貯 法:室温保存 **有効期間**:3年

処方箋医薬品^{注)}

HMG-CoA還元酵素阻害剤

日本薬局方 ロスバスタチンカルシウム錠

ロスバスタチン錠2.5mg「サワイ」 ロスバスタチン錠5mg「サワイ」

ロスバスタチンカルシウム口腔内崩壊錠

ロスパスタチン0D錠2.5mg「サワイ」 ロスパスタチン0D錠5mg「サワイ」

ROSUVASTATIN Tablets, OD Tablets [SAWAI]

	錠2.5mg	錠5mg	OD錠2.5mg	OD錠5mg
承認番号	22900AMX00639000	22900AMX00640000	22900AMX00667000	22900AMX00668000
販売開始	2017年12月	2017年12月	2017年12月	2017年12月

注)注意-医師等の処方箋により使用すること

2. 禁忌(次の患者には投与しないこと)

- 2.1 本剤の成分に対し過敏症の既往歴のある患者
- 2.2 肝機能が低下していると考えられる以下のような患者 急性肝炎、慢性肝炎の急性増悪、肝硬変、肝癌、黄疸 [9.3.1、9.3.2、16.6.2参照]
- 2.3 妊婦又は妊娠している可能性のある女性及び授乳婦 [9.5、9.6参照]
- 2.4 シクロスポリンを投与中の患者[10.1、16.7.2参照]

3. 組成・性状

3.1 組成

0411/20				
	ロスバスタチン	ロスバスタチン	ロスバスタチン	ロスバスタチン
品名	錠2.5mg	錠5mg	OD錠2.5mg	OD錠5mg
	「サワイ」	「サワイ」	「サワイ」	「サワイ」
		日局ロスバスタ	チンカルシウム	
有効成分		(ロスバスタ	チンとして)	
[1錠中]	2.6mg	5.2mg	2.6mg	5.2mg
	(2.5mg)	(5mg)	(2.5mg)	(5mg)
	カルナウバロワ	ウ、クロスポビ	アミノアルキル	レメタクリレー
	ドン、結晶セル	レロース、酸化	トコポリマーI	E、エチルセル
	チタン、三二酉	変化鉄、ステア	ロース、クロン	スポビドン、軽
	リン酸Mg、タ	ルク、炭酸水	質無水ケイ酸、	酸化チタン、
	素Na、乳糖、	ヒプロメロー	三二酸化鉄、ス	スクラロース、
添加剤	ス、マクロゴー	- ル6000	ステアリン酸	Mg、炭酸水素
			Na、トウモロ:	コシデンプン、
			ヒドロキシプロ	コピルセルロー
			ス、ヒプロメロ	コース、没食子
			酸プロピル、	D-マンニトー
			ル、トメントー	ル

3.2 製剤の性状

		ロスバスタチン	ロスバスタチン	ロスバスタチン	ロスバスタチン
品	名	錠2.5mg	錠5mg	OD錠2.5mg	OD錠5mg
		「サワイ」	「サワイ」	「サワイ」	「サワイ」
		SW (12/12/97) 2.5	Sw Dx/(29+>) 5	OD2.5	(1/3 x 4) OD5
外	形	SW (DX/3797) 2.5	SW DX/(297>) 5	OD2.5	OD5
剤	形	フィルムコー	ーティング錠	割線入り素錠 (口腔内崩壊錠)	素錠 (口腔内崩壊錠)
性	状	-	色	带黄白色~黄色	色で淡黄色~黄
注	1/\		巴	色の斑点がある	,
直径((mm)	5.6	7.1	7.5	9.5
厚さ((mm)	3.2	3.9	3.9	5.0
重量	(mg)	約78	約156	約160	約320
		SW	SW	ロスバスタチン	ロスバスタチン
本体	表示	ロスバスタチン	ロスバスタチン	SW	SW
		2.5	5	OD2.5	OD5

4. 効能又は効果

高コレステロール血症、家族性高コレステロール血症

5. 効能又は効果に関連する注意

5.1 適用の前に十分な検査を実施し、高コレステロール血症、家族性高コレステロール血症であることを確認した上で本剤の適用を考慮すること。

日本標準商品分類番号

872189

5.2 家族性高コレステロール血症ホモ接合体については、LDL-アフェレーシス等の非薬物療法の補助として、あるいはそれら の治療法が実施不能な場合に本剤の適用を考慮すること。

6. 用法及び用量

通常、成人にはロスバスタチンとして1日1回2.5mgより投与を開始するが、早期にLDL-コレステロール値を低下させる必要がある場合には5mgより投与を開始してもよい。なお、年齢・症状により適宜増減し、投与開始後あるいは増量後、4週以降にLDL-コレステロール値の低下が不十分な場合には、漸次10mgまで増量できる。10mgを投与してもLDL-コレステロール値の低下が十分でない、家族性高コレステロール血症患者などの重症患者に限り、さらに増量できるが、1日最大20mgまでとする。

7. 用法及び用量に関連する注意

- 7.1 クレアチニンクリアランスが30mL/min/1.73m²未満の患者 に投与する場合には、2.5mgより投与を開始し、1日最大投与 量は5mgとする。[9.2.2、9.2.3、16.6.3参照]
- **7.2** 特に20mg投与時においては腎機能に影響があらわれるおそれがある。20mg投与開始後12週までの間は原則、月に1回、それ以降は定期的(半年に1回等)に腎機能検査を行うなど、観察を十分に行うこと。[9.2.2、9.2.3、16.6.3参照]

8. 重要な基本的注意

- 8.1 あらかじめ高コレステロール血症治療の基本である食事療法 を行い、更に運動療法や高血圧、喫煙等の虚血性心疾患のリス クファクターの軽減等も十分考慮すること。
- 8.2 投与中は血中脂質値を定期的に検査し、治療に対する反応が 認められない場合には投与を中止すること。
- 8.3 投与開始又は増量後12週までの間は原則、月に1回、それ以降 は定期的(半年に1回等)に肝機能検査を行うこと。[11.1.5参照]
- **8.4** 血小板減少があらわれることがあるので、血液検査等の観察を十分に行うこと。[11.1.6参照]

9. 特定の背景を有する患者に関する注意

- 9.1 合併症・既往歴等のある患者
- 9.1.1 横紋筋融解症があらわれやすいとの報告がある以下の患者
 - ・アルコール中毒患者
 - ・甲状腺機能低下症の患者
 - ・遺伝性の筋疾患(筋ジストロフィー等)又はその家族歴のある 患者
 - ・薬剤性の筋障害の既往歴のある患者

*9.1.2 重症筋無力症又はその既往歴のある患者

重症筋無力症(眼筋型、全身型)が悪化又は再発することがある。[11.1.4参照]

9.2 腎機能障害患者

9.2.1 腎機能検査値異常のある患者

本剤とフィブラート系薬剤を併用する場合には、治療上やむを得ないと判断される場合にのみ併用すること。急激な腎機能悪化を伴う横紋筋融解症があらわれやすい。やむを得ず併用する場合には、定期的に腎機能検査等を実施し、自覚症状(筋肉痛、脱力感)の発現、CK上昇、血中及び尿中ミオグロビン上昇並びに血清クレアチニン上昇等の腎機能の悪化を認めた場合は直ちに投与を中止すること。[10.2参照]

9.2.2 腎障害又はその既往歴のある患者

横紋筋融解症の報告例の多くが腎機能障害を有する患者であり、また、横紋筋融解症に伴って急激な腎機能悪化があらわれることがある。[7.1、7.2、16.6.3参照]

9.2.3 重度の腎障害のある患者

本剤の血中濃度が高くなるおそれがある。[7.1、7.2、16.6.3参照]

9.3 肝機能障害患者

9.3.1 肝機能が低下していると考えられる以下のような患者 急性肝炎、慢性肝炎の急性増悪、肝硬変、肝癌、黄疸

投与しないこと。これらの患者では、本剤の血中濃度が上昇するおそれがある。また、本剤は主に肝臓に分布して作用するので、肝障害を悪化させるおそれがある。[2.2、16.6.2参照]

9.3.2 肝障害又はその既往歴のある患者

本剤は主に肝臓に分布して作用するので、肝障害又はその既往歴のある患者では、肝障害を悪化させるおそれがある。特に、Child-Pughスコアが8~9の患者では、血漿中濃度が他に比べて高かったとの報告がある。[2.2、16.6.2参照]

9.5 妊婦

妊婦又は妊娠している可能性のある女性には投与しないこと。 ラットに他のHMG-CoA還元酵素阻害剤を大量投与した場合に 胎児の骨格奇形が報告されている。更にヒトでは、他のHMG-CoA還元酵素阻害剤で、妊娠3ヵ月までの間に服用したとき、 胎児に先天性奇形があらわれたとの報告がある。[2.3参照]

9.6 授乳婦

投与しないこと。ラットで乳汁中への移行が報告されている。 [2.3参照]

9.7 小児等

小児等を対象とした有効性及び安全性を指標とした臨床試験は 実施していない。

10. 相互作用

本剤は、OATP1B1及びBCRPの基質である。

10.1 併用禁忌(併用しないこと)

薬剤名等	臨床症状・措置方法	機序・危険因子
シクロスポリン	シクロスポリンを投与されて	シクロスポリンが
(サンディミュン、	いる心臓移植患者に併用した	OATP1B1及びBCRP
ネオーラル等)	とき、シクロスポリンの血中濃	等の機能を阻害する
[2.4、16.7.2参照]	度に影響はなかったが、本剤	可能性がある。
	のAUC0-24hが健康成人に単独	
	で反復投与したときに比べて	
	約7倍上昇したとの報告がある。	

10.2 併用注意(併用に注意すること)

薬剤名等	臨床症状・措置方法	機序・危険因子
フィブラート系薬剤	フェノフィブラートとの併用	両剤共に横紋筋融解
ベザフィブラート	においては、いずれの薬剤	症の報告がある。
等	の血中濃度にも影響はみら	危険因子:腎機能に
[9.2.1参照]	れていない。しかし一般に、	関する臨床検査値に
	HMG-CoA還元酵素阻害剤と	異常が認められる患
	の併用で、筋肉痛、脱力感、	者
	CK上昇、血中及び尿中ミオ	
	グロビン上昇を特徴とし、急	
	激な腎機能悪化を伴う横紋筋	
	融解症があらわれやすい。	

	薬剤名等 ニコチン酸 アゾール系抗真菌薬	臨床症状・措置方法 一般に、HMG-CoA還元酵素	
	ノールポ抗兵困衆 イトラコナゾール 等	阻害剤との併用で、筋肉痛、 脱力感、CK上昇、血中及び 尿中ミオグロビン上昇を特徴	害のある患者
	マクロライド系抗生		
	物質 エリスロマイシン 等	う横紋筋融解症があらわれやすい。	
**	チカグレロル	本剤の血漿中濃度上昇により 横紋筋融解症やミオパチーの リスクが増加するおそれがあ る。	BCRPを阻害することにより本剤の排出が阻害され、本剤の血漿中濃度が上昇す
	クマリン系抗凝固剤	抗凝血作用が増強することが	る可能性がある ^{1)、2)} 。 機序は不明
	ワルファリン	ある。本剤を併用する場合 は、本剤の投与開始時及び用 量変更時にも頻回にプロトロ ンビン時間国際標準比(INR) 値等を確認し、必要に応じて ワルファリンの用量を調節す	
	制酸剤	る等、注意深く投与すること。 本剤の血中濃度が約50%に低	
	水酸化マグネシウム・水酸化アルミニウム [16.7.1参照]	下することが報告されている。本剤投与後2時間経過後に制酸剤を投与した場合には、本剤の血中濃度は非併用時の約80%であった。	
	ロピナビル・リトナ	本剤とロピナビル・リトナ	
	ビル アタザナビル/リト	ビルを併用したとき本剤のAUCが約2倍、Cmaxが約5倍、	OATPIBI及 OBCRP の機能を阻害する可
	ナビル	アタザナビル及びリトナビル	能性がある。
	ダルナビル/リトナ ビル	両剤と本剤を併用したとき 本剤のAUCが約3倍、Cmaxが	
	グレカプレビル・ピ ブレンタスビル		
	JVVJACN	とき本剤のAUCが約1.5倍、 Cmaxが約2.4倍上昇したとの 報告がある。また本剤とグレ カプレビル・ピブレンタスビ ル ^{注)} を併用したとき、本剤の AUCが約2.2倍、Cmaxが約5.6 倍上昇したとの報告がある。	
	ダクラタスビル	本剤とダクラタスビル、アス	
	アスナプレビル ダクラタスビル・ア	ナプレビル、またはダクラタ スビル・アスナプレビル・	OATP1B1、1B3及び
	スナプレビル・ベク ラブビル		BCRPの機能を阻害 する可能性がある。 また、アスナプレビ ルがOATP1B1、1B3
			の機能を阻害する可能性がある。
	グラゾプレビル/エ	本剤とグラゾプレビル ^{注)} 及び	
	ルバスビル	エルバスビルを併用したとき、本剤のAUCが約2.3倍、 C_{max} が約5.5倍上昇したとの報告がある。	機能を阻害する可能性がある。
		本剤とベルパタスビルを併用	
	パタスビル	したとき、本剤のAUCが約 2.7倍、C _{max} が約2.6倍上昇し たとの報告がある。	
	ダロルタミド	本剤とダロルタミドを併用 したとき、本剤のAUCが5.2 倍 ³⁾ 、Cmaxが5.0倍上昇したと の報告がある。	ダロルタミドが OATP1B1、1B3及び
	レゴラフェニブ	本剤とレゴラフェニブを併用 したとき、本剤のAUCが3.8 倍、Cmaxが4.6倍上昇したと の報告がある。	レゴラフェニブが BCRPの機能を阻害 する可能性がある。
	カプマチニブ塩酸塩 水和物	本剤とカプマチニブ塩酸塩水和物を併用したとき、本剤の	カプマチニブ塩酸塩 がBCRPの機能を阻
	/ハペイド 179/	和物を併用したとさ、平剤の AUCが約2.1倍、Cmaxが約3.0	
		倍上昇したとの報告がある。	本剤の血中濃度が増 加する可能性がある。

	薬剤名等	臨床症状・措置方法	機序・危険因子
	バダデュスタット	本剤とバダデュスタットを併	バダデュスタットが
		用したとき、本剤のAUCが	BCRPの機能を阻害
		約2.5倍、Cmaxが約2.7倍上昇	することにより、本
		したとの報告がある。	剤の血中濃度が増加
			する可能性がある。
	フェブキソスタット	本剤とフェブキソスタットを	フェブキソスタット
		併用したとき、本剤のAUC	がBCRPの機能を阻
		が約1.9倍、Cmaxが約2.1倍上	害することにより、
		昇したとの報告がある。	本剤の血中濃度が増
			加する可能性がある。
	エルトロンボパグ	本剤とエルトロンボパグを併	エルトロンボパグが
		用したとき、本剤のAUCが約	OATP1B1及びBCRP
		1.6倍上昇したとの報告がある。	の機能を阻害する可
			能性がある。
*	ホスタマチニブナト	本剤とホスタマチニブナトリ	ホスタマチニブナト
	リウム水和物	ウム水和物を併用したとき、	リウム水和物がBCRP
		本剤のAUCが1.96倍、Cmaxが	の機能を阻害する可
		1.88倍上昇したとの報告があ	能性がある。
		る。	
*	ロキサデュスタット	本剤とロキサデュスタットを	ロキサデュスタットが
		併用したとき、本剤のAUCが	OATP1B1及びBCRP
		2.93倍、Cmaxが4.47倍上昇し	の機能を阻害する可
		たとの報告がある。	能性がある。
*	タファミジス	本剤とタファミジスを併用し	タファミジスがBCRP
		たとき、本剤のAUCが1.97倍、	の機能を阻害する可
		C _{max} が1.86倍上昇したとの報	能性がある。
		告がある。	

注) 承認用量外の用量における試験結果に基づく。

11. 副作用

次の副作用があらわれることがあるので、観察を十分に行い、 異常が認められた場合には投与を中止するなど適切な処置を行 うこと。

11.1 重大な副作用

11.1.1 横紋筋融解症(0.1%未満)

筋肉痛、脱力感、CK上昇、血中及び尿中ミオグロビン上昇を 特徴とする横紋筋融解症があらわれ、急性腎障害等の重篤な腎 障害があらわれることがあるので、このような場合には直ちに 投与を中止すること。

11.1.2 ミオパチー(頻度不明)

広範な筋肉痛、高度な脱力感や著明なCKの上昇があらわれた 場合には投与を中止すること。

11.1.3 免疫介在性壊死性ミオパチー(頻度不明)

近位筋脱力、CK高値、炎症を伴わない筋線維の壊死、抗 HMG-CoA還元酵素(HMGCR)抗体陽性等を特徴とする免疫介 在性壊死性ミオパチーがあらわれ、投与中止後も持続する例が 報告されているので、患者の状態を十分に観察すること。な お、免疫抑制剤投与により改善がみられたとの報告例がある。

*11.1.4 **重症筋無力症**(頻度不明)

重症筋無力症(眼筋型、全身型)が発症又は悪化することがある。[9.1.2参照]

11.1.5 肝炎(0.1%未満)、**肝機能障害**(1%未満)、**黄疸**(頻度不明)

肝炎、AST、ALTの上昇等を伴う肝機能障害、黄疸があらわれることがある。[8.3参照]

11.1.6 血小板減少(0.1%未満)

[8.4参照]

11.1.7 過敏症状(0.1%未満)

血管浮腫を含む過敏症状があらわれることがある。

11.1.8 間質性肺炎(0.1%未満)

長期投与であっても、発熱、咳嗽、呼吸困難、胸部X線異常等が認められた場合には投与を中止し、副腎皮質ホルモン剤の投与等の適切な処置を行うこと。

11.1.9 末梢神経障害(0.1%未満)

四肢の感覚鈍麻、しびれ感等の感覚障害、疼痛、あるいは筋力 低下等の末梢神経障害があらわれることがある。

11.1.10 多形紅斑(頻度不明)

11.2 その他の副作用

		2~5%未満	0.1~2%未満	0.1%未満	頻度不明	
*	皮膚		そう痒症、発疹、		苔癬様皮疹	
			蕁麻疹			
	消化器		腹痛、便秘、嘔	膵炎、口内炎		
			気、下痢			
	筋・骨格系	CK上昇	無力症、筋肉痛、	筋痙攣		
			関節痛			
	精神神経系		頭痛、浮動性めまい	健忘、睡眠障		
				害(不眠、悪		
				夢等)、抑うつ		
	内分泌				女性化乳房	
	代謝異常			HbA1c上昇、		
				血糖值上昇		
	肝臓	肝機能異常				
		(AST上昇、				
		ALT上昇)				
	腎臓		蛋白尿注 、腎機能異			
			常(BUN上昇、血清			
			クレアチニン上昇)			

注)通常一過性であるが、原因不明の蛋白尿が持続する場合には減量するなど適切な処置を行うこと。

発現頻度は使用成績調査から算出した。

14. 適用上の注意

14.1 薬剤交付時の注意

〈製剤共通〉

14.1.1 PTP包装の薬剤はPTPシートから取り出して服用するよう指導すること。PTPシートの誤飲により、硬い鋭角部が食道粘膜へ刺入し、更には穿孔をおこして縦隔洞炎等の重篤な合併症を併発することがある。

〈OD錠〉

14.1.2 本剤は舌の上にのせて唾液を浸潤させると崩壊するため、 水なしで服用可能である。また、水で服用することもできる。

15. その他の注意

15.1 臨床使用に基づく情報

海外において、本剤を含むHMG-CoA還元酵素阻害剤投与中の 患者では、糖尿病発症のリスクが高かったとの報告がある。

16. 薬物動態

16.1 血中濃度

16.1.1 単回投与

健康成人男性6例にロスバスタチンカルシウムを5mgの用量で空腹時に 単回経口投与したところ、血漿中ロスバスタチン濃度は投与後5時間に C_{max} を示し、消失半減期($t_{1/2}$)は20.2±7.8時間であった。また、 C_{max} 及 \mathcal{O} AUC0-24hはそれぞれ3.56±1.35ng/mL及 \mathcal{O} 31.3±13.6ng·h/mLであった (平均値±標準偏差) 4 。

なお、ロスバスタチンの体内動態は線形であると考えられている(外国 人データ)⁵⁾。

16.1.2 反復投与

健康成人男性6例にロスバスタチンカルシウム10及び20mgを1日1回7日間、空腹時に反復経口投与したところ、投与後24時間の血漿中ロスバスタチン濃度は徐々に上昇し、反復投与3回目にはほぼ定常状態に到達した。定常状態における AUC_{0-24h} は単回投与時の1.2倍であり、その値は単回投与での結果からの予測値と同程度であった。したがって、反復投与による予想以上の蓄積性はないと考えられた 6 。なお、日本人における C_{max} 及びAUCは白人の約2倍であった 7 。

表1 健康成人男性におけるロスバスタチンの薬物動態パラメータ(n=6)

Set Pending Control of the Control o						/ (11 0)
用	量	C _{max} a)	T _{max} ^{b)}	AUC _{0-24h} a)	AUC _{0-∞} a)	t1/2 ^{c)}
(m	ng)	(ng/mL)	(h)	(ng·h/mL)	(ng·h/mL)	(h)
10	単回	7.87(54.4)	5 (4-5)	74.2(56.0)	126(39.3) ^{d)}	15.1 ± 5.36 ^{d)}
10	反復	9.38(71.5)	5 (5-5)	90.5(67.0)	167(30.0) ^{e)}	18.4±4.62 ^{e)}
20	単回	20.5(54.6)	4(3-5)	171 (53.0)	209(50.1)	19.1 ± 5.81
20	反復	22 1 (68 0)	5(5-5)	206 (63-9)	248(62.2)	14 8±5 76

a) 幾何平均値(変動係数)、b) 中央値(範囲)、c) 平均値 ± 標準偏差 d) n=3、e) n=4

高コレステロール血症患者にロスバスタチンカルシウム2.5~20mgを1日1回6週間反復経口投与し、定常状態の血漿中ロスバスタチン濃度を測定した。高コレステロール血症患者の血漿中ロスバスタチン濃度は用量にほぼ比例して増加し、健康成人男性での値(投与後10時間の幾何平均値、10mg:4.06ng/mL、20mg:9.82ng/mL)とほぼ同程度であった8)。なお、本試験で日本人と白人の結果を比較したところ、日本人における定常状態の血漿中ロスバスタチン濃度は白人の約2倍であった9)。

表2 高コレステロール血症患者における定常状態の血漿中ロスバスタチン濃度

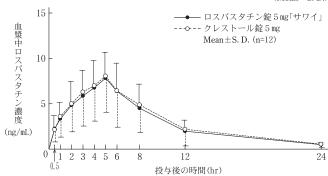
投与量	血漿中ロスバスタチン濃度(ng/mL)
2.5mg(n=16)	1.26(72.7)
5mg(n=12)	2.62(41.5)
10mg(n=13)	4.17(75.5)
20mg(n=17)	11.7(50.0)

幾何平均值(変動係数) 採血時間:投与後7~16時間

16.1.3 投与時間の影響

外国人健康成人21例にロスバスタチンカルシウム10mgをクロスオーバー法で1日1回14日間、午前7時あるいは午後6時に経口投与したところ、血漿中ロスバスタチン濃度推移は両投与時間で同様であり、ロスバスタチンの体内動態は投与時間の影響を受けないと考えられた¹⁰。

16.1.4 生物学的同等性試験


〈ロスバスタチン錠5mg「サワイ」〉

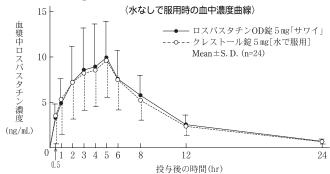
ロスバスタチン錠5mg「サワイ」とクレストール錠5mgを健康成人男子にそれぞれ1錠(ロスバスタチンとして5mg) 空腹時単回経口投与(クロスオーバー法)し、血漿中ロスバスタチン濃度を測定した。得られた薬物動態パラメータ(AUC、Cmax)について90%信頼区間法にて統計解析を行った結果、 $\log(0.80) \sim \log(1.25)$ の範囲内であり、両剤の生物学的同等性が確認された 11 。

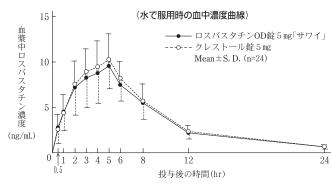
各製剤1錠投与時の薬物動態パラメータ

	Cmax (ng/mL)	Tmax (hr)	T _{1/2} (hr)	AUC _{0-24hr} (ng·hr/mL)
ロスバスタチン錠5mg 「サワイ」	7.96 ± 2.87	4.9±0.5	5.0±0.5	70.47 ± 35.33
クレストール錠5mg	8.26±3.99	4.8±0.6	5.0 ± 0.7	74.79 ± 46.95

(Mean ± S. D.)

〈ロスバスタチンOD錠5mg「サワイ」〉


ロスパスタチンOD錠5mg「サワイ」(水なし又は水で服用) とクレストール錠5mg(水で服用)を健康成人男子にそれぞれ1錠(ロスパスタチンとして5mg) 空腹時単回経口投与(クロスオーバー法) し、血漿中ロスパスタチン濃度を測定した。得られた薬物動態パラメータ(AUC、Cmax)について90%信頼区間法にて統計解析を行った結果、 $\log(0.80) \sim \log(1.25)$ の範囲内であり、両剤の生物学的同等性が確認された12)。


各製剤1錠投与時の薬物動態パラメータ

H 34/10-Detail V V 1/1/10-Daties V V							
		Cmax	Tmax	T _{1/2}	AUC _{0-24hr}		
		(ng/mL)	(hr)	(hr)	(ng·hr/mL)		
**水な	ロスバスタチンOD錠 5mg「サワイ」	10.22 ± 4.46	5.1±0.9	5.4±1.1	92.87 ± 37.72		
ľ	クレストール錠5mg	9.86 ± 4.18	4.6±1.0	5.5 ± 0.6	88.60 ± 37.74		
水あ	ロスバスタチンOD錠 5mg「サワイ」	9.75±3.61	4.6±0.7	5.3±1.0	87.30±31.43		
り	クレストール錠5mg	10.64 ± 3.56	4.5±0.8	5.2 ± 0.6	92.55 ± 30.90		

※クレストール錠5mgは水で服用

(Mean ± S. D.)

血漿中濃度ならびにAUC、Cmax等のパラメータは、被験者の選択、体液の採取回数・時間等の試験条件によって異なる可能性がある。

16.2 吸収

16.2.1 生物学的利用率

健康成人男性10例におけるロスバスタチンの生物学的利用率は29.0% (90%信頼区間: 24.1~34.9) であった。また、静脈内投与して得られたロスバスタチンの全身クリアランス及び腎クリアランスはそれぞれ31.9及び11.6L/hであり、ロスバスタチンは主に肝臓による消失を受けると考えられた 13 。

16.2.2 食事の影響

外国人健康成人20例にロスバスタチンカルシウム10mgをクロスオーバー法で1日1回14日間、空腹時(食後3時間)あるいは食後に経口投与した。食後投与したときのロスバスタチンの吸収は空腹時に比べて緩やかであり、Cmaxは食事によって20%低下した。しかし、食後投与時のAUC0-24hは空腹時投与の94%であり、ロスバスタチンの吸収量への食事の影響はないと考えられた¹⁴)。

16.3 分布

ヒト血漿中におけるロスバスタチンの蛋白結合率は89.0%(日本人) \sim 88.0%(外国人) であり、主結合蛋白はアルブミンであった¹⁵⁾。

16.4 代謝

外国人健康成人男性6例に 14 C-ロスバスタチンカルシウム 20 mgを単回経口投与したところ、尿及び糞中に存在する放射能の主成分は未変化体であり、尿糞中の主な代謝物は、N-脱メチル体及 55 -ラクトン体であった 16)。 ヒト血漿中にはN-脱メチル体及 55 -ラクトン体が検出されたが、MMG-CoA還元酵素阻害活性体濃度はロスバスタチン濃度と同様の推移を示し、血漿中におけるMG-CoA還元酵素阻害活性に対する代謝物の寄与はわずかであると考えられた 50

16.5 排泄

外国人健康成人男性6例に 14 C-ロスバスタチンカルシウム 20 mgを単回経口投与したところ、放射能は主に糞中に排泄され($^{90.2\%}$)、尿中放射能排泄率は $^{10.4}$ %であった。また、尿及び糞中への未変化体排泄率は、それぞれ投与量の $^{4.9}$ %及び $^{76.8}$ %であった 16 。

16.6 特定の背景を有する患者

16.6.1 性差及び加齢の影響

外国人の男性若年者、男性高齢者、女性若年者及び女性高齢者各8例にロスバスタチンカルシウム40mg(承認外用量)を単回経口投与したところ、男性の C_{max} 及び AUC_{0-t} はそれぞれ女性の82%及び91%であった。また、若年者の C_{max} 及び AUC_{0-t} はそれぞれ高齢者の112%及び106%であり、臨床上問題となる性差や加齢の影響はないと考えられた18)。

16.6.2 肝障害の影響

Child-Pugh A(スコア: $5\sim6$)あるいはChild-Pugh B(スコア: $7\sim9$)の 肝障害を有する外国人患者各6例にロスバスタチンカルシウム10mgを1日1回14日間反復経口投与し、血漿中ロスバスタチン濃度を測定した。 肝障害患者の C_{max} 及びAU C_{0-24h} は健康成人群のそれぞれ $1.5\sim2.1$ 倍及び $1.05\sim1.2$ 倍であり、特に、Child-Pughスコアが $8\sim9$ の患者2例における血漿中濃度は、他に比べて高かった19。[2.2、9.3参照]

16.6.3 腎障害の影響

重症度の異なる腎障害を有する外国人患者(4~8例)にロスバスタチンカルシウム20mgを1日1回14日間反復経口投与し、血漿中ロスバスタチン濃度を測定した。軽度から中等度の腎障害のある患者では、ロスバスタチンの血漿中濃度に対する影響はほとんど認められなかった。しかし、重度(クレアチニンクリアランス<30mL/min/1.73m²)の腎障害のある患者では、健康成人に比べて血漿中濃度が約3倍に上昇した200。[7.1、9.2参照]

16.7 薬物相互作用

16.7.1 制酸剤

制酸剤を同時併用投与した場合、ロスバスタチンのCmax及びAUCo-24hはそれぞれ50%及び46%まで低下したが、ロスバスタチン投与後2時間に制酸剤を投与した場合には、ロスバスタチンのCmax及びAUCo-24hはそれぞれ非併用時の84%及び78%であった(外国人データ)²¹⁾。[10.2参照]

16.7.2 シクロスポリン

シクロスポリンを投与されている心臓移植患者にロスバスタチンを併用投与したとき、ロスバスタチンのCmax及びAUC0-24hは、健康成人に単独

で反復投与したときに比べてそれぞれ10.6倍及び7.1倍上昇した(外国人データ)。ロスバスタチンはOATP1B1を介して肝臓に取り込まれ、シクロスポリンはその取り込みを阻害することによって、ロスバスタチンの血漿中濃度を増加させると考えられている²²⁾。[2.4、10.1参照]

16.7.3 ゲムフィブロジル

ゲムフィブロジル(本邦未承認)と併用投与したとき、ロスバスタチンの C_{\max} 及び AUC_{0-t} はそれぞれ2.21倍及び1.88倍に増加した(外国人データ)。ロスバスタチンはOATP1B1を介して肝臓に取り込まれ、ゲムフィブロジルはその取り込みを阻害することによって、ロスバスタチンの血漿中濃度を増加させると考えられている 23)。

16.7.4 その他の薬剤

ロスバスタチンの体内動態に及ぼすP450阻害剤の影響を検討するために、フルコナゾール 24 (CYP2C9及びCYP2C19の阻害剤)、ケトコナゾール 25 、イトラコナゾール 26)及びエリスロマイシン 27 (以上CYP3A4及びP糖蛋白の阻害剤)との併用試験を実施したが、明らかな相互作用は認められなかった(外国人データ)。

ワルファリン 28 (CYP2C9及びCYP3A4の基質)あるいはジゴキシン 29 の 体内動態に及ぼす影響を検討したが、薬物動態学的相互作用は認められなかった(外国人データ)。

CYP3A4誘導作用の有無を検討するために、経口避妊薬との併用試験を実施したが、エチニルエストラジオールの血漿中濃度に減少はみられず、ロスバスタチンはCYP3A4に対する誘導作用を示さないと考えられた(外国人データ) 30 。

16.7.5 in vitro試験

ヒト遊離肝細胞を用いる $in\ vitro$ 試験においてN-脱メチル体が生成したが、その代謝速度は非常に緩徐であった。また、N-脱メチル化に関与する主なP450分子種はCYP2C9及びCYP2C19であったが、CYP2D6やCYP3A4が関与する可能性も示唆された $^{31),\,32)}$ 。

ロスバスタチン($50\mu g/mL$)によるP450(CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP2E1及びCYP3A4)活性の阻害率は10%以下であった 31 。

16.8 その他

〈ロスバスタチン錠2.5mg「サワイ」〉

ロスバスタチン錠2.5mg「サワイ」は溶出挙動に基づき、ロスバスタチン錠5mg「サワイ」と生物学的に同等とみなされた³³⁾。

〈ロスバスタチンOD錠2.5mg「サワイ」〉

ロスバスタチンOD錠2.5mg 「サワイ」は溶出挙動に基づき、ロスバスタチンOD錠5mg 「サワイ」と生物学的に同等とみなされた 34)。

17. 臨床成績

17.1 有効性及び安全性に関する試験

〈高コレステロール血症〉

17.1.1 海外第Ⅲ相用量反応試験35)、36)

高コレステロール血症患者を対象として二重盲検法により実施された試験において、ロスバスタチン $(5\sim80\text{mg})$ 又はアトルバスタチン $(10\sim80\text{mg})$ を1日1回6週間投与した結果、ロスバスタチンは、LDL-コレステロール、総コレステロール、トリグリセリドには低下効果を、HDL-コレステロールには増加効果を示した。また、アポ蛋白B、非HDL-コレステロールを低下させ、アポ蛋白A-Iを増加させた。更に、LDL-コレステロール/HDL-コレステロール/HDL-コレステロール比、非HDL-コレステロール/HDL-コレステロール比、アポ蛋白B/アポ蛋白A-I比を低下させた。

ロスバスタチンの薬効は、投与後1週間以内にあらわれ、通常2週間までに最大効果の90%となった。最大効果は通常4週間までにあらわれ、その後持続した。

副作用発現頻度は、ロスバスタチン5mg投与群で10.5%(4/38例)、10mg投与群では15.6%(7/45例)、及び20mg投与群で17.9%(7/39例)であった。いずれの投与群でも、3例以上発現した副作用はなかった。

17.1.2 国内第Ⅱ相試験37)

二重盲検法により実施された試験において、ロスバスタチン2.5~20mgを1日1回6週間投与した際の血清脂質値の平均変化率は表1のとおりであった。

表1 血清脂質値の平均変化率(高コレステロール血症患者対象試験)

	衣1 皿作加貝世の下均変化平(同コレヘ)ロール皿症患者内象試験)					
投与量	2.5mg (n=17)	5mg (n=12)	10mg (n=14)	20mg (n=18)		
LDL-コレステロール(%)	-44.99	-52.49	-49.60	-58.32		
総コレステロール(%)	-31.59	-36.40	-34.60	-39.58		
トリグリセリド(%)	-17.35	-23.58	-19.59	-17.01		
HDL-コレステロール(%)	7.64	9.09	14.04	11.25		
アポ蛋白B(%)	-38.56	-45.93	-43.97	-50.38		
アポ蛋白A-I(%)	5.42	6.25	10.61	9.72		
アポ蛋白A-II(%)	0.38	4.27	7.78	7.73		

副作用発現頻度は、ロスバスタチン2.5mg投与群で38.9%(7/18例)、5mg投 与群で20.0%(3/15例)、10mg投与群で13.3%(2/15例)、及び20mg投与群で47.4%(9/19例)であった。計67例において3例以上認められた副作用は、腹痛、CK上昇及び γ -GTP上昇(各3例)であった。

17.1.3 海外第Ⅲ相試験38)

二重盲検法により実施された3試験の集積データをまとめた。ロスバスタチン5mg又は10mgを1日1回12週間投与した際の血清脂質の平均変化率は表2のとおりであり、高コレステロール血症患者の脂質レベルを総合的に改善することが認められた。

表2 血清脂質値の平均変化率(外国人高コレステロール血症患者対象試験)

2		
投与量	5mg(n=390)	10mg(n=389)
LDL-コレステロール(%)	-41.9	-46.7
総コレステロール(%)	-29.6	-33.0
トリグリセリド(%)	-16.4	-19.2
HDL-コレステロール(%)	8.2	8.9
非HDL-コレステロール(%)	-38.2	-42.6
アポ蛋白B(%)	-32.7	-36.5
アポ蛋白A-I(%)	6.0	7.3

17.1.4 海外第Ⅲ相長期投与試験39)、40)

高コレステロール血症患者を対象として二重盲検法により実施された試験において、ロスバスタチン5mg又は10mgから投与を開始し、LDLコレステロール値がNCEP IIガイドラインの目標値に達するまで増量した。52週時において初回投与量の5mg又は10mgの継続投与を受けていた症例の割合は、それぞれ76%(92/1210)及び82%(88/10700)であった。

副作用の発現率はロスバスタチン5mg群で29.4%(40/136例)、ロスバスタチン10mg群で26.5%(35/132例)であった。

〈家族性高コレステロール血症〉

17.1.5 国内第Ⅱ相長期投与試験^{41)、42)}

家族性高コレステロール血症へテロ接合体患者にロスバスタチン10mg から投与を開始し、6週間隔で強制増量した。そのときの血清脂質値の 平均変化率は表3のとおりであった。

表3 血清脂質値の平均変化率

(家族性高コレステロール血症患者対象試験)

投与量	10mg(n=37)	20mg(n=37)			
LDL-コレステロール(%)	-49.2	-53.9			
総コレステロール(%)	-39.4	-43.3			
トリグリセリド(%)	-18.2	-23.6			
HDL-コレステロール(%)	9.6	13.8			

3例以上に認められた副作用はCK上昇(3/37例、8.1%)であった。

18. 薬効薬理

18.1 作用機序

ロスバスタチンカルシウムは、肝臓内に能動的に取り込まれ、肝臓でのコレステロール生合成系の律速酵素であるHMG-CoA還元酵素を選択的かつ競合的に阻害し、コレステロール生合成を強力に抑制する。その結果、肝臓内のコレステロール含量が低下し、これを補うためLDL受容体の発現が誘導される。このLDL受容体を介して、コレステロール含有率の高いリポ蛋白であるLDLの肝臓への取り込みが増加し、血中コレステロールが低下する。ロスバスタチンカルシウムは、肝臓では主として能動輸送系を介して取り込まれば、脂質親和性が比較的低いため、能動輸送系を持たない他の臓器には取り込まれにくく、肝特異的なHMG-CoA還元酵素阻害剤であると考えられる44)。

18.1.1 HMG-CoA還元酵素阻害作用

ロスバスタチンカルシウムは、ラット及びヒト肝ミクロソーム由来の HMG-CoA還元酵素及びヒトHMG-CoA還元酵素の触媒ドメインに対して阻害作用を示した $(in\ vitro)^{45}$ 。

18.1.2 肝コレステロール合成阻害作用

ロスバスタチンカルシウムは、ラット肝細胞のコレステロール合成を 用量依存的に阻害した。また、その阻害作用は、他のHMG-CoA還元酵 素阻害剤に比べて長期間持続した⁴⁵⁾。

18.1.3 LDL受容体誘導作用

ロスバスタチンカルシウムは、ヒト肝癌由来HepG2細胞のLDL受容体 mRNAの発現を濃度依存的に誘導し、また、LDL結合活性を増加させた $(in\ vitro)^{46}$ 。

18.2 血中コレステロール低下作用

ロスバスタチンカルシウムは、イヌ 47 、カニクイザル 48 、WHHLウサギ(ヒト家族性高コレステロール血症のモデル動物) 49 において血清総コレステロールを、また、アポ蛋白E*3Leidenトランスジェニックマウス(高VLDL血症モデル動物) 50 及びヒトアポ蛋白B/CETP(コレステロールエステル転送蛋白)トランスジェニックマウス(ヒトのコレステロール代謝に類似した脂質代謝環境を有するモデル動物) 51 においては血漿中コレステロールを有意に低下させた。イヌにおいては、HMG-CoA還元酵素の反応産物であるメバロン酸の血中濃度を用量依存的に低下させた 47 。

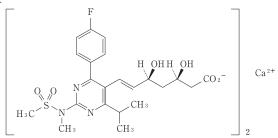
18.3 動脈硬化進展抑制作用

ロスバスタチンカルシウムは、WHHLウサギにおいて、大動脈の脂質 沈着面積、コレステロール含量の低下をもたらし、動脈硬化病変の進 展を抑制した 49 。

18.4 トリグリセリド低下作用

ロスバスタチンカルシウムは、アポ蛋白E*3Leidenトランスジェニックマウス及びヒトアポ蛋白B/CETPトランスジェニックマウスの血漿中トリグリセリドを低下させた50(、51)。

19. 有効成分に関する理化学的知見


一般名: ロスバスタチンカルシウム (Rosuvastatin Calcium)

化学名: Monocalcium bis[(3R,5S,6E)-7-|4-(4-fluorophenyl)-6-(1-methylethyl)-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl|-3,5-dihydroxyhept-6-enoate]

分子式: (C22H27FN3O6S)2Ca

分子量:1001.14

構造式:

性 状: 白色の粉末である。アセトニトリルに溶けやすく、メタノールに やや溶けやすく、水又はエタノール(99.5)に溶けにくい。吸湿性 である。

20. 取扱い上の注意

〈OD錠〉

開封後は湿気を避けて遮光して保存すること。

*22. 包装

〈ロスバスタチン錠2.5mg「サワイ」〉

PTP[乾燥剤入り]:100錠(10錠×10)、500錠(10錠×50)

バラ[乾燥剤入り]:200錠

〈ロスバスタチン錠5mg「サワイ」〉

PTP[乾燥剤入り]:100錠(10錠×10)、500錠(10錠×50)

バラ[乾燥剤入り]:200錠

〈ロスバスタチンOD錠2.5mg「サワイ」〉

PTP[乾燥剤入り]:100錠(10錠×10)、500錠(10錠×50)

バラ[乾燥剤入り]:200錠

〈ロスバスタチンOD錠5mg「サワイ」〉

PTP[乾燥剤入り]:100錠(10錠×10)、500錠(10錠×50)

バラ[乾燥剤入り]:200錠

**23. 主要文献

- 1) Lehtisalo, M. et al.: Br. J. Clin. Pharmacol., 2023; 89(7): 2309-2315
- 2) Lehtisalo, M. et al. : Clin. Pharmacol. Ther., 2024; 115(1): 71-79
- 3) Zurth, C. et al. : Eur. J. Drug Metab. Pharmacokinet., 2019 : $44 \, (6): 747-759$
- 4) 単回投与後の血漿中濃度(クレストール錠:2005年1月19日承認、申請資料概要へ3.3.1.2)
- 5) Martin, P. D. et al. : Clin. Ther., 2003; 25(8): 2215-2224
- 6) 反復投与後の血漿中濃度(クレストール錠:2005年1月19日承認、申請資料概要へ3.4)
- 7) 関野久邦他: 臨床医薬, 2005; 21(2): 187-203
- 8) 患者における血漿中濃度(クレストール錠:2005年1月19日承認、申請資料概要へ3.6)
- 9) 反復投与(クレストール錠: 2005年1月19日承認、申請資料概要へ 3.7.8)
- 10) Martin, P. D. et al. : Br. J. Clin. Pharmacol., 2002; 54(5): 472-477
- 11) 社内資料:生物学的同等性試験(錠5mg)
- 12) 社内資料:生物学的同等性試験(OD錠5mg)
- 13) 生物学的利用率(クレストール錠:2005年1月19日承認、申請資料概要へ3.5)
- 14) 食事の影響(クレストール錠:2005年1月19日承認、申請資料概要へ 3.7.5)
- 15) 蛋白結合率(クレストール錠:2005年1月19日承認、申請資料概要へ 2.2.5)
- 16) 尿糞中排泄率(クレストール錠:2005年1月19日承認、申請資料概要 へ3.7.9.5)
- 17) HMG-CoA還元酵素阻害活性体の血漿中濃度(クレストール錠: 2005 年1月19日承認、申請資料概要へ3.7.9.4)
- 18) Martin, P. D. et al. : J. Clin. Pharmacol., 2002 ; 42(10):1116-1121
- Simonson, S. G. et al. : Eur. J. Clin. Pharmacol., 2003 : 58(10) : 669–675
- 20) 腎障害の影響(クレストール錠:2005年1月19日承認、申請資料概要 へ3.7.11)

- 21) 薬物相互作用 制酸剤(クレストール錠:2005年1月19日承認、申請 資料概要へ3.7.12.2(f))
- 22) Simonson, S. G. et al.: Clin. Pharmacol. Ther., 2004; 76(2): 167–177
- 23) Schneck, D. W. et al.: Clin. Pharmacol. Ther., 2004: 75(5): 455-463
- 24) Cooper, K. J. et al. : Eur. J. Clin. Pharmacol., 2002; 58(8): 527-531
- 25) Cooper, K. J. et al.: Br. J. Clin. Pharmacol., 2003; 55(1): 94-99
- 26) Cooper, K. J. et al.: Clin. Pharmacol. Ther., 2003; 73(4): 322-329
- 27) Cooper, K. J. et al. : Eur. J. Clin. Pharmacol., 2003 ; $59\,(1)\,$: 51–56
- 28) Simonson, S. G. et al.: J. Clin. Pharmacol., 2005; 45(8): 927-934
- 29) Martin, P. D. et al.: J. Clin. Pharmacol., 2002; 42(12): 1352-1357
- 30) Simonson, S. G. et al.: Br. J. Clin. Pharmacol., 2004: 57(3): 279-
- 31) McCormick, A. D. et al. : J. Clin. Pharmacol., 2000 ; 40 : 1055
- 32) in vitro試験(クレストール錠: 2005年1月19日承認、申請資料概要 へ3.7.9.1)
- 33) 社内資料: 生物学的同等性試験(錠2.5mg)
- 34) 社内資料: 生物学的同等性試験(OD錠2.5mg)
- 35) Schneck, D. W. et al.: Am. J. Cardiol., 2003; 91(1): 33-41
- 36)海外第Ⅲ相用量反応試験(クレストール錠:2005年1月19日承認、申請資料概要ト1.3.2)
- 37) 日本人高コレステロール血症患者における有効性(クレストール 錠: 2005年1月19日承認、申請資料概要ト1.2.3)
- 38) 外国人高コレステロール血症患者における有効性(クレストール 錠:2005年1月19日承認、申請資料概要ト2.1.2.1)
- 39) 外国人高コレステロール血症患者の長期投与における有効性(クレストール錠:2005年1月19日承認、申請資料概要ト1.5.2)
- 40) Olsson, A. G. et al.: Am. Heart J., 2002; 144(6): 1044-1051
- 41) Mabuchi, H. et al.: J. Atheroscler. Thromb., 2004; 11(3): 152-158
- 42) 国内第 Π 相長期投与試験(クレストール錠: 2005年1月19日承認、申請資料概要ト1.4.2)
- 43) Nezasa, K. et al. : Xenobiotica, 2003 ; 33(4) : 379–388
- 44) 作用機序(クレストール錠: 2005年1月19日承認、申請資料概要ホ1)
- 45) McTaggart, F. et al. : Am. J. Cardiol., 2001; 87(5A): 28B-32B
- 46) LDL受容体に対する作用(クレストール錠:2005年1月19日承認、申 請資料概要ホ1.2.3)
- 47) イヌの血中脂質に対する作用(クレストール錠:2005年1月19日承認、申請資料概要ホ1.1.1)
- 48) カニクイザルの血清コレステロール及びリポ蛋白コレステロールに 対する作用(クレストール錠:2005年1月19日承認、申請資料概要ホ 1.1.2)
- 49) WHHLウサギの血清コレステロール及び動脈硬化病変に対する作用 (クレストール錠: 2005年1月19日承認、申請資料概要ホ1.1.3)
- 50) アポ蛋白E*3Leidenトランスジェニックマウスに対する作用(クレストール錠: 2005年1月19日承認、申請資料概要ホ1.1.4)
- 51) ヒトアポ蛋白B/CETPトランスジェニックマウスに対する作用(クレストール錠: 2005年1月19日承認、申請資料概要ホ1.1.5)

*24. 文献請求先及び問い合わせ先

沢井製薬株式会社 医薬品情報センター

〒532-0003 大阪市淀川区宮原5丁目2-30

TEL: 0120-381-999 FAX: 06-7708-8966

26. 製造販売業者等

26.1 製造販売元

沢井製薬株式会社

大阪市淀川区宮原5丁目2-30

DA2 A241009