 非臨床試験に基づく情報

水銀及びその化合物を取り扱う職業従事者に長期にわたって大量 に投与することは避けることが望ましい。

16. 薬物動態


16.1 血中濃度

16.1.1 単回投与

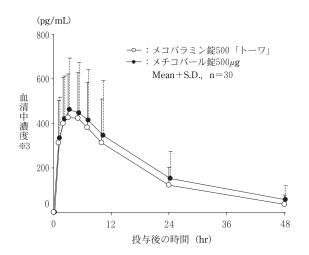
健康成人男子にメコバラミン $120 \mu g$ 、 $1,500 \mu g^{(\pm)}$ を絶食下単回経口投与した場合、いずれの投与量においても投与後約3時間で最高血中濃度に達し、濃度依存による吸収が観察された。半減期、血清中総ビタミン B_{12} (以下 B_{12}) 濃度の投与12時間までの増加分及び Δ AUC $\mathbb P$ を下表に示し、血清中総 B_{12} 濃度の推移を下図に示した。

尿中総 B_{12} 排泄量は投与後8時間までに投与後24時間排泄量の $40\sim90\%$ が排泄された。 $^{1)}$

注)本剤の承認された用法及び用量は「通常成人は、メコバラミンとして1日1,500 μ gを3回にわけて経口投与する。ただし、年齢及び症状により適宜増減する。」である。

	投与量	t _{max} (hour)	C _{max} (pg/mL)	$\begin{array}{c} \DeltaC_{max} \\ (pg/mL) \end{array}$	Δ C _{max} % (%)	$\Delta \text{AUC}_0^{12} \times 1$ (pg · hr/mL)	t _{1/2} **2 (hour)
ĺ	$120\mu\mathrm{g}$	2.8±0.2	743 ± 47	37 ± 15	5. 1±2. 1	168 ± 58	算出不能
ı	1, 500 μ g	3. 6 ± 0 . 5	972 ± 55	255 ± 51	36.0 ± 7.9	2033 ± 510	12. 5

※1:投与前値に対する投与後12時間までの実測値の増加分から台形公式により算出 ※2:投与後24~48時間の平均値から算出


Mean±S.E., n=8 16.1.2 反復投与

健康成人男子に1,500 μ gを12週間反復経口投与し、投与中止後4週間の血清中総 B_{12} 量の変動率を検討した。投与4週間で投与前値の約2倍に達し、以後も漸増し、12週後には約2.8倍を示した。投与中止4週後でも投与前値の約1.8倍を示した。 $^{2),3}$

16.1.3 生物学的同等性試験

メコバラミン錠500「トーワ」とメチコバール錠500 μ gを、クロスオーバー法によりそれぞれ6錠(メコバラミンとして3,000 μ g)健康成人男子に絶食単回経口投与して血清中ビタミン B_{12} 濃度を測定し、得られた薬物動態パラメータ(AUC、 C_{max})について統計解析を行った結果、両剤の生物学的同等性が確認された。 4

注)本剤の承認された用法及び用量は「通常、成人はメコパラミンとして1日1,500 μ gを3回に分けて経口投与する。ただし、年齢及び症状により適宜増減する。」である。

	製剤投与量	判定パラメータ		参考パラメータ	
	(メコバラミン として)	$\begin{array}{c} AUC_{0\text{-}48} ^{\divideontimes 3} \\ (pg \cdot hr/mL) \end{array}$	C_{max}^{*3} (pg/mL)	t _{max} (hour)	t _{1/2} (hour)
メコバラミン錠 500「トーワ」	6錠 (3, 000 µ g)	8557 ± 4432	517 ± 236	3.7±2.4	13. 6±7. 3
メチコバール錠 500μg	6錠 (3, 000 µ g)	9868±5927	543±272	4.5±4.3	13. 9±8. 1

**3:血清中ビタミン B_{12} 濃度並びに薬物動態パラメータの算出には、投与前の血清中ビタミン B_{12} 濃度を差し引いた値を用いた。

 $Mean \pm S. D.$, n=30

血清中濃度並びにAUC、C_{max}等のパラメータは、被験者の選択、体液の採取回数・ 時間等の試験条件によって異なる可能性がある。

17. 臨床成績

17.1 有効性及び安全性に関する試験

17.1.1 国内臨床試験 (用量比較試験)

末梢性神経障害に対して、メコバラミンとして1日1,500 μ g及び1日 120 μ g(低用量群)を3回に分けて4週間反復経口投与し、二重盲検比較試験を行った。慢性期及び固定期の症例に対して、メコバラミンの改善率は改善以上で1,500 μ gが17.6%(6/34)、120 μ gが9.7%(3/31)、やや改善以上で1,500 μ gが64.7%(22/34)、120 μ gが41.9%(13/31)であり、1,500 μ g/日投与の有用性が認められた。 5

17.1.2 国内臨床試験 (コバマミド及びプラセボ対照比較試験)

末梢神経障害に対してメコバラミン1日1,500 μ g、コバマミド1日1,500 μ g及びプラセボを4週間反復経口投与し、二重盲検比較試験を行った。全般改善度は中等度改善以上で、メコバラミン投与群38.6% (17/44)、コバマミド投与群22.2% (10/45)、プラセボ投与群26.7% (12/45) であり、メコバラミンの有用性が認められた。 6

18. 薬効薬理

18.1 作用機序

メコバラミンは生体内補酵素型ビタミン B_{12} の1種であり、ホモシステインからメチオニンを合成するメチオニン合成酵素の補酵素として働き、メチル基転位反応に重要な役割を果たす。 3

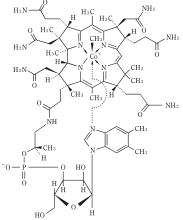
18.2 神経細胞内小器官へよく移行し、核酸・蛋白合成を促進

シアノコバラミンに比し、神経細胞内の小器官への移行がよい (ラット)。また、脳由来細胞・脊髄神経細胞の実験系で、デオキシ ウリジンからチミジンへの合成系に関与し、貯蔵型葉酸の利用促進 とともに核酸代謝にも関与し、コバマミドに比して核酸・蛋白の合 成を促進する (ラット)。7,8,9)

18.3 軸索内輸送、軸索再生の促進

ストレプトゾトシン投与による実験的糖尿病ラットの坐骨神経細胞で、軸索の骨格蛋白の輸送を正常化する。アドリアマイシン、アクリルアミド、ビンクリスチンによる薬物性神経障害(ラット、ウサギ)及び軸索変性モデルマウス、自然発症糖尿病ラットの神経障害に対して、神経病理学的、電気生理学的に変性神経の出現を抑制する。 10 ~ 15

18.4 髄鞘形成(リン脂質合成)の促進


髄鞘の構成成分であるレシチンの合成を促進し、培養神経組織でコバマミドに比して神経線維の髄鞘形成率を高める (ラット)。16,17)

18.5 シナプス伝達の遅延、神経伝達物質の減少を回復

挫滅した坐骨神経で、神経線維の興奮性を高めることにより終板電位の誘発を早期に回復する(ラット)。また、コリン欠乏食ラットで低下した脳内アセチルコリン量を正常化する。^{18),19)}

19. 有効成分に関する理化学的知見

構造式:

一般名:メコバラミン (Mecobalamin)

化学名: $Co \alpha - [\alpha - (5, 6-Dimethyl-1H-benzimidazol-1-yl)] -$

Co β -methylcobamide

分子式: C₆₃H₉₁CoN₁₃O₁₄P

分子量:1344.38

性 状:暗赤色の結晶又は結晶性の粉末である。水にやや溶けにく く、エタノール (99.5) に溶けにくく、アセトニトリルに

ほとんど溶けない。光によって分解する。

20. 取扱い上の注意

PTP包装はアルミピロー包装開封後、バラ包装は外箱開封後、遮光して保存すること。

22. 包装

100錠 [10錠×10:PTP] 1000錠 [10錠×100:PTP]

1000錠 [バラ]

23. 主要文献

1) 田中信夫ら:新薬と臨牀, 1986;35(1):67-74

2) 田中信夫ら:ビタミン, 1981;55(3):155-161

3) 第十八改正日本薬局方解説書, 2021; C5618-5623

4) 社内資料:生物学的同等性試験

5) 亀山正邦ら:臨床評価, 1972;1(1):71-76

6) 亀山正邦ら:臨牀と研究, 1972;49(7):1963-1966

7) 稲田雅美ら:神経系とメチルB12 (協和企画通信), 1981:23-29

8) 中沢恒幸ら:ビタミン, 1970;42(3):193-197

9) 中沢恒幸ら:ビタミン、1970;42(5):275-279

10) 竹中敏文ら:Prog. Med., 1982; 2(10): 1759-1762

11) 大西晃生ら:臨床薬理, 1987; 18(2): 387-392

12) Watanabe T. et al. : J. Neurol. Sci., 1994; 122(2): 140-143

13) 斉藤豊和ら:神経系とメチルB₁₂(協和企画通信), 1981:75-86

14) Yamazaki K. et al. : Neurosci. Lett., 1994; 170(1): 195-197

15) 八木橋操六ら:臨床薬理, 1988;19(2):437-443

16) 中沢恒幸ら:神経系とメチルB12 (協和企画通信), 1981:54-60

17) 米沢猛ら:神経系とメチルB₁₂ (協和企画通信), 1981:49-53

18) 渋谷統寿:神経系とメチルB12 (協和企画通信), 1981:134-140

19) Sasaki H. et al. : Pharmacol. Biochem. Behav. , 1992 ; 43(2) :

24. 文献請求先及び問い合わせ先

東和薬品株式会社 学術部DIセンター 〒570-0081 大阪府守口市日吉町2丁目5番15号 【 0120-108-932 FAX 06-7177-7379

26. 製造販売業者等

26.1 製造販売元

2

東和薬品株式会社

大阪府門真市新橋町2番11号

TX-18