ミノドロン酸水和物 リカルボン錠1 mg/ボノテオ錠1 mg

2.6 非臨床試験の概要文及び概要表

2.6.4 薬物動態試験の概要文

2.6.5 薬物動態試験概要表

小野薬品工業株式会社/アステラス製薬株式会社

目次

2.6 非臨	床試験の概要文及び概要表
2.6.4 薬	物動態試験の概要文1
2.6.4.1	まとめ2
2.6.4.2	分析法5
2.6.4.3	吸収6
2.6.4.4	分布15
2.6.4.5	代謝(動物間の比較)25
2.6.4.6	排泄
2.6.4.7	薬物動態学的薬物相互作用31
2.6.4.8	その他の薬物動態試験32
2.6.4.9	考察及び結論33
2.6.4.10	図表34
2.6.5 薬	物動態試験概要表36

2.6.4 薬物動態試験の概要文

本項で使用した用語及び略号を表 2.6.4-1 に示す.

表 2.6.4-1 用語及び略号一覧

用語及び略号	内容
AUC	血漿中濃度-時間曲線下面積
AUC _{0-24 h}	時間0から投与後24時間までの血漿中濃度-時間曲線下面積
AUC_{0-t}	時間0から投与後t時間までの血漿中濃度-時間曲線下面積
AUC _{0-∞}	時間0から無限時間まで外挿した血漿中濃度-時間曲線下面積
BA	絶対バイオアベイラビリティ
CL_{total}	全身クリアランス
Cmax	最高血漿中濃度
CYP	チトクロム P450
HPLC-FL	蛍光検出高速液体クロマトグラフィー
HPLC-UV	紫外吸収検出高速液体クロマトグラフィー
MTX	メトトレキサート (Methotrexate)
Tmax	最高血漿中濃度到達時間
t _{1/2}	消失半減期
$t_{1/2(1)}$	血漿中濃度推移が2相性を示した際の初期消失相の半減期
	(モデルにあてはめず最小二乗法により算出)
$t_{1/2(2)}$	血漿中濃度推移が2相性を示した際の最終消失相の半減期
	(モデルにあてはめず最小二乗法により算出)
$t_{1/2\alpha}$	血漿中濃度又は骨内濃度推移を 2-コンパートメントモデルに
	あてはめて算出したα相の半減期
$t_{1/2\beta}$	血漿中濃度又は骨内濃度推移を 2-コンパートメントモデルに
	あてはめて算出したβ相の半減期
Vdss	定常状態における分布容積

2.6.4.1 まとめ

ミノドロン酸水和物の薬物動態を明らかにするために、放射性標識体及び非標識体を使用して、種々の in vitro 及び in vivo 試験を実施した. In vitro 試験では、主としてラット、イヌ及びヒト由来の試料を用いて、血球移行率、血漿蛋白結合率及び薬物代謝能を検討した. In vivo 試験では、ラット及びイヌにミノドロン酸水和物又は ¹⁴C-ミノドロン酸水和物を経口及び静脈内投与したときの生体試料中の放射能及び未変化体濃度を検討した. ラット及びイヌは本薬の薬理試験及び毒性試験で主として使用された動物種である. 投与経路は薬理及び毒性試験と同様に臨床での投与経路である経口投与を主体とした. 経口投与は特に記載のない限り絶食下で実施した. なお、本薬の絶対バイオアベイラビリティ (BA) は 1%弱と低く、個体差も大きいため、経口投与による検討のみでは本薬の薬物動態を正確に評価することが困難と考えられた. そこで、本薬が体内に 100%吸収されたときの薬物動態を明らかにする目的で静脈内投与を実施した. これらの非臨床薬物動態試験によって、ラット及びイヌにおけるミノドロン酸水和物の吸収、分布、代謝及び排泄を明らかにした.

分析法

血漿中ミノドロン酸水和物濃度は、血漿試料を除蛋白処理後、カルシウム沈殿法により抽出、 濃縮し、蛍光検出高速液体クロマトグラフィー(HPLC-FL)により測定した。また、骨内ミノ ドロン酸水和物濃度は、骨試料を濃塩酸で溶解後、固相抽出法及びカルシウム沈殿法を組み合 わせて抽出、濃縮し、HPLC-FLにより測定した。これらの定量法の定量下限は、血漿で 0.2 ng/mL、 骨で 5 ng/g であった。一方、放射性標識体を投与したときの生体試料中の放射能濃度は、試料 に直接、あるいは試料を可溶化又は燃焼処理した後、液体シンチレーターを加えて液体シンチ レーションカウンターにより測定した。

吸収

雄ラットに 14 C-ミノドロン酸水和物を静脈内投与したときの血漿中放射能濃度の推移は 0.01 ~ 0.3 mg/kg の用量範囲でほぼ線形であり,かつ 0.3 mg/kg において性差はみられなかった. ラットにミノドロン酸水和物を 1, 3 及び 10 mg/kg 経口投与したときの血漿中未変化体濃度は投与後 0.17 時間に最高値(Cmax)に達し,その後 $0.87\sim 1.26$ 時間の半減期($t_{1/2}$)で減少した. Cmax 及び血漿中濃度一時間曲線下面積(AUC $_{0\infty}$)は投与量にほぼ比例して増大し,BA はそれぞれ 0.60%, 0.52%及び 0.64%であった. イヌにミノドロン酸水和物の原薬カプセルを 0.3, 1 及び 3 mg/kg 経口投与したときの血漿中未変化体濃度は投与後 $0.81\sim 2.06$ 時間に Cmax に達し, $1.04\sim 1.25$ 時間の初期消失相半減期($t_{1/2(1)}$)で減少した. また,1 及び 3 mg/kg では更に遅い消失相が認められ,半減期($t_{1/2(2)}$)は $3.32\sim 5.62$ 時間であった. BA はそれぞれ 0.77%, 0.65%及び 0.26%であり,高用量で吸収の飽和が示唆された.

イヌにミノドロン酸水和物を 15 日間反復経口投与した際、投与 8 及び 15 日目の Cmax 及び AUC_{0-24h} は 1 日目のそれらの約 2 倍を示したが、8 日目と 15 日目との間には差はみられなかった.

本薬はラット消化管において十二指腸で最も良く吸収され、胃及び回腸では吸収されにくかった.本薬の吸収は食餌により著しく低下し、その主たる原因として、本薬が食物中のカルシウムなどの多価陽イオンと難溶性又は難吸収性のキレートを形成する機構が考えられた.

ファモチジン筋肉内投与により胃酸分泌を抑制したラットに 14 C-ミノドロン酸水和物を経口 投与したときの骨内放射能濃度は,無処理ラットと比べ有意な低下を示したが,その差は平均 値で 20%と比較的軽度であった.

分布

ラットに ¹⁴C-ミノドロン酸水和物を静脈内投与したときの放射能は、標的器官である骨に速やかにかつ高濃度に移行し、長期間骨内に滞留した。また、大部分の組織が最高値を示す投与後5分においては、肋骨、上腕骨及び腎臓の濃度が血漿中濃度の1.2~1.6 倍を、血液が0.59 倍を示したが、その他の組織の濃度はいずれも血漿中濃度の0.28 倍以下であった。骨以外の組織では、脾臓及び骨髄からの放射能の消失が緩徐であった。これらの分布パターンに性差は認められなかった。

ラットに ¹⁴C-ミノドロン酸水和物を経口投与したときの放射能は、静脈内投与時と同様に骨内に長期間滞留した。また、組織内放射能濃度は、小腸、胃、骨、次いでリンパ節、腎臓、大腸及び肝臓で高かった。骨以外の組織内放射能の消失は、肝臓、腎臓、脾臓、骨髄及び胃では緩やかであったが、他の組織では比較的速やかであった。

ラットにミノドロン酸水和物を静脈内投与したときの骨内未変化体濃度は 2 相性を示して減少し、2-コンパートメントモデルにあてはめて算出した α 相の半減期($t_{1/2\alpha}$)は 16.4 日、 β 相の半減期($t_{1/2\beta}$)は 471 日であった。ラットにミノドロン酸水和物を 1、3 及び 10 mg/kg 経口投与したときの投与後 24 時間における骨内未変化体濃度は投与量に依存して増加し、0.3 mg/kg 静脈内投与後の骨内濃度に対する割合(投与量補正して計算)はそれぞれ 0.72%、1.02%及び 0.76%と、血漿中濃度から求めた BA(それぞれ 0.60%、0.52%及び 0.64%)に近い値を示した。また、非絶食のラットにミノドロン酸水和物を 28 日間反復静脈内投与したときの骨内濃度は、投与回数に依存して増加した。

妊娠ラットに ¹⁴C-ミノドロン酸水和物を静脈内投与したときの胎児内放射能濃度は,投与後 1時間において母体血漿中濃度の 1%を示し,投与後 4時間以降は検出限界未満に低下した.

授乳中のラットに ¹⁴C-ミノドロン酸水和物を静脈内投与したときの乳汁中放射能濃度は投与後 1~8 時間で血漿中濃度の 25%~49%を示したが, 投与後 24 時間で検出限界未満に低下した.

 14 C-ミノドロン酸水和物をラット血液中でインキュベートしたときの血球移行率は時間依存的に増加し、8時間後の移行率は19.5%~57.4%を示した。イヌでも軽度ながら同様の傾向がみられ、8時間後の移行率は9.0%~17.3%であった。一方、ヒトにおける血球移行率は時間依存的な増加をほとんど示さず、15分~8時間にかけて2.3%~15.4%の値を示した。

ラット、イヌ及びヒトにおける 14 C-ミノドロン酸水和物の *in vitro* 血漿蛋白結合率は、それぞれ 71.9%~76.3%、52.9%~55.9%及び 61.2%~61.9%であった.

代謝

¹⁴C-ミノドロン酸水和物をラット、イヌ及びヒトの肝並びに小腸ミクロソーム中でインキュベートした際、いずれの場合も代謝物の生成は認められなかった.

ラット及びイヌに 14 C-ミノドロン酸水和物を静脈内投与したときの尿中には未変化体のみが検出され、本薬は体内でほとんど代謝を受けないと考えられた。一方、 14 C-ミノドロン酸水和物経口投与後の尿中には未変化体以外に未知ピークが複数認められたが、これらは未変化体よりも経口吸収性が高い 14 C-ミノドロン酸水和物原体中の放射化学的不純物に由来すると推察された。

ラットに 14 C-ミノドロン酸水和物を経口投与したときの骨内放射能濃度は、非標識ミノドロン酸水和物を投与したときの骨内未変化体濃度とほぼ等しい値を示し、骨に移行する放射能のほとんどは未変化体であると考えられた.

非絶食のラットにミノドロン酸水和物を1及び3 mg/kg の用量で1日1回7日間反復経口投与した際、肝薬物代謝酵素系への影響は認められなかった.

排泄

 14 C-ミノドロン酸水和物を静脈内投与後 168 時間までの尿及び糞中への放射能の排泄率は、ラットでそれぞれ 50.9%及び 0.3%、イヌで 53.3%及び 1.9%であり、主排泄経路は腎排泄であった、また、投与後 48 時間までのラットの胆汁中には 0.1%の放射能が排泄された.

¹⁴C-ミノドロン酸水和物を経口投与後 168 時間までの尿及び糞中への放射能の排泄率は,ラットでそれぞれ 1.2%及び 97.6%, イヌで 1.8%及び 98.2%であった. ラットに経口投与後の胆汁中には放射能の排泄は認められなかったことから,大部分は未吸収のまま糞中に排泄されたと考えられた.

薬物動態学的薬物相互作用

イヌにメトトレキサート (MTX) 3 mg/kg をミノドロン酸水和物 0.15 mg/kg と同時に静脈内 投与したときの血漿中 MTX 濃度には、MTX 単独投与時と比較しほとんど影響がみられなかった.

2.6.4.2 分析法 …… 添付資料 4.2.2.1-1~20, 4.2.2.2-1~8, 4.2.2.3-1~6, 4.2.2.4-1~4, 4.2.2.6-1

2.6.4.2.1 非標識体

2.6.4.2.1.1 被験物質

In vitro 及び *in vivo* 試験あるいは分析の標品として用いたミノドロン酸水和物(Lot No. H-2, H-4, K5299207, K5299208, K5299612, K5299814, K5290121, K5290122 及び K5290225)は山之内製薬(株)において合成された.本品の定量値(含量)は 99.3%~101.4%であった.

2.6.4.2.1.2 HPLC-FL 法による血漿中及び骨内ミノドロン酸水和物の定量(ラット,

血漿中ミノドロン酸水和物濃度は、血漿試料を除蛋白処理後、カルシウム沈殿法により抽出、 濃縮し、HPLC-FLにより測定した(図 2.6.4-1). 本定量法は、特異性、回収率、精度及び真度 についてバリデートされており、定量は血漿試料中ミノドロン酸水和物の安定性が確認された 期間内に行われた. 定量下限は、血漿 1 mLを用いて 0.2 ng/mL であった. また、骨内ミノドロン酸水和物濃度は、骨試料を濃塩酸で溶解後、固相抽出法及びカルシウム沈殿法を組み合わせ て抽出、濃縮し、HPLC-FLにより測定した. 本定量法は、特異性、精度及び真度についてバリデートされており、定量下限は 5 ng/g であった(概要表 2.6.5.2 分析方法及びバリデーション 試験).

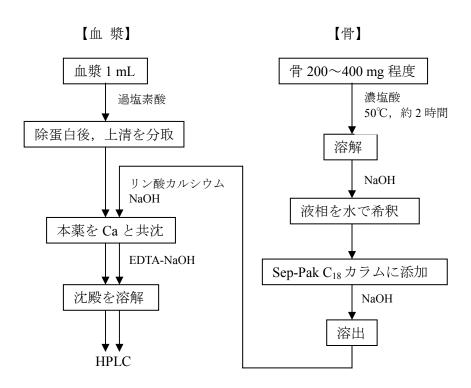


図 2.6.4-1 蛍光検出-HPLC 法による血漿中及び骨内未変化体濃度の測定法 (添付資料 4.2.2.1-6~10, 16~18)

2.6.4.2.2 標識体 ………………… 添付資料 4.2.2.2-4~8, 4.2.2.3-3~6, 4.2.2.4-1~3 **2.6.4.2.2.1** 標識化合物の合成

¹⁴C-ミノドロン酸水和物は、ミノドロン酸水和物のイミダゾピリジン環の 2 及び 6 位が ¹⁴C で標識された化合物であり (図 2.6.4-2)、 において合成された. 本標識体 (Code No. 6232, 7491, 11654 及び 12943) を必要に応じて精製後、ラット及びイヌに投与し、 放射能の体内動態を検討した. 各試験で使用した標識体の比放射能は 5.18~6.22 MBq/mg であり、放射化学的純度は 96%以上であった.

図 2.6.4-2 ¹⁴C-ミノドロン酸水和物の化学構造

*:¹⁴C の標識位置 (添付資料 4.2.2.2-4~8, 4.2.2.3-3~6, 4.2.2.4-1~3)

2.6.4.2.2.2 放射能の測定

試料中の放射能は、試料に直接あるいは試料を可溶化又は燃焼処理した後、液体シンチレーターを加えて液体シンチレーションカウンターにより測定した。放射能の検出限界はバックグラウンド値の2倍とした。得られた放射能濃度はミノドロン酸水和物に換算して記載した。

2.6.4.2.3 被験物質の投与条件 …… 添付資料 4.2.2.2-1~8, 4.2.2.3-1~5, 4.2.2.4-1, 4 非標識体及び標識体は、いずれも静脈内投与では水溶液又は生理食塩水溶液、経口投与では特に記載のない限り水溶液として投与した. これらの溶液は、秤量した被験物質にその 2 倍モル量に相当する NaOH を添加して溶解するか、又は 4 倍モル量の NaOH を添加して溶解後、2 倍モル量の塩酸を追添加することにより調製した. 得られた溶液の pH はほぼ中性であった.

静脈内投与は絶食下又は非絶食下で、経口投与は特に記載のない限り絶食下で実施した.また、動物は特に記載のない限り雄を用いた.

2.6.4.3 吸収添付資料 4.2.2.2-1~82.6.4.3.114C-ミノドロン酸水和物を投与したときの血中放射能濃度添付資料 4.2.2.2-4~72.6.4.3.1.1単回静脈内投与(ラット、イヌ)添付資料 4.2.2.2-4、5

雄ラットに 14 C-ミノドロン酸水和物を $0.01\sim0.3$ mg/kg 静脈内投与したときの血漿中放射能濃度は、少なくとも 0.3 mg/kg では 2 相性を示して減少し、 $t_{1/2(1)}$ は $0.28\sim0.32$ 時間、 $t_{1/2(2)}$ (0.3 mg/kg

のみ算出可能)は 2.9 時間であった (図 2.6.4-3, 表 2.6.4-2). AUC_{0-1} は投与量にほぼ比例して増加した. また, 雌ラットに 0.3 mg/kg 静脈内投与したときの血漿中濃度には雄ラットと差がみられなかった.

イヌに 14 C-ミノドロン酸水和物を0.1 mg/kg 静脈内投与したときの血液及び血漿中放射能濃度は2 相性を示して減少し, $t_{1/2(1)}$ は0.73 及び0.67 時間, $t_{1/2(2)}$ は4.9 及び4.4 時間であった(図2.6.4-3,表2.6.4-2).

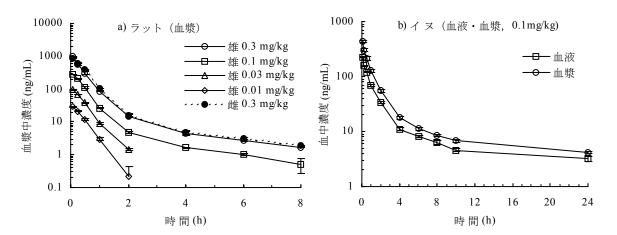


図 2.6.4-3 ラット及びイヌに ¹⁴C-ミノドロン酸水和物を静脈内投与したときの血液及び血漿中放射能濃度

3 例の平均値±標準誤差. 放射能濃度は (ng ミノドロン酸水和物当量/mL) で示した. (添付資料 4.2.2.2-4, 5)

表 2.6.4-2 ラット及びイヌに ¹⁴C-ミノドロン酸水和物を静脈内投与したときの血液及び血漿 中放射能の薬物動態パラメータ

動物	性	投与量	測定試料	$t_{1/2(1)}^{1)}$	$t_{1/2(2)}^{2)}$	$AUC_{0-t}^{3)}$	$\mathrm{AUC}_{0\text{-}\infty}$
		(mg/kg)		(h)	(h)	(ng·h/mL)	(ng·h/mL)
		0.01		0.28 ± 0.02		14.7 ± 0.4	
ラット	雄	0.03	血漿	0.30 ± 0.00		52.6 ± 1.0	
		0.1		0.32 ± 0.00		165 ± 4	
		0.3		0.32 ± 0.00	2.9 ± 0.3	517±26	
	雌	0.3	血漿	0.33 ± 0.00	3.1 ± 0.3	539±11	
イヌ	雄	0.1	血 液	0.73 ± 0.02	4.9 ± 0.3	329 ± 10	419±23
			血漿	0.67 ± 0.00	4.4 ± 0.4	552 ± 29	657 ± 34

- 3 例の平均値±標準誤差. AUC は (ng ミノドロン酸水和物当量·h/mL) で示した.
- 1): 投与後5分~2時間(ラットの0.01 mg/kgのみ5分~1時間)の血漿中濃度から求めた半減期
- 2): 投与後4~8時間(ラット) 又は4~10時間(イヌ)の血漿中濃度から求めた半減期
- 3): ラットは 0.01, 0.03, 0.1 及び 0.3 mg/kg においてそれぞれ投与後 1, 2,6 及び 8 時間までの血漿中濃度より算出. イヌは投与後 24 時間までの血液又は血漿中濃度より算出
- --: 算出せず

(添付資料 4.2.2.2-4, 5)

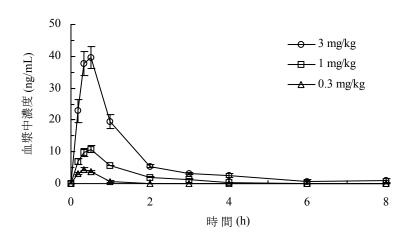


図 2.6.4-4 ラットに ¹⁴C-ミノドロン酸水和物を 0.3, 1 及び 3 mg/kg 経口投与した ときの血漿中放射能濃度

5 例の平均値±標準誤差. 放射能濃度は (ng ミノドロン酸水和物当量/mL) で示した. (添付資料 4.2.2.2-4)

表 2.6.4-3 ラットに ¹⁴C-ミノドロン酸水和物を経口投与したときの血漿中放射能の薬物動態パラメータ

投与量 (mg/kg)	Tmax ¹⁾ (h)	Cmax ¹⁾ (ng/mL)	t _{1/2} ²⁾ (h)	$AUC_{0-t}^{3)}$ (ng·h/mL)
0.3	0.33	4.47		1.58 ± 0.12
1	0.50	10.80	1.0 ± 0.1	13.3 ± 0.6
3	0.50	39.68	0.78 ± 0.03	45.0 ± 4.5

5 例の平均値±標準誤差

Cmax は (ng ミノドロン酸水和物当量/mL), AUC は (ng ミノドロン酸水和物当量·h/mL) で示した.

- 1):報告書原著中でTmax及びCmaxが算出されていなかったことから、報告書に掲載された平均血漿中濃度を用い、その濃度が最高値を示す時点をTmax、そのときの濃度をCmaxとして表示
- 2): 投与後 1~3 時間の血漿中濃度から求めた半減期
- 3): 0.3 mg/kg では投与後30分,1及び3 mg/kg では投与後3時間までの血漿中濃度より算出
- --: 算出せず

(添付資料 4.2.2.2-4)

 14 C-ミノドロン酸水和物をラットに 3 mg/kg 及びイヌに 1 mg/kg 経口投与したときの血漿中放射能濃度は、それぞれ投与後 0.25 及び 0.58 時間に Cmax に達し、1.3 及び 2.8 時間の半減期で消失した(図 2.6.4-5、表 2.6.4-4)。同時に測定した血漿中未変化体濃度の放射能濃度に対する割合は、ラットでは Cmax で 88%、AUC で 65%~71%であり、イヌでは Cmax で 67%、AUC で 33%~56%であった.

後述(2.6.4.5 代謝(動物間の比較)) するように、本薬は静脈内投与した際にほとんど代謝を受けず、肝及び小腸ミクロソーム中でも代謝物の生成は認められないことから、¹⁴C-ミノドロン酸水和物経口投与後の血漿中に存在する未変化体以外の放射能は、¹⁴C-ミノドロン酸水和物原体に含まれ、かつ未変化体に比べ高い吸収性を有する微量の放射化学的不純物に由来すると推察される。また、イヌに経口投与したときの投与後24時間の血液及び血漿中放射能濃度にわずかな上昇が認められたが、本所見も放射化学的不純物が緩徐に吸収されたことに起因すると推察される。

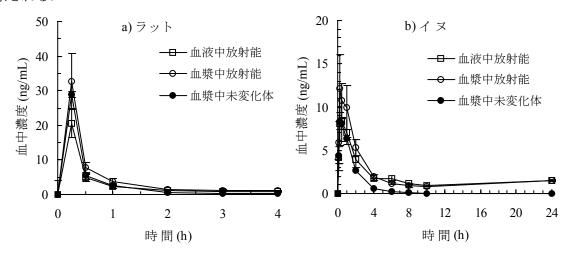


図 2.6.4-5 ¹⁴C-ミノドロン酸水和物をラットに 3 mg/kg 及びイヌに 1 mg/kg 経口投与したときの血液、血漿中放射能濃度及び血漿中未変化体濃度

3 例の平均値±標準誤差. 放射能濃度は (ng ミノドロン酸水和物当量/mL) で示した. (添付資料 4.2.2.2-6, 7)

表 2.6.4-4 ラット及びイヌに ¹⁴C-ミノドロン酸水和物を経口投与したときの血液,血漿中放射能及び血漿中未変化体の薬物動態パラメータ

	カルス0 並次「不交に件の未防功心・リン								
動物	. 投	与量	試料	測定対象	Tmax	Cmax	$t_{1/2}^{1)}$	$AUC_{0-t}^{2)}$	$AUC_{0-\infty}^{3)}$
動物	n) (n	ng/kg)	四八个十	側足刈家	(h)	(ng/mL)	(h)	(ng·h/mL)	$(ng \cdot h/mL)$
			血液	放射能	0.25	20.58	1.4	11.2	12.7
ラット	`	3	血漿	放射能	0.25	32.79	1.3	17.0	18.9
				未変化体	0.25	28.92	0.7	12.1	12.2
			血液	放射能	0.50 ± 0.25	8.74 ± 2.41	4.0 ± 0.8	21.6±4.1	43.9 ± 2.7
7 3	ζ	1	血漿	放射能	0.58 ± 0.22	12.93 ± 3.69	2.8 ± 0.4	27.7 ± 5.4	47.9 ± 5.3
				未変化体	0.33 ± 0.08	8.72 ± 2.84	1.2 ± 0.1	15.5 ± 3.7	15.7 ± 3.8

ラットは同一個体からの経時的な採血ではないため、薬物動態パラメータは 1 時点 3 例の平均濃度の値より 算出、イヌは 3 例の平均値±標準誤差

放射能濃度のCmaxは (ng ミノドロン酸水和物当量/mL), AUCは (ng ミノドロン酸水和物当量·h/mL) で示した.

- 1): ラットは投与後 0.5~4 時間の血中濃度から算出. イヌは投与後 0.5~2 時間を起点として 投与後 6~10 時間までの血中濃度から算出
- 2): ラットは投与後4時間,イヌは投与後6時間までの血中濃度より算出
- 3): イヌは最終測定可能時点までの AUC

(添付資料 4.2.2.2-6, 7)

2.6.4.3.2 ミノドロン酸水和物を投与したときの血漿中未変化体濃度

2.6.4.3.2.1 単回静脈内投与(ラット, イヌ)

ラット及びイヌにミノドロン酸水和物を 0.3 mg/kg 静脈内投与したときの血漿中未変化体濃度はいずれも 2 相性を示して減少した (図 2.6.4-6). 2-コンパートメントモデルにあてはめて算出したラットでの $t_{1/2\alpha}$ は 0.21 時間, $t_{1/2\beta}$ は 1.88 時間であった (表 2.6.4-5). また, イヌでの $t_{1/2\alpha}$ は 0.49 時間, $t_{1/2\beta}$ は 8.88 時間であった.

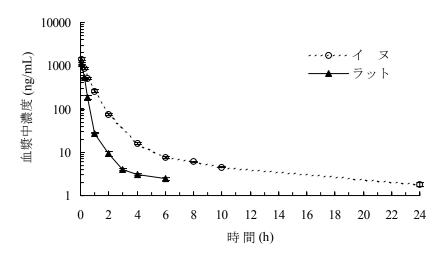


図 2.6.4-6 ラット及びイヌにミノドロン酸水和物を 0.3 mg/kg 静脈内投与したときの血漿中未変化体濃度

ラットは3例,イヌは4例の平均値±標準誤差 (添付資料4.2.2.2-1,2)

表 2.6.4-5 ラット及びイヌにミノドロン酸水和物を 0.3 mg/kg 静脈内投与したと きの血漿中未変化体の薬物動態パラメータ

動物	$egin{array}{c} t_{1/2lpha} \ (h) \end{array}$	t _{1/2β} (h)	Vdss (mL/kg)	$\begin{array}{c} AUC_{0\text{-}\infty} \\ (\text{ng}\cdot\text{h/mL}) \end{array}$	$\frac{\mathrm{CL_{total}}}{\mathrm{(mL/min/kg)}}$
ラット ¹⁾	0.21	1.88	484	340.8	14.7
イ ヌ 2)	0.49 ± 0.01	8.88 ± 0.67	822 ± 75	948 ± 26	5.3 ± 0.1

1):同一個体からの経時的な採血ではないため、薬物動態パラメータは1時点3例の平均濃度の値より算出

2):4例の平均値±標準誤差

(添付資料 4.2.2.2-1, 2)

2.6.4.3.2.2 単回経口投与(ラット,イヌ)

ラットにミノドロン酸水和物を 1,3 及び 10 mg/kg 経口投与したときの血漿中未変化体濃度 は投与後 0.17 時間に Cmax(それぞれ 10.56,25.09 及び 112.59 ng/mL)に達し,その後 0.87~1.26 時間の $t_{1/2(1)}$ で減少した(図 2.6.4-7,表 2.6.4-6).Cmax 及び $AUC_{0-\infty}$ は投与量にほぼ比例して増大し,絶対バイオアベイラビリティ(BA)はそれぞれ 0.60%,0.52%及び 0.64%であった.

イヌにミノドロン酸水和物の原薬カプセルを 0.3, 1 及び 3 mg/kg 経口投与したときの血漿中未変化体濃度は投与後 $0.81\sim2.06$ 時間に Cmax (それぞれ 2.63, 6.35 及び 10.67 ng/mL) に達し, $1.04\sim1.25$ 時間の $t_{1/2(1)}$ で減少した(図 2.6.4-7,表 2.6.4-6)。また,1 及び 3 mg/kg では更に遅い消失相が認められ, $t_{1/2(2)}$ は $3.32\sim5.62$ 時間であった。BA はそれぞれ 0.77%,0.65%及び 0.26%であり,高用量で吸収の飽和が示唆された。

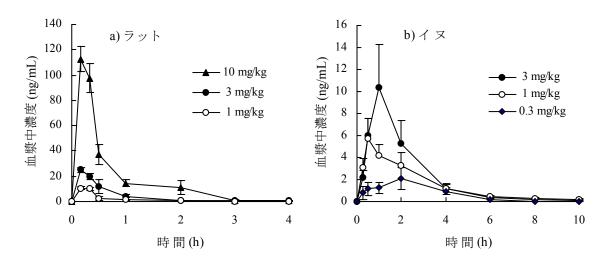


図 2.6.4-7 ラット及びイヌにミノドロン酸水和物を経口投与したときの血漿中未変化体濃度 ラットは 3 例, イヌは 4 例の平均値±標準誤差 (添付資料 4.2.2.2-1, 2)

表 2.6.4-6 ラット及びイヌにミノドロン酸水和物を経口投与したときの血漿中未変化体の薬物 動態パラメータ

動	物 物	Dose	Tmax	Cmax	$t_{1/2(1)}^{1)}$	$t_{1/2(2)}^{2)}$	$AUC_{0-\infty}$	BA ³⁾
		(mg/kg)	(h)	(ng/mL)	(h)	(h)	(ng·h/mL)	(%)
		1	0.17	10.56	1.09		6.81	0.60
ラ	ット 4)	3	0.17	25.09	1.26		17.58	0.52
		10	0.17	112.59	0.87		72.67	0.64
		0.3	2.06 ± 0.77	2.63 ± 0.79	1.10 ± 0.13		7.14 ± 2.25	0.77 ± 0.27
1	ヌ 5)	1	0.81 ± 0.40	6.35 ± 1.42	1.25 ± 0.14	5.62 ± 1.06	20.30 ± 4.29	0.65 ± 0.15
		3	0.88 ± 0.13	10.67 ± 3.73	1.04 ± 0.09	3.32 ⁶⁾	23.71 ± 8.90	0.26 ± 0.10

1): Cmax 直後の初期消失相における半減期

2): 投与後 4~8 時間又は 6~10 時間の血漿中濃度から求めた半減期

3): 0.3 mg/kg 静脈内投与時の AUC を基準にして求めた絶対バイオアベイラビリティ

4):同一個体からの経時的な採血ではないため、薬物動態パラメータは1時点3例の平均濃度の値より算出

5):4例の平均値±標準誤差

6):2例の平均値

--: 算出せず

(添付資料 4.2.2.2-1, 2)

2.6.4.3.2.3 反復経口投与(イヌ) ……………………… 添付資料 4.2.2.2-1

イヌにミノドロン酸水和物の原薬カプセル 1 mg/kg を 1 日 1 回 15 日間反復経口投与した際, 投与 8 及び 15 日目の Cmax 及び AUC_{0-24h}は 1 日目のそれらの約 2 倍を示したが, 8 日目と 15 日目との間には差はみられなかった(図 2.6.4-8, 表 2.6.4-7). また, Tmax 及び $t_{1/2(1)}$ には, 反復投与による変動は認められなかった.

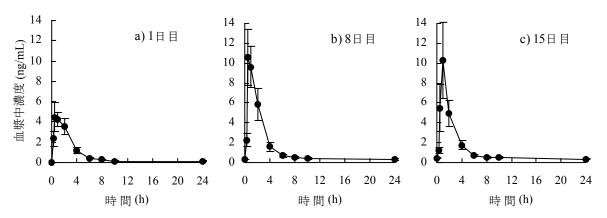


図 2.6.4-8 イヌにミノドロン酸水和物 1 mg/kg を 1 日 1 回 15 日間反復経口投与したときの血漿 中未変化体濃度

6 例の平均値±標準誤差 (添付資料 4.2.2.2-1)

表 2.6.4-7 イヌにミノドロン酸水和物 1 mg/kg を 1 日 1 回 15 日間反復経口投与したときの血漿中未変化体の薬物動態パラメータ

Day	Tmax	Cmax	$t_{1/2(1)}^{1)}$	$t_{1/2(2)}^{2)}$	A U C _{0-24h}
	(h)	(ng/mL)	(h)	(h)	$(ng \cdot h/mL)$
1	1.04 ± 0.32	5.71 ± 0.99	1.22 ± 0.10	5.62 ± 1.06^{3}	16.52 ± 2.99
8	0.75 ± 0.11	11.86 ± 2.76	1.11 ± 0.07	6.66 ± 0.57	31.67 ± 6.87
	(p = 0.536)	(p = 0.114)	(p = 0.642)		(p = 0.108)
15	1.08 ± 0.20	10.74 ± 3.61	1.33 ± 0.11	6.68 ± 0.66^{3}	30.04 ± 7.52
	(p = 0.986)	(p = 0.206)	(p = 0.658)		(p = 0.155)

6 例の平均値±標準誤差

1): Cmax 直後の初期消失相における半減期

2): 投与後 4~8 時間, 4~10 時間又は 6~10 時間の血漿中濃度から求めた半減期

3):4例の平均値±標準誤差

():1日目の値に対するp値(Dunnettの多重比較検定)

(添付資料 4.2.2.2-1)

2.6.4.3.3 吸収に及ぼす要因 ……………………… 添付資料 4.2.2.2-3, 8

後述 (2.6.4.4 分布) するように、本薬は経口吸収後骨に選択的に移行し、かつ移行後の骨からの消失は極めて緩徐である。したがって、骨内濃度はその時点までの体内への吸収量を反映すると考えられる。そこで、種々の前処理を施したラットに 14 C-ミノドロン酸水和物又はミノドロン酸水和物を経口投与し、投与後所定の時間に上腕骨内濃度を測定することにより、本薬の吸収に及ぼす諸要因を検討した。

2.6.4.3.3.1 吸収部位 ………………………… 添付資料 4.2.2.2-8

ラットの消化管結紮ループ内に 14 C-ミノドロン酸水和物を $0.3~\mathrm{mg/kg}$ 注入したときの投与後 1時間における上腕骨内放射能濃度は、十二指腸>空腸>結腸>胃、回腸の順に高く、本薬の吸 収は十二指腸で最も高く、胃及び回腸で最も低いことが示された(表 2.6.4-8).

表 2.6.4-8 ラットの消化管ループ内又は静脈内に ¹⁴C-ミノドロン酸水和物を 0.3 mg/kg 注入したときの投与後 1 時間における上腕骨内放射能濃度

投与部位	骨内濃度	静脈内投与に
	(ng/g)	対する%
胃	23 ± 7	0.7
十二指腸	119 ± 33	3.7
空腸	71 ±25	2.2
回腸	21 ± 4	0.7
結腸	48 ±22	1.5
静脈内投与	3208 ±182	

3 例の平均値±標準誤差, --: 算出せず

骨内濃度は (ng ミノドロン酸水和物当量/g) で示した.

(添付資料 4.2.2.2-8)

2.6.4.3.3.2 食餌の影響 添付資料 4.2.2.2-3

非絶食のラットにミノドロン酸水和物を 3 mg/kg 経口投与したときの投与後 24 時間における 骨内未変化体濃度は、絶食ラットに投与したときの 1/13 と低く、食餌の摂取による吸収の著し い低下が示唆された (表 2.6.4-9).

表 2.6.4-9 絶食及び非絶食のラットにミノドロン酸水和物を 3 mg/kg 経口 投与したときの投与後 24 時間における上腕骨内未変化体濃度

投与条件	骨内濃度			
	(ng/g)			
絶 食	104 ± 7			
非絶食	8 ± 1			

5 例の平均値±標準誤差 (添付資料 4.2.2.2-3)

2.6.4.3.3.3 カルシウムの影響 ………………………… 添付資料 4.2.2.2-8

ラットに塩化カルシウムを経口投与し、その 5 分後に ¹⁴C-ミノドロン酸水和物を 3 mg/kg 経 口投与したときの投与後 24 時間における骨内放射能濃度は、塩化カルシウムの投与量(0.04~ 5 mmol/kg) に依存して低下した (表 2.6.4-10). また, 牛乳の前投与によっても骨内濃度は対 照群の44%に低下した. これらの結果から,前述(表 2.6.4-9)の食餌による吸収低下の主たる 原因として、本薬が消化管内で食物中に含まれるカルシウムなどの多価陽イオンと難溶性又は 難吸収性のキレートを形成する機構が考えられた.なお、本試験で塩化カルシウム最高用量(5 mmol/kg) 又は牛乳をミノドロン酸水和物と併用した場合に比べ, 前述の食餌による吸収低下は より顕著であった.このことは、本薬の食餌成分への吸着等も吸収低下の一因であることを示唆している.また、本薬を食餌のような固体状態の多価陽イオン含有物と併用した場合、難溶性又は難吸収性のキレートがより形成されやすいことも考えられる.事実、本薬の生体試料中濃度定量法における前処理操作(2.6.4.2 分析法)は、アルカリpH下で析出する不溶性リン酸カルシウム由来成分に本薬が吸着又はキレート形成し、共沈殿することを基本原理としている.

表 2.6.4-10 ラットに塩化カルシウム又は牛乳の前投与を施した後, ¹⁴C-ミノドロン酸水和物を 3 mg/kg 経口投与したときの投与後 24 時間における上腕骨内放射能濃度

前投与 (経口投与)1)	投 与 量	骨内濃度 (ng/g)	対照群に対する%
対照群 (蒸留水)	5 mL/kg	89 ± 16	
	0.04 mmol/5 mL/kg	58 ± 6	65
$CaCl_2$	0.2 mmol/5 mL/kg	$54 \pm 5^{\dagger}$	61
	1 mmol/5 mL/kg	$39 \pm 8^{\dagger}$	44
	5 mmol/5 mL/kg	$14 \pm 2^{\dagger}$	16
牛 乳	5 mL/kg	39 ± 7*	44

5 例の平均値±標準誤差. 骨内濃度は (ng ミノドロン酸水和物当量/g) で示した.

1): 前投与後5分に ¹⁴C-ミノドロン酸水和物を経口投与し, その24 時間後に上腕骨を採取した.

--: 算出せず

†: p<0.05 (Dunnett の多重比較検定)

*: p<0.05 (Student の t 検定)

(添付資料 4.2.2.2-8)

2.6.4.3.3.4 ファモチジンによる胃酸分泌抑制の影響 …………… 添付資料 4.2.2.2-8

 H_2 受容体拮抗薬であるファモチジンを筋肉内投与して胃酸分泌を抑制したラットに 14 C-ミノドロン酸水和物を経口投与したときの骨内放射能濃度は、未処理ラットと比べ有意な低下 (p<0.05) を示したが、その差は平均値で 20%と比較的軽度であった(表 2.6.4-11).

一方、健常成人におけるミノドロン酸水和物の Cmax 及び AUC は、ファモチジンの併用によりいずれも空腹時の約 1.6 倍に増加し(2.7.2.2-2.2.2 臨床薬理試験(胃酸度及び食事の影響) [AKi1])、ラットとは逆の結果を示した。この原因の一つとして、両試験での投与形態の違いが考えられる。すなわち、ラットにおける併用試験では ¹⁴C-ミノドロン酸水和物は水溶液として経口投与された。この場合、胃酸分泌の抑制により消化管内 pH が上昇し、消化管内に存在するカルシウムなどの多価陽イオンとのキレート形成が促進された結果、本薬の吸収率が低下したと推察される。一方、健常成人における併用試験ではミノドロン酸水和物が錠剤として投与された。この場合、胃内 pH の上昇に伴い本薬の溶解度が上昇し、その結果吸収が増加したものと考えられる(2.7.2.3-5.1 加齢の影響 [CL-029]、[AKi2])。

表 2.6.4-11 ラットに胃酸分泌抑制を施した後, ¹⁴C-ミノドロン酸水和物を 3 mg/kg 経口投与したときの上腕骨内放射能濃度

前処理	胃液分泌量 1)	胃酸濃度 ¹⁾	胃酸分泌量 1)	骨内濃度 ²⁾
前及生	(mL/2 h)	(μEq/mL)	$(\mu Eq/2 h)$	(ng/g)
未 処 理	1.8 ± 0.2	67 ± 3	118 ± 10	127±9
ファモチジン	1.3 ± 0.2	5±2	8± 3	$101 \pm 6^*$
(3 mg/kg 筋注)				

- 5 例の平均値±標準誤差. 骨内濃度は (ng ミノドロン酸水和物当量/g) で示した.
- 1): 前処理後1時間に幽門を結紮し、その2時間後に胃液を採取した. (当該データは申請者側施設で実施・執筆された文献¹⁾からの引用)
- 2): 前処理後1時間に ¹⁴C-ミノドロン酸水和物を経口投与し, その24時間後に上腕骨を採取した.
- * : p<0.05 (Student の t 検定)

(添付資料 4.2.2.2-8)

2.6.4.4 分布添付資料 4.2.2.2-4~7, 4.2.2.3-1~62.6.4.4.114C-ミノドロン酸水和物を投与したときの組織内放射能濃度

雄ラットに ¹⁴C-ミノドロン酸水和物を 0.3 mg/kg 静脈内投与したときの放射能は、標的器官である骨に速やかにかつ高濃度に移行し、長期間骨内に滞留した (表 2.6.4-12). また、組織内放射能濃度は肋骨、上腕骨、脾臓及び骨髄を除き、投与後 5 分に最高値を示した. この投与後 5 分においては肋骨、上腕骨及び腎臓の濃度が血漿中濃度の 1.2~1.6 倍を、血液が 0.59 倍を示したが、その他の組織の濃度はいずれも血漿中濃度の 0.28 倍以下であった. 特に下垂体、小腸、膵臓、精巣、骨格筋、胸腺、眼球、脂肪、骨髄、小脳及び大脳への移行は低く、血漿中濃度の 0.10 倍未満であった. 組織内放射能は緩やかに消失し、投与後 168 時間での濃度は上腕骨、肋骨、脾臓及び肝臓では最高値の 31%~70%に、他の組織では 7%以下に低下した. また、投与後 91 日での濃度は肋骨、上腕骨、脾臓及び骨髄では最高値の 15%~48%に、他の組織では 3%以下若しくは検出限界未満に低下した.

雌ラットに 14 C-ミノドロン酸水和物を 0.3 mg/kg 静脈内投与したときの組織内放射能濃度は雄ラットにおけるそれとほぼ同様であり、分布パターンに性差は認められなかった (表 2.6.4-13).

表 2.6.4-12 雄ラットに ¹⁴C-ミノドロン酸水和物を 0.3 mg/kg 静脈内投与したときの組織内放射能濃度

_	数 2.0.4-12								
組	織		Γ						T
-,	4157	5 min	30 min	1 h	4 h	24 h	168 h	28 day	91 day
<u>ш</u>	漿	1157.98 ± 140.89	188.75 ± 14.27	28.88 ± 2.56	3.08 ± 0.11	0.88 ± 0.10	0.81 ± 0.08	0.00 ± 0.00	0.00 ± 0.00
Ш.	液	681.27 ± 86.17	115.64 ± 7.21	24.01 ± 0.54	9.40 ± 1.27	3.08 ± 0.32	1.64 ± 0.06	0.00 ± 0.00	0.00 ± 0.00
大	脳	10.40 ± 0.98	4.10 ± 1.97	1.30 ± 0.37	0.69 ± 0.11	0.32 ± 0.32	0.26 ± 0.13	0.00 ± 0.00	0.13 ± 0.13
小	脳	15.51 ± 3.60	2.89 ± 0.27	1.13 ± 0.12	1.91 ± 1.24	0.45 ± 0.32	0.23 ± 0.12	0.43 ± 0.04	0.51 ± 0.06
脳	下垂体	99.64 ± 12.38	22.31 ± 6.91	4.44 ± 4.44	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
眼	球	54.61 ± 9.27	29.70 ± 1.94	13.56 ± 0.10	4.45 ± 0.50	1.96 ± 0.39	0.93 ± 0.08	0.50 ± 0.06	0.38 ± 0.02
甲	状 腺	186.66 ± 19.92	50.22± 11.57	23.54 ± 0.78	7.96 ± 4.04	9.82 ± 1.56	10.02 ± 2.71	0.00 ± 0.00	0.00 ± 0.00
顎	下 腺	152.37 ± 24.32	30.30 ± 5.05	9.77 ± 1.55	5.10 ± 0.38	4.21 ± 0.24	3.73 ± 0.22	2.53 ± 0.07	2.51 ± 1.00
胸	腺	64.03 ± 9.15	14.89 ± 1.03	4.82 ± 0.22	3.42 ± 0.33	2.58 ± 0.06	1.85 ± 0.05	0.78 ± 0.19	0.90 ± 0.41
心	臓	175.41 ± 19.51	37.48 ± 5.93	13.85 ± 1.25	6.92 ± 0.59	4.85 ± 0.40	3.18 ± 0.15	1.66 ± 0.01	1.79 ± 0.92
	肺	323.09 ± 13.46	76.78 ± 6.55	37.09 ± 2.19	16.52 ± 0.98	10.57 ± 0.48	7.86 ± 0.58	4.05 ± 0.14	2.66 ± 1.20
肝	臓	193.92 ± 32.54	122.51 ± 11.19	97.67 ± 12.49	156.75 ± 7.18	163.93 ± 21.36	59.88 ± 0.98	14.78 ± 1.13	2.82 ± 0.24
腎	臓	1465.42 ± 474.66	620.70 ± 150.39	241.13 ± 4.72	207.13 ± 34.71	99.87 ± 6.34	51.29 ± 3.13	24.65 ± 0.84	21.95 ± 6.64
副	腎	191.99 ± 34.70	44.51 ± 7.05	16.69 ± 1.66	14.68 ± 2.15	11.50 ± 1.67	13.41 ± 1.68	8.61 ± 1.62	5.70 ± 0.83
脾	臓	149.15 ± 23.09	193.41 ± 16.50	144.55 ± 10.18	342.52 ± 11.18	241.03 ± 17.34	216.97 ± 23.70	201.49 ± 23.37	52.97 ± 6.66
膵	臓	81.70 ± 11.90	18.44 ± 2.43	5.21 ± 0.20	3.71 ± 0.17	3.01 ± 0.08	2.70 ± 0.64	1.86 ± 0.23	0.76 ± 0.10
脂	肪	47.34 ± 8.73	8.70 ± 1.19	2.18 ± 0.24	1.19 ± 0.17	0.84 ± 0.09	0.55 ± 0.05	0.00 ± 0.00	0.22 ± 0.22
皮	膚	254.80 ± 55.34	54.03 ± 12.11	15.24 ± 1.51	10.22 ± 0.99	4.64 ± 0.24	3.55 ± 0.68	1.28 ± 0.22	0.63 ± 0.12
筋	肉	67.83 ± 11.04	11.44 ± 1.58	2.88 ± 0.48	6.89 ± 4.56	1.29 ± 0.17	0.99 ± 0.24	0.67 ± 0.04	0.74 ± 0.21
上	腕 骨	1338.80 ± 301.44	3239.45 ± 129.37	3013.74 ± 245.16	2461.86 ± 484.68	2695.40 ± 261.65	2281.15 ± 129.40	1491.67 ± 56.85	1013.16 ± 6.02
肋	骨	1893.79 ± 343.16	3306.55 ± 433.64	3775.19 ± 174.91	3509.11 ± 322.96	3418.62 ± 348.61	2423.36 ± 184.06	1548.75 ± 148.05	1235.68 ± 82.55
骨	髄	36.78 ± 5.04	25.35 ± 1.00	26.11 ± 10.73	49.25 ± 8.44	33.29 ± 7.98	54.00 ± 15.09	28.74 ± 7.35	25.97 ± 3.59
大	動脈	273.54 ± 102.20	73.12 ± 7.34	24.35 ± 3.35	11.66± 1.19	7.14 ± 0.09	4.86 ± 0.70	3.02 ± 0.36	1.62 ± 0.09
リこ	/パ節	169.33 ± 22.13	36.80 ± 3.86	15.29 ± 1.58	13.28 ± 4.90	7.47 ± 0.74	9.21 ± 2.29	4.86 ± 0.44	3.66 ± 1.21
精	巣	73.24 ± 13.08	41.84± 5.46	9.75 ± 1.53	3.12 ± 0.02	2.76 ± 0.10	1.99 ± 0.12	1.03 ± 0.02	0.86 ± 0.17
	胃	205.50 ± 49.91	65.60 ± 12.71	28.05 ± 1.92	14.32 ± 1.83	16.27 ± 2.62	8.54± 1.31	3.74 ± 0.78	2.55 ± 0.23
小	腸	90.63 ± 19.77	37.38± 14.42	11.60 ± 2.10	11.61 ± 2.09	6.95 ± 0.59	6.61 ± 0.23	4.39 ± 0.49	2.80 ± 0.26
大	腸	142.47 ± 27.53	44.17± 8.79	17.60 ± 4.38	7.40 ± 0.29	6.28 ± 0.83	6.54 ± 0.17	3.04 ± 0.36	2.03 ± 0.13

3 例の平均値±標準誤差,0.00±0.00:検出限界未満

(添付資料 4.2.2.3-4)

表 2.6.4-13 雌ラットに ¹⁴C-ミノドロン酸水和物を 0.3 mg/kg 静脈内投与したときの組織内放射能濃度

組	織	<u> </u>		放射能	濃度 (ngミノ)	ドロン酸水和物当量			
小口	小时人	5 min	30 min	1 h	4 h	24 h	168 h	28 day	91 day
<u>ш</u> .	漿	1212.43 ± 15.06	158.04 ± 21.34	38.18 ± 8.33	3.98 ± 0.33	0.81 ± 0.41	0.51 ± 0.26	0.24 ± 0.24	0.00 ± 0.00
ш.	液	752.78 ± 12.08	103.80 ± 12.03	27.79 ± 4.15	7.62 ± 0.51	3.49 ± 0.33	1.31 ± 0.13	0.69 ± 0.38	0.00 ± 0.00
大	脳	13.49 ± 2.82	2.89 ± 0.23	1.35 ± 0.07	0.62 ± 0.03	0.13 ± 0.13	0.00 ± 0.00	0.23 ± 0.23	0.31 ± 0.16
脳ヿ	下垂体	165.28 ± 6.79	26.86 ± 1.13	10.42 ± 5.26	$2.86\pm\ \ 2.86$	3.39 ± 3.39	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
眼	球	75.41 ± 6.62	25.78 ± 2.80	15.39 ± 1.11	5.95 ± 0.79	1.94 ± 0.26	0.93 ± 0.08	0.71 ± 0.02	0.36 ± 0.01
甲	状 腺	226.99 ± 2.79	102.91 ± 55.18	30.01 ± 2.22	14.80 ± 2.24	25.41 ± 1.77	12.60 ± 2.63	0.00 ± 0.00	2.12 ± 2.12
顎	下 腺	162.97 ± 8.40	33.82 ± 10.77	10.48 ± 1.24	5.51 ± 0.45	5.38 ± 0.37	4.38 ± 0.49	2.28 ± 0.21	1.35 ± 0.17
胸	腺	79.69 ± 3.03	16.90 ± 3.81	6.53 ± 0.62	3.77 ± 0.24	6.17 ± 1.34	3.66 ± 0.91	0.85 ± 0.09	0.18 ± 0.18
心	臓	190.12 ± 7.50	35.90 ± 6.01	14.62 ± 2.36	5.94 ± 0.05	6.54 ± 1.30	3.57 ± 0.43	1.75 ± 0.05	1.17 ± 0.20
	肺	317.79 ± 16.36	77.48 ± 12.90	33.40 ± 3.27	12.92 ± 0.62	8.88 ± 0.40	6.95 ± 0.27	2.59 ± 0.13	1.00 ± 0.04
肝	臓	216.75 ± 7.36	190.21 ± 8.83	134.07 ± 12.80	133.23 ± 6.14	124.69 ± 10.23	68.91 ± 9.77	13.69 ± 0.92	1.82 ± 0.10
腎	臓	1909.55 ± 58.99	578.45 ± 136.49	287.58 ± 17.20	172.46 ± 8.84	105.40 ± 8.45	61.81 ± 0.50	37.98 ± 4.05	19.06 ± 2.89
副	腎	155.24 ± 17.51	32.12 ± 4.77	16.91 ± 1.54	9.68 ± 0.38	9.28 ± 0.26	10.42 ± 1.25	6.28 ± 0.61	6.00 ± 0.15
脾	臓	180.27 ± 3.01	156.86 ± 16.34	155.85 ± 27.55	213.19 ± 9.98	198.79 ± 33.80	175.08 ± 26.97	74.31 ± 5.41	47.06 ± 5.00
膵	臓	105.02 ± 4.71	18.74 ± 2.60	10.00 ± 3.91	3.59 ± 0.23	4.67 ± 1.14	2.40 ± 0.08	1.43 ± 0.18	0.61 ± 0.06
脂	肪	60.09 ± 5.91	10.52 ± 1.35	4.66 ± 0.15	1.32 ± 0.09	1.23 ± 0.12	1.06 ± 0.24	0.44 ± 0.03	0.00 ± 0.00
皮	膚	313.95 ± 16.14	58.24 ± 9.47	18.02 ± 2.48	7.16 ± 0.38	6.56 ± 0.98	$8.79\pm\ \ 2.34$	1.02 ± 0.09	0.48 ± 0.06
筋	肉	69.15 ± 1.31	13.89 ± 1.81	4.73 ± 0.90	2.38 ± 0.54	1.20 ± 0.26	1.72 ± 0.66	0.68 ± 0.05	0.49 ± 0.06
上	腕 骨	1409.54 ± 281.37	2516.36 ± 194.82	3278.10 ± 909.37	1946.33 ± 56.35	2217.40 ± 281.15	2299.00 ± 279.16	1717.45 ± 84.20	1139.19 ± 127.62
肋	骨	2160.14 ± 304.34	2450.17 ± 402.55	2947.39 ± 305.26	2624.02 ± 148.81	2740.94 ± 320.34	2321.94 ± 58.00	1803.56 ± 190.74	948.96 ± 151.09
骨	髄	84.86 ± 18.38	55.47 ± 13.40	67.91 ± 24.78	131.33 ± 103.21	46.48 ± 10.36	79.89 ± 36.56	44.58 ± 14.23	39.66 ± 15.69
大	動 脈	232.98 ± 22.39	58.70 ± 5.62	25.16 ± 4.21	9.17 ± 1.00	5.49 ± 0.45	4.15 ± 0.44	1.52 ± 0.78	0.96 ± 0.96
リン	ノパ節	165.30 ± 35.31	30.52 ± 1.69	15.54 ± 0.71	9.07 ± 0.24	7.02 ± 0.56	6.33 ± 0.31	4.30 ± 0.08	2.16 ± 0.24
子	宮	374.92 ± 9.61	50.14 ± 10.23	16.58 ± 1.35	7.06 ± 0.33	5.31 ± 1.05	4.14 ± 0.62	1.52 ± 0.16	0.14 ± 0.14
列	巣	331.76 ± 12.30	73.85 ± 6.38	34.56 ± 0.63	19.61 ± 2.21	14.50 ± 2.29	9.51 ± 1.03	3.59 ± 0.52	1.35 ± 0.23
	胃	166.70 ± 14.76	40.04 ± 7.76	14.22 ± 2.25	10.11 ± 0.50	6.74 ± 0.64	4.59 ± 0.25	3.23 ± 0.74	1.51 ± 0.45
小	腸	89.34 ± 3.83	34.98± 16.43	9.70 ± 1.50	8.02 ± 1.12	4.68 ± 0.72	4.09 ± 0.66	3.03 ± 0.36	1.58 ± 0.22
大	腸	114.81 ± 10.54	25.35 ± 2.25	12.56 ± 1.58	7.75 ± 1.30	5.40 ± 1.03	3.83 ± 0.44	2.64 ± 0.28	1.54 ± 0.13

3 例の平均値±標準誤差,0.00±0.00:検出限界未満

(添付資料 4.2.2.2-4)

2.6.4.4.1.2 単回経口投与(ラット) …………………… 添付資料 4.2.2.3-3

ラットに ¹⁴C-ミノドロン酸水和物を 3 mg/kg 経口投与したときの組織内放射能濃度は、大部分の組織において投与後 30 分で最高値を示した (表 2.6.4-14). 各組織での最高値を比較すると、小腸が最も高く、次いで胃>上腕骨>肋骨>リンパ節>腎臓>血漿、大腸、肝臓>大動脈、血液>膵臓、骨髄、副腎>皮膚、肺、甲状腺、脾臓、心臓、顎下腺>眼球、胸腺、筋肉、精巣>脂肪、大脳の順であった. 骨内濃度は静脈内投与時と同様に投与後長期にわたり持続した.また、肝臓、腎臓、脾臓、骨髄及び胃における放射能は緩やかに消失し、他の組織における放射能は比較的速やかに消失した.

表 2.6.4-14 ラットに ¹⁴C-ミノドロン酸水和物を 3 mg/kg 経口投与したときの組織内放射能濃度

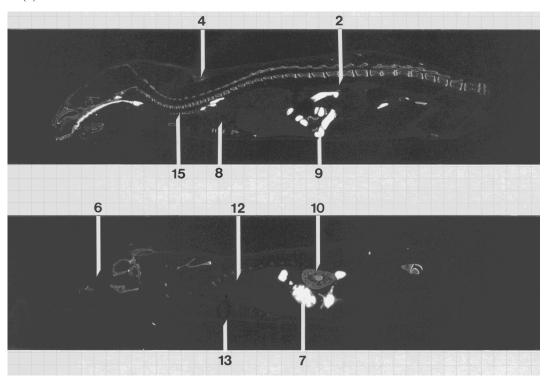
衣 2.0.4-14								
組織		放射能	濃度 (ng s		〈和物当量/mL			
	30 min	1 h	4 h	24 h	168 h	28 day	91 day	
血漿	22 ± 8	5 ± 0	2 ± 1	0 ± 0	0 ± 0	0 ± 0	0 ± 0	
血 液	12 ± 4	2 ± 0	1 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0	
大 脳	0 ± 0	1 ± 1	0 ± 0	0 ± 0	0 ± 0		1 ± 1	
脳下垂体	0 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0		0 ± 0	
眼 球	2 ± 1	2 ± 0	1 ± 0	0 ± 0	0 ± 0		0 ± 0	
甲状腺	0 ± 0	6 ± 6	0 ± 0	0 ± 0	3 ± 3		0 ± 0	
顎 下 腺	4 ± 1	3 ± 1	1 ± 1	1 ± 0	0 ± 0		0 ± 0	
胸 腺	2 ± 1	1 ± 0	1 ± 0	0 ± 0	0 ± 0		0 ± 0	
心臓	4 ± 1	2 ± 1	1 ± 0	1 ± 0	0 ± 0		0 ± 0	
肺	7 ± 2	3 ± 0	2 ± 0	1 ± 0	0 ± 0		0 ± 0	
肝 臓	17 ± 3	6 ± 1	7 ± 1	3 ± 1	2 ± 1	1 ± 1	0 ± 0	
腎 臓	50 ± 7	20 ± 1	26 ± 9	13 ± 2	8 ± 2	8 ± 3	4 ± 3	
副腎	9 ± 3	0 ± 0	0 ± 0	0 ± 0	0 ± 0		0 ± 0	
脾 臓	5 ± 1	2 ± 0	2 ± 0	1 ± 0	1 ± 0		6 ± 2	
膵 臓	10 ± 4	2 ± 1	1 ± 0	1 ± 0	1 ± 1		0 ± 0	
脂 肪	1 ± 1	0 ± 0	0 ± 0	0 ± 0	0 ± 0		0 ± 0	
皮膚	7 ± 2	5 ± 2	2 ± 1	4 ± 1	1 ± 0		0 ± 0	
筋肉	2 ± 1	0 ± 0	0 ± 0	0 ± 0	0 ± 0		0 ± 0	
上 腕 骨	98 ± 13	93 ± 17	$140 ~\pm~ 40$	$129\ \pm\ 35$	193 ± 103	152 ± 84	133 ± 106	
肋 骨	64 ± 38	63 ± 9	80 ± 39	72 ± 35	100 ± 36	102 ± 71	98 ± 75	
骨 髄	0 ± 0	1 ± 1	8 ± 5	8 ± 4	6 ± 6		10 ± 6	
大 動 脈	2 ± 2	13 ± 8	2 ± 2	0 ± 0	0 ± 0		0 ± 0	
リンパ節	74 ± 50	64 ± 38	7 ± 7	1 ± 1	1 ± 1		0 ± 0	
精 巣	2 ± 0	1 ± 0	0 ± 0	0 ± 0	0 ± 0		0 ± 0	
胃	2165 ± 789	347 ± 198	76 ± 45	21 ± 5	7 ± 5	7 ± 2	2 ± 1	
小 腸	2573 ± 618	$283 ~\pm~ 51$	50 ± 5	14 ± 2	4 ± 1		1 ± 0	
大 腸	19 ± 6	14 ± 9	5 ± 4	5 ± 3	1 ± 1		0 ± 0	

³例の平均値±標準誤差,0 ± 0:検出限界未満,--:測定せず

(添付資料 4.2.2.3-3)

2.6.4.4.2 ¹⁴C-ミノドロン酸水和物を投与したときの全身オートラジオグラフィー

2.6.4.4.2.1 単回静脈内投与(ラット) ………………………… 添付資料 4.2.2.3-4


ラットに¹⁴C-ミノドロン酸水和物を 0.3 mg/kg 静脈内投与したときの全身オートラジオグラムにおいて、投与後 5 分では骨及び腎臓に血液より高い放射能が、肺及び肝臓には血液とほぼ同程度の放射能が認められた.一方、他の組織はいずれも血液よりも低い濃度を示し、特に眼球及び脳への移行は低かった.また、投与後 24 時間では骨に高い放射能が認められ、脾臓、腸内容物、腎臓及び肝臓に低い放射能が、褐色脂肪、膀胱内尿及び副腎に痕跡程度の放射能が認められた.

2.6.4.4.2.2 単回経口投与(ラット) 添付資料 4.2.2.3-3 ラットに ¹⁴C-ミノドロン酸水和物を 3 mg/kg 経口投与したときの全身オートラジオグラムにおいて、投与後 0.5 時間では胃内容物及び腸内容物における放射能が最も高く、次いで骨、気

管及び腎臓に高い放射能が認められた(図 2.6.4-9). また,投与後 24 時間では腸内容物,胃内容物(食糞による放射能と推察),胃壁及び骨における放射能が高く,腎臓にも低い放射能が認

められた.

(a) 投与後 0.5 時間

(b) 投与後 24 時間

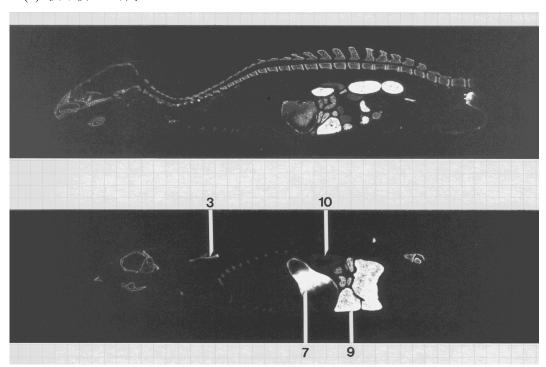


図 2.6.4-9 ラットに ¹⁴C-ミノドロン酸水和物を 3 mg/kg 経口投与したときの全身オートラジオグ ラム

2:血液 3:骨 4:褐色脂肪 6:眼球 7:胃内容物 8:心臓

9:腸内容物 10:腎臟 12:肺 13:皮膚 15:気管

(添付資料 4.2.2.3-3)

2.6.4.4.3 ¹⁴C-ミノドロン酸水和物又はミノドロン酸水和物を投与したときの骨内 濃度 添付資料 4.2.2.2-6, 4.2.2.3-1, 2 2.6.4.4.3.1 単回静脈内及び経口投与(ラット、イヌ)… 添付資料 4.2.2.2-6, 4.2.2.3-1 ラットにミノドロン酸水和物を 0.3 mg/kg 静脈内投与したときの上腕骨内未変化体濃度は 2 相性を示して減少し、t_{1/2}は 16.4 日、t_{1/2}は 471 日であった(図 2.6.4-10、表 2.6.4-15).

ラットにミノドロン酸水和物を 1,3 及び 10 mg/kg 経口投与したときの投与後 24 時間における上腕骨内未変化体濃度は,それぞれ 51,217 及び <math>542 ng/g と,投与量にほぼ比例して増加した (表 2.6.4-15). 一方,0.3 mg/kg 静脈内投与後 24 時間における骨内濃度は 2129 ng/g であった.静脈内投与時の骨内濃度に対する経口投与時の骨内濃度の割合 (投与量補正して計算) は,それぞれ 0.72%, 1.02%及び 0.76%であり,血漿中濃度から求めた絶対バイオアベイラビリティ (それぞれ 0.60%, 0.52%及び 0.64%: 表 2.6.4-6) と近い値を示した.

イヌに 14 C-ミノドロン酸水和物を 1 mg/kg 経口投与したときの投与後 168 時間における肋骨内放射能濃度は、骨端部(軟骨接合部近辺)で 132 ng ミノドロン酸水和物当量/g、骨中央部で 32 ng ミノドロン酸水和物当量/g であり、海綿骨に富む骨端部の方が皮質骨に富む骨中央部に比べ高濃度を示した.

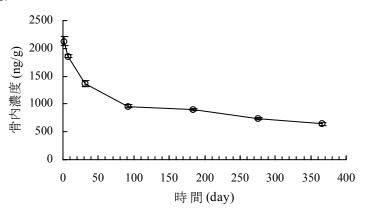


図 2.6.4-10 ラットにミノドロン酸水和物を 0.3 mg/kg 静脈内投与したときの 上腕骨内未変化体濃度

3 例の平均値±標準誤差(添付資料 4.2.2.3-1)

表 2.6.4-15 ラットにミノドロン酸水和物を静脈内及び経口投与したときの投 与後24時間における上腕骨内未変化体濃度並びに骨内濃度半減期

投与経路	投与量	骨内濃度	$t_{1/2\alpha}^{1)}$	$t_{1/2\beta}^{1)}$	po/iv 比 ²⁾
	(mg/kg)	(ng/g)	(day)	(day)	(%)
	1	51± 3			0.72
po	3	217 ± 133			1.02
	10	542 ± 61			0.76
iv	0.3	2129± 83	16.4	471	

3 例の平均値±標準誤差, --: 算出せず

1):同一個体からの経時的な採骨ではないため、1時点3例の平均濃度の値より算出

2): 骨内濃度を投与量補正したのち算出した.

(添付資料 4.2.2.3-1)

非絶食のラットにミノドロン酸水和物 0.04 及び 0.16 mg/kg を 1 日 1 回 28 日間反復静脈内投与したときの最終投与翌日における上腕骨内未変化体濃度は,それぞれ単回投与後 24 時間における濃度の 22 倍及び 25 倍を示し,骨内濃度は少なくとも 28 日間の投与期間内では投与回数に依存して増加するものと考えられた (表 2.6.4-16).

表 2.6.4-16 非絶食のラットにミノドロン酸水和物を 1 日 1 回 28 日間反復静脈内投与したときの上腕骨内未変化体濃度

投与量	骨内濃度 (μg/g)			
(mg/kg/day)	Day 1 1)	Day 28 ²⁾		
0.04	0.32 ± 0.01	$7.01 \pm 0.08(22)$		
0.16	1.18 ± 0.03	$29.78 \pm 0.75 (25)$		

3 例の平均値 ±標準誤差, ():1 日目の濃度に対する比

1): 単回投与後 24 時間の上腕骨

2): 28 回投与翌日の上腕骨

(添付資料 4.2.2.3-2)

2.6.4.4.4.1 妊娠ラットに ¹⁴C-ミノドロン酸水和物を静脈内投与したときの組織内 放射能濃度

妊娠 18 日目の雌ラットに 14 C-ミノドロン酸水和物を 0.1 mg/kg 静脈内投与したときの組織内放射能濃度は、骨、羊水及び胎児では投与後 1 時間に、他の組織では投与後 5 分に最高値を示した (表 2.6.4-17). 投与後 5 分における組織内濃度は子宮、卵巣及び胎盤では母体血漿中濃度の 26%~28%、乳腺では 10%、胎児血液及び胎児肺では 0.05%~0.2%であった. また、羊水及び胎児の濃度は投与後 1 時間において血漿中濃度のそれぞれ 2%及び 1%と低かった.

2.6.4.4.4.2 妊娠ラットに ¹⁴C-ミノドロン酸水和物を静脈内投与したときの全身 オートラジオグラフィー

妊娠 12 日目の雌ラットに ¹⁴C-ミノドロン酸水和物を 0.1 mg/kg 静脈内投与したときの全身オートラジオグラムにおいて、投与後 5 分では胎盤、子宮、卵巣、胎膜及び卵黄嚢に放射能が認められたが、いずれも血液中濃度よりも低かった. 投与後 4 時間では卵巣、胎膜及び胎盤に、投与後 24 時間では卵巣及び胎膜に低濃度の放射能が検出されたが、全時点を通して胎児には放射能は観察されなかった.

妊娠 18 日目の雌ラットに同用量静脈内投与したときの全身オートラジオグラムも同様の傾向を示したが、胎児の骨にも極めて低濃度の放射能が検出された.

表 2.6.4-17 妊娠 18 日目のラットに ¹⁴C-ミノドロン酸水和物を 0.1 mg/kg 静脈内投与したときの 組織内放射能濃度

組	織			gミノドロン酸水和物当量/mL or g)				
/13.1	7/14/4	5 min	1 h	4 h	24 h	48 h		
血	漿	545.96 ± 29.55	34.84 ± 1.92	3.71 ± 0.42	0.00 ± 0.00	0.00 ± 0.00		
血	液	322.75 ± 30.44	20.91 ± 1.62	3.00 ± 0.40	0.00 ± 0.00	0.00 ± 0.00		
大	脳	5.12 ± 0.39	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00		
心	臓	76.27 ± 7.58	9.49 ± 0.10	3.54 ± 0.23	2.84 ± 0.19	2.49 ± 0.25		
J	肺	176.21 ± 9.04	20.22 ± 2.22	7.09 ± 0.82	5.53 ± 1.32	3.10 ± 0.25		
肝	臓	75.59 ± 3.01	40.86 ± 3.92	39.18 ± 3.30	36.19 ± 1.85	34.02 ± 4.28		
腎	臓	955.67 ± 206.81	160.90 ± 8.47	104.81 ± 2.15	71.79 ± 1.88	61.92 ± 2.66		
副	腎	69.34 ± 6.72	10.97 ± 1.13	5.72 ± 0.72	4.66 ± 0.43	6.29 ± 0.92		
上	捥 骨	268.36 ± 18.44	878.17 ± 38.65	718.36 ± 69.55	677.12 ± 36.62	597.81 ± 19.18		
肋	骨	459.97 ± 44.09	1034.46 ± 92.51	832.96 ± 11.98	884.83 ± 64.02	897.68 ± 69.39		
子	宮	139.35 ± 10.16	21.63 ± 4.64	5.61 ± 0.70	5.18 ± 0.48	4.84 ± 0.27		
卵	巣	152.91 ± 21.70	74.47 ± 6.03	38.18 ± 2.00	32.70 ± 3.42	26.28 ± 1.96		
胎	盤	146.59 ± 19.90	51.51 ± 3.87	32.09 ± 1.90	17.43 ± 1.04	11.52 ± 0.08		
乳	腺	53.48 ± 7.15	5.79 ± 0.48	3.07 ± 0.48	2.40 ± 0.55	2.06 ± 0.06		
羊	水	0.57 ± 0.15	0.74 ± 0.10	0.30 ± 0.16	0.09 ± 0.09	0.00 ± 0.00		
胎	児	0.00 ± 0.00	0.34 ± 0.34	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00		
胎児	且血液	0.93 ± 0.50	0.36 ± 0.36	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00		
胎	児 脳	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00		
胎児	己心臟	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00		
胎	児 肺	0.26 ± 0.26	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00		
胎児	門臟	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00		
胎児	門臟	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00		

³ 例の平均値±標準誤差, 0.00±0.00: 検出限界未満

(添付資料 4.2.2.2-5)

授乳中の雌ラットに 14 C-ミノドロン酸水和物を 0.1~mg/kg 静脈内投与したときの乳汁中放射能 濃度は投与後1時間に最高値を示した(表2.6.4-18). 乳汁中濃度は投与後1,4及び8時間に 血漿中濃度のそれぞれ 25%, 49%及び 33%を示し、投与後 24 時間に検出限界未満に低下した.

表 2.6.4-18 授乳中のラットに ¹⁴C-ミノドロン酸水和物を 0.1 mg/kg 静脈内投与した ときの血漿及び乳汁中放射能濃度

試 料	放 射 能	濃 度 (ngミノドロン酸水和物当量/mL)				
	1 h	4 h	8 h	24 h		
血漿	18.87 ± 1.60	6.53 ± 0.38	4.51 ± 0.17	1.71 ± 0.12		
乳 汁	4.74 ± 0.41	3.17 ± 0.09	3.17 ± 0.09 1.51 ± 0.24			

3 例の平均値±標準誤差, 0.00±0.00: 検出限界未満

(添付資料 4.2.2.2-5)

表 2.6.4-19 ¹⁴C-ミノドロン酸水和物をラット、イヌ及びヒト血液と 37℃で インキュベートしたときの放射能の血球移行率

動物	添加濃度	インキュベーション時間					
	(ng/mL)	15 min	1 h	4 h	8 h		
	5	14.2 ± 1.1	16.2 ± 2.1	21.7 ± 0.8	57.4 ± 1.6		
ラット	50	7.3 ± 1.1	5.9 ± 0.3	13.1 ± 0.9	37.0 ± 1.6		
	500	7.1 ± 1.9	6.5 ± 1.2	17.4 ± 9.2	19.5 ± 2.3		
	5	2.4 ± 2.4	4.5 ± 4.5	6.0 ± 3.1	9.0 ± 5.6		
イヌ	50	7.5 ± 1.9	3.6 ± 1.0	15.2 ± 7.0	17.3 ± 4.6		
	500	5.6 ± 2.2	4.4 ± 2.4	8.4 ± 1.0	9.6 ± 0.2		
	5	2.3 ± 1.2	7.9 ± 1.8	6.4 ± 1.3	6.5 ± 2.4		
ヒト	50	11.6 ± 2.8	10.3 ± 3.5	15.4 ± 4.5	14.1 ± 5.4		
	500	8.0 ± 2.1	7.5 ± 1.9	9.8 ± 1.9	8.9 ± 2.1		

3 例の平均値±標準誤差

(添付資料 4.2.2.3-6)

2.6.4.4.6.2 単回静脈内投与(ラット、イヌ) …… 添付資料 4.2.2.2-5, 4.2.2.3-4 ラットに ¹⁴C-ミノドロン酸水和物を 0.3 mg/kg 静脈内投与したときの血球への放射能の移行率は、投与後 5~30 分で 0.6%~2.8%、1 時間で 27.7%、4~168 時間で 71.3%~82.2%であった. また、イヌに 0.1 mg/kg 静脈内投与したときの血球移行率は、投与後 5 分~2 時間で 0.0%~7.9%、4~24 時間で 14.8%~32.9%であった.

このように、本薬の *in vivo* での血球移行率は *in vitro* と同様に時間依存的に増加した.このことを反映し、*in vivo* での血液からの放射能の消失も血漿に比べ緩徐であったが、血液中濃度は時間の経過とともに確実に低下することが認められている(表 2.6.4-12, 13).

2.6.4.4.7 血漿蛋白との結合 ………………………… 添付資料 4.2.2.3-5 **2.6.4.4.7.1 In vitro の結合率(ラット**, イヌ, ヒト)

超遠心法により測定した *in vitro* での 14 C-ミノドロン酸水和物の血漿蛋白結合率は、 $5\sim500$ ng/mL の濃度範囲においてラットで 71.9% \sim 76.3%、イヌで 52.9% \sim 55.9%、ヒトで 61.2% \sim 61.9% であった.

2.6.4.4.7.2 In vivo の結合率 (イヌ)

イヌに 14 C-ミノドロン酸水和物を 0.1 mg/kg 静脈内投与したときの血漿蛋白結合率は投与後 15 分~4 時間で 57.2%~60.5%であり,*in vitro* の結果とほぼ一致した.

2.6.4.5 代謝(動物間の比較)

2.6.4.5.2 静脈内投与時の代謝(ラット、イヌ) …… 添付資料 4.2.2.2-5, 4.2.2.4-1 ラットに ¹⁴C-ミノドロン酸水和物を 0.3 mg/kg 静脈内投与後 0~6 時間における尿試料をラジオ HPLC により分析したとき、クロマトグラムには未変化体のピークのみが認められた(図 2.6.4-11). また、イヌに ¹⁴C-ミノドロン酸水和物を 0.1 mg/kg 静脈内投与したときの投与後 5 及び 30 分の血漿、並びに投与後 0~6 及び 6~24 時間の尿をラジオ HPLC により分析した際にも、クロマトグラムには未変化体のピークのみが認められ、代謝物のピークは観察されなかった. 以上の結果から、本薬は他のビスホスホネート ²⁻⁸⁾と同様に体内でほとんど代謝を受けないと考えられた.

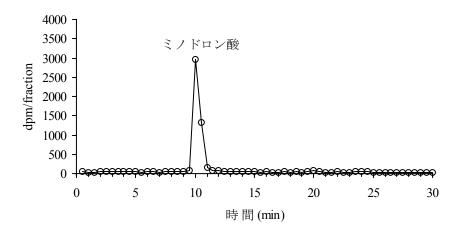
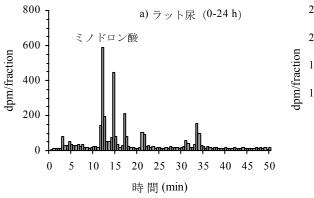



図 2.6.4-11 ラットに ¹⁴C-ミノドロン酸水和物を 0.3 mg/kg 静脈内投与後 0~6 時間の尿の HPLC ラジオクロマトグラム (添付資料 4.2.2.4-1)

2.6.4.5.3 経口投与時の代謝 (ラット、イヌ)

······························· 添付資料 4.2.2.2-3, 6, 7, 4.2.2.3-1, 3, 4.2.2.4-2, 5 (参), 6 (参) ¹⁴C-ミノドロン酸水和物をラットに 3 mg/kg 経口投与後 24 時間までの尿試料及びイヌに 1 mg/kg 経口投与後 6 時間までの尿試料をラジオ HPLC により分析したとき, クロマトグラム上 には未変化体以外にも未知ピークが多数認められた(図 2.6.4-12). また, この試験で用いた 14 C-ミノドロン酸水和物原体から不純物画分及び未変化体画分を HPLC で分取し,それらをラット に経口投与したところ,投与後24時間までの尿中放射能排泄率は,不純物画分(Fr.2及び3) で投与量の約20%,未変化体画分で約1%を示し,不純物の方が未変化体に比べ経口吸収性が高 いことが判明した(図 2.6.4-13. 表 2.6.4-20). このことは、¹⁴C-標識原体中に未変化体自体に 比べ経口吸収性の極めて高い放射化学的不純物が存在する場合、その含有率がごくわずかで あっても、未変化体の吸収量との相対比において無視できない量が不純物として体内に吸収さ れることを示唆している.以上のことから、ラット及びイヌ尿中に認められた未知ピークは、 ¹⁴C-ミノドロン酸水和物原体に含まれる微量の放射化学的不純物が体内に吸収され,それらが未 変化体又は代謝物の形で尿中に排泄されたものと推察される。なお、これら放射化学的不純物 のピークは紫外吸収検出高速液体クロマトグラフィー(HPLC-UV)でも検出されたが、非標識 ミノドロン酸水和物原薬(K5290121、K5290122 及び K5290225)を同じ条件で分析した際には 該当する不純物ピークは検出されなかった.

なお、上記所見と同様の現象は過去に 14 C-インカドロネート(ミノドロン酸水和物と類縁のビスホスホネート系化合物)でも経験されている(**添付資料 4.2.2.4-5**(参), 6(参)).

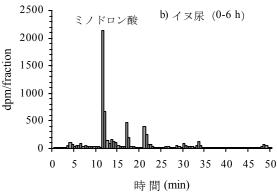
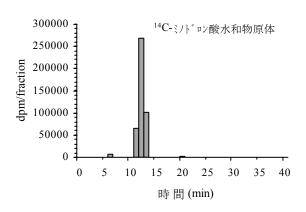



図 2.6.4-12 ¹⁴C-ミノドロン酸水和物をラットに 3 mg/kg 及びイヌに 1 mg/kg 経口投与後の尿の HPLC ラジオクロマトグラム

(添付資料 4.2.2.2-6, 7)

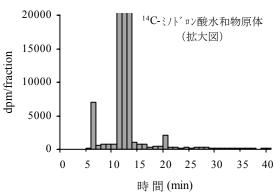


図 2.6.4-13 経口投与代謝試験で使用した ¹⁴C-ミノドロン酸水和物原体の HPLC ラジオクロマト グラム

(添付資料 4.2.2.2-6, 7)

表 2.6.4-20 ラットに ¹⁴C-ミノドロン酸水和物画分及びその不純物画分をミノドロン酸水和物として 3 mg/kg 経口投与したときの尿中放射能排泄率

			<u> </u>	-
	時間	投与画分	採取した保持時間	尿中排泄率
	(h)			(% of dose)
		Fr.1	5-10 min	1.4 ± 0.0
0~24 ミノドロン		ミノドロン酸水和物	12 min	1.3 ± 0.8
		Fr.2	14-25 min	19.9 ± 2.1
		Fr.3	26-40 min	21.8 ± 3.6

³ 例の平均値±標準誤差

 14 C-ミノドロン酸水和物原体溶液をHPLCに注入し、不純物画分及びミノドロン酸水和物画分を分取後、これらに非標識ミノドロン酸水和物を添加し、ミノドロン酸水和物として 3 mg/kg となるようにラットに経口投与した.

(添付資料 4.2.2.2-6, 7)

一方,ラットに 14 C-ミノドロン酸水和物を 3 mg/kg 経口投与したときの投与後 24 時間における上腕骨内放射能濃度は,同一用量の非標識ミノドロン酸水和物を投与したときの骨内未変化体濃度とほぼ等しい値を示したことから,骨に移行する放射能のほとんどは未変化体であると考えられた($\mathbf{表}$ 2.6.4-21).

表 2.6.4-21 ラットに ¹⁴C-ミノドロン酸水和物又は非標識ミノドロン酸水和物 を 3 mg/kg 経口投与したときの投与後 24 時間における上腕骨内放射能濃度及び未変化体濃度

投与薬剤	例数	測定対象	骨内濃度 (ng/g)
¹⁴ C-ミノドロン酸水和物	3	放射能濃度	$129 \pm 35^{1)}$
非標識ミノドロン酸水和物	8	未変化体濃度	147 ± 48^{2}

平均値±標準誤差

1):表 2.6.4-14 の数値を再掲, ng ミノドロン酸水和物当量/g

2):表 2.6.4-9 (5 例) 及び表 2.6.4-15 (3 例) の数値を合計して求めた値

(添付資料 4.2.2.2-3, 4.2.2.3-1, 3)

イヌにおいては 0.1 mg/kg 静脈内投与後 168 時間までの尿及び糞中に投与量のそれぞれ 53.3% 及び 1.9%の放射能が排泄され、総排泄率は 55.2%であった (表 2.6.4-22).

表 2.6.4-22 ¹⁴C-ミノドロン酸水和物をラットに 0.3 mg/kg 及びイヌに 0.1 mg/kg 静脈内投与した ときの尿及び糞中への放射能の累積排泄率

			累積排泄率	മ (% of dose)			
時間	ラ	ット (0.3 mg/k	(g)	イ ヌ (0.1 mg/kg)			
(h)	尿	糞	合 計	尿	糞	合 計	
0~ 6	44.7 ± 1.2	0.0 ± 0.0	44.7 ± 1.2	36.3 ± 3.6			
0∼ 24	48.4 ± 1.1	0.2 ± 0.1	48.6 ± 1.0	43.6 ± 3.4	0.5 ± 0.1	44.1 ± 3.5	
0∼ 48	49.1 ± 1.0	0.3 ± 0.1	49.3 ± 0.9	47.3 ± 3.5	0.8 ± 0.2	48.1 ± 3.6	
$0\sim 72$	49.4 ± 1.0	0.3 ± 0.0	49.7 ± 1.0	49.5 ± 3.2	1.3 ± 0.3	50.8 ± 3.4	
0∼ 96	49.8 ± 1.1	0.3 ± 0.0	50.1 ± 1.0	50.5 ± 3.2	1.4 ± 0.3	51.9 ± 3.4	
0~120	50.3 ± 1.0	0.3 ± 0.0	50.5 ± 1.0	51.4 ± 3.1	1.5 ± 0.2	52.9 ± 3.2	
$0\sim144$	50.5 ± 1.1	0.3 ± 0.0	50.8 ± 1.0	52.5 ± 3.1	1.9 ± 0.4	54.4 ± 3.3	
0~168	50.9 ± 1.1	0.3 ± 0.0	51.2 ± 1.0	53.3 ± 3.0	1.9 ± 0.4	55.2 ± 3.2	
カルカス ¹⁾	2.5±0.2						
(168 h)							
骨 (168 h)			42.4 ± 1.6				

ラットは4例,イヌは3例の平均値±標準誤差,--:測定せず

(添付資料 4.2.2.2-5, 4.2.2.3-3)

2.6.4.6.2 ¹⁴C-ミノドロン酸水和物を単回経口投与したときの尿糞中放射能排泄 (ラット、イヌ) ……………………… 添付資料 4.2.2.2-4, 6, 4.2.2.3-3

雄ラットに 14 C-ミノドロン酸水和物を 3 mg/kg 経口投与後 168 時間までの尿及び糞中に投与量のそれぞれ 1.2%及び 97.6%の放射能が排泄され、総排泄率は 98.8%であった (表 2.6.4-23). 総排泄率の 91%が投与後 24 時間までに排泄された. また、投与後 168 時間において骨に 0.2%の放射能が残存した.

雌ラットに 14 C-ミノドロン酸水和物を 3 mg/kg 経口投与した際も雄ラットと同様の排泄パターンを示し、投与後 168 時間までの尿及び糞中に投与量のそれぞれ 0.8%及び 94.9%の放射能が排泄され、総排泄率は 95.7%であった(表 2.6.4-23).

イヌに 14 C-ミノドロン酸水和物を 1 mg/kg 経口投与後 168 時間までの尿及び糞中に投与量のそれぞれ 1.8%及び 98.2%の放射能が排泄され、総排泄率は 100.0%であった(表 2.6.4-24).

^{1):} 骨を除く

表 2.6.4-23 雌雄ラットに ¹⁴C-ミノドロン酸水和物を 3 mg/kg 経口投与したときの尿及び糞中へ の放射能の累積排泄率

			累積排泄率	(% of dose)		
時間		雄ラット		雌ラット		
(h)	尿	糞	合 計	尿	糞	合 計
0~ 6	0.6 ± 0.0	0.0 ± 0.0	0.6 ± 0.0	0.6 ± 0.1	0.3 ± 0.2	0.8 ± 0.3
0∼ 24	1.1 ± 0.2	88.7 ± 2.6	89.8 ± 2.7	0.8 ± 0.1	76.1 ± 7.6	76.9 ± 7.6
0∼ 48	1.2 ± 0.2	96.1 ± 0.6	97.3 ± 0.7	0.8 ± 0.1	92.7 ± 1.1	93.5 ± 1.2
$0\sim 72$	1.2 ± 0.2	97.4 ± 0.7	98.6 ± 0.8	0.8 ± 0.1	94.6 ± 0.5	95.4 ± 0.5
0∼ 96	1.2 ± 0.2	97.5 ± 0.7	98.7 ± 0.8	0.8 ± 0.1	94.9 ± 0.4	95.7 ± 0.5
0~120	1.2 ± 0.2	97.5 ± 0.7	98.7 ± 0.9	0.8 ± 0.1	94.9 ± 0.4	95.7 ± 0.5
$0\sim 144$	1.2 ± 0.2	97.6 ± 0.7	98.8 ± 0.9	0.8 ± 0.1	94.9 ± 0.4	95.7 ± 0.5
0~168	1.2 ± 0.2	97.6 ± 0.7	98.8 ± 0.9	0.8 ± 0.1	94.9 ± 0.4	95.7 ± 0.5
カルカス ¹⁾			0.0 ± 0.0			0.2 ± 0.2
(168 h)						
骨 (168 h)			0.2 ± 0.0			0.7 ± 0.2

⁴例(雄)又は5例(雌)の平均値±標準誤差

(添付資料 4.2.2.2-4, 4.2.2.3-3)

表 2.6.4-24 イヌに ¹⁴C-ミノドロン酸水和物を 1 mg/kg 経口投与したと きの尿及び糞中への放射能の累積排泄率

時間	累積排泄率 (% of dose)							
(h)	尿	尿 糞 合						
0~ 6	0.7 ± 0.2							
0∼ 24	1.3 ± 0.2	67.2 ± 2.1	68.5 ± 2.3					
0∼ 48	1.7 ± 0.2	96.5 ± 1.8	98.2 ± 1.9					
$0\sim 72$	1.8 ± 0.2	98.1 ± 0.9	99.9 ± 1.1					
0∼ 96	1.8 ± 0.2	98.1 ± 0.9	99.9 ± 1.0					
0~120	1.8 ± 0.2	98.2 ± 0.9	100.0 ± 1.0					
0~144	1.8 ± 0.2	98.2 ± 0.9	100.0 ± 1.0					
0~168	1.8 ± 0.2	98.2 ± 0.9	100.0 ± 1.0					

³ 例の平均値±標準誤差, --: 測定せず (添付資料 4.2.2.2-6)

2.6.4.6.3 ¹⁴C-ミノドロン酸水和物を単回静脈内投与したときの尿糞胆汁中放射能 排泄(ラット)…………………………………………… 添付資料 4.2.2.3-3

胆管にカニューレを挿入したラットに 14 C-ミノドロン酸水和物を 0.3 mg/kg 静脈内投与したとき,投与後 48 時間までの胆汁中に投与量の 0.1%の放射能が排泄された(表 2.6.4-25).同時に採取した尿及び糞中には,それぞれ 45.9%及び 0.4%の放射能が排泄された.

2.6.4.6.4 ¹⁴C-ミノドロン酸水和物を単回経口投与したときの尿糞胆汁中放射能排 泄(ラット) ※ 添付資料 4.2.2.3-3

胆管にカニューレを挿入したラットに 14 C-ミノドロン酸水和物を 3 mg/kg 経口投与したとき,

^{1):} 骨を除く

胆汁中への放射能の排泄は認められず、同時に採取した尿及び糞中には 48 時間までにそれぞれ 1.3%及び 55.1%の放射能が排泄された($\mathbf{表}$ 2.6.4-25).

表 2.6.4-25 ラットに ¹⁴C-ミノドロン酸水和物を 0.3 mg/kg 静脈内投与及び 3 mg/kg 経口投与 したときの尿、糞及び胆汁中への放射能の累積排泄率

	累積排泄率 (% of dose)					
時間	静脈内投与			経口投与		
(h)	尿	糞	胆 汁	尿	糞	胆 汁
0∼ 6	41.7 ± 1.6		0.1 ± 0.0	0.1 ± 0.1		0.0 ± 0.0
0∼ 24	45.0 ± 1.9	0.2 ± 0.0	0.1 ± 0.0	1.0 ± 0.1	15.8 ± 6.0	0.0 ± 0.0
0∼ 48	45.9 ± 1.9	0.4 ± 0.0	0.1 ± 0.0	1.3 ± 0.3	55.1 ± 3.9	0.0 ± 0.0
消化管内容物			0.2 ± 0.0			40.5 ± 3.4
(48 h)						
カルカス ¹⁾			6.3 ± 0.2			0.6 ± 0.5
(48 h)						
骨 (48 h)			45.9 ± 1.5			1.3 ± 0.7

4 例の平均値±標準誤差, --: 測定せず

1): 骨を除く

(添付資料 4.2.2.3-3)

2.6.4.7 薬物動態学的薬物相互作用 ………………………… 添付資料 4.2.2.6-1 **2.6.4.7.1 メトトレキサートとの薬物相互作用**

ミノドロン酸水和物と同様に腎排泄型薬剤である抗癌剤 MTX を用い、その薬物動態に及ぼすミノドロン酸水和物併用の影響を検討した. イヌに MTX 3 mg/kg をミノドロン酸水和物 0.15 mg/kg と同時に静脈内投与したときの血漿中 MTX 濃度推移は、MTX 単独投与時と比較しほとんど変動がみられなかった(図 2.6.4-14). また、各薬動力学パラメータの単独及び併用群間での同等性を 90%信頼区間法により比較した結果、幾何平均値の併用群/単独群比の 90%信頼区間は、定常状態における分布容積(Vdss)については $0.933\sim1.253$ と上限が 1.25 をわずかに越えたものの、 $t_{1/2}$ 、AUC $_{0-\infty}$ 及び全身クリアランス(CL $_{total}$)については $0.8\sim1.25$ の範囲内であり、ミノドロン酸水和物併用による MTX の薬物動態への影響はほとんどないものと考えられた(表 2.6.4-26).

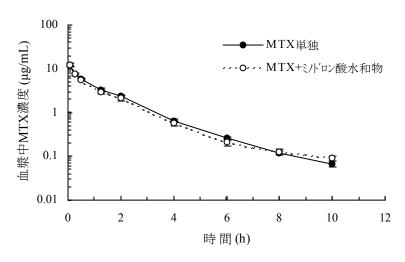


図 2.6.4-14 イヌにメトトレキサート(MTX)3 mg/kg を単独又はミノドロン酸水和物 0.15 mg/kg と同時に静脈内投与したときの血漿中 MTX 濃度

6 例の平均値±標準誤差 (添付資料 4.2.2.6-1)

表 2.6.4-26 イヌにメトトレキサート (MTX) 3 mg/kg を単独又はミノドロン酸水和物 0.15 mg/kg と同時に静脈内投与したときの血漿中 MTX の薬動力学パラメータ

投与条件	$ \begin{array}{c} t_{1/2}^{1)} \\ (h) \end{array} $	Vdss (mL/kg)	$AUC_{0-\infty}$ (ng·h/mL)	CL _{total} (mL/h/kg)
MTX 単独	1.516 ± 0.057	352±26	14.5 ± 1.0	212±15
MTX + ミノドロン酸水和物	1.652 ± 0.069	381 ± 31	13.7 ± 1.0	226 ± 17
幾何平均値の	1.089	1.081	0.939	1.064
併用群/単独投与群比				
(90%信頼区間)	$(0.960 \sim 1.234)$	$(0.933 \sim 1.253)$	$(0.893 \sim 0.988)$	$(1.012 \sim 1.119)$

6 例の平均値±標準誤差

1): 投与後 1.25~10 時間の範囲から算出

(添付資料 4.2.2.6-1)

2.6.4.8 その他の薬物動態試験

該当する試験はなし.

2.6.4.9 考察及び結論

ビスホスホネート系薬剤の動物及びヒトにおける薬物動態に共通した性質としては、1)経口投与した際のBA若しくは吸収率が低く $^{2-4,9-13}$ 、かつ食餌(食事)により吸収が低下する $^{1,4,5,12-14)}$ 、2)標的組織である骨へ高濃度に移行し、かつ骨内に長期滞留する $^{2,4,5,15-17)}$ 、3)体内でほとんど代謝を受けない $^{2-8}$ 、4)主に尿中に排泄される $^{2-5,8,10,11,15)}$ 、等が挙げられる。ミノドロン酸水和物の薬物動態も、基本的に他のビスホスホネート系薬剤と同様の挙動を示した。

ラットにミノドロン酸水和物を水溶液として 1,3 及び 10 mg/kg 経口投与したときの BA は それぞれ0.60%,0.52%及び0.64%であり、この用量範囲での薬物動態はほぼ線形と考えられた. 一方,本薬をイヌに原薬カプセルとして経口投与したときの BA は,0.3,1 及び 3 mg/kg にお いてそれぞれ 0.77%, 0.65%及び 0.26%を示し、最高用量では BA が低下した. この BA 低下の 原因は明らかでないが、本薬は水に極めて溶けにくく(水に対する溶解度:0.73 mg/mL. 2.3.S 原薬 表 2.3.S.1.3-1), 高用量で原薬の溶解性が低下して吸収率が低下したことが可能性の一つ として考えられる. しかし, 本薬の pH 7 緩衝液に対する溶解性は 13 mg/mL であること (2.3.S 原薬 表 2.3.S.1.3-1) から、本薬が腸液に曝露された場合、水に対するよりも高い溶解性を示 すことも考えられ, BA 低下には溶解度以外の要因も含まれる可能性がある. 本薬は主に小腸上 部で吸収されると考えられ、一方でイヌに本薬を高用量経口投与した時、投与後初期には薬物 は完全に溶解していないと考えられることから、本薬が主に小腸上部で吸収されることが投与 量の増加に伴う吸収率の低下に一部寄与している可能性が考えられる. また, 類薬での報告 18,19) から、本薬の腸管吸収に細胞間隙経路の寄与が推察される. 投与量の増加と細胞間隙を介する 吸収率の低下の関連については不明であるが、細胞間隙を介した吸収機構が高用量での吸収率 低下の複合要因の一つとなる可能性も否定できないと考えられる、以上のことから、本薬をイ ヌに経口投与したときに認められる高用量での BA 低下は、原薬の溶解度の要因に加え、主た る吸収部位が小腸上部であること、及び細胞間隙を介した吸収経路の寄与等の要因が複合した 結果であろうと推察される. なお, ヒト(健常成人) における本薬の BA は 1.21% (95%信頼区 間:0.71%~2.07%) と推定されている(2.7.2.3-2.1 絶対 BA [J101]-[J105]).

ラット及びイヌに ¹⁴C-ミノドロン酸水和物を静脈内投与したときの尿中には未変化体のみが 検出され、本薬は体内でほとんど代謝を受けないと考えられた。また、¹⁴C-ミノドロン酸水和物 をラット、イヌ及びヒトの肝並びに小腸ミクロソーム中でインキュベートした際、いずれの場 合も代謝物の生成は認められなかった。したがって、動物及びヒトにおいて本薬の BA が 1%前 後と低い原因は、初回通過代謝ではなく消化管からの吸収性の低さに起因すると考えられる。 更に、本薬の吸収は食餌により著しく低下し、その主たる原因として、本薬が食物中のカルシ ウムなどの多価陽イオンと難溶性又は難吸収性のキレートを形成する機構が考えられた。なお、 ヒト(健常成人)においても本薬の吸収は食事により低下することが確認されている (2.7.2.3-4.1 食事の影響 [J104]、[AKi1]、[CL-030])。 ラットに 14 C-ミノドロン酸水和物を静脈内及び経口投与したときの放射能は、標的器官である骨に速やかにかつ高濃度に移行し、そのほとんどが未変化体と考えられた。また、本薬の骨内濃度は 2 相性を示して減少し、 $t_{1/2\alpha}$ は 16.4 日、 $t_{1/2\beta}$ は 471 日であった。さらに、ラットに 28 日間反復静脈内投与したときの骨内濃度は、単回投与時の 22 倍~25 倍を示した。したがって、本薬を反復投与したときの骨内濃度は、少なくとも約 1 カ月の投与期間内では投与回数に依存して増加するものと考えられる。

 14 C-ミノドロン酸水和物を静脈内投与後の尿及び糞中への放射能の排泄率は、ラットでそれぞれ 50.9%及び 0.3%、イヌで 53.3%及び 1.9%であり、主排泄経路は腎排泄であった。また、経口投与後の尿及び糞中への放射能排泄率は、ラットでそれぞれ 1.2%及び 97.6%、イヌで 1.8%及び 98.2%であった。ラットに経口投与後の胆汁中に放射能の排泄は認められなかったことから、大部分は未吸収のまま糞中に排泄されたと考えられた。なお、ヒト(健常成人)における尿中未変化体排泄率は、静脈内投与で 46.03%~55.89%、経口投与で 0.20%~0.69%であり(2.7.2.2-2.1 健常成人における薬物動態)、動物とほぼ同様の成績が得られている。

非絶食のラットにミノドロン酸水和物を 7 日間反復経口投与した際、肝薬物代謝酵素系への影響は認められなかった.また、本薬はヒトのチトクロム P450 (CYP) 主要分子種 (CYP1A2, 2C9, 2C19, 2D6 及び 3A4) に対してほとんど阻害作用を示さなかった (2.7.2.2-1.4 CYP 阻害). したがって、本薬が代謝阻害により併用薬剤との薬物相互作用を引き起こす可能性は低いと考えられる.また、腎排泄過程における薬物相互作用に関しても、腎排泄型薬剤である MTX のイヌにおける血漿中濃度推移は、ミノドロン酸水和物の併用による影響を受けなかった.

以上の所見を総括すると、ラット及びイヌにおけるミノドロン酸水和物の薬物動態はヒトの それに類似しており、これらの動物種は本薬の安全性を評価するのに適切な動物種であると考 えられた.

2.6.4.10 図表

本概要文における図表は、本文中に掲載した.

参考文献

- 1) 碓井孝志, 渡辺隆, 樋口三朗, 中村英次, 其田卓也. ¹⁴C-YM175のラットにおける吸収. 薬理と 臨床. 1998;8:379-386.
- 2) Usui T, Watanabe T, Higuchi S. Pharmacokinetics of YM175, a new bisphosphonate, in rats and dogs. Drug Metab Dispos 1995;23:1214-1219.
- 3) Wingen F, Schmähl D. Pharmacokinetics of the osteotropic diphosphonate 3-amino-1-hydroxypropane-1,1-diphosphonic acid in mammals. Arzneim-Forsch/Drug Res

- 1987;37:1037-1042.
- 4) Lin JH, Duggan DE, Chen I-W, Ellsworth RL. Physiological disposition of alendronate, a potent anti-osteolytic bisphosphonate, in laboratory animals. Drug Metab Dispos 1991;19:926-932.
- 5) Davi H, Tronquet C, Caix J, Simiand J, Briot C, Berger Y, et al. Disposition of tiludronate (Skelid[®]) in animals. Xenobiotica 1999;29:1017-1031.
- 6) Canniggia A, Gennari C. Kinetics and intestinal absorption of ³²P-EHDP in man. Calcif Tissue Res 1977;22:428-429.
- 7) Michael WR, King WR, Wakim JM. Metabolism of disodium ethane-1-hydroxy-1,1-diphosphonate (disodium etidronate) in the rat, rabbit, dog and monkey. Toxicol Appl Pharmacol 1972;21:503-515.
- 8) Cocquyt V, Kline WF, Gertz BJ, Van Belle SJP, Holland SD, DeSmet M, et al. Pharmacokinetics of intravenous alendronate. J Clin Pharmacol 1999;39,385-393.
- Daley-Yates PT, Dodwell DJ, Pongchaidecha M, Coleman RE, Howell A. The clearance and bioavailability of pamidronate in patients with breast cancer and bone metastases. Calcif Tissue Int 1991;49:433-435.
- 10) Mitchell DY, Barr WH, Eusebio RA, Pallone KA, Duke FP, Russell DA, et al. Risedronate pharmacokinetics and intra- and inter-subject variability upon single-dose intravenous and oral administration. Pharm Res 2001;18:166-170.
- 11) Pentikäinen PJ, Elomaa I, Nurmi AK, Kärkkäinen S. Pharmacokinetics of clodronate in patients with metastatic breast cancer. Int J Clin Pharmacol Ther Toxicol 1989;27:222-228.
- 12) Fogelman I, Smith L, Mazess R, Wilson MA, Bevan JA. Absorption of oral bisphosphonate in normal subjects. Clin Endocrinol 1986;24:57-62.
- 13) Gertz BJ, Holland SD, Kline WF, Matuszewski BK, Freeman A, Quan H, Lasseter KC, Mucklow JC, Porras AG. Studies of the oral bioavailability of alendronate. Clin Pharm Ther 1995;58:288-298.
- 14) Mitchell DY, Heise MA, Pallone KA, Clay ME, Nesbitt JD, Russell DA, et al. The effect of dosing regimen on the pharmacokinetics of risedronate. Br J Clin Pharmacol 1999;48:536-542.
- 15) 中村英次, 今崎一, 碓井孝志, 渡辺隆, 樋口三朗. YM175 の体内動態 -¹⁴C-YM175 静脈内投与 時のラットにおける分布および排泄-. 薬物動態. 1994;9:835-847.
- 16) 碓井孝志, 渡辺隆, 樋口三朗, 神村秀隆, John AJ, Bennett S, et al. ¹⁴C-YM175 をラットに経口投与したときの体内分布および排泄. 薬理と臨床. 1998;8:367-377.
- 17) Mönkkönen J, Koponen H-M, Ylitalo P. Comparison of the distribution of three bisphosphonates in mice. Pharmacol Toxicol 1989;65:294-298.
- 18) Twiss IM, de Water R, de Hartigh J, Sparidans R, Koopmanschap WR, Brill H, Wijdeveld M, Vermeij P. Cytotoxic effects of pamidronate on monolayers of human intestinal epithelial (Caco-2) cells and its epithelial transport. J Pharm Sci 1994;83:699-703.
- 19) Boulenc X, Roques C, Joyeux H, Berger Y, Fabre G. Bisphosphonates increase tight junction permeability in the human intestinal epithelial (Caco-2) model. Int J Pharm 1995;123:13-24.

2.6.5 薬物動態試験概要表

2.6.5.1 薬物動態試験:総括(その1)

被験物質:ミノドロン酸水和物

	•			*** * *** * *** ***	
試験の種類	動物種	分析機器及び 検出方法	試験実施施設 1)	試験番号又は 報告書番号	添付資料番号
定量法					
血漿中濃度測定法 測定間バリデーション	マウス	HPLC-FL		332	4.2.2.1-1
血漿中濃度測定法 測定内バリデーション	マウス	HPLC-FL		537	4.2.2.1-2
血漿中濃度測定法 測定内バリデーション	マウス	HPLC-FL		1-H450-051	4.2.2.1-5
血漿中濃度測定法 測定間バリデーション	ラット	HPLC-FL		208	4.2.2.1-3
血漿中濃度測定法 測定内バリデーション	ラット	HPLC-FL		8-H450-051	4.2.2.1-6
血漿中濃度測定法 測定内バリデーション	ラット	HPLC-FL		097	4.2.2.1-7
血漿中濃度測定法 測定間バリデーション	ラット	HPLC-FL		536	4.2.2.1-4
血漿中濃度測定法 測定間バリデーション	ラット	HPLC-FL	山之内	129	4.2.2.1-17
血漿中濃度測定法 測定間バリデーション	ウサギ	HPLC-FL		208	4.2.2.1-3
血漿中濃度測定法 測定内バリデーション	イヌ	HPLC-FL		61V	4.2.2.1-8
血漿中濃度測定法 安定性バリデーション	イヌ	HPLC-FL		067	4.2.2.1-9
血漿中濃度測定法 測定間バリデーション	イヌ	HPLC-FL		197	4.2.2.1-10
血漿中濃度測定法 測定間バリデーション	イヌ	HPLC-FL	山之内	130	4.2.2.1-18
血漿中濃度測定法 測定間バリデーション	サル	HPLC-FL		109	4.2.2.1-12
尿中濃度測定法 測定間バリデーション	サル	HPLC-FL		110	4.2.2.1-13
骨中濃度測定法 測定内バリデーション	ラット	HPLC-FL	山之内	383	4.2.2.1-16
骨中濃度測定法 測定間バリデーション	ラット	HPLC-FL		153	4.2.2.1-15
骨中濃度測定法 測定間バリデーション	ラット	HPLC-FL		195	4.2.2.1-19
骨中濃度測定法 測定内バリデーション	イヌ	HPLC-FL		009	4.2.2.1-11
骨中濃度測定法 測定間バリデーション	サル	HPLC-FL		108	4.2.2.1-14
骨中濃度測定法 測定間バリデーション	サル	HPLC-FL		279	4.2.2.1-20

2.6.5.1 薬物動態試験:総括(その2)

被験物質:ミノドロン酸水和物

試験の種類	動物種	投与方法	試験実施施設 1)	試験番号又は 報告書番号	添付資料番号
吸収					
吸収部位	ラット	消化管内,静脈内		0-4	4.2.2.2-8
単回投与;血液・血漿中放射能濃度	ラット	静脈内,経口		894	4.2.2.2-4
単回投与;血液・血漿中放射能濃度及び	ラット	経口	,	0-3	4.2.2.2-7
血漿中ミノドロン酸水和物濃度					
単回投与;血液・血漿中放射能濃度	イヌ	静脈内		195	4.2.2.2-5
単回投与;血液・血漿中放射能濃度及び	イヌ	経口	,	0-2	4.2.2.2-6
血漿中ミノドロン酸水和物濃度					
単回投与;血漿中ミノドロン酸水和物濃度	ラット	静脈内,経口	山之内,	883	4.2.2.2-2
単回投与;血漿中ミノドロン酸水和物濃度	イヌ	静脈内,経口	山之内	047, 069	4.2.2.2-1
反復投与;血漿中ミノドロン酸水和物濃度	イヌ	経口	山之内	047, 069	4.2.2.2-1
食餌の影響	ラット	経口	山之内	065	4.2.2.2-3
カルシウムの影響	ラット	経口		0-4	4.2.2.2-8
ファモチジンによる胃酸分泌抑制の影響	ラット	経口		0-4	4.2.2.2-8
分布					
血漿蛋白結合	ラット, イヌ及びヒト	In vitro		0-5	4.2.2.3-5
血漿蛋白結合	イヌ	静脈内		0-5	4.2.2.3-5
血球移行性	ラット	In vitro		7-G	4.2.2.3-6
血球移行性	ラット	静脈内		0-1	4.2.2.3-4
血球移行性	ラット	経口		0-3	4.2.2.2-7
血球移行性	イヌ	静脈内		195	4.2.2.2-5
血球移行性	イヌ	経口		0-2	4.2.2.2-6
単回投与;組織内放射能濃度,ARG	ラット	静脈内		0-1	4.2.2.3-4
単回投与;組織内放射能濃度 単回投与:組織内放射能濃度 ARC	ラット	静脈内 経口		894 525	4.2.2.2-4
単回投与;組織内放射能濃度,ARG	ラット ラット	栓口 静脈内, 経口	山之内		4.2.2.3-3
単回投与;骨内ミノドロン酸水和物濃度 単回投与;骨内ミノドロン酸水和物濃度	フット ラット	静脈内,栓口 静脈内	山之内 山之内	005 885	4.2.2.3-1 4.2.2.3-2
中四以丁,月171、/ ドロノ政小川初辰及	ノンド	月プルバトプ	ш≪٢1	003	4.4.4.3-4

2.6.5.1 薬物動態試験:総括(その3) 被験物質:ミノドロン酸水和物

試験の種類	動物種	投与方法	試験実施施設 1)	試験番号又は 報告書番号	添付資料番号
分布 単回投与;骨内放射能濃度 反復投与;骨内ミノドロン酸水和物濃度	イヌ ラット	経口静脈内	,山之 内	0-2 885	4.2.2.2-6 4.2.2.3-2
胎盤通過性 乳汁中移行	ラット ラット	静脈内 静脈内		195 195	4.2.2.2-5 4.2.2.2-5
代謝 In vitro 代謝 In vivo 代謝 Ex事物代謝歌書に対する影響	ラット, イヌ及びヒト ラット ラット イヌ イヌ	In vitro 静脈内 経口 静脈内 経口	,山之内	0-6 886 0-3 195 0-2 866	4.2.2.4-3 4.2.2.4-1 4.2.2.2-7 4.2.2.2-5 4.2.2.2-6
肝薬物代謝酵素に対する影響 排泄 単回投与;尿糞中放射能排泄 単回投与;尿糞中放射能排泄 単回投与;尿糞中放射能排泄 単回投与;尿糞中放射能排泄 単回投与;尿糞中放射能排泄 単回投与;尿糞胆汁中放射能排泄	ラット ラット ラット イヌ イヌ ラット	経口 静脈内,経口 経口 静脈内 経口 静脈内,経口		525 894 195 0-2 525	4.2.2.4-4 4.2.2.3-3 4.2.2.2-4 4.2.2.2-5 4.2.2.2-6 4.2.2.3-3
薬物動態学的薬物相互作用 メトトレキサートとの薬物相互作用	イヌ	静脈内	山之内,	887	4.2.2.6-1

2.6.5.2 分析方法及びバリデーション試験 (その1)

被験物質:ミノドロン酸水和物

動物種	マウス ¹⁾	マウス ¹⁾	マウス ¹⁾	ラット ¹⁾	ラット	ラット	ラット ¹⁾	ラット
試料	血漿	血漿	血漿	血漿	血漿	血漿	血漿	血漿
分析対象	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸
	水和物	水和物	水和物	水和物	水和物	水和物	水和物	水和物
分析機器及び検出法	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL
結果								
定量下限	$0.4^{2)}$	0.4	0.2	0.8	0.4	0.2	0.2	0.2
(ng/mL)								
Matrix 使用量	0.5 2)	0.5	1	0.25	0.5	1	1	1
(mL)								
濃度範囲	$0.4 - 80^{2}$	0.4 - 80	0.2 - 20	0.8 - 160	0.4 - 80	0.2 - 20	0.2 - 20	0.2 - 100
(ng/mL)								
回収率 (%)	_3)	_3)	73.5 - 73.7	73.6 - 79.0	3)	3)	70.3 - 79.8	86.5 - 86.7
測定内真度 (%) ⁴⁾	-12.80.6*	-0.4 - 0.6	-7.5 - 1.7	-5.0 - 0.0	-1.1 – 15.0*	-4.6 – -3.2	- 7.6 − 10.0	1.7 - 12.0
(測定間真度) ⁴⁾	(-0.6 - 2.0)*			(-3.91.4)			(-4.3 - 6.7)	(4.7 - 10.4)
測定内精度 (%)	0.5 - 3.9	0.7 - 5.0	1.6 - 3.3	0.5 - 4.8	1.4 - 8.0	0.7 - 5.6	0.7 - 6.3	0.4 - 1.2
(測定間精度)	(3.7 - 8.2)			(2.4 - 3.8)			(4.9 - 6.3)	(1.9 - 2.3)
安定性	3)	1 カ月間	31 日間	60 日間	3 カ月間	3)	_3)	_3)
(試料保存時の温度)		(-20 °C)	(-20 °C)	(-20 °C)	(-20 °C)			
試験番号又は	332	1-	537	208	8-	097	536	129
報告書番号		H450-051			H450-051			·
添付資料番号	4.2.2.1-1	4.2.2.1-5	4.2.2.1-2	4.2.2.1-3	4.2.2.1-6	4.2.2.1-7	4.2.2.1-4	4.2.2.1-17

1): トキシコキネティクス試験でのみ適用.

2):血漿を2%BSAで8倍希釈した分析マトリックスを測定に供した時の血漿中ミノドロン酸水和物濃度及び血漿使用量を表示.

3):検討せず.

4): 右式により算出した値を記載; [実測平均値-理論値(調製濃度)] /理論値(調製濃度)×100.

*の値については、報告書中の値(実測平均値/理論値(調製濃度)×100)から100を引いた値を記載.

2.6.5.2 分析方法及びバリデーション試験 (その 2)

被験物質:ミノドロン酸水和物

動物種	ウサギ ¹⁾	イヌ	イヌ	サル ¹⁾
試料	血漿	血漿	血漿	血漿
分析対象	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸
	水和物	水和物	水和物	水和物
分析機器及び検出法	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL
結果				
定量下限	0.8	0.2	0.2	0.2
(ng/mL)				
Matrix 使用量	0.25	1	1	1
(mL)				
濃度範囲	0.8 - 160	0.2 - 20	0.2 - 100	0.2 - 100
(ng/mL)				
回収率 (%)	76.9 - 78.4	86.2 - 102.1	87.6 - 88.0	77.2 - 81.5
測定内真度 (%) ²⁾	-4.4 - 0.6	-1.1 - 2.4	-3.2 - 7.0	-3.5 - 8.0
(測定間真度) ²⁾	(-3.60.1)	(0.2 - 1.4)	(-1.8 - 6.3)	(-2.0 - 4.5)
測定内精度 (%)	0.5 - 5.6	0.9 - 4.8	0.2 - 2.4	1.3 – 16.4
(測定間精度)	(1.2 - 3.8)	(1.5 - 4.8)	(0.7 - 1.8)	(2.4 - 10.3)
安定性	60 日間	3.5 年間	3)	2 週間
(試料保存時の温度)	(-20 °C)	(-20 °C)		(-20 °C)
試験番号又は	208	61V	130	109
報告書番号		067		
		197		
添付資料番号	4.2.2.1-3	4.2.2.1-8	4.2.2.1-18	4.2.2.1-12
		4.2.2.1-9		
		4.2.2.1-10		

1): トキシコキネティクス試験でのみ適用.

2): 右式により算出した値を記載; [実測平均値-理論値(調製濃度)] /理論値(調製濃度) ×100.

3):検討せず.

2.6.5.2 分析方法及びバリデーション試験 (その3)

被験物質:ミノドロン酸水和物

		- M-4-354 / C - 1	- •				
動物種	サル 1)	ラット	ラット ¹⁾	ラット ²⁾	イヌ ¹⁾	サル 1)	サル 2)
試料	尿	骨	骨	骨	骨	骨	骨
分析対象	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸
	水和物	水和物	水和物	水和物	水和物	水和物	水和物
分析機器及び検出法	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL
結果							
定量下限	1 ng/mL	5 ng/g	50 ng/g	25 ng/g	25 ng/g	50 ng/g	25 ng/g
(ng/mL 又はng/g)							
Matrix 使用量	4 mL	50 mg ³⁾	50 mg ³⁾	$50 \text{ mg}^{3)}$	50 mg ³⁾	50 mg ³⁾	$50 \text{ mg}^{3)}$
(mL 又は mg)							
濃度範囲	1-500 ng/mL	5 - 2,000 ng/g	50 - 20,000 ng/g	25 - 2,500 ng/g	$25 - 2{,}500 \text{ ng/g}$	50 - 20,000 ng/g	$25 - 2{,}500 \text{ ng/g}$
(ng/mL 又はng/g)							
回収率 (%)	50.0 – 68.3	4)	76.1 – 82.9	58.1 - 63.4	72.9 – 77.1	72.8 - 87.8	55.3 – 58.1
測定内真度 (%) ⁵⁾	-7.0 – 6.3	-6.2 - 0.5	-7.5 – 13.3	-12.9 – 1.7	0.7 - 6.0	-8.3 – 10.6	-4.2 – 19.0
(測定間真度) ⁵⁾	(-4.7 - 2.8)		(-0.9 - 3.3)	(-6.72.2)		(-2.5 - 3.3)	(2.3 - 6.1)
測定内精度 (%)	2.5 - 9.8	1.2 - 20.8	1.4 – 11.8	1.9 - 7.9	1.6 - 4.7	2.5 – 11.8	1.4 - 4.8
(測定間精度)	(3.2 - 8.1)		(4.1 - 13.0)	(3.4 - 7.1)		(8.2 - 9.4)	(3.1 - 10.4)
安定性	12 日間	4)	_4)	_4)	4)	4)	_4)
(試料保存時の温度)	(-20 °C)						
試験番号又は	110	383	153	195	009	108	279
報告書番号							
添付資料番号	4.2.2.1-13	4.2.2.1-16	4.2.2.1-15	4.2.2.1-19	4.2.2.1-11	4.2.2.1-14	4.2.2.1-20

1):トキシコキネティクス試験でのみ適用.2):薬効薬理試験でのみ適用.

3): 骨を溶解処理後, 固相抽出に付す試料の骨重量相当量. 4): 検討せず.

5): 右式により算出した値を記載; [実測平均値-理論値(調製濃度)] / 理論値(調製濃度) ×100.

2.6.5.3 薬物動態試験:吸収部位

動物種	ラット					
動物数・性別(雄/雌)	3M					
給餌	絶食					
投与薬物	¹⁴ C-ミノドロン酸	水和物				
投与形態,溶媒	水溶液					
投与方法	胃内,十二指腸內	内,空腸内,回腸内	可, 結腸内及び静脈	派内(対照群)		
投与量 (mg/kg)	0.3					
試料	上腕骨 1)					
試料採取時間	1 h					
測定対象物質	14C (総放射能)					
定量	LSC					
結果						
投与部位	胃	十二指腸	空腸	回腸	結腸	静脈内
						(対照群)
骨内濃度 (ng eq./g)	23 ± 7	119 ± 33	71 ± 25	21 ± 4	48 ± 22	3208 ± 182
静脈内投与に対する比率 (%)	0.7	3.7	2.2	0.7	1.5	2)
試験番号又は報告書番号	0-4					
添付資料番号	4.2.2.2-8					

被験物質:ミノドロン酸水和物

骨内濃度は、平均値±標準誤差を表示. 静脈内投与に対する割合は平均値のみを表示.

1): 吸収率が低いため、上腕骨内濃度を測定して静脈内投与時と比較することにより吸収性を評価. 2): 算出せず.

2.6.5.4 薬物動態試験:単回静脈内投与後の血液・血漿中濃度(その1)

被験物質:ミノドロン酸水和物

動物種			ラット			イ	ヌ
動物数・性別 (雄/雌)	3M	3M	3M	3M	3F	3	M
給餌	非絶食	非絶食	非絶食	非絶食	非絶食	絶	食
投与薬物	14C-ミノドロ	¹⁴ C-ミノドロ	¹⁴ C-ミノドロ	14C-ミノドロ	14C-ミノドロ	¹⁴ C-ミノドロ	コン酸水和物
	ン酸水和物	ン酸水和物	ン酸水和物	ン酸水和物	ン酸水和物		
投与形態,溶媒	水溶液	水溶液	水溶液	水溶液	水溶液	水泽	容液
投与方法	静脈内	静脈内	静脈内	静脈内	静脈内	静月	派内
投与量 (mg/kg)	0.01	0.03	0.1	0.3	0.3	0	.1
試料	血漿	血漿	血漿	血漿	血漿	血液	血漿
測定対象物質	¹⁴ C	¹⁴ C	¹⁴ C	¹⁴ C	¹⁴ C	¹⁴ C	¹⁴ C
	(総放射能)	(総放射能)	(総放射能)	(総放射能)	(総放射能)	(総放射能)	(総放射能)
定量	LSC	LSC	LSC	LSC	LSC	LSC	LSC
結果							
薬物動態パラメータ							
AUC _{0-t} (ng eq.·h/mL)	14.7 ± 0.4	52.6 ± 1.0	165±4	517±26	539±11	329 ± 10	552±29
(算出時間 – h)	(0-1)	(0-2)	(0-6)	(0-8)	(0-8)	(0-24)	(0-24)
$AUC_{0-\infty}$ (ng eq.·h/mL)	_1)	_1)	_1)	_1)	_1)	419±23	657±34
$t_{1/2(1)}(h)$	0.28 ± 0.02	0.30 ± 0.00	0.32 ± 0.00	0.32 ± 0.00	0.33 ± 0.00	0.73 ± 0.02	0.67 ± 0.00
(算出時間 - h)	(0.08-1)	(0.08-2)	(0.08-2)	(0.08-2)	(0.08-2)	(0.08-2)	(0.08-2)
$t_{1/2(2)}(h)$	_1)	_1)	_1)	2.9 ± 0.3	3.1 ± 0.3	4.9 ± 0.3	4.4 ± 0.4
(算出時間 – h)				(4-8)	(4-8)	(4-10)	(4-10)
試験番号又は報告書番号			894				195
添付資料番号			4.2.2.2-4			4.2.2	2.2-5

薬物動態パラメータは, 平均値±標準誤差を表示.

1): 算出せず.

2.6.5.4 薬物動態試験:単回静脈内投与後の血液・血漿中濃度(その2)

被験物質:ミノドロン酸水和物

		10.10.10.10.10.10.10.10.10.10.10.10.10.1
動物種	ラット	イヌ
動物数・性別(雄/雌)	3M/各測定時	4M
給餌	非絶食	非絶食
投与薬物	ミノドロン酸水和物	ミノドロン酸水和物
投与形態,溶媒	水溶液	生理食塩水溶液
投与方法	静脈内	静脈内
投与量 (mg/kg)	0.3	0.3
試料	血漿	血漿
測定対象物質	ミノドロン酸水和物	ミノドロン酸水和物
定量	HPLC-FL	HPLC-FL
結果		
薬物動態パラメータ		
CL _{total} (mL/min/kg)	14.7	5.3 ± 0.1
Vdss (mL/kg)	484	822 ± 75
$AUC_{0-\infty}$ (ng·h/mL)	340.8	948 ± 26
$t_{1/2\alpha}$ (h)	0.21 ¹)	0.49 ± 0.01
(算出時間 – h)		_1)
$t_{1/2\beta}(h)$	1.88 1)	8.88 ± 0.67
(算出時間 - h)		1)
試験番号又は報告書番号	883	047, 069
添付資料番号	4.2.2.2-2	4.2.2.2-1

ラットは同一個体からの経時的な採血ではないため、薬物動態パラメータは1時点3例の平均濃度の値より算出.イヌの薬物動態パラメータは、平均値±標準誤差を表示.

1):該当なし.

2.6.5.5 薬物動態試験:単回経口投与後の血液・血漿中濃度(その1)

被験物質:ミノドロン酸水和物

動物種		ラット					
動物数・性別(雄/雌)	5M	5M	5M				
給餌	絶食	絶食	絶食				
投与薬物	¹⁴ C-ミノドロン酸水和物	¹⁴ C-ミノドロン酸水和物	¹⁴ C-ミノドロン酸水和物				
投与形態, 溶媒	水溶液	水溶液	水溶液				
投与方法	経口	経口	経口				
投与量 (mg/kg)	0.3	1	3				
試料	血漿	血漿	血漿				
測定対象物質	¹⁴ C (総放射能)	14C (総放射能)	14C (総放射能)				
定量	LSC	LSC	LSC				
結果							
薬物動態パラメータ							
Tmax (h)	0.33	0.50	0.50				
Cmax (ng eq./mL)	4.47	10.80	39.68				
AUC _{0-t} (ng eq.·h/mL)	1.58 ± 0.12	13.3 ± 0.6	45.0 ± 4.5				
(算出時間 - h)	(0-0.5)	(0-3)	(0-3)				
$t_{1/2}(h)$	_1)	1.0 ± 0.1	0.78 ± 0.03				
(算出時間 - h)		(1-3)	(1-3)				
試験番号又は報告書番号		894					
添付資料番号		4.2.2.2-4					

 AUC_{0-t} 及び $t_{1/2}$ は平均値±標準誤差を表示。Tmax 及びCmax は報告書原著中で算出されていなかったため、報告書に掲載された平均血漿中濃度を用い、その濃度が最高濃度を示す時点をTmax、そのときの濃度をCmax として表示。

1): 算出せず.

2.6.5.5 薬物動態試験:単回経口投与後の血液・血漿中濃度(その2)

被験物質:ミノドロン酸水和物

動物種		ラット		イヌ		
動物数・性別(雄/雌)		3M/各測定時		3M		
給餌		絶食			絶食	
投与薬物	¹⁴ C	-ミノドロン酸水利	物	¹⁴ C	ニミノドロン酸水和	つ物
投与形態,溶媒		水溶液			水溶液	
投与方法		経口			経口	
投与量 (mg/kg)		3			1	
試料	血液	血漿	血漿	血液	血漿	血漿
測定対象物質	14C (総放射能)	14C (総放射能)	ミノドロン酸	14C (総放射能)	14C (総放射能)	ミノドロン酸
			水和物			水和物
定量	LSC	LSC	HPLC-FL	LSC	LSC	HPLC-FL
結果						
薬物動態パラメータ						
Tmax (h)	0.25	0.25	0.25	0.50 ± 0.25	0.58 ± 0.22	0.33 ± 0.08
Cmax (ng eq./mL 又は ng/mL)	20.58	32.79	28.92	8.74 ± 2.41	12.93 ± 3.69	8.72 ± 2.84
AUC _{0-t} (ng eq.·h/mL 又は ng·h/mL)	11.2	17.0	12.1	43.9 ± 2.7	47.9 ± 5.3	15.7 ± 3.8
(算出時間 - h)	(0-4)	(0-4)	(0-4)	(0-24)	(0-24)	(0-8)
AUC _{0-∞} (ng eq.·h/mL 又は ng·h/mL)	12.7	18.9	12.2	_1)	_1)	1)
$t_{1/2}$ (h)	1.4	1.3	0.7	4.0 ± 0.8	2.8 ± 0.4	1.2 ± 0.1
(算出時間 -h)	$(0.5-4) \qquad (0.5-4) \qquad (0.5-4)$			$(0.5-10)^{2}$	$(0.5-10)^{2}$	$(0.5-8)^{2}$
試験番号又は報告書番号		0-3		0-2		
添付資料番号		4.2.2.2-7			4.2.2.2-6	

ラットは同一個体からの経時的な採血ではないため、薬物動態パラメータは1時点3例の平均濃度の値より算出.イヌの薬物動態パラメータは、平均値±標準誤差を表示.

1): 算出せず. 2): 個体ごとに半減期算出時間が異なるため, 算出に使用されたすべての時間範囲を表示.

LSC:液体シンチレーションカウンター. HPLC-FL: 蛍光検出高速液体クロマトグラフィー.

2.6.5.5 薬物動態試験:単回経口投与後の血液・血漿中濃度(その3)

被験物質:ミノドロン酸水和物

動物種		ラット			イヌ		
動物数・性別(雄/雌)	3M/各測定時	3M/各測定時	3M/各測定時	4M	4M	4M	
給餌	絶食	絶食	絶食	絶食	絶食	絶食	
投与薬物	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	
	水和物	水和物	水和物	水和物	水和物	水和物	
投与形態,溶媒	水溶液	水溶液	水溶液	ゼラチン	ゼラチン	ゼラチン	
				カプセル	カプセル	カプセル	
投与方法	経口	経口	経口	経口	経口	経口	
投与量 (mg/kg)	1	3	10	0.3	1	3	
試料	血漿	血漿	血漿	血漿	血漿	血漿	
測定対象物質	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	
	水和物	水和物	水和物	水和物	水和物	水和物	
定量	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL	
結果							
薬物動態パラメータ							
Tmax (h)	0.17	0.17	0.17	2.06 ± 0.77	0.81 ± 0.40	0.88 ± 0.13	
Cmax (ng/mL)	10.56	25.09	112.59	2.63 ± 0.79	6.35 ± 1.42	10.67 ± 3.73	
$AUC_{0-\infty}$ (ng·h/mL)	6.81	17.58	72.67	7.14 ± 2.25	20.30 ± 4.29	23.71 ± 8.90	
$t_{1/2(1)}(h)$	1.09	1.26	0.87	1.10 ± 0.13	1.25 ± 0.14	1.04 ± 0.09	
(算出時間 - h)	(1-3)	(2-6)	(1-6)	$(1-6)^{1)}$	$(0.25-6)^{1)}$	$(0.5-6)^{1)}$	
$t_{1/2(2)}(h)$	2)	2)	2)	2)	5.62 ± 1.06	3.32 3)	
(算出時間 – h)					$(4-10)^{1)}$	$(6-10)^{1)}$	
BA (%)	0.60	0.52	0.64	0.77 ± 0.27	0.65 ± 0.15	0.26 ± 0.10	
試験番号又は報告書番号		883		047, 069			
添付資料番号		4.2.2.2-2			4.2.2.2-1		

ラットは同一個体からの経時的な採血ではないため、薬物動態パラメータは1時点3例の平均濃度の値より算出.イヌの薬物動態パラメータは、平均値±標準誤差を表示.

^{1):}個体ごとに半減期算出時間が異なるため、算出に使用されたすべての時間範囲を表示. 2):算出せず. 3):2 例の平均値を表示. HPLC-FL: 蛍光検出高速液体クロマトグラフィー.

2.6.5.6 薬物動態試験:反復経	コ投与後の血漿中濃度	:	被験物質:ミノドロン酸水和物
動物種		イヌ	
動物数・性別(雄/雌)	6M	6M	6M
給餌	絶食	絶食	絶食
投与薬物	ミノドロン酸水和物	ミノドロン酸水和物	ミノドロン酸水和物
投与形態	ゼラチンカプセル	ゼラチンカプセル	ゼラチンカプセル
投与方法	経口	経口	経口
投与量 (mg/kg/day)	1	1	1
試料	血漿	血漿	血漿
試料採取日	1	8	15
測定対象物質	ミノドロン酸水和物	ミノドロン酸水和物	ミノドロン酸水和物
定量	HPLC-FL	HPLC-FL	HPLC-FL
結果			
薬物動態パラメータ			
Tmax (h)	1.04 ± 0.32	0.75 ± 0.11	1.08 ± 0.20
Cmax (ng/mL)	5.71 ± 0.99	11.86±2.76	10.74 ± 3.61
AUC_{0-24h} (ng·h/mL)	16.52±2.99	31.67±6.87	30.04 ± 7.52
$t_{1/2(1)}(h)$	1.22 ± 0.10	1.11 ± 0.07	1.33 ± 0.11
(算出時間 - h)	$(0.25-6)^{1)}$	$(0.5-6)^{1)}$	$(0.5-6)^{1)}$
$t_{1/2(2)}(h)$	5.62 ± 1.06^{2}	6.66±0.57	$6.68\pm0.66^{2)}$
(算出時間 — h)	$(4-10)^{1)}$	(6-10)	$(4-10)^{1)}$
試験番号又は報告書番号		047,	
添付資料番号		4.2.2.2-1	

薬物動態パラメータは, 平均値±標準誤差を表示.

1):個体ごとに半減期算出時間が異なるため、算出に使用されたすべての時間範囲を表示、2):4例の平均値±標準誤差を表示.

- 49 -

2.6.5.7 薬物動態試験:食餌の影響

被験物質:ミノドロン酸水和物

動物種	ラン	ソト
動物数・性別(雄/雌)	5M	5M
給餌	絶食	非絶食
投与薬物	ミノドロン酸水和物	ミノドロン酸水和物
投与形態,溶媒	水溶液	水溶液
投与方法	経口	経口
投与量 (mg/kg)	3	3
試料	上腕骨 1)	上腕骨 ¹⁾
試料採取時間	24 h	24 h
測定対象物質	ミノドロン酸水和物	ミノドロン酸水和物
定量	HPLC-FL	HPLC-FL
結果		
骨内濃度 (ng/g)	104±7	8±1
試験番号又は報告書番号		065
添付資料番号	4.2.3	2.2-3

骨内濃度は平均値±標準誤差を表示.

1): 吸収率が低いため、上腕骨内濃度を測定して吸収に及ぼす食餌の影響を評価.

2.6.5.8 薬物動態試験:カルシウムの影響

被験物質:ミノドロン酸水和物

動物種			ラッ	ット		
動物数・性別(雄/雌)	5M	5M	5M	5M	5M	5M
給餌	絶食	絶食	絶食	絶食	絶食	絶食
投与薬物	14C-ミノドロン	¹⁴ C-ミノドロン				
	酸水和物	酸水和物	酸水和物	酸水和物	酸水和物	酸水和物
投与形態,溶媒	水溶液	水溶液	水溶液	水溶液	水溶液	水溶液
投与方法	経口	経口	経口	経口	経口	経口
投与量 (mg/kg)	3	3	3	3	3	3
前投与処理方法	CaCl ₂	CaCl ₂	CaCl ₂	CaCl ₂	牛乳	蒸留水
	0.04 mmol/	0.2 mmol/	1 mmol/5 mL/kg	5 mmol/5 mL/kg	5 mL/kg	5 mL/kg
	5 mL/kg	5 mL/kg	経口	経口	経口	経口
	経口	経口				(対照群)
試料	上腕骨 1)	上腕骨 ¹⁾	上腕骨 1)	上腕骨 1)	上腕骨 ¹⁾	上腕骨 1)
試料採取時間	24 h	24 h	24 h	24 h	24 h	24 h
測定対象物質	14C (総放射能)	14C (総放射能)	14C(総放射能)	14C (総放射能)	14C (総放射能)	14C (総放射能)
定量	LSC	LSC	LSC	LSC	LSC	LSC
結果						
骨内濃度 (ng eq./g)	58±6	54±5	39±8	14±2	39±7	89±16
対照群に対する割合 (%)	65	61	44	16	44	2)
試験番号又は報告書番号				0-4		
添付資料番号			4.2.2	2.2-8		

骨内濃度は平均値±標準誤差を表示.

1): 吸収率が低いため、上腕骨内濃度を測定して吸収に及ぼすカルシウムの影響を評価. 2): 算出せず.

2.6.5.9 薬物動態試験:ファモチジンによる胃酸分泌抑制の影響

被験物質:ミノドロン酸水和物

動物種	ラッ	y F
動物数・性別(雄/雌)	5M	5M
給餌	絶食	絶食
投与薬物	¹⁴ C-ミノドロン酸水和物	¹⁴ C-ミノドロン酸水和物
投与形態,溶媒	水溶液	水溶液
投与方法	経口	経口
投与量 (mg/kg)	3	3
前投与処理方法	ファモチジン	_1)
	3 mg/kg 筋肉内	(対照群)
試料	上腕骨 ²⁾	上腕骨 ²⁾
試料採取時間	24 h	24 h
測定対象物質	14C (総放射能)	14C (総放射能)
定量	LSC	LSC
結果		
骨内濃度 (ng eq./g)	101±6	127±9
参考值*		
胃液分泌量 (mL/2 h)	1.3±0.2	1.8±0.2
胃酸濃度 (μEq/mL)	5±2	67±3
胃酸分泌量 (μEq/2 h)	8±3	118±10
試験番号又は報告書番号		0-4
添付資料番号	4.2.2	2.2-8

骨内濃度は平均値±標準誤差を表示.

参考値は、申請者側施設で執筆された文献(碓井孝志 他.薬理と臨床.8(4),1998;379-386.) より引用.

1):該当なし.2):吸収率が低いため、上腕骨内濃度を測定してファモチジン胃酸分泌抑制の影響を評価.

^{*}参考値(胃液分泌量,胃酸濃度及び胃酸分泌量)は5例の平均値±標準誤差を表示.

75

2.6.5.10 薬物動態試験:血漿蛋白との結合(その1)

2.0.0.10 来物到心内积. 血	水虫口との相口(しの)			. < / i - > by///1/1/2
試験系	In vitro			
添加薬物	14C-ミノドロン酸水和4	勿		
対象物,方法	血漿,超遠心法			
測定対象物質, 定量	¹⁴ C (総放射能), LSC			
結果				
動物種	試験濃度 (ng/mL)	血漿蛋白結合率 (%)	試験番号又は 報告書番号	添付資料番号
	5	76.1 ± 0.3		
ラット	50	76.3 ± 0.4	0-5	4.2.2.3-5
	500	71.9±0.2		
	5	55.9±1.0		
イヌ	50	53.2±3.0	0-5	4.2.2.3-5
	500	52.9±0.9		
	5	61.2±0.8		
ヒト	50	61.9±1.0	0-5	4.2.2.3-5
	500	61.6±0.7		

被験物質:ミノドロン酸水和物

ラットは3匹から調製したプール血漿を、イヌは3匹の個体別血漿を及びヒトは3名の個人別血漿を用いて得られた値の平均値±標準誤差を表示. LSC:液体シンチレーションカウンター.

- 55 -

2.6.5.10 薬物動態試験:血漿蛋白との結合(その2)

In vivo		
血漿, 超遠心法		
イヌ		
3M		
非絶食		
14C-ミノドロン酸水和物		
水溶液		
静脈内		
0.1		
¹⁴ C (総放射能), LSC		
15 min, 1 h 及び 4 h		
計測時間	血漿中放射能濃度 (ng eq./mL)	血漿蛋白結合率 (%)
15 min	338.10 ± 17.07	58.2 ± 1.0
1 h	113.95±9.60	57.2±0.5
4 h	9.69±1.20	60.5 ± 0.8
0-5		
4.2.2.3-5		
	血漿, 超遠心法 イヌ 3M 非絶食 1 ⁴ C-ミノドロン酸水和物 水溶液 静脈内 0.1 1 ⁴ C (総放射能), LSC 15 min, 1 h 及び 4 h 計測時間 15 min 1 h 4 h	血漿, 超遠心法 イヌ 3M 非絶食 ¹⁴ C-ミノドロン酸水和物 水溶液 静脈内 0.1 ¹⁴ C (総放射能), LSC 15 min, 1 h 及び 4 h 計測時間 血漿中放射能濃度 (ng eq./mL) 15 min 338.10±17.07 1 h 113.95±9.60 4 h 9.69±1.20

被験物質:ミノドロン酸水和物

血漿中放射能濃度及び結合率は平均値±標準誤差を表示.

2.6.5.11 薬物動態試験:血球移行性(その1)

試験系 In vitro 動物種 ラット, イヌ及びヒト 14C-ミノドロン酸水和物 添加薬物 測定対象物質, 定量 ¹⁴C (総放射能), LSC 計測時間 15 min, 1 h, 4 h 及び 8 h 結果 試験濃度 血球移行率 (%) 動物種及び薬物動態パラメータ 8 h (ng/mL) 15 min 1 h 4 h 5 57.4 ± 1.6 14.2 ± 1.1 16.2 ± 2.1 21.7 ± 0.8 ラット 50 7.3 ± 1.1 5.9 ± 0.3 13.1 ± 0.9 37.0 ± 1.6 500 7.1 ± 1.9 6.5 ± 1.2 17.4 ± 9.2 19.5 ± 2.3 5 2.4 ± 2.4 4.5 ± 4.5 6.0 ± 3.1 9.0 ± 5.6 イヌ 50 7.5 ± 1.9 3.6 ± 1.0 15.2 ± 7.0 17.3 ± 4.6 500 5.6 ± 2.2 4.4 ± 2.4 8.4 ± 1.0 9.6 ± 0.2 5 2.3 ± 1.2 7.9 ± 1.8 6.5 ± 2.4 6.4 ± 1.3 ヒト 50 11.6 ± 2.8 10.3 ± 3.5 15.4 ± 4.5 14.1 ± 5.4 500 8.0 ± 2.1 7.5 ± 1.9 9.8 ± 1.9 8.9 ± 2.1 7-G 試験番号又は報告書番号 添付資料番号 4.2.2.3-6

被験物質:ミノドロン酸水和物

ラットは9匹(1 濃度につき3匹)の個体別血液を,イヌは3匹の個体別血液を及びヒトは3名の個人別血液を用いて得られた値の平均値±標準誤差を表示. LSC:液体シンチレーションカウンター.

2.6.5.11 薬物動態試験:血球移行性(その2)

被験物質:ミノドロン酸水和物

試験系			In v	ivo			In 1	vivo			In	In vivo In vivo			vivo
動物種			ラッ	<i>,</i>			ラン	ット		イヌ				イヌ	
動物数・性	別(雄/雌)		3M/各?	則定時		3M/各測定時				3	M		3	M	
給餌			非維	色食			絶	.食			絶	色食		絶	食
投与薬物		¹⁴ C-	ミノドロ	ン酸水和	和物	¹⁴ C-	ミノドロ	コン酸水	和物	¹⁴ C	-ミノドロ	コン酸水	和物	¹⁴ C-ミノドロ	コン酸水和物
投与形態,	溶媒		水溶	ទ 液			水洋	容液			水泊	容液		水泽	容液
投与方法			静脈	內			経	口			静原	脈内		経	:П
投与量 (mg	/kg)		0.	3		•		3			0).1	•		1
測定対象物	質		¹⁴ C (総加	放射能)			¹⁴ C (総	放射能)			¹⁴ C (総	放射能)		¹⁴ C (総	放射能)
定量			LS	SC			LS	SC			LSC			LSC	
結果															
							血球移行	亍率 (%)						試験番号又は	添付資料番号
動物種	投与方法	5 min	15 min	30 min	1 h	2 h	3 h	4 h	6 h	8 h	10 h	24 h	168 h	報告書番号	
	静脈内	0.6	_1)	2.8	27.7	_1)	_1)	79.7	_1)	_1)	_1)	82.2	71.3	0-1	4.2.2.3-4
ラット		(0.6)		(0.1)	(4.4)			(2.6)				(3.9)	(2.2)		
	経口	_1)	10.0 (4.5)	6.3 (3.0)	10.6 (5.9)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_1)	_1)	_1)	_1)	0-3	4.2.2.2-7	
	静脈内	3.0	0.0	3.4	3.5				32.9	23.8	32.8	_1)	195	4.2.2.2-5	
イヌ		(1.6)	(0.0)	(3.4)	(2.6)	(0.1) (3.9) (6.8)			(6.5)	(7.2)	(6.7)				
	経口	21.0 (5.0)	9.2 (3.5)	18.4 (8.0)	17.1 (5.7)	16.9 (5.5)	1)	33.9 (7.8)	59.8 (9.8)	57.7 (9.4)	52.1 (4.5)	38.1 (2.9)	_1)	0-2	4.2.2.2-6

血球移行率は平均値及び括弧内に標準誤差を表示.

1): 測定せず.

2.6.5.12 薬物動態試験:単回静脈内投与後の組織分布(その1)

	1 - 177 /2/11/1 - 7.72	~ J D = 1=130	70 10 (0 10			1001/301 100			
動物種,系統	ラット, Fisch	er 系							
動物数・性別(雄/雌)	3M/各測定時								
給餌	非絶食								
投与薬物	14C-ミノドロン	/酸水和物							
投与形態,溶媒	水溶液								
投与方法	静脈内								
投与量 (mg/kg)	0.3								
比放射能	6.22 MBq/mg								
放射性核種 (測定対象), 定量	14C (総放射能), LSC							
計測時間	5 min, 30 min	, 1 h, 4 h, 24	h, 168 h, 28 d	ay 及び 91 day					
結果									
			組織内	放射能濃度 (ng	g eq./mL 又は ng	g eq./g)			
組織/器官	5 min	30 min	1 h	4 h	24 h	168 h	28 day	91 day	
血漿	1158.0 ± 140.9	188.8 ± 14.3	28.9±2.6	3.1 ± 0.1	0.9 ± 0.1	0.8 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	
血液	681.3±86.2	115.6±7.2	24.0 ± 0.5	9.4 ± 1.3	3.1 ± 0.3	1.6±0.1	0.0 ± 0.0	0.0 ± 0.0	
大脳	10.4 ± 1.0	4.1 ± 2.0	1.3 ± 0.4	0.7 ± 0.1	0.3 ± 0.3	0.3 ± 0.1	0.0 ± 0.0	0.1 ± 0.1	
小脳	15.5 ± 3.6	2.9 ± 0.3	1.1 ± 0.1	1.9 ± 1.2	0.5 ± 0.3	0.2 ± 0.1	0.4 ± 0.0	0.5 ± 0.1	
肺	323.1 ± 13.5	76.8 ± 6.6	37.1 ± 2.2	16.5 ± 1.0	10.6 ± 0.5	7.9 ± 0.6	4.1 ± 0.1	2.7 ± 1.2	
肝臓	193.9 ± 32.5	122.5 ± 11.2	97.7 ± 12.5	156.8 ± 7.2	163.9 ± 21.4	59.9 ± 1.0	14.8 ± 1.1	2.8 ± 0.2	
腎臓	1465.4±474.7	620.7 ± 150.4	241.1±4.7	207.1 ± 34.7	99.9±6.3	51.3±3.1	24.7 ± 0.8	22.0±6.6	
脾臓	149.2±23.1	193.4±16.5	144.6±10.2	342.5 ± 11.2	241.0 ± 17.3	217.0 ± 23.7	201.5 ± 23.4	53.0±6.7	
上腕骨	1338.8 ± 301.4	3239.5 ± 129.4	3013.7 ± 245.2	2461.9 ± 484.7	2695.4±261.7	2281.2 ± 129.4	1491.7±56.9	1013.2 ± 6.0	
肋骨	1893.8 ± 343.2	3306.6±433.6	3775.2 ± 174.9	3509.1 ± 323.0	3418.6 ± 348.6	2423.4 ± 184.1	1548.8 ± 148.1	1235.7 ± 82.6	
精巣	73.2 ± 13.1	73.2 ± 13.1 41.8 ± 5.5 9.8 ± 1.5 3.1 ± 0.0 2.8 ± 0.1 2.0 ± 0.1 1.0 ± 0.0 0.9 ± 0.2							
胃	205.5±49.9	205.5 ± 49.9 65.6 ± 12.7 28.1 ± 1.9 14.3 ± 1.8 16.3 ± 2.6 8.5 ± 1.3 3.7 ± 0.8 2.6 ± 0.2							
試験番号又は報告書番号	0-1								
添付資料番号	4.2.2.3-4								

被験物質:ミノドロン酸水和物

組織内放射能濃度は平均値±標準誤差を表示.

他に、脳下垂体、眼球、甲状腺、顎下腺、胸腺、心臓、副腎、膵臓、脂肪、皮膚、筋肉、骨髄、大動脈、リンパ節、小腸及び大腸の放射能濃度も測定したが表示していない.

LSC:液体シンチレーションカウンター. 0.0±0.0:検出限界未満

2.6.5.12 薬物動態試験:単回静脈内投与後の組織分布(その2)

	1 111 111 11 11 11 11		23 · · · · · · ·	-/		100-100	又 , .		
動物種,系統	ラット, Fisch	er 系							
動物数・性別(雄/雌)	3F/各測定時								
給餌	非絶食								
投与薬物	¹⁴ C-ミノドロン	/酸水和物							
投与形態,溶媒	水溶液								
投与方法	静脈内								
投与量 (mg/kg)	0.3								
比放射能	5.85 MBq/mg								
放射性核種 (測定対象), 定量	14C (総放射能), LSC							
計測時間	5 min, 30 min	, 1 h, 4 h, 24	h, 168 h, 28 d	ay 及び 91 day					
結果				-					
			組織内]放射能濃度 (n	g eq./mL 又は ng	g eq./g)			
組織/器官	5 min	30 min	1 h	4 h	24 h	168 h	28 day	91 day	
血漿	1212.4 ± 15.1	158.0 ± 21.3	38.2±8.3	4.0 ± 0.3	0.8 ± 0.4	0.5 ± 0.3	0.2 ± 0.2	0.0 ± 0.0	
血液	752.8 ± 12.1	103.8 ± 12.0	27.8±4.2	7.6 ± 0.5	3.5 ± 0.3	1.3 ± 0.1	0.7 ± 0.4	0.0 ± 0.0	
大脳	13.5±2.8	2.9 ± 0.2	1.4 ± 0.1	0.6 ± 0.0	0.1 ± 0.1	0.0 ± 0.0	0.2 ± 0.2	0.3 ± 0.2	
肺	317.8±16.4	77.5 ± 12.9	33.4±3.3	12.9±0.6	8.9 ± 0.4	7.0 ± 0.3	2.6 ± 0.1	1.0 ± 0.0	
肝臓	216.8 ± 7.4	190.2±8.8	134.1 ± 12.8	133.2±6.1	124.7 ± 10.2	68.9±9.8	13.7±0.9	1.8 ± 0.1	
腎臓	1909.6±59.0	578.5±136.5	287.6 ± 17.2	172.5±8.8	105.4±8.5	61.8 ± 0.5	38.0±4.1	19.1±2.9	
脾臓	180.3 ± 3.0	156.9 ± 16.3	155.9±27.6	213.2 ± 10.0	198.8 ± 33.8	175.1 ± 27.0	74.3 ± 5.4	47.1±5.0	
上腕骨	1409.5±281.4	2516.4±194.8	3278.1 ± 909.4	1946.3 ± 56.4	2217.4±281.2	2299.0 ± 279.2	1717.5±84.2	1139.2±127.6	
肋骨	2160.1 ± 304.3	2450.2 ± 402.6	2947.4 ± 305.3	2624.0 ± 148.8	2740.9 ± 320.3	2321.9 ± 58.0	1803.6 ± 190.7	949.0±151.1	
卵巣	331.8±12.3	73.9 ± 6.4	34.6 ± 0.6	19.6±2.2	14.5 ± 2.3	9.5 ± 1.0	3.6 ± 0.5	1.4 ± 0.2	
胃	166.7±14.8	166.7 ± 14.8 40.0 ± 7.8 14.2 ± 2.3 10.1 ± 0.5 6.7 ± 0.6 4.6 ± 0.3 3.2 ± 0.7 1.5 ± 0.5							
試験番号又は報告書番号	894								
添付資料番号	4.2.2.2-4								

被験物質:ミノドロン酸水和物

組織内放射能濃度は平均値±標準誤差を表示.

他に、脳下垂体、眼球、甲状腺、顎下腺、胸腺、心臓、副腎、膵臓、脂肪、皮膚、筋肉、骨髄、大動脈、リンパ節、子宮、小腸及び大腸の放射能濃度も測定したが表示 していない。

LSC:液体シンチレーションカウンター. 0.0±0.0:検出限界未満

2.6.5.13 薬物動態試験:単回経口投与後の組織分布

三00000 不均均必的数:十日在一次	2 124 -	-1-			107-371 173	A . 77	- 42/1/14/12		
動物種,系統	ラット, Fisch	er 系							
動物数・性別(雄/雌)	3M/各測定時	3M/各測定時							
給餌	絶食								
投与薬物	¹⁴ C-ミノドロン	/酸水和物							
投与形態,溶媒	水溶液								
投与方法	経口								
投与量 (mg/kg)	3								
比放射能	5.37 MBq/mg								
放射性核種 (測定対象), 定量	14C (総放射能), LSC							
計測時間	30 min, 1 h,	4 h, 24 h, 168	h, 28 day 及び	91 day					
結果									
			組織内放射能	濃度 (ng eq./mL	又はng eq./g)				
組織/器官	30 min	1 h	4 h	24 h	168 h	28 day	91 day		
血漿	22±8	5±0	2±1	0 ± 0	0 ± 0	0 ± 0	0 ± 0		
血液	12±4	2±0	1 ± 0	0 ± 0	0 ± 0	0 ± 0	0 ± 0		
大脳	0±0	1±1	0 ± 0	0 ± 0	0 ± 0	_1)	1±1		
肺	7±2	3 ± 0	2 ± 0	1 ± 0	0 ± 0	_1)	0 ± 0		
肝臓	17±3	6±1	7±1	3 ± 1	2±1	1 ± 1	0 ± 0		
腎臓	50±7	20±1	26±9	13±2	8±2	8±3	4±3		
上腕骨	98±13	93 ± 17	140 ± 40	129±35	193 ± 103	152 ± 84	133 ± 106		
肋骨	64±38	63±9	80 ± 39	72 ± 35	100 ± 36	102 ± 71	98±75		
精巣	2±0	2 ± 0 1 ± 0 0 ± 0 0 ± 0 0 ± 0 -1 0 ± 0							
胃	2165 ± 789	2165 ± 789 347 ± 198 76 ± 45 21 ± 5 7 ± 5 7 ± 2 2 ± 1							
試験番号又は報告書番号	525			·	·	·			
添付資料番号	4.2.2.3-3								

被験物質:ミノドロン酸水和物

組織内放射能濃度は平均値±標準誤差を表示.

他に、脳下垂体、眼球、甲状腺、顎下腺、胸腺、心臓、副腎、脾臓、膵臓、脂肪、皮膚、筋肉、骨髄、大動脈、リンパ節、小腸及び大腸の放射能濃度も測定したが表示 していない。

1): 採取せず.

LSC:液体シンチレーションカウンター. 0 ± 0 :検出限界未満.

2.6.5.14 薬物動態試験:妊娠又は授乳動物における試験(その1)

胎盤通過性

添付資料番号	4.2.2.2-5						
試験番号又は報告書番号	195		•				
胎児肺	0.3 ± 0.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0						
胎児血液	0.9 ± 0.5	0.4 ± 0.4	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0		
胎児	0.0 ± 0.0	0.3 ± 0.3	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0		
羊水	0.6±0.2	0.7 ± 0.1	0.3 ± 0.2	0.1 ± 0.1	0.0 ± 0.0		
乳腺	53.5±7.2	5.8 ± 0.5	3.1 ± 0.5	2.4 ± 0.6	2.1 ± 0.1		
胎盤	146.6±19.9	51.5±3.9	32.1 ± 1.9	17.4 ± 1.0	11.5 ± 0.1		
卵巣	152.9±21.7	74.5 ± 6.0	38.2 ± 2.0	32.7 ± 3.4	26.3 ± 2.0		
子宮	139.4 ± 10.2	21.6 ± 4.6	5.6 ± 0.7	5.2 ± 0.5	4.8 ± 0.3		
母体血漿	546.0±29.6	34.8 ± 1.9	3.7 ± 0.4	0.0 ± 0.0	0.0 ± 0.0		
組織/器官	5 min	1 h	4 h	24 h	48 h		
		組織内放射	寸能濃度 (ng eq./mL 又	は ng eq./g)			
結果							
計測時間	5 min, 1 h, 4 h, 24						
放射性核種(測定対象), 定量	¹⁴ C (総放射能),LSG	C					
比放射能	5.67 MBq/mg						
投与量 (mg/kg)	0.1						
投与方法	静脈内						
投与形態,溶媒	水溶液						
投与薬物	¹⁴ C-ミノドロン酸水利	和物					
給餌	非絶食						
妊娠日数,動物数	妊娠 18 日, 3F/各測	定時					
動物種,系統	ラット, Fischer 系						

被験物質:ミノドロン酸水和物

組織内放射能濃度は平均値±標準誤差を表示.

他に、母体の血液、大脳、心臓、肺、肝臓、腎臓、副腎、上腕骨及び肋骨、並びに胎児の脳、心臓、肝臓及び腎臓の放射能濃度も測定したが表示していない.胎児の脳、心臓、肝臓及び腎臓の放射能濃度は、いずれの計測時間内も検出限界未満であった.

LSC:液体シンチレーションカウンター. 0.0±0.0:検出限界未満.

2.6.5.14 薬物動態試験:妊娠又は授乳動物における試験(その2)

乳汁中への移行

動物種,系統	ラット, Fischer 系					
授乳期間,動物数	分娩後 11 日, 3F/各測定時	· 寺				
給餌	非絶食					
投与薬物	14C-ミノドロン酸水和物					
投与形態,溶媒	水溶液					
投与方法	静脈内					
投与量 (mg/kg)	0.1					
比放射能	5.67 MBq/mg					
放射性核種(測定対象),定量	¹⁴ C (総放射能),LSC					
計測時間	1h, 4h, 8h及び24h					
結果						
		放射能濃度	隻 (ng eq./mL)			
試料	1 h	4 h	8 h	24 h		
血漿	18.9 ± 1.6	6.5 ± 0.4	4.5 ± 0.2	1.7 ± 0.1		
乳汁	4.7 ± 0.4 3.2 ± 0.1 1.5 ± 0.2 0.0 ± 0.0					
試験番号又は報告書番号	195					
添付資料番号	4.2.2.2-5	·		·		

被験物質:ミノドロン酸水和物

放射能濃度は平均値±標準誤差を表示.

LSC:液体シンチレーションカウンター. 0.0±0.0:検出限界未満.

2.6.5.15 薬物動態試験:単回投与後の骨内濃度

被験物質:ミノドロン酸水和物

動物種		ラッ		イヌ		
動物数・性別(雄/雌)	3M/各測定時	3M	3M	3M	3	M
給餌	非絶食	絶食	絶食	絶食	絶	(食
投与薬物	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	¹⁴ C-ミノ	ドロン酸
	水和物	水和物	水和物	水和物	水利	和物
投与形態,溶媒	水溶液	水溶液	水溶液	水溶液	水泽	容液
投与方法	静脈内	経口	経口	経口	経	П
投与量 (mg/kg)	0.3	1	3	10		1
試料	上腕骨	上腕骨	上腕骨	上腕骨	肋骨 骨端部	肋骨 骨中央部
測定対象物質	ミノドロン酸	ミノドロン酸	ミノドロン酸	ミノドロン酸	14C (総放射能)	14C(総放射能)
	水和物	水和物	水和物	水和物		
定量	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL	LSC	LSC
結果						
計測時間	24 h	24 h	24 h	24 h	168 h	168 h
骨内濃度 (ng/g 又は ng eq./g)	2129 ± 83	51±3	217 ± 133	542±61	132.4 ± 37.8	31.6 ± 7.5
投与量補正した静脈内投与に対する	_1)	0.72	1.02	0.76	1)	_1)
比率 (%)						
薬物動態パラメータ						
$t_{1/2\alpha}$ (day)	16.4	_1)	_1)	_1)	1)	_1)
$t_{1/2\beta}$ (day)	471	_1)	_1)	_1)	_1)	_1)
試験番号又は報告書番号			005			0-2
添付資料番号		4.2.2	4.2.2	2.2-6		

骨内濃度は平均値±標準誤差を表示. 同一個体からの経時的な採骨ではないため、薬物動態パラメータは1時点3例の平均濃度の値より算出.

1): 算出せず.

HPLC-FL: 蛍光検出高速液体クロマトグラフィー. LSC: 液体シンチレーションカウンター.

- 62 -

2.6.5.16 薬物動態試験: 反復投与後の骨内濃度

被験物質:ミノドロン酸水和物

	T T T T T T T T T T T T T T T T T T T	=	1					
動物種		ラット						
動物数・性別(雄/雌)	3M	3M	3M	3M				
給餌	非絶食	非絶食	非絶食	非絶食				
投与薬物	ミノドロン酸水和物	ミノドロン酸水和物	ミノドロン酸水和物	ミノドロン酸水和物				
投与形態,溶媒	生理食塩水溶液	生理食塩水溶液	生理食塩水溶液	生理食塩水溶液				
投与方法	静脈内	静脈内	静脈内	静脈内				
投与量 (mg/kg/day)	0.04	0.16	0.04	0.16				
試料	上腕骨	上腕骨	上腕骨	上腕骨				
投与回数	1	1	28	28				
計測時間	24 h	24 h	最終投与翌日	最終投与翌日				
測定対象物質	ミノドロン酸水和物	ミノドロン酸水和物	ミノドロン酸水和物	ミノドロン酸水和物				
定量	HPLC-FL	HPLC-FL	HPLC-FL	HPLC-FL				
結果								
骨内濃度 (μg/g)	0.32 ± 0.01	1.18 ± 0.03	7.01 ± 0.08	29.78 ± 0.75				
1日目の骨内濃度に対する比	_1)	_1)	22	25				
試験番号又は報告書番号	885							
添付資料番号	4.2.2.3-2							

骨内濃度は平均値±標準誤差を表示.

1):算出せず.

26517 薬物動能試験 · In vitro での代謝

2.6.5.17 薬物動態試験: <i>In vi</i>	tro での代謝	i	披験物質:ミノドロン酸水和物
試験系	In vitro		
動物種	ラット、イヌ及びヒト		
試料	肝ミクロソーム (1.0 mg protein/mL)	及び小腸ミクロソーム (1.0 mg prot	tein/mL)
添加薬物	14C-ミノドロン酸水和物		
基質濃度	3 μM (約 1 μg/mL)		
比放射能	6.22 MBq/mg		
放射性核種 (測定対象), 定量	¹⁴ C (総放射能及び未変化体 HPLC 落	学出画分),LSC	
反応時間	0 min 及び 60 min		
結果			
	全HPLC溶	出画分の総放射能に対する未変化体	ぶの割合 (%)
試料及び動物種	0 min	60 min	60 min
	NADPH (+)	NADPH (+)	NADPH (-)
肝ミクロソーム			
ラット	97.8	94.7	95.6
イヌ	96.2	95.6	95.5
ヒト	93.6	97.5	97.4
小腸ミクロソーム			
ラット	96.3	97.0	94.1
イヌ	95.3	95.8	95.4
ヒト	97.0	95.7	96.4
試験番号又は報告書番号	0-6		
添付資料番号	4.2.2.4-3		

ラット及びイヌ肝ミクロソームは In Vitro Technologies 社製, ヒト肝ミクロソームは GENTEST 社製の各市販品を使用.

ラット及びイヌ小腸ミクロソームは BIOPREDIC International 社製,ヒト小腸ミクロソームは Tissue Tranformation Technologies 社製の各市販品を使用.

2.6.5.18 薬物動態試験: In vivo での代謝

被験物質:ミノドロン酸水和物

動物種			ラット		イヌ			
動物数・性別	(雄/雌)		3M		3M			
給餌			絶食		絶食			
投与薬物			14C-ミノドロン酸水和物		14C-ミノドロン酸水和物			
投与形態,溶如	某 某		水溶液		水溶液			
投与方法			経口		経口			
投与量 (mg/kg)		3		1			
比放射能	,		5.18 MBq/mg		2.4 MBq/mg			
放射性核種(》	則定対象),定量		¹⁴ C		¹⁴ C			
			(総放射能,未変化体及び	その他 HPLC 溶出画分),	(総放射能,未変化体及びその他 HPLC 溶出画分),			
			LSC		LSC			
結果								
動物種	試料	試料採取時間	全 HPLC 溶出画分の総放射能に対する割合 (%)		試験番号又は	添付資料番号		
到777生	可八个十	一种状况时间	未変化体 その他 1)		報告書番号	你们具材留力		
ラット	尿	0-24 h	32.1	67.9	0-3	4.2.2.2-7		
17	イヌ		48.8	51.2	0-2	12226		
1 ×			19.3	80.7	U-Z	4.2.2.2-6		

ラット及びイヌとも3匹分の試料をプールして分析した値を表示.

1): ¹⁴C-ミノドロン酸水和物原体に含まれる経口吸収性の高い微量の放射化学的不純物が体内に吸収され、それらが未変化又は代謝物の形で尿中に排泄されたものと推

なお, ラットに 14 C-ミノドロン酸水和物を 0.3 mg/kg 静脈内投与後 0-6 h の尿試料を分析したところ, 未変化体のピークのみが認められた(添付試料番号: $4.2.2.2\sim5-6$). また, イヌに 14 C-ミノドロン酸水和物を 0.1 mg/kg 静脈内投与後 5 min 及び 30 min の血漿試料, 並びに 0-6 h 及び 6-24 h の尿試料を分析したところ, 未変化体のピークのみが認められた(添付試料番号: $4.2.2.2\sim5-10$).

2.6.5.19 薬物動態試験:薬物代謝酵素誘導/阻害

2.6.5.19 条物凱思試験:条物代謝路系誘導	/ 阻舌	1奴映	初頁:ミノトロノ酸水和物
動物種	ラット		
動物数・性別(雄/雌)	6M		
給餌	非絶食		
投与薬物	ミノドロン酸水和物		
投与形態,溶媒	水溶液		
投与方法	経口		
投与量 (mg/kg/day)	1及び3		
方法	雄ラットにミノドロン酸水和物	nを1及び3 mg/kgで1日1回7	日間反復経口投与し(対照群に
	は溶媒のみを投与),各種パラス	メータ(肝比重量, 肝ミクロソー	·ム蛋白含量,CYP 含量及び種々
			ールを 100 mg/kg で 1 日 1 回 3
	日間反復腹腔内投与し、同様に	L各種パラメータを測定.	
結果			
		対照群 (溶媒投与群)に対する比	Ĺ
投与群	フェノバルビタール	ミノドロン酸水和物	ミノドロン酸水和物
	100 mg/kg	1 mg/kg	3 mg/kg
パラメータ			
相対肝重量	1.29	1.01	1.01
ミクロソーム蛋白含量	1.28	1.03	1.09
チトクロム P450 (CYP) 含量	2.33	1.20	1.20
エトキシレゾルフィン O-脱エチル化活性 ¹⁾	2.49	0.94	0.91
テストステロン 2α-水酸化活性 ²⁾	0.26	0.99	0.86
テストステロン 6β-水酸化活性 ³⁾	2.73	0.96	0.94
テストステロン 7α-水酸化活性 ⁴⁾	1.39	1.01	0.91
テストステロン 16α-水酸化活性 ⁵⁾	0.95	0.99	0.87
テストステロン 16β-水酸化活性 ⁶	12.12	0.94	0.89
クロロゾキサゾン 6-水酸化活性 ⁷⁾	0.85	0.93	0.85
試験番号又は報告書番号	866		
添付資料番号	4.2.2.4-4		

被験物質・ミノドロン酸水和物

^{1):} CYP1A の代謝活性の指標. 2): CYP2C11 の代謝活性の指標. 3): CYP3A の代謝活性の指標. 4): CYP2A の代謝活性の指標. 5): CYP2B1 及び 2C11 の代謝活性の指標. 6): CYP2B の代謝活性の指標. 7): CYP2E1 の代謝活性の指標.

2.6.5.20 薬物動態試験:尿・糞中累積排泄(その1)

被験物質:ミノドロン酸水和物

	A STATE OF THE STA			Industrial Control of the Control of				
動物種	ラット			イヌ				
動物数·性別(雄/雌)		4M		3M				
給餌		非絶食			絶食			
投与薬物	14	C-ミノドロン酸水和	物	14(C-ミノドロン酸水和	物		
投与形態,溶媒		水溶液			水溶液			
投与方法		静脈内			静脈内			
投与量 (mg/kg)		0.3			0.1			
測定対象物質		14C (総放射能)			14C (総放射能)			
定量		LSC			LSC			
結果								
	界	具積排泄率 (% of dos	se)	累積排泄率 (% of dose)				
排泄経路	尿	糞	合計	尿	糞	合計		
時間								
0 – 6 h	44.7 ± 1.2	0.0 ± 0.0	44.7 ± 1.2	36.3 ± 3.6	_1)	_1)		
0 – 24 h	48.4 ± 1.1	0.2 ± 0.1	48.6 ± 1.0	43.6 ± 3.4	0.5 ± 0.1	44.1 ± 3.5		
0 – 48 h	49.1 ± 1.0	0.3 ± 0.1	49.3 ± 0.9	47.3 ± 3.5	0.8 ± 0.2	48.1 ± 3.6		
0 – 72 h	49.4 ± 1.0	0.3 ± 0.0	49.7 ± 1.0	49.5 ± 3.2	1.3 ± 0.3	50.8 ± 3.4		
0 – 96 h	49.8 ± 1.1	0.3 ± 0.0	50.1 ± 1.0	50.5 ± 3.2	1.4 ± 0.3	51.9±3.4		
0 – 120 h	50.3 ± 1.0	0.3 ± 0.0	50.5 ± 1.0	51.4 ± 3.1	1.5 ± 0.2	52.9 ± 3.2		
0 – 144 h	50.5 ± 1.1	0.3 ± 0.0	50.8 ± 1.0	52.5 ± 3.1	1.9 ± 0.4	54.4±3.3		
0 – 168 h	50.9 ± 1.1	0.3 ± 0.0	51.2±1.0	53.3 ± 3.0	1.9 ± 0.4	55.2±3.2		
カルカス (168 h) ²⁾	2.5±0.2			_1)				
骨 (168 h)	42.4±1.6			_1)				
試験番号又は報告書番号	525			195				
添付資料番号		4.2.2.3-3			4.2.2.2-5			

排泄率は平均値±標準誤差を表示.

1):測定せず.2):骨を除く.

2.6.5.20 薬物動態試験:尿・糞中累積排泄(その2)

被験物質:ミノドロン酸水和物

動物種	ラット						イヌ		
動物数・性別(雄/雌)	4M		5F			3M			
給餌		絶食			絶食			絶食	
投与薬物	¹⁴ C- ₹	ノドロン酸力	 木和物	¹⁴ C- ₹	ノドロン酸力	k和物	¹⁴ C- ₹	ノドロン酸フ	k和物
投与形態,溶媒		水溶液			水溶液			水溶液	
投与方法		経口			経口			経口	
投与量 (mg/kg)		3			3			1	
測定対象物質	1	4C(総放射能)	1	4C(総放射能)	1	4C(総放射能)
定量		LSC			LSC			LSC	
結果									
	累積	排泄率 (% of	dose)	累積排泄率 (% of dose)		累積排泄率 (% of dose)			
排泄経路	尿	糞	合計	尿	糞	合計	尿	糞	合計
時間									
0 – 6 h	0.6 ± 0.0	0.0 ± 0.0	0.6 ± 0.0	0.6 ± 0.1	0.3 ± 0.2	0.8 ± 0.3	0.7 ± 0.2	_1)	_1)
0 – 24 h	1.1 ± 0.2	88.7 ± 2.6	89.8 ± 2.7	0.8 ± 0.1	76.1 ± 7.6	76.9 ± 7.6	1.3 ± 0.2	67.2 ± 2.1	68.5 ± 2.3
0 – 48 h	1.2 ± 0.2	96.1 ± 0.6	97.3 ± 0.7	0.8 ± 0.1	92.7 ± 1.1	93.5 ± 1.2	1.7 ± 0.2	96.5 ± 1.8	98.2 ± 1.9
0 – 72 h	1.2 ± 0.2	97.4 ± 0.7	98.6 ± 0.8	0.8 ± 0.1	94.6 ± 0.5	95.4 ± 0.5	1.8 ± 0.2	98.1 ± 0.9	99.9 ± 1.1
0 – 96 h	1.2 ± 0.2	97.5 ± 0.7	98.7 ± 0.8	0.8 ± 0.1	94.9 ± 0.4	95.7 ± 0.5	1.8 ± 0.2	98.1 ± 0.9	99.9 ± 1.0
0 – 120 h	1.2 ± 0.2	97.5 ± 0.7	98.7 ± 0.9	0.8 ± 0.1	94.9 ± 0.4	95.7 ± 0.5	1.8 ± 0.2	98.2 ± 0.9	100.0 ± 1.0
0 – 144 h	1.2 ± 0.2	97.6 ± 0.7	98.8 ± 0.9	0.8 ± 0.1	94.9 ± 0.4	95.7 ± 0.5	1.8 ± 0.2	98.2 ± 0.9	100.0 ± 1.0
0 – 168 h	1.2 ± 0.2	97.6 ± 0.7	98.8 ± 0.9	0.8 ± 0.1	94.9 ± 0.4	95.7 ± 0.5	1.8 ± 0.2	98.2 ± 0.9	100.0 ± 1.0
カルカス (168 h) ²⁾	0.0±0.0		0.2±0.2		_1)				
骨 (168 h)	0.2±0.0			0.7 ± 0.2		1)			
試験番号又は報告書番号		525		894		0-2			
添付資料番号		4.2.2.3-3			4.2.2.2-4			4.2.2.2-6	

排泄率は平均値±標準誤差を表示.

1):測定せず.2):骨を除く.

- 68 -

2.6.5.21 薬物動態試験:尿・糞・胆汁中累積排泄

被験物質:ミノドロン酸水和物

動物種		ラット					
		43.5		•			
動物数・性別(雄/雌)		4M		4M			
給餌		非絶食			絶食		
投与薬物	¹⁴ C	-ミノドロン酸水料	和物	¹⁴ C	こミノドロン酸水和	口物	
投与形態,溶媒		水溶液			水溶液		
投与方法		静脈内			経口		
投与量 (mg/kg)		0.3			3		
測定対象物質		14C (総放射能)			14C (総放射能)		
定量		LSC			LSC		
結果							
	累	累積排泄率 (% of dose)		累積排泄率 (% of dose)			
排泄経路	尿	糞	胆汁	尿	糞	胆汁	
時間							
0 – 6 h	41.7±1.6	_1)	0.1 ± 0.0	0.1 ± 0.1	_1)	0.0 ± 0.0	
0 – 24 h	45.0±1.9	0.2 ± 0.0	0.1 ± 0.0	1.0 ± 0.1	15.8 ± 6.0	0.0 ± 0.0	
0 – 48 h	45.9±1.9	0.4 ± 0.0	0.1 ± 0.0	1.3 ± 0.3	55.1±3.9	0.0 ± 0.0	
消化管内容物 (48 h)		0.2 ± 0.0			40.5±3.4		
カルカス (48 h) ²⁾		6.3±0.2			0.6±0.5		
骨 (48 h)		45.9±1.5			1.3±0.7		
試験番号又は報告書番号		525					
添付資料番号		4.2.2.3-3					

排泄率は平均値±標準誤差を表示.

1): 測定せず. 2): 骨を除く.

2.6.5.22 薬物動態試験:薬物動態学的薬物相互作用試験

抗癌剤メトトレキサートとの薬物相互作用

<u> 抗密剤メトトレキザートとの</u>	条初相互TF用						
動物種		イヌ					
動物数・性別(雄/雌)	6M		6M				
給餌	非絶食			非絶食			
投与薬物①	メトトレキサート			メトトレキサート			
投与薬物②	ミノドロン酸水和物			_1)			
投与形態,溶媒	生理食塩水溶液(含:メソトレキセ	ート®注射液)	生理食塩水溶	液(含:メソトレキセート®注射液)			
投与方法	静脈内			静脈内			
投与量① (mg/kg)	3			3			
投与量② (mg/kg)	0.15			_1)			
試料	血漿			血漿			
測定対象物質	メトトレキサート		メトトレキサート				
定量	HPLC-UV		HPLC-UV				
結果							
薬物動態パラメータ	併用群(①+②同時併用)	併用群(①+②同時併用) 単独群(幾何平均値の 併用群/単独投与群比 (90%信頼区間)			
CL _{total} (mL/h/kg)	226±17	226±17 212=		1.064 (1.012~1.119)			
Vdss (mL/kg)	381±31	381±31 352=		1.081 (0.933~1.253)			
$AUC_{0-\infty}(ng\cdot h/mL)$	13.7±1.0	13.7±1.0 14.5=		0.939 (0.893~0.988)			
$t_{1/2}$ (h)	1.652 ± 0.069	1.652 ± 0.069 $1.516 \pm$		1.089			
(算出時間 - h)	$(1.25-10)^{2}$	$(1.25-10)^{2)} (1.25-$		$(0.960\sim1.234)$			
試験番号又は報告書番号			887				
添付資料番号		4.2.2.6-1					

被験物質:ミノドロン酸水和物

薬物動態パラメータは平均値±標準誤差を表示.

1): 該当なし. 2): 報告書に記載されていないが、生データより確認.

HPLC-UV:紫外吸収検出高速液体クロマトグラフィー.