*2025年2月改訂(第6版)

貯法:室温保存 *有効期間:錠3年、 OD錠2年 日本標準商品分類番号 873969

選択的DPP-4阻害剤/SGLT2阻害剤 配合剤 -2型糖尿病治療剤-

処方箋医薬品

承認番号 販売開始 22900AMX00578 2017年9月 OD錠 30700AMX00006 2025年9月

テネリグリプチン臭化水素酸塩水和物・カナグリフロジン水和物配合錠

CANALIA® COMBINATION TABLETS

テネリグリプチン臭化水素酸塩水和物・カナグリフロジン水和物配合口腔内崩壊錠

CANALIA® COMBINATION OD TABLETS

注)注意-医師等の処方箋により使用すること

2. 禁忌 (次の患者には投与しないこと)

- 2.1 本剤の成分に対し過敏症の既往歴のある患者
- 2.2 重症ケトーシス、糖尿病性昏睡又は前昏睡、1型糖尿病 の患者 [輸液及びインスリンによる速やかな高血糖の是 正が必須となるので本剤の投与は適さない。]
- 2.3 重症感染症、手術前後、重篤な外傷のある患者「インス リン注射による血糖管理が望まれるので本剤の投与は適 さない。]

*3. 組成·性状

3.1 組成

四十十十	. 1 11 H = III A A-A	1. 1 11 PHI A OD M
販売名	カナリア配合錠	カナリア配合OD錠
	テネリグリプチン臭们	比水素酸塩水和物31mg
有効成分	(テネリグリプチ	ンとして20mg) /
(1錠中)	カナグリフロジ	シ水和物102mg
	(カナグリフロジ	シとして100mg)
	D-マンニトール、ヒドロキ	軽質無水ケイ酸、ポリビニ
	シプロピルセルロース、フ	ルアルコール(部分けん化
	マル酸ステアリルナトリウ	物)、エチルセルロース、
	ム、ヒプロメロース、プロ	セタノール、ラウリル硫酸
	ピレングリコール、酸化チ	ナトリウム、クエン酸トリ
	タン、タルク、黄色三二酸	エチル、D-マンニトール、
添加剤	化鉄、三二酸化鉄	ヒドロキシプロピルセル
你加利		ロース、ポリビニルアル
		コール (完全けん化物)、
		クロスカルメロースナトリ
		ウム、フマル酸ステアリル
		ナトリウム、スクラロー
		ス、黄色三二酸化鉄、香
		料、トコフェロール

3.2 製剤の性状

販売名	カナリア配合錠			販売名 カナリア配合錠 カナリア配合ODst		DD錠
₩·什· 刘亚	うすい橙色・フィルムコー		カロボ うすい橙色・フィルムコー 淡黄褐色・素錠(口腔		口腔内崩	
性状・剤形 ティン		錠		壊錠)		
	\(\frac{1}{1}\frac{1}{7}\)	\(\frac{1}{1}77\)		DD D	$(\mathcal{I}_{\mathcal{I}}, \mathcal{I}_{\mathcal{I}})$	
外形		カナリア		カ	ナリア〇	D
	直径	厚さ	重量	直径	厚さ	重量
	(mm)	(mm)	(mg)	(mm)	(mm)	(mg)
	8.6	4.5	244	9.5	4.4	303.6

4. 効能又は効果

2型糖尿病

ただし、テネリグリプチン臭化水素酸塩水和物及びカナグリフ ロジン水和物の併用による治療が適切と判断される場合に限る。

5. 効能又は効果に関連する注意

- 5.1 本剤を2型糖尿病治療の第一選択薬として用いないこと。
- 5.2 原則として、既にテネリグリプチン臭化水素酸塩水和物(テ ネリグリプチンとして1日20mg) 及びカナグリフロジン水和 物 (カナグリフロジンとして1日100mg) を併用し状態が安定 している場合、あるいはテネリグリプチン臭化水素酸塩水和 物 (テネリグリプチンとして1日20mg) 又はカナグリフロジ ン水和物 (カナグリフロジンとして1日100mg) の単剤治療に より効果不十分な場合に、使用を検討すること。
- 5.3 本剤は2型糖尿病と診断された患者に対してのみ使用すること。
- 5.4 高度腎機能障害患者又は透析中の末期腎不全患者では本剤の 有効成分であるカナグリフロジン水和物の効果が期待できな いため、投与しないこと。[8.7、9.2.1、16.6.1参照]
- 5.5 中等度腎機能障害患者では本剤の有効成分であるカナグリフ ロジン水和物の効果が十分に得られない可能性があるので投 与の必要性を慎重に判断すること。[8.7、9.2.2、16.6.1 参照]
- 5.6 本剤投与中において、本剤の投与がテネリグリプチン臭化水 素酸塩水和物及びカナグリフロジン水和物の各単剤の併用よ りも適切であるか慎重に判断すること。
- 5.7 本剤の適用はあらかじめ糖尿病治療の基本である食事療法、 運動療法を十分に行ったうえで効果が不十分な場合に限り考 慮すること。

6. 用法及び用量

通常、成人には1日1回1錠(テネリグリプチン/カナグリフロジ ンとして20mg/100mg) を朝食前又は朝食後に経口投与する。

8. 重要な基本的注意

- 8.1 本剤の使用にあたっては、患者に対し低血糖症状及びその対 処方法について十分説明すること。[9.1.2、11.1.1 参照]
- 8.2 本剤の有効成分であるカナグリフロジンの利尿作用により多 尿・頻尿がみられることがある。また、体液量が減少するこ とがあるので、適度な水分補給を行うよう指導し、観察を十 分行うこと。特に体液量減少を起こしやすい患者(高齢者、 腎機能障害患者、利尿薬併用患者等)においては、脱水や糖 尿病性ケトアシドーシス、高浸透圧高血糖症候群、脳梗塞を 含む血栓・塞栓症等の発現に注意すること。[9.1.3、9.2.2、 9.8.2、10.2、11.1.2 参照]

- 8.3 本剤の有効成分であるカナグリフロジンの投与により、尿路 感染及び性器感染を起こし、腎盂腎炎、外陰部及び会陰部の 壊死性筋膜炎(フルニエ壊疽)、敗血症等の重篤な感染症に至 ることがある。十分な観察を行うなど尿路感染及び性器感染 の発症に注意し、発症した場合には適切な処置を行うととも に、状態に応じて休薬等を考慮すること。尿路感染及び性器 感染の症状及びその対処方法について患者に説明すること。 [9.14、11.14 参照]
- 8.4 本剤投与中は、血糖を定期的に検査し、薬剤の効果を確かめ、 本剤を3ヵ月投与しても効果が不十分な場合には他の治療法へ の変更を考慮すること。
- 8.5 本剤と他の糖尿病薬の併用における安全性は検討されていない。
- 8.6 本剤の有効成分であるテネリグリプチンとGLP-1受容体作動 薬はいずれもGLP-1受容体を介した血糖降下作用を有してい る。両剤を併用した臨床試験成績はなく、有効性及び安全性 は確立されていない。
- 8.7 本剤の有効成分であるカナグリフロジンの投与により、血清 クレアチニンの上昇又はeGFRの低下がみられることがあるの で、腎機能を定期的に検査すること。腎機能障害患者におい ては経過を十分に観察し、継続的にeGFRが45mL/min/1.73m² 未満に低下した場合は投与の中止を検討すること。[5.4、5.5、 9.21、9.22 参照]
- 8.8 本剤の有効成分であるカナグリフロジンの作用機序である尿中グルコース排泄促進作用により、血糖コントロールが良好であっても脂肪酸代謝が亢進し、ケトーシスがあらわれ、ケトアシドーシスに至ることがある。[11.1.3 参照]
- 8.8.1 著しい血糖の上昇を伴わない場合があるため、以下の点に 留意すること。[8.8.2 参照]
 - ・悪心・嘔吐、食欲減退、腹痛、過度な口渇、倦怠感、呼吸困難、意識障害等の症状が認められた場合には、血中 又は尿中ケトン体測定を含む検査を実施すること。
 - ・特に、インスリン分泌能の低下、インスリン製剤の減量 や中止、過度な糖質摂取制限、食事摂取不良、感染症、 脱水を伴う場合にはケトアシドーシスを発現しやすいの で、観察を十分に行うこと。
 - ・患者に対し、以下の点を指導すること。
 - ・ケトアシドーシスの症状 (悪心・嘔吐、食欲減退、腹 痛、過度な口渇、倦怠感、呼吸困難、意識障害等)。
 - ・ケトアシドーシスの症状が認められた場合には直ちに 医療機関を受診すること。
 - ・ 血糖値が高値でなくともケトアシドーシスが発現しうること。
- 8.8.2 カナグリフロジンを含むSGLT2阻害薬の投与中止後、血漿中半減期から予想されるより長く尿中グルコース排泄及びケトアシドーシスが持続した症例が報告されているため、必要に応じて尿糖を測定するなど観察を十分に行うこと。 [8.8.1 参照]
- 8.9 本剤の有効成分であるカナグリフロジンは、尿中グルコース 排泄促進作用を有する。排尿困難、無尿、乏尿あるいは尿閉 の症状を呈する患者においては、その治療を優先するととも に他剤での治療を考慮すること。
- **8.10** 本剤の有効成分であるカナグリフロジンの投与による体重減 少が報告されているため、過度の体重減少に注意すること。
- 8.11 低血糖症状を起こすことがあるので、高所作業、自動車の運 転等に従事している患者に投与するときは注意すること。 「11.1.1 参照]
- 8.12 急性膵炎があらわれることがあるので、持続的な激しい腹痛、 嘔吐等の初期症状があらわれた場合には、速やかに医師の診 察を受けるよう患者に指導すること。[11.1.9 参照]

- 9. 特定の背景を有する患者に関する注意
- 9.1 合併症・既往歴等のある患者
- 9.1.1 心不全 (NYHA心機能分類III~IV) のある患者 使用経験がなく、安全性が確立していない。
- 9.1.2 低血糖を起こすおそれのある以下の患者又は状態 低血糖を起こすおそれがある。

・ 脳下垂体機能不全又は副腎機能不全

- ・栄養不良状態、飢餓状態、不規則な食事摂取、食事摂取 量の不足又は衰弱状態
- ・激しい筋肉運動
- ・ 過度のアルコール摂取者

[8.1、11.1.1 参照]

9.1.3 脱水を起こしやすい患者(血糖コントロールが極めて不良 の患者、高齢者、利尿剤併用患者等)

本剤の成分であるカナグリフロジンの利尿作用により脱水 を起こすおそれがある。[8.2、10.2、11.1.2 参照]

9.1.4 尿路感染、性器感染のある患者

症状を悪化させるおそれがある。[8.3、11.1.4 参照]

**9.1.5 腹部手術の既往又はイレウスの既往のある患者

腸閉塞を含むイレウスを起こすおそれがある。[11.1.5 参照]

9.1.6 QT延長を起こしやすい患者(先天性QT延長症候群等QT延長の既往歴又はTorsade de pointesの既往歴のある患者、重度の徐脈等の不整脈又はその既往歴のある患者、うっ血性心不全等の心疾患のある患者、低カリウム血症の患者等)QT延長を起こすおそれがある。海外臨床試験において本剤の有効成分であるテネリグリプチン160mgを1日1回投与したときにQT延長が報告されている。[17.3.1 参照]本剤の有効成分であるテネリグリプチンの承認用量は通常、20mg/日であり、最大用量は40mg/日である。

9.2 腎機能障害患者

9.2.1 **高度腎機能障害患者又は透析中の末期腎不全患者** 投与しないこと。カナグリフロジン水和物の効果が期待で きない。[5.4、8.7、16.6.1 参照]

9.2.2 中等度腎機能障害患者

投与の必要性を慎重に判断すること。カナグリフロジン水和物の効果が十分に得られない可能性がある。[5.5、8.2、8.7、16.6.1 参照]

- 9.3 肝機能障害患者
- 9.3.1 高度肝機能障害患者

これらの患者(Child-Pugh分類で合計スコア9超)を対象とした臨床試験は実施していない。[16.6.2 参照]

9.5 妊婦

妊婦又は妊娠している可能性のある女性には本剤を投与せず、インスリン製剤等を使用すること。本剤の成分であるテネリグリプチン及びカナグリフロジンの動物実験(ラット)で胎児への移行が報告されている。また、カナグリフロジンの動物実験(ラット)で、ヒトの妊娠中期及び後期にあたる期間の曝露により、幼若動物に腎盂及び尿細管の拡張が報告されている。

9.6 授乳婦

授乳しないことが望ましい。本剤の成分であるテネリグリプチン及びカナグリフロジンの動物実験(ラット)で乳汁中への移行が報告されている。また、カナグリフロジンの動物実験(ラット)では哺育期間中に出生児の体重増加抑制や幼若動物の腎盂の拡張、尿細管の拡張が認められている。

9.7 小児等

小児等を対象とした臨床試験は実施していない。

- 9.8 高齢者
- 9.8.1 患者の状態を観察しながら投与すること。一般に生理機能が低下していることが多い。
- 9.8.2 高齢者では脱水症状 (口渇等) の認知が遅れるおそれがあるので注意すること。[8.2、11.1.2 参照]

10. 相互作用

テネリグリプチンは、主としてCYP3A4及びフラビン含有モノオキシゲナーゼ(FMO1及びFMO3)により代謝される。また、カナグリフロジンは、主としてUGT1A9及びUGT2B4により代謝される。テネリグリプチン及びカナグリフロジンはP.糖蛋白質の基質であり、弱い阻害作用を示した。[16.4.1、16.4.2、16.5.1、16.5.2 参照]

10.2 併用注意 (併用に注意すること)

10.2 併用注息(併用に2	E息すること/	
薬剤名等	臨床症状・措置方法	機序・危険因子
糖尿病用薬	低血糖症状が起こるお	血糖降下作用が
スルホニルウレア剤	それがあるので、患者	増強される。
速効型インスリン分	の状態を十分観察しな	
泌促進薬	がら投与すること。特	
a -グルコシダーゼ阻	に、インスリン製剤、	
害薬	スルホニルウレア剤又	
ビグアナイド系薬剤	は速効型インスリン分	
チアゾリジン系薬剤	泌促進薬と併用する場	
GLP-1受容体作動薬	合、低血糖のリスクが	
	l	
インスリン製剤等	増加するため、これら	
[11.1.1 参照]	の薬剤の減量を検討す	
免性放工作 田 * 始 * 4	ること。	
	血糖値その他患者の状	
る薬剤	態を十分観察しながら	
β-遮断剤	投与すること。	
サリチル酸剤		
モノアミン酸化酵素		
阻害剤等		
血糖降下作用を減弱す	血糖値その他患者の状	血糖降下作用が
る薬剤	態を十分観察しながら	減弱される。
アドレナリン	投与すること。	
副腎皮質ホルモン		
甲状腺ホルモン等		
	QT延長等が起こるお	これらの薬剤で
l	それがある。	は単独投与でも
クラスIA抗不整脈薬	(10% a) 0	QT延長がみられ
キニジン硫酸塩水		ている。
		(4.00
和物、プロカイン		
アミド塩酸塩等		
クラスIII抗不整脈薬		
アミオダロン塩酸		
塩、ソタロール塩		
酸塩等		
ジゴキシン	カナグリフロジン	カナグリフロジ
[16.7.3 参照]	300mgとの併用により	ンのP-糖蛋白質阻
	ジゴキシンのCmax及	害作用による。
	びAUCがそれぞれ36%	
	及び20%上昇したとの	
	報告があるため、適切	
	な観察を行うこと。	
リファンピシン、フェ	カナグリフロジンとリ	カナグリフロジ
	ファンピシンとの併用	
	によりカナグリフロジ	
等[1679 条四]	ンのCmax及びAUCが	
[16.7.2 参照]	それぞれ28%及び51%	
	低下したとの報告があ	
	るため、適切な観察を	
	行うこと。	ンの代謝が促進
		される。
利尿作用を有する薬剤	必要に応じ利尿薬の用	左記薬剤との併
ループ利尿薬	量を調整するなど注意	用により利尿作
サイアザイド系利尿	すること。	用が増強される
薬等		おそれがある。
[8.2、9.1.3、11.1.2 参		
照]		
,	I.	I

薬剤名等	臨床症状・措置方法	機序・危険因子
炭酸リチウム	リチウムの作用が減弱	血清リチウム濃
	されるおそれがある。	度が低下する可
		能性がある。

11. 副作用

次の副作用があらわれることがあるので、観察を十分に行い、 異常が認められた場合には投与を中止するなど適切な処置を行 うこと。

11.1 重大な副作用

11.1.1 低血糖

低血糖症状が発現するおそれがある。他のDPP-4阻害剤で、スルホニルウレア剤との併用で重篤な低血糖症状があらわれ、意識消失を来たす例やカナグリフロジンの海外臨床試験では、インスリン製剤との併用で低血糖が報告されている。低血糖症状が認められた場合には、糖質を含む食品を摂取するなど適切な処置を行い、 α -グルコシダーゼ阻害薬との併用時にはブドウ糖を投与すること。[8.1、8.11、9.1.2、10.2、17.1.3 参照]

11.1.2 脱水 (頻度不明)

口渇、多尿、頻尿、血圧低下等の症状があらわれ脱水が疑われる場合には、休薬や補液等の適切な処置を行うこと。 脱水に引き続き脳梗塞を含む血栓・塞栓症等を発現した例が報告されている。[8.2、9.1.3、9.8.2、10.2 参照]

11.1.3 ケトアシドーシス (頻度不明)

ケトアシドーシス (糖尿病性ケトアシドーシスを含む) があらわれることがある。[8.8.1、8.8.2 参照]

11.1.4 腎盂腎炎、外陰部及び会陰部の壊死性筋膜炎 (フルニエ壊 痕)、敗血症 (頻度不明)

腎盂腎炎、外陰部及び会陰部の壊死性筋膜炎(フルニエ壊 疽)があらわれ、敗血症(敗血症性ショックを含む)に至 ることがある。[8.3、9.1.4 参照]

** 11.1.5 イレウス (頻度不明)

腸閉塞を含むイレウスを起こすおそれがある。高度の便秘、 腹部膨満、持続する腹痛、嘔吐等の異常が認められた場合 には投与を中止し、適切な処置を行うこと。[9.1.5 参照]

11.1.6 肝機能障害(頻度不明)

AST、ALTの上昇等を伴う肝機能障害があらわれることがある。

11.1.7 間質性肺炎(頻度不明)

咳嗽、呼吸困難、発熱、肺音の異常(捻髪音)等が認められた場合には、速やかに胸部X線、胸部CT、血清マーカー等の検査を実施すること。間質性肺炎が疑われた場合には投与を中止し、副腎皮質ホルモン剤の投与等の適切な処置を行うこと。

11.1.8 類天疱瘡(頻度不明)

水疱、びらん等があらわれた場合には、皮膚科医と相談し、 投与を中止するなど適切な処置を行うこと。

11.1.9 急性膵炎 (頻度不明)

持続的な激しい腹痛、嘔吐等の異常が認められた場合には 投与を中止し、適切な処置を行うこと。[8.12 参照]

11.2 その他の副作用

	1%以上	0.1~1%未満	頻度不明
精神・神経系		浮動性めまい、	
		感覚鈍麻	
消化器	口渇、便秘	裂肛、消化器カ	腹部膨満、上腹
		ンジダ症	部痛、悪心、下
			痢
循環器		心筋梗塞、高血	
		圧、起立性低血	
		圧	
泌尿器	頻尿、多尿	膀胱炎、尿閉	
皮膚	湿疹	発疹、酒さ、足	そう痒症
		部白癬	
耳		耳不快感	

	1%以上	0.1~1%未満	頻度不明
生殖器	外陰部腟カンジ	亀頭包皮炎、外	
	ダ症	陰腟そう痒症、	
		陰部そう痒症	
臨床検査	血中ケトン体増	血中ブドウ糖減	
	加	少	
全身症状		疲労	空腹
筋骨格系			関節痛
その他		熱中症	

12. 臨床検査結果に及ぼす影響

カナグリフロジンの作用機序により、本剤服用中は尿糖陽性、血清1,5-AG(1,5-アンヒドログルシトール)低値を示す。尿糖及び血清1,5-AGの検査結果は、血糖コントロールの参考とはならないので注意すること。

13. 過量投与

13.1 処置

13.1.1 テネリグリプチン

末期腎不全患者では、血液透析によってテネリグリプチンは投与量の15.6%が除去されたとの報告がある。[16.6.1 参昭]

13.1.2 カナグリフロジン

末期腎不全患者では、4時間の透析によってカナグリフロジンはほとんど除去されなかったとの報告がある。[16.6.1 参照]

14. 適用上の注意

14.1 薬剤交付時の注意

〈製剤共通〉

14.1.1 PTP包装の薬剤はPTPシートから取り出して服用するよう 指導すること。PTPシートの誤飲により、硬い鋭角部が食 道粘膜へ刺入し、更には穿孔をおこして縦隔洞炎等の重篤 な合併症を併発することがある。

〈OD錠〉

*14.1.2 本剤は舌の上にのせて唾液を浸潤させると崩壊するため、水なしで服用可能である。また、水で服用することもできる。 *14.1.3 本剤は寝たままの状態では、水なしで服用させないこと。

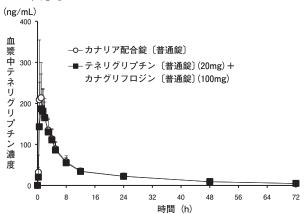
15. その他の注意

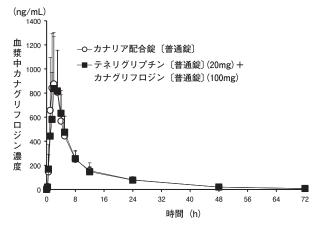
15.1 臨床使用に基づく情報

海外で行われた脳・心血管疾患の既往又は高いリスクを有する、血糖コントロール不良な2型糖尿病患者を対象とした大規模臨床試験において、本剤の有効成分であるカナグリフロジンとして100又は300mgを1日1回投与された患者では、プラセボを投与された患者よりも、下肢切断の発現頻度が有意に高かった(ハザード比:1.97、95%信頼区間1.41-2.75)との報告がある10。

本剤の有効成分であるカナグリフロジンの承認用量は100mg/ 日である。

15.2 非臨床試験に基づく情報


- 15.2.1 カニクイザルを用いたテネリグリプチンの52週間反復経口 投与毒性試験において、75mg/kg/日投与で尾、四肢及び耳 介等に表皮剥脱・痂皮・潰瘍等の皮膚症状が認められた。 このときのAUC_{0-24h}は、1日40mgをヒトに投与したときの約 45倍に達していた。なお、同様の毒性所見は、他の動物種 (ラット、マウス及びウサギ)及びヒトでは報告されていない。
- 15.2.2 雌雄ラットを用いたカナグリフロジンの2年間反復投与がん原性試験(10、30及び100mg/kg/日)において、10mg/kg/日以上の雄で精巣に間細胞腫、100mg/kg/日の雌雄で副腎に褐色細胞腫及び腎臓に尿細管腫瘍の発生頻度の増加が認められた。ラットにカナグリフロジン10mg/kg/日(雄)又は100mg/kg/日(雌)を反復経口投与したときの曝露量(AUCo24h)は、最大臨床推奨用量(1日1回100mg)の約6倍又は約84倍であった。

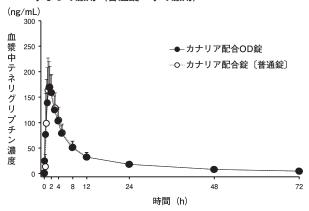

16. 薬物動態

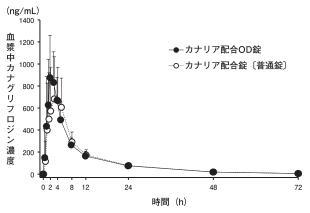
16.1 血中濃度

*16.1.1 生物学的同等性試験

(1) カナリア配合錠〔普通錠〕と単剤〔普通錠〕併用投与

(平均值+標準偏差、n=24)

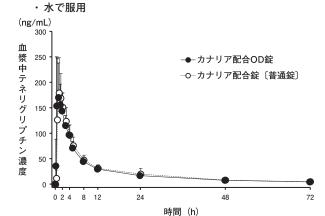

	Cmax	AUC0-72h	tmax	t1/2
	(ng/mL)	(ng·h/mL)	(h)	(h)
テネリグリプチン				
カナリア配合錠	268.6	2002.9	1.00	21.5
〔普通錠〕	(104.4)	(303.2)	(0.50-5.00)	(4.7)
単剤併用	231.2	1921.6	1.00	22.9
〔普通錠〕	(66.45)	(285.6)	(0.50-5.00)	(5.7)
カナグリフロジン				
カナリア配合錠	1158	7833	1.75	13.42
〔普通錠〕	(249.8)	(1389)	(1.00-12.00)	(3.41)
単剤併用	1115	7633	2.00	13.83
〔普通錠〕	(286.0)	(1616)	(1.00-5.00)	(3.74)

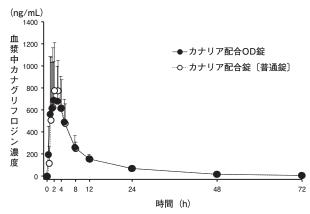

n=24、平均値(標準偏差)、tmaxは中央値(最小値-最大値)

(2) カナリア配合OD錠とカナリア配合錠〔普通錠〕

健康成人男性に、カナリア配合OD錠(水なしで服用及び水で服用)又はカナリア配合錠〔普通錠〕を空腹時に投与したときのテネリグリプチンとカナグリフロジンの血漿中濃度推移及び薬物動態パラメータは以下のとおりであった。カナリア配合錠〔普通錠〕に対するカナリア配合OD錠の $AUC_{0.72h}$ 及びCmaxの対数値の平均値の差の90%信頼区間は、いずれも $log(0.80) \sim log(1.25)$ の範囲内であり、両製剤の生物学的同等性が確認された3)。

・水なしで服用(普通錠:水で服用)





(平均值+標準偏差、n=77)

		(12	クル・ボール	左、II-11)
	Cmax	AUC _{0-72h}	tmax	t1/2
	(ng/mL)	(ng·h/mL)	(h)	(h)
テネリグリプチン				
カナリア配合OD錠	195.0	1628.7	1.50	21.5
カナサナ配合のD鉄	(49.77)	(296.5)	(0.50-3.00)	(5.1)
カナリア配合錠	198.9	1678.2	1.00	21.1
〔普通錠〕	(52.34)	(298.4)	(0.50-8.00)	(4.5)
カナグリフロジン				
カナリア配合OD錠	1147	7784	2.00	11.70
カナリア 配合UD転	(257.3)	(1361)	(1.00-5.00)	(2.57)
カナリア配合錠	1094	7808	3.00	11.53
〔普通錠〕	(254.0)	(1437)	(1.00-5.02)	(2.13)

n=77、平均値(標準偏差)、tmaxは中央値(最小値-最大値)

(平均值+標準偏差、n=23)

	Cmax	AUC0-72h	tmax	t1/2
	(ng/mL)	$(ng \cdot h/mL)$	(h)	(h)
テネリグリプチン				
カナリア配合OD錠	215.9	1613.8	1.00	23.9
カ / リ / BL G OD 映	(55.15)	(268.0)	(0.50-3.00)	(7.0)
カナリア配合錠	227.8	1730.2	1.00	23.3
〔普通錠〕	(55.46)	(351.7)	(0.50-3.00)	(6.0)
カナグリフロジン				
カナリア配合OD錠	1105	7314	2.00	12.63
カナリア配合OD鈍	(244.1)	(985)	(1.00-5.00)	(3.02)
カナリア配合錠	1149	7409	2.00	12.34
〔普通錠〕	(271.3)	(988)	(1.00-5.00)	(2.20)

n=23、平均値(標準偏差)、tmaxは中央値(最小値-最大値)

16.2 吸収

16.2.1 食事の影響

健康成人男性に、カナリア配合錠〔普通錠〕を空腹時又は 食事10分後(食後投与)に単回経口投与したときの薬物動 態パラメータは以下のとおりであった²⁾。

	Cmax	AUC _{0-72h}	tmax
	(ng/mL)	(ng·h/mL)	(h)
テネリグリプチン			
空腹時	229.3	1968.8	1.00
上版时	(65.00)	(425.6)	(0.50-2.00)
食後	169.1	1823.5	2.00
良佼	(32.52)	(415.4)	(1.50-3.00)
カナグリフロジン			
空腹時	757.2	5873	3.00
王版町	(168.2)	(1204)	(1.50-5.00)
食後	745.2	6088	2.00
民恢	(186.6)	(1212)	(1.50-5.00)

n=13、平均値(標準偏差)、tmaxは中央値(最小値-最大値)

16.3 分布

テネリグリプチンのヒト血漿蛋白結合率は77.6~82.2%であった $^{4)}$ (in vitro)。カナグリフロジンのヒト血漿蛋白結合率は約98%であった $^{5)}$ (in vitro)。

16.4 代謝

16.4.1 テネリグリプチン

- (1) 健康成人(外国人、6例) に、[14C] 標識テネリグリプチン20mgを単回経口投与したとき、血漿中に未変化体、及び代謝物M1、M2、M3、M4及びM5が認められた。また、投与後72時間までの血漿中放射能濃度から算出したAUC0∞に対するテネリグリプチン、M1、M2、M3、M4及びM5のAUC0∞の割合はそれぞれ71.1%、14.7%、1.3%、1.3%、0.3%及び1.1%であった6。
- (2) テネリグリプチンの代謝には主にCYP3A4及びフラビン 含有モノオキシゲナーゼ (FMO1及びFMO3) が関与した。 また、CYP2D6、CYP3A4及びFMOに対して弱い阻害作 用を示したが (IC₅₀値: 489.4、197.5及び467.2 μ mol/L)、 CYP1A2、CYP2A6、CYP2B6、CYP2C8、CYP2C8/9、 CYP2C19及びCYP2E1に対して阻害作用を示さず、 CYP1A2及びCYP3A4を誘導しなかった⁷⁾ (in vitro)。[10. 参照]

16.4.2 カナグリフロジン

- (1) 健康成人(外国人、6例)に、[14C] 標識カナグリフロジン192mgを単回経口投与したとき、投与後24時間までの血漿中総放射能に占める未変化体及び代謝物の割合は、カナグリフロジン(45.4~98.7%)、グルクロン酸抱合代謝物M5(1.9~29.6%)及びM7(16.0~28.8%)及び酸化代謝物M9(2.42~3.70%)であった8)。
- (2) カナグリフロジンのグルクロン酸抱合代謝には主にUGT1A9及びUGT2B4が、酸化代謝には主にCYP3A4次いでCYP2D6が関与した。CYP2B6、CYP2C8、CYP2C9及びCYP3A4に対して弱い阻害作用を示したが(IC50値:16、75、80及び27μmol/L)、CYP1A2、CYP2A6、CYP2C19、CYP2D6及びCYP2E1に対して阻害作用を示さなかった。また、いずれのCYP分子種に対しても時間依存的阻害作用を示さず、CYP1A2、CYP2B6、CYP3A4、CYP2C9及びCYP2C19を誘導しなかった。UGT1A1及びUGT1A6に対して弱い阻害作用を示したが(IC50値:91及び50μmol/L)、UGT1A4、UGT1A9及びUGT2B7に対して阻害作用を示さなかった⁹⁾(in vitro)。[10.参照]

16.5 排泄

16.5.1 テネリグリプチン

- (1) 健康成人に、テネリグリプチンとして20及び40mgを空腹時に単回経口投与したとき(各6例)、投与量の21.0~22.1%が尿中に未変化体として排泄され、腎クリアランスは37~39mL/h/kgであった100。
- (2) 健康成人(外国人、6例)に、[14C]標識テネリグリプチン20mgを単回経口投与したとき、投与後216時間までに投与放射能の45.4%が尿中に、46.5%が糞中に排泄された。また、投与後120時間までの投与量に対する未変化体、M1、M2及びM3の累積尿中排泄率は、それぞれ14.8%、17.7%、1.4%、1.9%であり、未変化体、M1、M3、M4及びM5の累積糞中排泄率は、それぞれ26.1%、4.0%、1.6%、0.3%及び1.3%であった6。
- (3) テネリグリプチンはP-糖蛋白質の基質であり、弱い阻害作用 (99 μ mol/Lで42.5%阻害)を示した¹¹⁾。また、有機アニオントランスポーターOAT3に対して弱い阻害作用を示した (IC50値:99.2 μ mol/L)が、OAT1及び有機カチオントランスポーターOCT2に対して阻害作用を示さなかった¹²⁾ (in vitro)。[10.参照]

16.5.2 カナグリフロジン

- (1) 健康成人 (外国人、6例) に、[¹⁴C] 標識カナグリフロジン192mgを単回経口投与したとき、投与後168時間までに、投与された放射能の32.5%が尿中に、60.4%が糞中に排泄された。投与後48時間までの尿中にカナグリフロジンは認められず、M5 (13.3%) 及びM7 (17.2%) が認められた。また、糞中には、カナグリフロジン (41.5%)、M7 (3.2%) 及びM9 (7.0%) が認められた8)。
- (2) カナグリフロジンはP-糖蛋白質、多剤耐性関連蛋白質2 (MRP2) 及び乳がん耐性蛋白質 (BCRP) の基質であり、P-糖蛋白質及び多剤耐性関連蛋白質2に対して弱い阻害作用 (IC₅₀値:19.3 μ mol/L及び21.5 μ mol/L) を示した¹³⁾ (in vitro)。[10.参照]

16.6 特定の背景を有する患者

16.6.1 腎機能障害者

(1) テネリグリプチン

腎機能障害者(32例)に、テネリグリプチンとして20mg を単回経口投与したとき、テネリグリプチンのCmax及び $t_{1/2}$ は腎機能障害の程度に応じた顕著な変化は認められなかった。

一方、 $AUC_{0.00}$ は健康成人 (Ccr>80mL/min、8例) と比較して、軽度腎機能障害者 ($50 \le Ccr \le 80$ mL/min、8例)、中等度腎機能障害者 ($30 \le Ccr < 50$ mL/min、8例) 及び高度腎機能障害者 (Ccr < 30mL/min、8例) でそれぞれ約 1.25倍、約1.68倍及び約1.49倍であり、末期腎不全患者 (8例) の $AUC_{0.43}$ bは健康成人 (8例) と比較して、約1.16倍

であった。また、血液透析によってテネリグリプチンは 投与量の15.6%が除去された 14 (外国人のデータ)。[13.1.1 参照]

(2) カナグリフロジン

・腎機能障害を伴う2型糖尿病患者

中等度腎機能障害($30 \le eGFR < 50mL/min/1.73m^2$)を伴う2型糖尿病患者(12例)に、カナグリフロジンとして100mgを単回経口投与したとき、カナグリフロジンのAUC $_0$. ω は腎機能正常2型糖尿病患者($eGFR \ge 80mL/min/1.73m^2$ 、12例)と比較して約26%上昇した。また、腎機能正常及び中等度腎機能障害を伴う2型糖尿病患者における投与後24時間までの累積尿中グルコース排泄量のベースラインからの変化量(平均値 [95%信頼区間])は26.592g [25.612-97.572] 及び261.017g [26.592g [26.502] 及び26.5012 [26.5012] であった26.5012 [26.5012] で

・腎機能障害者

腎機能障害者(37例)に、カナグリフロジンとして200mgを単回経口投与したとき、軽度腎機能障害者(eGFR 60~89mL/min/1.73m²、10例)、中等度腎機能障害者(eGFR 30~59mL/min/1.73m²、9例)及び高度腎機能障害者(eGFR 15~29mL/min/1.73m²、10例)のカナグリフロジンのCmaxは正常腎機能者(eGFR \geq 90mL/min/1.73m²、3例)と比較して、それぞれ約27%、約9%及び約10%低下した。また、AUC0 \sim は正常腎機能者と比較して、それぞれ約15%、約29%及び約53%高かった。末期腎不全患者(8例)では、4時間の透析によってカナグリフロジンはほとんど除去されなかった。[5.4、5.5、9.2.1、13.1.2 参照]

また、正常腎機能者と軽度、中等度及び高度腎機能障害者における投与後24時間までの累積尿中グルコース排泄量のベースラインからの変化量(調整済み平均値)は、53.04、38.32、17.11及び4.27gであった¹⁵⁾(外国人のデータ)。

16.6.2 肝機能障害者

(1) テネリグリプチン

肝機能障害者(16例)に、テネリグリプチンとして20mg を単回経口投与したとき、テネリグリプチンのCmaxは健康成人(8例)と比較して、軽度肝機能障害者(Child-Pugh分類で合計スコア5~6)(8例)及び中等度肝機能障害者(Child-Pugh分類で合計スコア7~9)(8例)でそれぞれ約1.25倍及び約1.38倍であり、AUC0- ∞ はそれぞれ約1.46倍及び約1.59倍であった 16 (外国人のデータ)。なお、高度肝機能障害者(Child-Pugh分類で合計スコア9超)での臨床試験は行われていない。[9.3.1 参照]

(2) カナグリフロジン

肝機能障害者(16例)に、カナグリフロジンとして 300 mg を単回経口投与したとき、軽度肝機能障害者 (Child-Pugh分類で合計スコア $5\sim6$)(8例)及び中等度肝機能障害者(Child-Pugh分類で合計スコア $7\sim9$)(8例)のカナグリフロジンの2 max は正常肝機能者(8例)と比較して、それぞれ約7%の上昇と約4%の低下が認められた。また、2 max は正常肝機能者(7例)と比較して、それぞれ約10%及び約11%高かった¹⁷(外国人のデータ)。なお、高度肝機能障害者(Child-Pugh分類で合計スコア9 超)での臨床試験は行われていない。[9.3.1 参照]

16.6.3 高齢者における薬物動態

(1) テネリグリプチン

健康な高齢者 (65歳以上75歳以下、12例) と非高齢者 (45歳以上65歳未満、12例) に、テネリグリプチンとして 20mgを空腹時に単回経口投与したとき、Cmax、 $AUC_{0...}$ 及び $t_{1/2}$ の非高齢者に対する高齢者の幾何最小二乗平均値 の比(90%信頼区間)は、それぞれ1.006(0.871-1.163)、1.090(0.975-1.218)及び1.054(0.911-1.219)であり、ほぼ 同様であった 18 (外国人のデータ)。

(2) カナグリフロジン

2型糖尿病患者を対象とした用量設定試験から、高齢者 (65歳以上、71~73例)と非高齢者 (65歳未満、217~225 例)において用量補正した血漿中カナグリフロジン濃度のトラフ値及び投与12週後のAUC_{0-2.17h}を比較した。その結果、高齢者のトラフ濃度の平均値は非高齢者よりも約10~30%高い値を示した¹⁹⁾。

16.7 薬物相互作用

16.7.1 テネリグリプチンの薬物動態に及ぼす影響

(1) ケトコナゾール

表 テネリグリプチンの薬物動態に及ぼす併用薬の影響²⁰⁾(外国 人のデータ)

併用薬	併用薬 用量	テネリグ リプチン 用量	併用/	(90%信頼区間) /単独
			Cmax	AUC _{0-∞}
ケトコナ	400m cr	20mg	1.37	1.49
ゾール	400mg	20ffig	(1.25-1.50)	(1.39-1.60)

(2) その他の薬剤

カナグリフロジン $^{\pm 1}$ 、ピオグリタゾン $^{\pm 1}$ 、グリメピリド $^{\pm 1}$ 及びメトホルミンは、いずれも併用投与による明らかな影響は認められなかった(外国人のデータ)。

注) カナグリフロジン、ピオグリタゾン、グリメピリド は日本人のデータ

16.7.2 カナグリフロジンの薬物動態に及ぼす影響

(1) リファンピシン

表 カナグリフロジンの薬物動態に及ぼす併用薬の影響²¹⁾ (外国 人のデータ) [10.2 参照]

併用薬	併用薬 用量	カナグリ フロジン 用量	カナグリフロジンの 幾何平均値の比 併用。 Cmax	
リファン ピシン	600mg	300mg	0.72 (0.61-0.84)	0.49 (0.44-0.54)

(2) その他の薬剤

テネリグリプチン $^{(1)}$ 、メトホルミン、シクロスポリン、プロベネシド、経口避妊薬(エチニルエストラジオール及びレボノルゲストレル)及びヒドロクロロチアジドは、いずれも併用投与による明らかな影響は認められなかった $^{(21)}$ (外国人のデータ)。

注) テネリグリプチンは日本人のデータ

16.7.3 併用薬の薬物動態に及ぼすカナグリフロジンの影響

(1) ジゴキシン

表 併用薬の薬物動態に及ぼすカナグリフロジンの影響²¹⁾ (外国 人のデータ) [10.2 参照]

併用薬	併用薬 用量	カナグリ フロジン 用量	併用薬の薬物動態パラメータ 幾何平均値の比(90%信頼区間) 併用/単独		
			Cmax	AUC _{0-24h}	
ジゴキシ	0.25mg	300mg	1.36	1.20	
ン			(1.21-1.53)	(1.12-1.28)	

(2) その他の薬剤

テネリグリプチン^{注)}、グリベンクラミド(グリブリド)、メトホルミン、経口避妊薬(エチニルエストラジオール及びレボノルゲストレル)、ヒドロクロロチアジド、シンバスタチン、アセトアミノフェン及びワルファリンカリウムは、いずれも併用投与による明らかな影響は認められなかった²¹⁾(外国人のデータ)。

注) テネリグリプチンは日本人のデータ

本剤の有効成分であるカナグリフロジンの承認用量は100mg/日である。

17. 臨床成績

17.1 有効性及び安全性に関する試験

17.1.1 国内第Ⅲ相試験 (テネリグリプチン上乗せ検証的試験)

食事療法及び運動療法に加えてカナグリフロジン単剤治療で血糖コントロールが不十分な2型糖尿病患者(154例)を対象に、テネリグリプチン又はプラセボを1日1回24週間投与した。結果は次表のとおりであった。

本試験において低血糖の副作用は認められなかった22)。

表 テネリグリプチン上乗せ検証的試験(24週時)の結果

	カナグリフロ	コジン100mg	カナグリフロジン100mg			
	+プラ	セボ	+テネリグリプチン20mg			
	投与前	投与前から	投与前	投与前から	プラセボとの	
	权于刖	の変化量		の変化量	差	
HbA1c (%)	8.09 ± 0.85	0.00 ± 0.08	7.98 ± 0.80	-0.94 ± 0.08	-0.94 ± 0.11 #	
	(n=77)	0.00 ± 0.06	(n=77)		[-1.16, -0.72]	
空腹時血糖	151.0 ± 25.0	10.0 ± 2.8	148.5 ± 21.2	-5.6 ± 2.7	-15.6 ± 3.9 #	
(mg/dL)	(n=76)		(n=77)		[-23.3, -7.9]	
食事負荷後	232.6 ± 45.6		232.2 ± 44.7		-37.6 ± 6.2 #	
2時間血糖		2.3 ± 4.5		-35.3 ± 4.3		
(mg/dL)	(n=65)		(n=73)		[-49.9, -25.2]	

投与前:平均値 = 標準偏差、投与前からの変化量及びプラセボとの

差:調整済み平均値±標準誤差 #p<0.001、[] は両側95%信頼区間

HbA1c: NGSP値

17.1.2 国内第Ⅲ相試験 (カナグリフロジン上乗せ検証的試験)

食事療法及び運動療法に加えてテネリグリプチン単剤治療で血糖コントロールが不十分な2型糖尿病患者(138例)を対象に、カナグリフロジン又はプラセボを1日1回24週間投与した。結果は次表のとおりであった。

本試験において低血糖の副作用は認められなかった23)、24)。

表 カナグリフロジン上乗せ検証的試験(24週時)の結果

	テネリグリ	プチン20mg	テネリグリプチン20mg			
	+プラ	ラセボ	+カナグリフロジン100mg			
	投与前	投与前から	投与前	投与前から	プラセボとの	
	1文一子刊	の変化量		の変化量	差	
HbA1c (%)	7.87 ± 0.83	-0.10 ± 0.10	8.18 ± 0.90	-0.97 ± 0.10	-0.88 ± 0.14 #	
HDAIC (%)	(n=68)	-0.10 ± 0.10	(n=70)		[-1.15, -0.60]	
空腹時血糖	167.0 ± 33.6	3.9 ± 3.5	173.9 ± 30.6	-34.9 ± 3.4	-38.8 ± 4.9 #	
(mg/dL)	(n=67)		(n=69)		[-48.5, -29.2]	
食事負荷後	247.1 ± 56.0	-9.2 ± 5.1	256.1 ± 45.6 (n=67)	-60.1 ± 4.9	-50.9 ± 7.1 #	
2時間血糖					[-64.9, -36.9]	
(mg/dL)	(n=61)				[-04.9, -30.9]	

投与前:平均値±標準偏差、投与前からの変化量及びプラセボとの

差:調整済み平均値±標準誤差

#p<0.001、[] は両側95%信頼区間

HbA1c: NGSP値

17.1.3 国内第Ⅲ相試験(長期投与試験)

食事療法及び運動療法に加えてテネリグリプチン単剤治療で血糖コントロールが不十分な2型糖尿病患者(153例)を対象に、カナグリフロジンを1日1回52週間投与した。テネリグリプチン20mg+カナグリフロジン100mg併用投与により、HbA1c(NGSP値)が低下し52週間にわたって安定した血糖コントロールが得られた。52週時における投与前からのHbA1c(NGSP値)の変化量(平均値±標準偏差)は-0.99±0.84%であった。

低血糖の副作用発現割合は1.3%(2例/153例)であった $^{25)}$ 。 [11.1.1 参照]

17.3 その他

17.3.1 心電図に対する影響

健康成人にテネリグリプチンとして40mg又は160mgを1日1 回4日間、反復経口投与したときのプラセボ補正したQTcI (個人ごとに補正したQTc) 間隔変化の最大平均値(及び90%信頼区間上限値)は、40mg群の投与終了後3時間で3.9 (7.6) msec、160mg群の投与終了後1.5時間で9.3 (13.0) msecであった26 (外国人のデータ)。[9.1.6 参照]

本剤の有効成分であるテネリグリプチンの承認用量は通常、20mg/日であり、最大用量は40mg/日である。

18. 薬効薬理

18.1 作用機序

18.1.1 テネリグリプチン

グルカゴン様ペプチド-1 (GLP-1) は、食事に応答して消化管から分泌され、膵臓からのインスリン分泌を促進し、グルカゴン分泌を抑制することで、食後血糖を調節している 27 。テネリグリプチンは、ジペプチジルペプチダーゼ-4 (DPP-4) 活性の阻害によりGLP-1の分解を抑制し、活性型GLP-1の血中濃度を増加させることにより、血糖低下作用を発揮する 28)。

18.1.2 カナグリフロジン

ナトリウム-グルコース共輸送体2(SGLT2)は腎臓で近位 尿細管に限局して分布しており、糸球体ろ過されたグルコースの大部分を血液中に再吸収させる役割を担っている²⁹⁾。 カナグリフロジンは、SGLT2を選択的に阻害し、腎臓でのグルコースの再吸収を抑制することで、血中に過剰に存在するグルコースを尿糖として排泄し血糖低下作用を発揮する。

18.2 薬理作用

18.2.1 耐糖能改善作用

2型糖尿病モデルであるZucker Diabetic Fatty(ZDF)ラットを用いた糖負荷試験において、テネリグリプチン及びカナグリフロジンの単回併用投与は、それぞれの単独投与と比較して、血漿中活性型GLP-1濃度を増加させ、血糖値上昇の抑制を増強した 30 。

18.2.2 テネリグリプチン

(1) DPP-4阻害作用及びGLP-1分解抑制作用

- テネリグリプチンはヒト血漿中DPP-4活性を濃度依存的に 阻害し、そのIC₅₀値は1.75nmol/Lであった²⁸⁾ (in vitro)。
- ・テネリグリプチンはラット血漿中の活性型GLP-1の分解を 濃度依存的に抑制した $^{28)}$ (in vitro)。
- ・インスリン抵抗性及び耐糖能異常を示す肥満モデルであるZucker Fattyラットを用いた糖負荷試験において、テネリグリプチンは単回投与により血漿中活性型GLP-1濃度及び血漿中インスリン濃度を増加させた²⁸⁾。
- ・2型糖尿病患者において、テネリグリプチン20mgの1日1 回投与は血漿中DPP-4活性を阻害し、血漿中活性型GLP-1 濃度を増加させた³¹⁾。

(2) 耐糖能改善作用

インスリン抵抗性及び耐糖能異常を示す肥満モデルであるZucker Fattyラットを用いた糖負荷試験において、テネリグリプチンは単回投与により血糖値上昇を抑制した²⁸。 2型糖尿病患者において、テネリグリプチン20mgの1日1回投与は、朝食、昼食及び夕食後血糖並びに空腹時血糖を改善した³¹。

18.2.3 カナグリフロジン

(1) SGLT2阻害作用

カナグリフロジンはヒトSGLT2を選択的に阻害する (IC50値: 4.2nmol/L) 32) (in vitro)。

(2) 腎糖再吸収阻害作用

ZDFラットにおいて、カナグリフロジンは単回経口投与により、腎糖再吸収阻害率*の上昇及び尿中グルコース排泄量の増加を示した³²⁾。2型糖尿病患者にカナグリフロジンとして100mgを単回経口投与したとき、腎糖再吸収阻害率の上昇及び尿中グルコース排泄量の増加が認められた³³⁾。
※腎糖再吸収量(糸球体グルコースろ過量と尿中グルコース排泄量の差)の媒体投与群に対する阻害率

(3) 糖代謝改善作用

ZDFラットにおいて、カナグリフロジンは単回経口投与により、血糖低下作用を示した³²⁾。

同モデルにおいて、カナグリフロジンは4週間反復経口投与により、HbA1c低下作用を示した。反復投与後の経口糖負荷試験では、血糖値上昇の抑制が認められた340。

2型糖尿病患者にカナグリフロジンとして100mgを1日1回24週間反復経口投与したとき、HbA1cの低下及び食後高血糖の改善がみられた350。

19. 有効成分に関する理化学的知見

19.1 テネリグリプチン

一般名: テネリグリプチン臭化水素酸塩水和物 (Teneligliptin Hydrobromide Hydrate)

化学名:{(2S,4S)-4-[4-(3-Methyl-1-phenyl-1*H*-pyrazol-5-yl) piperazin-1-yl]pyrrolidin-2-yl}(1,3-thiazolidin-3-yl) methanone hemipentahydrobromide hydrate

分子式: C₂₂H₃₀N₆OS · 2 1/2HBr · χ H₂O

分子量:628.86 (無水物)

性 状: 白色の粉末である。水に溶けやすく、メタノールに やや溶けやすく、エタノール (99.5) にやや溶けに くい。

構造式:

融 点:約201℃ (分解)

19.2 カナグリフロジン

ー般名:カナグリフロジン水和物(Canagliflozin Hydrate) 化学名:(1*S*)-1,5-Anhydro-1*-C*-(3-|[5-(4-fluorophenyl)thiophen-2-yl]methyl|-4-methylphenyl)-p-glucitol hemihydrate

分子式: C₂₄H₂₅FO₅S · 1/2H₂O

分子量: 453.52

性状:白色~微黄白色の粉末である。

構造式:

S CH₃ ·
$$\frac{1}{2}$$
 H₂O

融 点:101.7℃

*20. 取扱い上の注意

〈OD錠〉

PTP包装開封後は、湿気を避けて保存すること。

*22. 包装

〈カナリア配合錠〉

100錠 [10錠 (PTP) ×10]

〈カナリア配合OD錠〉

100錠 [10錠 (PTP) ×10、乾燥剤入り]

*23. 主要文献

- 1) Neal B, et al.: N Engl J Med. 2017; 377 (7): 644-657
- 2) 田辺三菱製薬 (株): 健康成人男性を対象とした臨床薬理試験 (社内資料) (カナリア配合錠: 2017年7月3日承認、 CTD2.7.6.1)
- 3) 田辺三菱製薬 (株): 健康成人男性を対象としたOD錠及び普通 錠の生物学的同等性試験(社内資料)(カナリア配合OD錠: 2025年2月17日承認、CTD2.7.6.1)
- 4) 田辺三菱製薬 (株): テネリグリプチンの蛋白結合に関する検討 (社内資料) (テネリア錠20mg: 2012年6月29日承認、CTD2.6.4.4.2)

- 5) 田辺三菱製薬 (株): カナグリフロジンの蛋白結合に関する検 討(社内資料)(カナグル錠100mg: 2014年7月4日承認、 CTD2.6.4.4.2)
- 6) Nakamaru Y, et al.: Xenobiotica. 2014; 44 (3): 242-253
- 7) 田辺三菱製薬 (株): テネリグリプチンの代謝に関する検討 (社内資料) (テネリア錠20mg: 2012年6月29日承認、 CTD2.6.4.5.6、2.6.4.7.1、2.6.4.7.2)
- 8) 田辺三菱製薬 (株): カナグリフロジンのマスバランス試験 (社内資料) (カナグル錠100mg: 2014年7月4日承認、 CTD2.7.6.11)
- 9) 田辺三菱製薬 (株): カナグリフロジンの代謝に関する検討 (社内資料) (カナグル錠100mg: 2014年7月4日承認、 CTD2.6.4.5.5、2.6.4.7.1)
- 10) 田辺三菱製薬 (株): テネリグリプチンの健康成人を対象とした単回投与試験(社内資料)(テネリア錠20mg: 2012年6月29日承認、CTD2.7.6.3)
- 11) 田辺三菱製薬 (株): テネリグリプチンのP-糖蛋白に関する試験 (社内資料) (テネリア錠20mg: 2012年6月29日承認、 CTD2.6.4.7.3、2.6.4.7.4)
- 12) 田辺三菱製薬 (株): テネリグリプチンのトランスポーターに 関する検討(社内資料)(テネリア錠20mg: 2012年6月29日承 認、CTD2.6.4.7.5)
- 13) 田辺三菱製薬 (株): カナグリフロジンのトランスポーターに 関する検討 (社内資料) (カナグル錠100mg: 2014年7月4日承 認、CTD2.64.7.2)
- 14) 田辺三菱製薬 (株): テネリグリプチンの腎機能障害者における薬物動態試験(社内資料)(テネリア錠20mg: 2012年6月29日承認、CTD2.7.6.9)
- 15) 田辺三菱製薬 (株): カナグリフロジンの腎機能障害者における薬物動態試験(社内資料)(カナグル錠100mg: 2014年7月4日承認、CTD2.7.6.14)
- 16) 田辺三菱製薬 (株): テネリグリプチンの肝機能障害者における薬物動態試験(社内資料)(テネリア錠20mg: 2012年6月29日承認、CTD2.7.6.10)
- 17) 田辺三菱製薬 (株): カナグリフロジンの肝機能障害者における薬物動態試験(社内資料)(カナグル錠100mg: 2014年7月4日承認、CTD2.7.6.15)
- 18) 田辺三菱製薬 (株): テネリグリプチンの高齢者における薬物 動態試験(社内資料)(テネリア錠20mg: 2012年6月29日承認、 CTD2768)
- 19) 田辺三菱製薬 (株): カナグリフロジンの第Ⅱ相用量設定試験 (社内資料) (カナグル錠100mg: 2014年7月4日承認、 CTD27641)
- 20) Nakamaru Y, et al.: Clin Ther. 2014; 36 (5): 760-769
- 21) 田辺三菱製薬 (株): カナグリフロジンの薬物相互作用試験 (社内資料) (カナグル錠100mg: 2014年7月4日承認、 CTD27.2.2.3.2、2.7.2.2.5.1)
- 22) 田辺三菱製薬 (株):2型糖尿病患者を対象とした検証的試験 (1)(社内資料)(カナリア配合錠:2017年7月3日承認、 CTD2.7.6.3)
- 23) Kadowaki T, et al.: Diabetes Obes Metab. 2017; 19 (6): 874-882
- 24) 田辺三菱製薬 (株):2型糖尿病患者を対象とした検証的試験 (2)(社内資料)(カナリア配合錠:2017年7月3日承認、 CTD2764)
- 25) 田辺三菱製薬 (株):2型糖尿病患者を対象とした長期投与試験 (社内資料)(カナリア配合錠:2017年7月3日承認、 CTD27.65)
- 26) 田辺三菱製薬 (株): テネリグリプチンのQTc間隔への影響試験(社内資料)(テネリア錠20mg: 2012年6月29日承認、CTD2.7.6.15)
- 27) Kreymann B, et al. : Lancet. 1987 ; 2 (8571) : 1300-1304
- 28) Fukuda-Tsuru S, et al.: Eur J Pharmacol. 2012; 696 (1-3): 194-202

- 29) Mather A, Pollock C, : Kidney Int. 2011; 79 (Suppl.120): S1-S6
- 30) Oguma T, et al.: J Pharmacol Sci. 2015; 127 (4): 456-461
- 31) Eto T, et al.: Diabetes Obes Metab. 2012: 14 (11): 1040-
- 32) Kuriyama C, et al.: J Pharmacol Exp Ther. 2014: 351 (2): 423-431
- 33) 田辺三菱製薬 (株): カナグリフロジンの2型糖尿病患者を対象 とした臨床薬理試験(社内資料)(カナグル錠100mg: 2014年7 月4日承認、CTD2.7.6.12)
- 34) 田辺三菱製薬 (株): カナグリフロジンのin vitro及びin vivo薬 理作用(社内資料)(カナグル錠100mg: 2014年7月4日承認、CTD2.6.2.2.1、2.6.2.2.2)
- 35) Inagaki N, et al.: Expert Opin Pharmacother. 2014; 15 (11): 1501-1515

24. 文献請求先及び問い合わせ先

第一三共株式会社 製品情報センター 〒103-8426 東京都中央区日本橋本町3-5-1 TEL: 0120-189-132

26. 製造販売業者等

26.1 製造販売元

26.2 販売元

第一三共株式会社

東京都中央区日本橋本町3-5-1