* 2025年11月改訂 (第2版) 2024年3月改訂 (第1版)

貯法:室温保存 **有効期間**:3年 日本標準商品分類番号 873229

承認番号 21400AMZ00325 **販売開始** 2002年7月

0.52~.24

高カロリー輸液用微量元素製剤

処方箋医薬品注)

メドレニック®注

MEDLENIK Injection

注)注意-医師等の処方箋により使用すること

2. 禁忌 (次の患者には投与しないこと)

- 2.1 本剤又は本剤配合成分に過敏症の既往歴のある患者
- 2.2 胆道閉塞のある患者 [排泄障害により、マンガンの全血中 濃度、及び銅などの微量元素の血漿中濃度を上昇させるおそ れがある。] [8.2 参照]

3. 組成・性状

3.1 組成

販売名	メドレニック注				
1アンプル (2m	アンプル (2mL) 中				
	塩化第二鉄	9.460mg			
	塩化マンガン	0.1979mg			
有効成分	硫酸亜鉛水和物	17.25mg			
	硫酸銅	1.248mg			
	ヨウ化カリウム	0.1660mg			
	鉄 (Fe)	$35 \mu \mathrm{mol}$			
	マンガン (Mn)	$1 \mu \text{ mol}$			
元素量	亜鉛 (Zn)	$60 \mu \mathrm{mol}$			
	銅(Cu)	$5 \mu \text{ mol}$			
	ヨウ素 (I)	$1 \mu \mathrm{mol}$			
活加到	コンドロイチン硫酸エステルナトリウム	9.774mg			
添加剤	pH調節剤				

3.2 製剤の性状

販売名	メドレニック注	
色・性状 暗赤褐色のコロイド状の注射液 pH 4.5~6.0		
		浸透圧比

4. 効能又は効果

経口、経腸管栄養補給が不能又は不十分で高カロリー静脈栄養に 頼らざるを得ない場合の亜鉛、鉄、銅、マンガン及びヨウ素の補 給。

6. 用法及び用量

通常、成人には1日2mLを高カロリー静脈栄養輸液に添加し、点 滴静注する。

なお、年齢、症状に応じて適宜増減する。

7. 用法及び用量に関連する注意

高カロリー輸液用基本液等には微量元素が含まれた製剤があるので、それらの微量元素量に応じて適宜減量すること。

8. 重要な基本的注意

- *8.1 本剤を長期連用する場合には、以下の点に注意すること。[8.2 参照]
 - ・臨床症状の推移を十分観察したうえで、慎重に投与すること。 また、必要に応じ、マンガンの全血中濃度及びその他の微量元素の血漿中濃度を測定することが望ましい。
 - ・特にマンガンについては、マンガン $20 \mu \text{ mol}$ 配合微量元素製剤*の投与により全血中濃度の上昇がみられたり、脳内蓄積によって脳MRI検査(T_1 強調画像)で高信号を示したり、パーキンソン様症状があらわれたとの報告がある。このような所見がみられた場合には、休薬、減量もしくは投与中止等を考慮すること。
 - %マンガン20 μ mol、鉄35 μ mol、亜鉛60 μ mol、銅5 μ mol、ヨウ素1 μ mol配 合製剤
- *8.2 黄疸がある場合又は本剤投与中にマンガンの全血中濃度の上昇が認められた場合及び銅などの微量元素の血漿中濃度の上昇が認められた場合には、休薬、減量もしくは中止等を考慮すること。 [2.2、8.1 参照]

全血中マンガン濃度の基準値1)

WIII (μg/uL)			0.52 2.4			
	血漿中微量元素濃度の基準値2)					
	中央値(下限値~上限値)注)					
	Fe (µg/dL)	103 (35~174)	Cu (µg/dL)	94 (62~132)		
	Zn (μg/dL)	97 (70~124)	I (μg/dL)	5.7 (3.7~14.0)		

注) 健常成人男女各20名より求めた

9. 特定の背景を有する患者に関する注意

9.2 腎機能障害患者

微量元素の血漿・全血中濃度を上昇させるおそれがある。

9.3 肝機能障害患者

微量元素の血漿・全血中濃度を上昇させるおそれがある。

9.5 妊婦

妊婦又は妊娠している可能性のある女性には、治療上の有益性が 危険性を上回ると判断される場合にのみ投与すること。

9.6 授乳婦

治療上の有益性及び母乳栄養の有益性を考慮し、授乳の継続又は 中止を検討すること。

9.7 小児等

小児等を対象とした有効性及び安全性を指標とした臨床試験は実施していない。

9.8 高齢者

減量するなど注意すること。一般に生理機能が低下している。

11. 副作用

次の副作用があらわれることがあるので、観察を十分に行い、異常が認められた場合には投与を中止するなど適切な処置を行うこと。

112 その他の副作用

11.2 (4) (64) (7)(1)				
	頻度不明			
過敏症	発疹			
肝臓	肝機能異常(AST上昇、ALT上昇、Al-P上昇等)、ビリルビン上昇			
精神神経系	パーキンソン様症状			
その他	血中マンガン上昇			

14. 適用上の注意

14.1 全般的な注意

使用時には、感染に対する配慮をすること。

14.2 薬剤投与時の注意

残液は使用しないこと。

16. 薬物動態

16.3 分布

各放射性元素(65 Zn、 54 Mn、 64 Cu、 125 I、 59 Fe)を含むマンガン20 μ mol配合微量元素製剤*をラットに静脈内投与した時、速やかな血中からの消失と臓器への分布がみられた 30 。また、ラットに 0.4mL/kgを7日間静脈内投与した実験では主要臓器中への元素の 蓄積はみられなかった 40 。

16.5 排泄

各放射性元素(65 Zn、 54 Mn、 64 Cu、 125 I、 59 Fe)を含むマンガン20 μ mol配合微量元素製剤**をラットに静脈内投与した時、主な排泄経路は、ヨウ素は尿中、他の元素は糞中であった 31 。

※マンガン20 μ mol、鉄35 μ mol、亜鉛60 μ mol、銅5 μ mol、ヨウ素1 μ mol配 合製剤

17. 臨床成績

17.1 有効性及び安全性に関する試験

17.1.1 国内第Ⅲ相試験 (一般臨床成績)

マンガン 20μ mol配合微量元素製剤*1を用いた臨床試験成績は次のとおりである。

高カロリー輸液法による栄養補給を2週間以上行った食道癌、胃

癌等の患者180例に対し、微量元素製剤を2~4週間高カロリー輸 液剤に添加して投与した。血漿中微量元素濃度の基準濃度範囲内 維持効果により評価した結果、有効率は78.3%(141/180例)で あった。副作用は微量元素製剤との因果関係は明らかではない が、1例の好酸球増多が認められた $^{5)}$

17.1.2 国内第Ⅲ相試験(長期臨床試験)

マンガン20μmol配合微量元素製剤*1を用いた臨床試験成績は次 のとおりである。

高カロリー輸液法による栄養補給を8週間以上行ったクローン病、 短腸症候群、食道癌等の患者19例に対し、最初の4週間を微量元 素無投与期間とし、その後4~8週間微量元素製剤を高カロリー輸液剤に添加して投与した。その結果、微量元素無投与時での血漿 中微量元素の低下傾向が微量元素製剤投与により基準値内に回 復、維持されることが明らかとなった。微量元素製剤の有効率は89.5% (17/19例) で、副作用は認められなかった 6)。

**1 マンガン 20μ mol、鉄 35μ mol、亜鉛 60μ mol、銅 5μ mol、ヨウ素 1μ mol 配合製剤

17.2 製造販売後調査等

17.2.1 特別調査(長期:1年以上)

マンガン1 μ mol配合微量元素製剤※2を投与されている在宅中心静 脈栄養法施行中の患者20症例について血中の微量元素濃度を調査 した。1年以上(最長2年4ヵ月)の投与患者において、全血中の マンガン濃度、血清中の鉄、亜鉛及び銅濃度の平均値が基準濃度 範囲内に維持されていた症例の割合は、マンガン:78.9% (15/19 例)、鉄:68.4% (13/19例)、亜鉛:81.8% (9/11例)、銅:89.5% (17/19例) であった。

また、本調査において全血中マンガン濃度は長期間の投与でも上 昇する傾向は認められなかった⁷⁾。

17.2.2 特別調査 (長期:1カ月以上)

1カ月以上の長期にわたりマンガン1μ mol配合微量元素製剤*2が 投与される高カロリー静脈栄養輸液療法の患者を対象とし、長期 投与における有効性を調査した結果、有効率は99.3% (266/268 例) であった⁸⁾。

**2 マンガン 1μ mol、鉄 35μ mol、亜鉛 60μ mol、銅 5μ mol、ヨウ素 1μ mol 配合製剤

18. 薬効薬理

18.1 作用機序

本剤は亜鉛、鉄、銅、マンガン及びヨウ素を含有し、高カロリー 静脈栄養輸液に添加して微量元素を補給する。

18.2 微量元素補給効果

微量元素欠乏ラット及び正常ラットに、1週間、マンガン20 μ mol配合微量元素製剤*を添加した高カロリー輸液施行群と微量 元素製剤を添加しない高カロリー輸液施行群における微量元素製 剤の補給効果を比較検討した。その結果、微量元素製剤を添加し ない群では血漿あるいは組織中の微量元素濃度は低下し、また微 量元素欠乏に基づくと考えられる貧血症状、アルカリフォスファ ターゼ活性の低下、トリヨードチロニン及びチロキシン濃度の低 下などが認められたが、微量元素製剤を添加した群ではこれらの 変化は正常レベルに回復あるいは回復する傾向が認められた9)。

 $**マンガン20 \mu mol、鉄35 \mu mol、亜鉛60 \mu mol、銅5 \mu mol、ヨウ素1 \mu mol配$ 合製剤

19. 有効成分に関する理化学的知見

〈塩化第二鉄〉

一般的名称:塩化第二鉄(Ferric Chloride)

分子式: FeCl3・6H2O

分子量:270.30

状: 黄色~褐色の結晶塊である。潮解性がある。水に極めて 溶けやすく、エタノール (95) 及びジエチルエーテルに やや溶けやすい。

〈塩化マンガン〉

-般的名称:塩化マンガン(Manganese Chloride)

分子式: MnCl₂·4H₂O

分子量:197.91

性 状:淡紅色の結晶である。水に極めて溶けやすく、エタノー ル (95) にやや溶けやすい。吸湿性である。5gを水 100mLに溶かした液のpHは4.0~6.5である。

〈硫酸亜鉛水和物〉

一般的名称:硫酸亜鉛水和物(Zinc Sulfate Hydrate)

分子式: ZnSO₄·7H₂O 分子量: 287.55

性 状:無色の結晶又は白色の結晶性の粉末である。水に極めて 溶けやすく、エタノール (99.5) に極めて溶けにくい。

乾燥空気中で風解する。

〈硫酸銅〉

-般的名称:硫酸銅(Cupric Sulfate)

分子式:CuSO₄·5H₂O 分子量:249.69

性 状: 青色の結晶又は結晶性の粉末である。水に溶けやすく、 エタノール (95) にほとんど溶けない。グリセリンに 徐々に溶ける。乾燥空気中で風解する。1gを水に溶かし て20mLとした液のpHは2.5~4.0である。

〈ヨウ化カリウム〉

-般的名称:ヨウ化カリウム (Potassium Iodide)

分子式: KI 分子量: 166.00

性 状:無色若しくは白色の結晶又は白色の結晶性の粉末であ る。水に極めて溶けやすく、エタノール (95) にやや溶けやすく、ジエチルエーテルにほとんど溶けない。湿った空気中で僅かに潮解する。

20. 取扱い上の注意

20.1 外箱開封後は遮光して保存すること。

20.2 光により濁る場合があるので、液の性状を観察し、液の澄明 でないものは使用しないこと。

22. 包装

2mL×50アンプル

23. 主要文献

1) 寺島建樹, 他: Biomed Res Trace Elements. 1994;5 (3) : 265-266

2) 寺島建樹, 他: JJPEN. 1988; 10 (3) : 369-372 3) 北川泰久, 他: JJPEN. 1987; 9 (6) : 898-900

4) 松田晃彦, 他:日本衛生学雑誌. 1989;44(4):887-893

5) 岡田 正, 他:薬理と治療. 1989:17 (7) : 3675-3690 6) 岡田 正, 他:薬理と治療. 1989:17 (7) : 3655-3673

7) 永濱 忍, 他:診療と新薬. 2004;41 (12) :1213-1220

忍, 他:診療と新薬. 2007;44(1):3-12 8) 永濱

9) 横井克彦, 他:日本衛生学雑誌. 1989;44(4):831-838

24. 文献請求先及び問い合わせ先

日医工株式会社 お客様サポートセンター 〒930-8583 富山市総曲輪1丁目6番21 TEL(0120)517-215

FAX (076) 442-8948

26. 製造販売業者等

26.1 製造販売元

26.2 発売元

26.3 販売

武田薬品工業株式会社

大阪市中央区道修町四丁目1番1号