*2025年3月改訂(第5版、用法及び用量変更)

抗サイトメガロウイルス化学療法剤

日本標準商品分類番号 87625

承認番号 23000AMX00456000 販売開始 2018年5月

レテルモビル注射液

プレバイミス[®]点滴静注240mg

劇薬

処方箋医薬品:注意一医師等の処方箋に

より使用すること

PREVYMIS® Intravenous Infusion 240mg

1. 警告

貯法: 室温保存

有効期間:3年

〈同種造血幹細胞移植〉

同種造血幹細胞移植患者の感染管理に十分な知識・経験を 持つ医師のもとで、本剤の投与が適切と判断される症例の みに投与すること。

2. 禁忌(次の患者には投与しないこと)

- 2.1 本剤の成分に対し過敏症の既往歴のある患者
- 2.2 次の薬剤を投与中の患者:ピモジド、エルゴタミン酒石酸塩・無水カフェイン・イソプロピルアンチピリン、ジヒドロエルゴタミン、メチルエルゴメトリン、エルゴメトリン [10.1 参照]

3. 組成・性状

3.1 組成

販売名	プレバイミス®点滴静注240mg
有効成分	レテルモビル
1バイアル中の 分量 ^{注)}	240mg/12mL
添加剤	ヒドロキシプロピル-β-シクロデキストリン 1800 mg

注)本剤は注射液吸引時の損失を考慮して、1バイアル中に 250mg/12.5mLが過量充填されている。

3.2 製剤の性状

販売名	プレバイミス®点滴静注240mg
pН	7.0~8.0
浸透圧比	約1 (生理食塩液に対する比)
	無色澄明の液
性状	また、製品由来の半透明又は白色の微粒子を
	含むことがある。

4. 効能又は効果

下記におけるサイトメガロウイルス感染症の発症抑制

- 同種造血幹細胞移植
- ○臓器移植

5. 効能又は効果に関連する注意

〈臓器移植〉

腎移植以外の臓器移植患者を対象に本剤の有効性及び安全性を 評価する臨床試験は実施していない。

*6. 用法及び用量

通常、成人にはレテルモビルとして480mgを1日1回、約60分かけて点滴静注する。シクロスポリンと併用投与する場合にはレテルモビルとして240mgを1日1回、約60分かけて点滴静注する。

通常、小児にはレテルモビルとして以下の用量を1日1回、約60分かけて点滴静注する。

体重	用量	用量		
14里	(シクロスポリンの併用なし)	(シクロスポリンの併用あり)		
30kg以上	480mg 240mg			
体重	用量			
14年	(シクロスポリンの併用の有無にかかわらない)			
15kg以上30kg未満	120mg			
7.5kg以上15kg未満	60mg			
5kg以上7.5kg未満	40mg			

7. 用法及び用量に関連する注意

〈効能共通〉

- *7.1 経口剤(錠剤及び顆粒剤)と注射剤は医師の判断で切り替えて使用することができる。なお、体重30kg未満の小児では、切り替える際に用量の調節が必要となる場合がある。ただし、臨床試験において注射剤の長期投与の経験はなく、注射剤の添加剤ヒドロキシプロピル-β-シクロデキストリンは腎機能障害のある患者で蓄積し、腎機能の悪化等を引き起こすおそれがあることから、注射剤の投与は最小限の期間とし、経口投与可能な患者には、経口投与を選択すること。[9.2.1 参照]
- 7.2 サイトメガロウイルス血症又はサイトメガロウイルス感染症が確認された場合には、本剤の投与を中止し、サイトメガロウイルスに対する治療等、適切な対応を行うこと。[17.1.1-17.1.5 参照]

〈同種造血幹細胞移植〉

7.3 同種造血幹細胞移植の移植当日から移植後28日目までを目安として投与を開始すること。投与期間は、患者のサイトメガロウイルス感染症の発症リスクを考慮しながら、移植後200日目までを目安とすること。[17.1.1-17.1.3 参照]

〈臓器移植〉

7.4 移植後早期より投与を開始し、投与期間は、患者のサイトメガロウイルス感染症の発症リスクを考慮しながら、移植後200日目までを目安とすること。ただし、レテルモビルは主に肝を介して消失するため、移植後に肝機能が安定しない場合、血漿中濃度が上昇するおそれがあることから、投与可否を慎重に判断すること。[9.3.1、16.6.2、17.1.4、17.1.5 参照]

8. 重要な基本的注意

長期間に亘り点滴静注製剤を継続して使用する場合には、添加剤ヒドロキシプロピル- β -シクロデキストリンの蓄積により腎機能障害の悪化等を引き起こすおそれがあるため、定期的に腎機能検査を実施する等観察を十分に行うこと。[15.2.2] 参照

9. 特定の背景を有する患者に関する注意

9.2 腎機能障害患者

9.2.1 中等度又は重度 (クレアチニンクリアランス < 50mL/min) の腎機能障害のある患者

定期的に腎機能検査を実施する等観察を十分に行うこと。添加剤ヒドロキシプロピル- β -シクロデキストリンの蓄積により腎機能障害の悪化等を引き起こすおそれがある。 [15.2.2 参照]

9.3 肝機能障害患者

9.3.1 重度 (Child-Pugh分類C) の肝機能障害のある患者 レテルモビルの血漿中濃度が上昇するおそれがある。 [7.4、16.6.2 参照]

9.4 生殖能を有する者

妊娠可能な女性に対しては、本剤が胎児に悪影響を及ぼす可能性があることを十分に説明し、本剤投与中及び本剤投与終了後一定期間は適切な避妊を行うよう指導すること。[9.5 参照]

9.5 妊婦

妊婦又は妊娠している可能性のある女性には、本剤投与の有益性が危険性を上回ると判断される場合にのみ投与すること。 妊娠中に本剤を投与するか、本剤投与中の患者が妊娠した場合は、本剤投与による催奇形性等が生じる可能性があること について、患者に十分説明すること。

妊娠ラット及びウサギの器官形成期に投与したとき、成人同種造血幹細胞移植患者の臨床曝露量(480mg静脈内投与)のそれぞれ11倍及び1.7倍の母動物毒性を示す用量で骨格奇形、胎児体重の減少等が認められた。妊娠ラットに着床から分娩

後まで投与した試験では、臨床曝露量の2.2倍まで胚・胎児毒 性は認められなかった。[9.4 参照]

9.6 授乳婦

治療上の有益性及び母乳栄養の有益性を考慮し、授乳の継続 又は中止を検討すること。動物試験(ラット)で乳汁移行が 認められている1)。

9.7 小児等

〈臓器移植〉

小児等を対象とした臨床試験は実施していない。

10. 相互作用

レテルモビルは有機アニオン輸送ポリペプチド1B1/3 (OATP1B1/3)、P-糖蛋白 (P-gp) 及びUDP-グルクロノシル トランスフェラーゼ1A1/3 (UGT1A1/3) の基質である。レテ ルモビルはCYP3Aの時間依存的な阻害作用、並びに乳癌耐性蛋 白 (BCRP) 及びOATP1B1/3の阻害作用を有する。また、レ テルモビルはCYP2C9及びCYP2C19の誘導作用を有する可能 性がある。[16.7.1 参照] 10.1 併用禁忌 (併用しないこと)

10.1 肝用示芯(肝	用しないこと)	
薬剤名等	臨床症状・措置方法	機序・危険因子
ピモジド(オー	併用により、ピモジドの	レテルモビルの併用
ラップ)	血漿中濃度が上昇し、	により、CYP3Aが
[2.2 参照]	QT延長及び心室性不整	阻害されると予測さ
	脈を引き起こすおそれが	れる。
	ある。	
エルゴタミン酒石	併用により、これら麦角	レテルモビルの併用
酸塩・無水カフェ	アルカロイドの血漿中濃	により、CYP3Aが
	度が上昇し、麦角中毒を	
ルアンチピリン	引き起こすおそれがあ	れる。
(クリアミン配合	る。	
錠)		
ジヒドロエルゴタ		
ミン		
メチルエルゴメト		
リン(パルタン		
M)		
エルゴメトリン		
[2.2 参照]		

10.2 併田注音 (併田に注音すること)

10.2 併用注意(併	用に注意すること)	
薬剤名等	臨床症状・措置方法	機序・危険因子
CYP3Aの基質	併用により、これらの薬	
フェンタニル	剤の血漿中濃度が上昇す	
キニジン	るおそれがある。	阻害されると予測さ
ミダゾラム等		れる。
[16.7.2 参照]		
ボリコナゾール	併用により、ボリコナ	
[16.7.2 参照]	ゾールの血漿中濃度が低	
	下する。	びCYP2C19が誘導
	併用時は、ボリコナゾー	されると考えられる。
	ルの治療効果を減弱させ	
	るおそれがあるため、患	
	者の状態を十分に観察す	
OVDOOT	ることが推奨される。	1 - 1 - 1 0 A A
	併用により、これらの薬	
CYP2C19の基質 フェニトイン	剤の血漿中濃度が低下す るおそれがある。	により、CYP2C9又 はCYP2C19が誘導
リーフェートイン ワルファリン等	フェニトインとの併用時	
ソルノチリン等	は、血中フェニトイン濃	
	度を頻繁にモニタリング	
	すること。	
	ワルファリンとの併用時	
	は、INRを頻繁にモニタ	
	リングすること。	
リファンピシン	併用により、レテルモビ	リファンピシンの併
[16.7.2 参照]	ルの血漿中濃度が低下す	用により、P-gp及び
	る。	UGT1A1/3が誘導さ
	また、リファンピシンと	れると考えられる。
	の併用終了翌日に単独投	
	与したレテルモビルの血	
	漿中濃度がさらに低下す	
	るので、リファンピシン	
	との併用終了後、レテル	
	モビルの有効性が減弱す	
	る可能性がある。	

薬剤名等	臨床症状・措置方法	機序・危険因子
アトルバスタチン	併用により、アトルバス	
[16.7.2 参照]	タチンの血漿中濃度が上	
	昇する。	OATP1B1/3及び腸
	併用時は、アトルバスタ	
	チンの副作用(ミオパ チー等)に注意して患者	れる。
	の状態を十分に観察する	
	こと。	
シンバスタチン	併用により、これらの薬	レテルモビルの併用
	剤の血漿中濃度が上昇す	により、CYP3A、
	るおそれがある。	OATP1B1/3及び腸
	併用時は、これらの薬剤	管のBCRPが阻害さ
	の副作用(ミオパチー	れると予測される。
ロスバスタチンフルバスタチン	等)に注意して患者の状態を十分に観察するこ	レテルモビルの併用 により、OATP1B1/3
ノルハスタテン	と。 と	及び腸管のBCRPが
		阻害されると予測さ
		れる。
プラバスタチン		レテルモビルの併用
ピタバスタチン		により、OATP1B1/3
		が阻害されると予測
		される。
シクロスポリン	併用により、レテルモビ	レテルモビルの併用
[16.7.2 参照]	ル及びシクロスポリンの 血中濃度が上昇する。	により、CYP3Aが 阻害される。
	世長及が上升する。 レテルモビルとの併用時	
	及び中止時には、シクロ	
	スポリンの血中濃度を頻	
	繁にモニタリングし、シ	
	クロスポリンの用量を調	
2. 2	節すること。	
タクロリムス	併用により、これらの薬	
シロリムス [16.7.2 参照]	剤の血中濃度が上昇する。	により、CIP3Aか 阻害される。
[10.7.2 参照]	る。 レテルモビルとの併用時	阻音でもいる。
	及び中止時には、これら	
	の薬剤の血中濃度を頻繁	
	にモニタリングし、これ	
	らの薬剤の用量を調節す	
	ること。	
エベロリムス	併用により、エベロリムスの中央連転が上見する	
[16.7.3 参照]	スの血中濃度が上昇するおそれがある。	阻害されると予測さ
	レテルモビルとの併用時	
	及び中止時には、エベロ	1,000
	リムスの血中濃度を頻繁	
	にモニタリングし、エベ	
	ロリムスの用量を調節す	
	ること。	

11. 副作用

次の副作用があらわれることがあるので、観察を十分に行い、 異常が認められた場合には適切な処置を行うこと。

11.2 その他の副作用

	1%以上5%未満	1%未満
血液及びリンパ系障害	白血球減少症	好中球減少症
胃腸障害	悪心、下痢、嘔吐	
免疫系障害		過敏症
臨床検査		白血球数減少

14. 適用上の注意

14.1 薬剤調製時の注意

- 14.1.1 希釈前に、変色や不溶性異物がないか、各バイアルを確 認すること。本剤は無色澄明の溶液である。また、製品 由来の少量の半透明又は白色の微粒子を含むことがある。 バイアル内の溶液に変色や濁り、又は異物(少量の半透 明又は白色の微粒子以外) が認められた場合は使用しな いこと。バイアルを振盪しないこと。
- *14.1.2 バイアルから溶液を採取して日局生理食塩液又は日局5% ブドウ糖注射液が入った点滴バッグに添加し、振盪せず 静かに混和すること。

60~480mgを投与する場合、バイアルからの採取液量、 点滴バッグの液量は以下を参照し、点滴バッグの総液量 を投与すること。

レテルモビルの投与量	バイアルからの採取液量	点滴バッグの液量
480mg	24mL (12mL×2バイアル)	250mL
240mg	12mL	250mL
120mg	6mL	75mL
60mg	3mL	50mL

40mgを投与する場合、1バイアル(レテルモビル濃度 20mg/mL)から5mLを採取し、45mLの日局生理食塩液 又は日局5%ブドウ糖注射液が入った点滴バッグに添加し、振盪せず静かに混和すること。当該希釈液を20mL投与すること。

- 14.1.3 本剤のバイアルは1回使い切りである。残液は使用しない こと。
- 14.1.4 混和後、本剤の希釈液は無色~黄色澄明の溶液となる。 投与前の希釈液に変色や不溶性異物がないか目視により 確認すること。変色や濁り、又は異物(少量の半透明又 は白色の微粒子以外)が認められる場合には、希釈液を 廃棄すること。
- 14.1.5 希釈液は、室温保存(2~30℃)では24時間以内に、冷蔵保存(2~8℃)した場合は48時間以内に使用すること。なお、これらの時間には点滴終了までの時間が含まれる。

**14.2 配合変化

本剤は他剤と配合したとき、濁りや不溶性異物が生じることがある。配合適性についてはデータが限られているが、次の薬剤は配合禁忌であり、同一の輸液ラインを通して同時に注入しないこと。

主な配合禁忌薬剤:アミオダロン塩酸塩、アムホテリシンBリポソーム、アズトレオナム、セフェピム塩酸塩、シプロフロキサシン、シクロスポリン、ジルチアゼム塩酸塩、フィルグラスチム(遺伝子組換え)、ゲンタマイシン硫酸塩、レボフロキサシン、リネゾリド、ロラゼパム、ミダゾラム、オンダンセトロン塩酸塩、パロノセトロン塩酸塩

14.3 薬剤投与時の注意

- 14.3.1 必ず 0.2μ mインラインフィルター(ポリエーテルスルホン、ポリスルホン又は正荷電ナイロン製)を使用して投与すること。
- 14.3.2 本剤はポリウレタンを含有する輸液チューブで投与しないこと。

15. その他の注意

15.2 非臨床試験に基づく情報

- 15.2.1 動物試験 (ラット) において、成人同種造血幹細胞移植 患者の臨床曝露量 (480mg静脈内投与) の3倍以上の曝露 量で精巣毒性 (精細管の変性、精子数の低値、精子の運 動性低下、異常精子発現率の増加、受胎能への影響等) が認められた。ラット精巣毒性に対する無毒性量での曝 露量は、臨床曝露量と同程度であった。雄マウス及びサ ルでは、動物における最高用量 (臨床曝露量のそれぞれ 3.5倍及び2.1倍) まで精巣への影響は認められなかった。 第Ⅲ相試験ではレテルモビルに関連した精巣毒性を示唆 する所見は認められなかった。
- 15.2.2 添加剤であるヒドロキシプロピル- β -シクロデキストリンをラット及びイヌへ静脈内投与すると50mg/kgを超える用量で腎臓及び膀胱の空胞化等の生理学的な適応性変化を引き起こすことが報告されている 2)。
- *15.2.3 添加剤であるヒドロキシプロピル-β-シクロデキストリンが投与された複数の動物種(マウス、ラット及びネコ)において、聴覚パラメータの変化及び内耳の外有毛細胞の減少が報告されている。なお、ラットでは、最大推奨臨床用量の約3倍(体表面積換算値)である2,000mg/kgの投与においてこれらの所見が認められた^{3)、4)}。

16. 薬物動態

16.1 血中濃度

16.1.1 健康成人

日本人健康成人女性にレテルモビル240 $mg^{(\pm)}$ 及び480mgを60分かけて単回静脈内投与した際の、レテルモビルの薬物動態パラメータを表1に示す。レテルモビルは、二相性の消失を示した。また、レテルモビルの $\Delta UC_{0-\infty}$ は、用量比を上回る上昇を示した。

表1 日本人健康成人女性にレテルモビルを単回静脈内投与した際の薬物動態パラメータ

用量	例数	C _{eoi} † (ng/mL)	AUC₀-∞ (ng·hr/mL)	t1/2 (hr)
240mg ^{注)}	6	18,700 (16.2)	60,800 (20.2)	11.8 (64.0)
480mg	6	41,000 (21.3)	176,000 (31.9)	10.8 (33.7)

幾何平均 (幾何平均に基づく変動係数 [%])

†静脈内投与終了時の血漿中濃度

また、日本人健康成人女性にレテルモビル480mgを反復経口投与した際、AUC $_{0-24hr}$ 及び C_{max} の幾何平均比に基づく累積係数は、それぞれ0.97及び0.94であった。

16.1.2 成人同種造血幹細胞移植患者

成人同種造血幹細胞移植患者350例(うち、日本人成人同種造血幹細胞移植患者23例)から得られた血漿中レテルモビル濃度データを用いて、母集団薬物動態解析を実施した。日本人成人同種造血幹細胞移植患者にレテルモビルを480mg、シクロスポリンを併用投与する場合はレテルモビルを240mgで1日1回静脈内投与した際の、レテルモビルの定常状態におけるAUC_{0-24hr}を表2に示す。第11年国際共同試験(001試験)で得られた曝露量の範囲では、一貫した有効性が示されており、各投与方法における曝露量に、臨床的な違いは認められなかった。

表2 日本人成人同種造血幹細胞移植患者にレテルモビルを480mg、及びシ クロスポリンを併用投与する場合はレテルモビルを240mgで1日1回静 脈内投与した際の定常状態におけるAUC_{0-24hr}

投与方法	AUC _{0-24hr} † (ng · hr/mL)			
	例数	幾何平均	幾何平均に基づく	
			変動係数(%)	
480mg静脈内投与	11	101,200	24.4	
シクロスポリン併用 240mg静脈内投与	6	70,810	16.5	

†日本人成人同種造血幹細胞移植患者の血漿中レテルモビル濃度データを用いた母集団薬物動態解析から得られたAUCo-24hrのベイズ推定値

*16.1.3 小児同種造血幹細胞移植患者

小児同種造血幹細胞移植患者60例(うち、日本人小児同種造血幹細胞移植患者4例)から得られた血漿中レテルモビル濃度データを用いて、母集団薬物動態解析を実施した。小児同種造血幹細胞移植患者にレテルモビルを1日1回静脈内投与した際の、レテルモビルの定常状態におけるAUC0-24hrを表3に示す。小児同種造血幹細胞移植患者の曝露量は、すべての体重区分で、成人同種造血幹細胞移植患者で得られた曝露量の範囲内であった。

表3 小児同種造血幹細胞移植患者にレテルモビルを1日1回静脈内投与した 際の定常状態におけるAUCo.2dpr

12/1-27	赤のた市(水路(C451) つ 1 C C0-24m				
	シクロスポ	AUC _{0-24hr}	シクロスポ	AUC _{0-24hr}	
体重	リン非併用	(ng⋅hr/mL)	リン併用時	(ng⋅hr/mL)	
14年	時の静脈内	中央値	の静脈内投	中央値	
	投与量	[90%予測区間] †	与量	[90%予測区間] †	
30kg以上	190m a	111,000	240ma	59,800	
30Kg1X_L	480mg	[55,700, 218,000]	240mg	[28,400, 120,000]	
15kg以上	120mg	57,200	120mg	61,100	
30kg未満	1201118	[29,700, 113,000]	120111g	[29,900, 121,000]	
7.5kg以上	60ma	46,000	60ma	49,200	
15kg未満	60mg	[24,300, 83,900]	60mg	[25,800, 93,800]	
5kg以上	40mg	43,400	40mg	45,900	
7.5kg未満	401118	[24,300, 81,000]	40111g	[24,900, 82,200]	

†中央値及び90%予測区間は、小児同種造血幹細胞移植患者の母集団薬物動態モデルを用いた個体間変動を考慮したシミュレーションに基づき算出した。

16.3 分布

母集団薬物動態解析から、日本人を含む成人同種造血幹細胞移植患者 にレテルモビルを静脈内投与した際の、レテルモビルの定常状態にお ける分布容積の平均値は、45.5Lと推定された。

 $In\ vitro$ データより、レテルモビルは、ヒト血漿蛋白に対し、高い結合を示した(98.7%)。レテルモビルの血中と血漿中濃度比(血中/血漿)は0.56であり、検討した濃度範囲($0.1\sim10$ mg/L)で変わらなかった。

非臨床分布試験から、レテルモビルは、消化管、胆管及び肝臓の臓器 並びに組織に高濃度に分布し、脳に低濃度に分布した。

16.4 代謝

外国人健康成人に、ラベル体で標識したレテルモビルを経口投与した際、血漿中レテルモビル関連物質の大部分は未変化体であり(96.6%)、主要代謝物は検出されなかった。レテルモビルは、UGT1A1/1A3を介したグルクロン酸抱合により、一部消失した。

16.5 排泄

母集団薬物動態解析から、日本人を含む成人同種造血幹細胞移植患者にレテルモビルを静脈内投与した際、レテルモビルの定常状態におけるクリアランスは、4.84L/hrと推定された。また、クリアランスの個体間変動は、24.6%と推定された。外国人健康成人に、ラベル体で標識したレテルモビルを経口投与した際、総放射能の93.3%は糞中から回収された。レテルモビルは主に未変化体として糞中に排泄され、少量(6%)はアシルグルクロン酸抱合体として排泄された。また、レテルモビルの腎排泄は、わずかであった(2%未満)。

16.6 特定の背景を有する患者

16.6.1 腎機能障害者

外国人成人腎機能障害者を対象とした臨床試験で、レテルモビルを1日1回8日間反復経口投与した際、成人腎機能正常者(推算糸球体濾過量が90mL/min/1.73m²以上)と比較して、レテルモビルのAUCo-24hrは、中等度(推算糸球体濾過量が30~59mL/min/1.73m²)の成人腎機能障害者では約1.9倍及び重度(推算糸球体濾過量が30mL/min/1.73m²未満)の成人腎機能障害者では約1.4倍高かった。

外国人成人腎移植患者における母集団薬物動態解析から、軽度 (クレアチニンクリアランスが60mL/min以上90mL/min未満)、中等度 (クレアチニンクリアランスが30mL/min以上60mL/min未満) 及び重度 (クレアチニンクリアランスが15mL/min以上30mL/min未満) の腎機能障害を有する成人被験者におけるレテルモビルのAUCは、クレアチニンクリアランスが90mL/min以上の成人被験者と比較してそれぞれ約1.1倍、1.3倍及び1.4倍高かったが、臨床的に意味はないと考えられた。

16.6.2 肝機能障害者

外国人成人肝機能障害者に、レテルモビルを1日1回8日間反復経口 投与した際、成人肝機能正常者と比較して、レテルモビルの AUC_{0-24hr}は、Child-Pugh分類に基づく中等度(Child-Pugh B) の成人肝機能障害者では約1.6倍及びChild-Pugh分類に基づく重 度(Child-Pugh C)の成人肝機能障害者では約3.8倍高かった。 [7.4、9.3.1 参照]

16.7 薬物相互作用

16.7.1 In vitro試験

In vitroデータから、レテルモビルは、OATP1B1/3、P-gp、BCRP、UGT1A1及びUGT1A3の基質であることが示唆された。また、レテルモビルは、CYP3Aの時間依存的な阻害作用又は誘導作用、CYP2C8の可逆的な阻害作用、CYP2B6の誘導作用を有することが示唆された。また、レテルモビルは、排出トランスポーターであるP-gp、BCRP、胆汁酸塩輸送ポンプ(BSEP)、多剤耐性関連蛋白(MRP2)、有機アニオントランスポーター(OAT3)及び肝取り込みトランスポーターであるOATP1B1/3の阻害作用を有することが示唆された。

16.7.2 臨床薬物相互作用試験

健康成人を対象とした臨床薬物相互作用試験から得られた、レテルモビルの薬物動態に及ぼす併用薬の影響及び併用薬の薬物動態に及ぼすレテルモビルの影響についてそれぞれ表4及び表5に示す。 [10.2 参照]

表4 レテルモビルの薬物動態に及ぼす併用薬の影響

衣4 レナルモヒル	の栄物動な	出に及ねり	1万/113	砂彩音	
併用薬	併用薬の 投与方法	レテルモ ビルの投 与方法	例数	パラメータの	非併用時)
抗真菌薬					
フルコナゾール	400mg 単回 PO	480mg 単回 PO	14	1.11 (1.01, 1.23)	1.06 (0.93, 1.21)
イトラコナゾール	200mg QD PO	480mg QD PO	14	1.33 (1.17, 1.51)	1.21 (1.05, 1.39)
抗マイコバクテリア	ア薬				
	600mg 単回 PO	480mg 単回 PO	16	2.03 (1.84, 2.26)	1.59 (1.46, 1.74)
	600mg 単回 IV	480mg 単回 PO	16	1.58 (1.38, 1.81)	1.37 (1.16, 1.61)
リファンピシン	600mg QD PO [†]	480mg QD PO	14	0.81 (0.67, 0.98)	1.01 (0.79, 1.28)
	600mg QD PO (リファン 併用終24時 間) [‡]	480mg QD PO	14	0.15 (0.13, 0.17)	0.27 (0.22, 0.31)
免疫抑制薬					
シクロスポリン§	200mg 単回 PO	240mg QD PO	12	2.11 (1.97, 2.26)	1.48 (1.33, 1.65)
ミコフェノール酸 モフェチル	lg 単回 PO	480mg QD PO	14	1.18 (1.04, 1.32)	1.11 (0.92, 1.34)
タクロリムス	5mg 単回 PO	80mg BID PO ^{注)}	14	1.02 (0.97, 1.07)	0.92 (0.84, 1.00)

外国人成人のデータ

QD:1日1回投与、BID:1日2回投与、IV:静脈内投与、PO:経口投与、AUC:単回投与の場合はAUC $_0$ - $_\infty$ 、1日1回投与の場合はAUC $_0$ - $_2$ - $_4$ hr、1日2回投与の場合はAUC $_0$ - $_1$ - $_2$ hr

- †投与後24時間の血漿中濃度(C_{24hr})の幾何平均比(90%信頼区間)は、0.14(0.11, 0.19)であった。
- ‡リファンピシン最終投与から24時間経過後のリファンピシンがレテルモビルに及ぼす影響を示す。 C_{24hr} の幾何平均比(90%信頼区間)は、0.09(0.06, 0.12)であった。
- § 日本人成人のデータ

表5 併用薬の薬物動態に及ぼすレテルモビルの影響

併用薬	併用薬の 投与方法	レテルモ ビルの投 与方法	例数	併用薬の薬物動態 パラメータの幾何平均比 (併用時/非併用時) (90%信頼区間) AUC Cmax		
CYP3A基質						
ミダゾラム	1mg 単回 IV	240mg QD PO ^{注)}	16	1.47 (1.37, 1.58)	1.05 (0.94, 1.17)	
	2mg 単回 PO	240mg QD PO注)	16	2.25 (2.04, 2.48) †	1.72 (1.55, 1.92)	
P-gp基質						
ジゴキシン	0.5mg 単回 PO	240mg BID PO注)	22	0.88 (0.80, 0.96) †	0.75 (0.63, 0.89)	
免疫抑制薬						
シクロスポリン	50mg 単回 PO	240mg QD PO	14	1.66 (1.51, 1.82)	1.08 (0.97, 1.19)	
ミコフェノール酸 モフェチル	1g 単回 PO	480mg QD PO	14	1.08 (0.97, 1.20)	0.96 (0.82, 1.12)	
タクロリムス	5mg 単回 PO	480mg QD PO	13	2.42 (2.04, 2.88)	1.57 (1.32, 1.86)	
シロリムス	2mg 単回 PO	480mg QD PO	13	3.40 (3.01, 3.85)	2.76 (2.48, 3.06)	
抗真菌薬及び抗ウィ			,			
アシクロビル	400mg 単回 PO	480mg QD PO	13	1.02 (0.87, 1.20)	0.82 (0.71, 0.93)	
フルコナゾール	400mg 単回 PO	480mg 単回 PO	14	1.03 (0.99, 1.08)	0.95 (0.92, 0.99)	
イトラコナゾール	200mg QD PO	480mg QD PO	14	0.76 (0.71, 0.81)	0.84 (0.76, 0.92)	
ポサコナゾール	300mg 単回 PO	480mg QD PO	13	0.98 (0.82, 1.17)	1.11 (0.95, 1.29)	
ボリコナゾール	200mg BID PO	480mg QD PO	12	0.56 (0.51, 0.62)	0.61 (0.53, 0.71)	
HMG-CoA還元酵	素阻害剤					
アトルバスタチン	20mg 単回 PO	480mg QD PO	14	3.29 (2.84, 3.82)	2.17 (1.76, 2.67)	
経口避妊薬						
エチニルエストラ ジオール/レボノ	0.03mg EE 単回 PO	480mg QD	22	1.42 (1.32, 1.52)	0.89 (0.83, 0.96)	
ルゲストレル	[() [5mg]	22	1.36 (1.30, 1.43)	0.95 (0.86, 1.04)		

外国人成人のデータ

QD:1日1回投与、BID:1日2回投与、IV:静脈内投与、PO:経口投与、EE:エチニルエストラジオール、LNG:レボノルゲストレル、AUC:単回投与の場合はAUC0- ∞ 、1日1回投与の場合はAUC0-24hr、1日2回投与の場合はAUC0-12hr

†AUC_{0-last}の比

16.7.3 生理学的薬物速度論モデルによるシミュレーション

生理学的薬物速度論モデルによるシミュレーションにおいて、CYP3A基質であるエベロリムス2mgを単独投与したときに対し、レテルモビル480mgとの併用時では、エベロリムスのAUCは2.5倍に増加すると推定された5)。[10.2 参照]

注)本剤の用法・用量は、成人にはレテルモビルとして1日1回480mgを静脈内投与である。なお、シクロスポリンを併用投与する場合には、1日1回240mgを静脈内投与である。

17. 臨床成績

17.1 有効性及び安全性に関する試験

〈同種造血幹細胞移植〉

17.1.1 第Ⅲ相国際共同試験(001試験)

日本人を含むCMV抗体陽性の成人同種造血幹細胞移植患者(無作為化された患者570例、うち日本人患者36例)を対象に、CMV感染症の発症抑制効果及び安全性を検討することを目的として、プラセボ対照無作為化二重盲検並行群間比較試験(001試験)を実施

した。移植日から移植後28日までの期間にレテルモビル480mg (シクロスポリン併用時はレテルモビル240mg) 又はプラセボの投与を開始し、1日1回、経口又は静脈内投与にて、移植後14週(約100日)まで投与した。主要評価項目である移植後24週以内に臨床的に意味のあるCMV感染 l 1)が認められた被験者の割合は、レテルモビル群とプラセボ群の比較において、統計学的に有意な差が認められた。

注1) 臨床的に意味のあるCMV感染: CMV血症の確認及び被験者 の臨床状態に基づく抗CMV薬による先制治療の開始、又は 臓器障害を伴うCMV感染症の発症

表1 第Ⅲ相国際共同試験(001試験)における有効性(FAS)

	レテルモビル群	プラセボ群
	(325例)	(170例)
移植後24週以内に臨床的に意味のある	37.5%	60.6%
CMV感染が認められた被験者の割合†	(122/325例)	(103/170例)
プラセボとの群間差	-23.5	
[95.02%信頼区間] ‡	[-32.6, -14.5]	_
p值 [‡]	< 0.0001	_

- †移植後24週以内の治験中止例又は移植後24週時点の有効性データの欠測例は不成功例とした。
- ‡ 群間差の95.02%信頼区間及びp値はCMV感染リスク(高リスク/低リスク)を層としたMantel-Haenszel法により算出(有意水準片側0.0249)

移植後24週までに、レテルモビルの投与を受けた373例中63例 (16.9%) に副作用が認められた。主な副作用は、悪心 (7.2%)、下痢 (2.4%)、嘔吐 (1.9%) であった。[7.2、7.3 参照]

17.1.2 第Ⅲ相国際共同試験(040試験)

移植後14週(約100日)以降もCMV感染及び感染症リスクを有するCMV抗体陽性の成人同種造血幹細胞移植患者注2)(無作為化された患者220例、うち日本人患者16例)を対象に、レテルモビルの予防投与を移植後14週(約100日)から移植後28週(約200日)に延長した際の有効性及び安全性を検討することを目的として、プラセボ対照無作為化二重盲検並行群間比較試験(040試験)を実施した。移植後約100日までレテルモビルはよる予防投与を完了した患者を無作為に割り付け、レテルモビル480mg(シクロスポリン併用時はレテルモビル240mg)又はプラセボを、1日1回、経口又は静脈内投与にて、移植後28週(約200日)まで投与した。主要評価項目である移植後14週(約100日)から28週(約200日)までに臨床的に意味のあるCMV感染注)が認められた被験者の割合は、レテルモビル群とプラセボ群の比較において、統計学的に有意な差が認められた7)。

- 注1) 臨床的に意味のあるCMV感染: CMV血症の確認及び被験者 の臨床状態に基づく抗CMV薬による先制治療の開始、又は 臓器障害を伴うCMV感染症の発症

表2 第Ⅲ相国際共同試験(040試験)における有効性(FAS)

	レテルモビル(レテル モビル約200日投与)	プラセボ(レテルモビ ル約100日投与)群	
	群(144例)	(74例)	
移植後14週から28週に臨床 的に意味のあるCMV感染が 認められた被験者の割合 [†]	2.8% (4/144例)	18.9% (14/74例)	
プラセボとの群間差 [95.02%信頼区間] ‡	-16.1 [-25.8, -6.4]	-	
p値‡	0.0005	_	

- †移植後14週から28週以内の治験中止例で中止時にCMV血症が認められた 被験者は不成功例とした。
- ‡群間差の95.02%信頼区間及びp値はHLA半合致ドナー(該当又は非該当)を層としたMantel-Haenszel法により算出(有意水準片側0.0249)

移植後14週(約100日)から28週(約200日)までに、レテルモビルの投与を受けた144例中4例(2.8%)に副作用が認められた。主な副作用は、悪心(2.1%)、嘔吐(1.4%)であった。[7.2、7.3参照]

*17.1.3 後期第 II 相国際共同試験 (030試験)

CMV感染及び感染症リスクを有する出生時から18歳未満の小児同種造血幹細胞移植患者(組み入れられた患者65例、うち日本人患者5例)を対象に、レテルモビルを投与した際の薬物動態、CMV感染症の発症抑制効果及び安全性を検討することを目的として、単群非盲検試験(030試験)を実施した。移植日から移植後28日までの期間に年齢、体重及び剤形に基づく用量のレテルモビルの投与を開始し、1日1回、経口又は静脈内投与にて、移植後14週(約100日)まで投与した。有効性評価項目は、移植後24週以内の臨床的に意味のあるCMV感染が認められた被験者の割合^{注3)}は、25.0%(14/56例)であった。

- 注1) 臨床的に意味のあるCMV感染: CMV血症の確認及び被験者 の臨床状態に基づく抗CMV薬による先制治療の開始、又は 臓器障害を伴うCMV感染症の発症
- 注3) 移植後24週以内の治験中止例又は移植後24週時点の有効性 データの欠測例は不成功例とした。

移植後48週までに、レテルモビルの投与を受けた63例中20例 (31.7%) に副作用が認められた。主な副作用は嘔吐(17.5%)であった。[7.2, 7.3参照]

〈臓器移植〉

17.1.4 第Ⅲ相海外試験(002試験)

CMV抗体陽性のドナーより移植を受けるCMV抗体陰性の外国人成人腎移植患者(無作為化された患者601例)を対象に、CMV感染症の発症抑制効果及び安全性を検討することを目的として、無作為化二重盲検実薬対照非劣性試験(002試験)を実施した。移植日から移植後7日までの期間にレテルモビル480mg^{注41}(シクロスポリン併用時はレテルモビル240mg)又はバルガンシクロビル900mg(静脈内投与の場合はガンシクロビル5mg/kg)の投与を開始し、1日1回、経口又は静脈内投与にて、移植後28週(約200日)まで投与した。レテルモビル群の被験者には単純ヘルペスウイルス及び水痘帯状疱疹ウイルスの予防のためアシクロビルを投与し、バルガンシクロビル群の被験者にはアシクロビルのプラセボを投与した。主要評価項目である移植後52週以内にCMV感染症を発症した被験者の間も表3のとおりであった。10%の非劣性マージンに基づき、レテルモビルはバルガンシクロビルに対して非劣性を示した8)。

注4) シクロスポリン非併用時に静脈内投与する場合は、レテルモビル240mg又は480mg投与のいずれかに割り付けられる試験デザインであったが、240mgで投与された被験者は1例であった。本剤の承認用量は480mgである(シクロスポリン非併用時)。

表3 第Ⅲ相海外試験 (002試験) における有効性 (FAS)

	レテルモビル群 (289例)	バルガンシクロビル群 (297例)
移植後52週以内にCMV感 染症を発症した被験者 [†] の割 合 [‡]	10.4% (30/289例)	11.8% (35/297例)
バルガンシクロビル群との 群間差 [95%信頼区間] §	-1.4 [-6.5, 3.8]	_

- †独立した中央判定委員会でCMV感染症(臓器障害を伴うCMV感染症又は CMV症候群)と判定された被験者
- ‡治験中止例は不成功例としない。
- § 群間差の95%信頼区間は、導入時に強力な細胞溶解作用を有する抗リンパ 球免疫療法(実施又は未実施)を層としたMantel-Haenszel法により算出

移植後28週までに、レテルモビル群で292例中58例 (19.9%)、バルガンシクロビル群で297例中104例 (35.0%) に副作用が認められた。主な副作用 (2%以上) は、レテルモビル群で白血球減少症 (6.8%) 及び好中球減少症 (2.1%)、バルガンシクロビル群で白血球減少症 (22.9%)、好中球減少症 (8.1%) 及び白血球数減少 (4.0%) であった。 [7.2、7.4 参照]

17.1.5 第Ⅲ相国内試験(042試験)

ドナー又はレシピエントいずれかのCMV抗体が陽性の日本人成人腎移植患者(22例)を対象に、CMV感染症の発症抑制効果及び安全性を検討することを目的として、単群非盲検試験(042試験)を実施した。移植日から移植後7日までの期間にレテルモビル480mg(シクロスポリン併用時はレテルモビル240mg)の投与を開始し、1日1回、経口投与にて、移植後28週(約200日)まで投与した。移植後52週以内にCMV感染症を発症した被験者(独立した中央判定委員会で臓器障害を伴うCMV感染症又はCMV症候群と判定された被験者)の割合は、9.5%(2/21例)であった。移植後28週までに、レテルモビルの投与を受けた22例中4例

| 移植後28週までに、レアルモビルの投与を支げた22例中4例 (18.2%) に副作用が認められた。報告された副作用は白血球減少 症、下痢、悪心及び血中アルカリホスファターゼ増加(各1例、 4.5%) であった⁹。[7.2、7.4 参照]

17.3 その他

17.3.1 心電図に及ぼす影響

TQT試験で、外国人健康成人38例を対象に、レテルモビルがQTC間隔に及ぼす影響をプラセボ及び陽性対照と比較検討した。レテルモビル960mgを単回静脈内投与注50 したときのQTcP間隔(試験集団固有のべき係数で補正したQT間隔)のベースラインからの変化量のプラセボとの差 [90%信頼区間]の最大値は、4.93 [2.81,7.05] ms (投与後1時間)であった。

注5) 本剤の用法・用量は、成人にはレテルモビルとして1日1回 480mgを静脈内投与である。なお、シクロスポリンを併用 投与する場合には、1日1回240mgを静脈内投与である。

18. 薬効薬理

18.1 作用機序

レテルモビルはウイルスの複製に必要なCMVのDNAターミナーゼ複合体を阻害する。生化学的な検討及び電子顕微鏡所見から、レテルモビルは一単位長のゲノムの生成に影響し、ウイルス粒子の形成を阻害することが明らかとなった。

18.2 In vitro抗ウイルス作用

感染細胞培養系でのCMVの臨床分離株(74株)に対するレテルモビ ルのEC50値の範囲は0.7~6.1nMであった。

18.3 耐性ウイルス

18.3.1 細胞培養系

CMVのDNAターミナーゼのサブユニットはCMV遺伝子のUL51、 UL56及びUL89領域にコードされる。細胞培養系にてレテルモビ ルに低感受性のCMV変異株を分離した。その結果、pUL51 (P91S、A95V)、pUL56 (C25F、S229F、V231A/L、N232Y、 V236A/L/M, E237D, L241P, T244K/R, L254F, L257F/I, K258E, F261C/L/S, Y321C, C325F/R/W/Y, L328V, M329T、A365S、N368D、R369G/M/S) 及びpUL89 (N320H、D344E) にアミノ酸置換が認められた。これらの置換 を有する遺伝子組換えCMV変異株のEC50値は野生株と比較して 1.6~9,300倍高値を示した。

*18.3.2 臨床試験

外国人を対象とした第Ⅱ相試験(020試験)では、131例の成人同種 造血幹細胞移植患者に60、120又は240mgのレテルモビル又はプラ セボを1日1回84日間投与し、レテルモビル群のうち予防不成功とな り検体が得られた12例を対象に、UL56遺伝子の231~369位のアミ ノ酸配列を中心にDNAシークエンス解析を実施した。60mg投与群 1例でレテルモビルに低感受性を示す置換(V236M)が検出された。 成人同種造血幹細胞移植患者を対象とした第Ⅲ相国際共同試験 (001試験)では、レテルモビル群のうち予防不成功となり検体が得 られた50例を対象に、UL56及びUL89遺伝子のすべてのコード領 域のDNAシークエンス解析を実施した。3例でレテルモビルに低感 受性を示す4種類の置換がpUL56に検出された。1例でC325W及び R369Tが、他の2例で各々V236M及びE237Gの置換が検出された。 成人同種造血幹細胞移植患者を対象とした第Ⅲ相国際共同試験 (040試験)では、全投与群のうち予防不成功又は早期中止しCMV 血症が認められた32例を対象に、UL51、UL56及びUL89遺伝子 のすべてのコード領域のDNAシークエンス解析を実施した。レテ ルモビルに低感受性を示す置換は検出されなかった。

小児同種造血幹細胞移植患者を対象とした後期第Ⅱ相国際共同試 験(030試験)では、CMV血症が認められ検体が得られた10例を 対象に、UL51、UL56及びUL89遺伝子のすべてのコード領域の DNAシークエンス解析を実施した。2例でレテルモビルに低感受 性を示す置換がpUL56に検出された。1例でR369Sが、他の1例で C325Wの置換が検出された。

外国人成人腎移植患者を対象とした第Ⅲ相海外試験(002試験)で は、レテルモビル群のうちCMV感染症を発症又は早期中止しCMV 血症が認められ検体が得られた52例を対象に、UL51、UL56及び UL89遺伝子のすべてのコード領域のDNAシークエンス解析を実施 した。レテルモビルに低感受性を示す置換は検出されなかった。

日本人成人腎移植患者を対象とした第Ⅲ相国内試験(042試験)で は、レテルモビルの投与を受けた被験者のうちCMV感染症を発症又 はCMV血症が認められ検体が得られた4例を対象に、UL51、UL56 及びUL89遺伝子のすべてのコード領域のDNAシークエンス解析を 実施した。レテルモビルに低感受性を示す置換は検出されなかった。

18.4 交差耐性

ガンシクロビルに耐性を示すpUL97又はpUL54領域に置換を有する CMVは、レテルモビルに感受性を示した。野生型と比較してガンシ クロビルに対する感受性を2.1倍低下させるpUL56 E237G置換を有す る遺伝子組換えCMV株を除き、レテルモビルに対し耐性を示す置換を有する各種遺伝子組換え株は、ホスカルネット及びガンシクロビル に対して感受性を示した。

19. 有効成分に関する理化学的知見

-般名:レテルモビル (Letermovir)

化学名: (4S)-2-{8-Fluoro-2-[4-(3-methoxyphenyl)piperazin-1-yl]-3-

[2-methoxy-5-(trifluoromethyl)phenyl]-3,4-

dihydroquinazolin-4-yl}acetic acid

分子式:C29H28F4N4O4 分子量:572.55

構造式:

性 状:白色の粉末である。

20. 取扱い上の注意

外箱開封後は遮光して保存すること。

21. 承認条件

- 21.1 医薬品リスク管理計画を策定の上、適切に実施すること。
- 21.2 腎以外の臓器移植患者を対象とした臨床試験は実施されていないこと から、製造販売後、一定数の症例に係るデータが集積されるまでの間 は、腎以外の臓器移植患者については全症例を対象に使用成績調査を 実施することにより、本剤の使用患者の背景情報を把握するとともに、 本剤の安全性及び有効性に関するデータを早期に収集し、本剤の適正 使用に必要な措置を講じること。

22. 包装

1バイアル (12mL) ×10

23. 主要文献

- 1) 社内資料: レテルモビルのラット乳汁中移行に関する試験(2018年3月 23日承認、CTD2.6.4.6)
- 2) Gould S, et al. Food Chem Toxicol. 2005; 43: 1451-9.
- *3) Crumling MA, et al. Front Cell Neurosci. 2017; 11:355.
- *4) Liu X, et al. Neurotox Res. 2020; 38:808-23.
- 5) Menzel K, et al. Clin Transl Sci. 2023; 16: 1039-48.
 6) Marty FM, et al. N Engl J Med. 2017; 377: 2433-44.
- 7) Russo D, et al. Lancet Haematol. 2024; 11: e127-35.
- 8) Limaye AP, et al. JAMA. 2023; 330: 33-42.
- *9) Ishida H, et al. Clin Exp Nephrol. 2024; 28:822-31.

24. 文献請求先及び問い合わせ先

MSD株式会社 MSDカスタマーサポートセンター 東京都千代田区九段北1-13-12 医療関係者の方:フリーダイヤル 0120-024-961

26. 製造販売業者等

26.1 製造販売元

MSD株式会

東京都千代田区九段北1-13-12