ドキシル注 20mg

CTD 第2部 資料概要

2.6 非臨床試験の概要文及び概要表

- 薬物動態 -

ヤンセン ファーマ株式会社

目次

2.6.4	薬物動態試験の概要文	
2.6.4.1	まとめ	
2.6.4.2	分析法	9
2.6.4.3	吸収	10
2.6.4.4	分布	
2.6.4.5	代謝(動物種間の比較)	33
2.6.4.6	排泄	35
2.6.4.7	薬物動態学的薬物相互作用	36
2.6.4.8	その他の薬物動態試験	36
2.6.4.9	考察及び結論	37
2.6.4.1	0 図表	38
2.6.4.1	1 参考文献	39
2.6.5	薬物動態試験概要表	1

略号一覧表

略号又は略称	化学名又は一般名	構造式	由来
塩酸ドキソルビシン ^a	(2 <i>S</i> ,4 <i>S</i>)-4-(3-Amino-2,3,6-trideoxy-α-L- <i>lyxo</i> -hexopyranosyloxy)-2,5,12-trihydroxy-2-hydroxyacetyl-7-methoxy-1,2,3,4-tetrahydrotetracene-6,11-dione monohydrochloride	OCH ₃ O OH O	主薬
ドキソルビシノール	(2 <i>S</i> ,4 <i>S</i>)-4-(3-Amino-2,3,6-trideoxy-α-L- <i>lyxo</i> -hexopyranosyloxy)-2,5,12-trihydroxy-2-(2-hydroxyethanol)-7-methoxy-1,2,3,4-tetrahydrotetracene-6,11-dione	OCH ₃ OH	主代謝物

a: 第14改正日本薬局方では塩酸ドキソルビシン,第15改正日本薬局方ではドキソルビシン塩酸塩

略号又は略称	名称及び内容
AUC	0時点から無限大時間までの血漿中又は組織内濃度 - 時間曲線下面積
AUC(0 t)	0 時点から t 時間までの血漿中又は組織内濃度 - 時間曲線下面積
BLQ	検出下限未満
CL	全身クリアランス
C_{max}	最高血漿中濃度
¹⁴ C-JNS002	¹⁴ C-塩酸ドキソルビシンを STEALTH [®] リポソームに封入した JNS002
eq	当量
FLD	分光蛍光光度計
HPLC-FLD	蛍光検出器付き高速液体クロマトグラフィー
HSPC	水素添加大豆ホスファチジルコリン
JNS002	塩酸ドキソルビシン リポソーム注射剤
LPC	リソホスファチジルコリン
LSC	液体シンチレーションカウンター
MPEG-DSPE	<i>N</i> -(Carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl- <i>sn</i> -glycero-3-phosphoethanolamine sodium salt (Sodium MPEG-2000-Carbonyl-DSPE)
MRT	平均滞留時間
NC	算出せず
ND	測定せず
SD	Sprague-Dawley
SLD	STEALTH [®] リポソーム化ドキソルビシン
t _{1/2}	消失半減期
$t_{1/2\lambda 1}$	分布相における消失半減期
$t_{1/2\lambda2}$	消失相における消失半減期
TK	トキシコキネティックス
TR	総放射能
V_{ss}	定常状態における分布容積
V_z	消失相における分布容積

2.6.4 薬物動態試験の概要文

2.6.4.1 まとめ

JNS002 の開発における初期製剤として, である硫酸アンモニウム濃度が低い Doxil-1 を用いて薬物動態の評価を行った。その後,処方検討を行った結果,硫酸アンモニウム 濃度を 自信し, として 塩塩塩塩塩を使用した Doxil-2 に処方を変更した。更に, を L-ヒスチジンに変更した JNS002 (Doxil-3 , 本剤) を最終製剤とした。JNS002 は , Doxil-2 と が異なることを除いて同一の製剤である。Doxil-1 , Doxil-2 及び本剤の組成比較を以下にに示す(表 2.6.4-1)。

表 2.6.4-1 Doxil-1, Doxil-2 及び JNS002 の組成比較 (mg/mL)

R Z.O.4 I DOXII 1 , DOXII 2 X O ONOOOZ O MEDIZELEX (ING/III)						
成分	Doxil-1	Doxil-2	JNS002			
			(Doxil-3,本剤)			
塩酸ドキソルビシン			2.0			
MPEG-DSPE ^a			3.19			
HSPC ^b			9.58			
コレステロール			3.19			
硫酸アンモニウム			2			
精製白糖			94			
			NA			
			NA			
			NA			
L-ヒスチジン			1.55			
рН			6.5			
			A			
			В			
 ロット番号 (Lot)	E	F	С			
		H	D			
			G			
			G /Histidine			

a: N-(Carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt (Sodium MPEG-2000-Carbonyl-DSPE) *新薬承認情報提供時に置き換え

b: 水素添加大豆ホスファチジルコリン

c:Lot G は L-ヒスチジンの代わりに を mg/mL 含有

NA:使用せず

(1) 吸収

ラット,ウサギ及びイヌに Doxil-2 又は本剤を単回静脈内投与したとき,いずれの動物種においても血漿中ドキソルビシン濃度は緩やかに消失し,大部分の血漿中ドキソルビシンは STEALTH®リポソームに封入された状態で血中を循環していることが示された。

本剤の N-(Carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt (MPEG-DSPE), コレステロール,リソホスファチジルコリン (LPC)の構成成分比あるいは平均粒子径を変えた製剤をラットに単回静脈内投与したとき,構成成分比及び平均粒子径の大きな変化は血漿中ドキソルビシン濃度推移を変えるものの,小さな変化はその濃度推移にほとんど影響を及ぼさないことが示された。

硫酸アンモニウム濃度が異なる製剤 (Doxil- (硫酸アンモニウム mmol/L 含有)及び Doxil-250 (硫酸アンモニウム 250 mmol/L 含有)) をラット及びイヌに単回静脈内投与したとき ,

硫酸アンモニウム濃度は STEALTH[®]リポソームからのドキソルビシンの放出に影響を与え,その放出は 250 mmol/L に比べて mmol/L の方が速やかであることが示唆された。

の成分が異なる製剤(Doxil-250/ 及び Doxil-250/Histidine)をラットに単回静脈内投与したとき, 及び Histidine の違いは血漿中ドキソルビシンの薬物動態に影響を与えないことが示された。

ラットに本剤を 3 日に 1 回,13 回反復静脈内投与したとき,最終回投与までにほぼ定常状態に達していることが示唆された。一方,定常状態における分布容積(V_{ss})及び消失相における分布容積(V_z)は初回及び最終回ともに同様の値を示したが,消失半減期($t_{1/2}$)及び平均滞留時間(MRT)は初回に比べて最終回で延長し,全身クリアランス(CL)は減少した。これらのことから,本剤を反復投与することにより,ドキソルビシンの体内からの消失は遅延することが示唆された。

(2) 分布

マウス結腸癌由来 C26 細胞又はヒト前立腺癌由来 PC-3 細胞を移植したマウスに本剤を単回静脈内投与したとき,本剤は $STEALTH^{®}$ リポソームに封入されていない塩酸ドキソルビシン投与に比べて,腫瘍選択性が高まることが示された。

ラットに本剤又は塩酸ドキソルビシンを単回静脈内投与したとき,本剤投与群の各組織内ドキソルビシン濃度は塩酸ドキソルビシン投与群に比べて遅延した推移を示した。投与後短時間では塩酸ドキソルビシン投与群に比べて本剤投与群の方が有意に低値であったが,投与後長時間経過すると有意に高値であり,これは標識体を用いた試験においても同様の結果が得られた。また,ラットに本剤を3日に1回,13回反復静脈内投与したとき,皮膚に損傷が認められ,損傷皮膚内ドキソルビシン濃度は正常皮膚に比べて高値であった。

(3) 代謝

ドキソルビシンは,肝臓でカルボニル還元酵素により主代謝物であるドキソルビシノールに代謝されるが,ラットに本剤及び塩酸ドキソルビシンを単回又は3日に1回,13回反復静脈内投与したとき,血漿中及び組織内ドキソルビシノール濃度はいずれも定量下限未満(BLO)であった。

(4) 排泄

ラットに本剤又は塩酸ドキソルビシンを単回静脈内投与し、尿糞中ドキソルビシン排泄率を測定したところ、本剤投与群における投与 72 時間後までの尿中排泄率は約 3%であり、投与後 48~72 時間で最も排泄率が高かった。一方、塩酸ドキソルビシン投与群における投与 72 時間後までの尿中排泄率は約 8%であり、投与後 0~24 時間で最も排泄率が高かった。糞中にドキソルビシンは検出されなかったが、これは腸内細菌叢によりドキソルビシンの蛍光発色基が分解され、本試験で用いた蛍光測定法では検出されなかったことが考えられる。また、標識体を用いた試験において、 14 C-塩酸ドキソルビシンを STEALTH®リポソームに封入した JNS002(14 C-JNS002)及び 14 C-塩酸ドキソルビシンを単回静脈内投与したときの主排泄経路は糞中であることが示され、両投与群ともに性差は認められなかった。

2.6.4.2 分析法

(1) 非標識体

生体試料中ドキソルビシン濃度は,有機溶媒で除たん白又は固相抽出による前処理後,蛍光検出器付き高速液体クロマトグラフィー(HPLC-FLD)又は分光蛍光光度計(FLD)を用いて定量した。各動物種の血漿,尿及び糞を HPLC-FLD で測定した時の定量下限は,ラット(血漿,尿及び糞)で $0.005 \sim 0.01~\mu g/mL$ 及びイヌ(血漿)で $0.005~\mu g/mL$ であった。また,各動物種の血漿を FLD で測定したときの定量下限は,マウスで $0.05~\mu g/mL$,ラットで $0.06~\mu g/mL$,ウサギで $0.11~\mu g/mL$ 及びイヌで $0.22~\mu g/mL$ であった。なお,ドキソルビシンとドキソルビシノールの response factor はほぼ等しいため,生体試料中ドキソルビシノール濃度はドキソルビシンの検量線を用いて定量した。

(2) 標識体

生体試料中の総放射能 (TR) 濃度は液体シンチレーションカウンター (LSC) を用いて定量した。検出限界はバックグラウンドの 1.4 倍とした。標識体を用いた分布及び排泄試験は下記の標識体又は標識体を STEALTH®リポソームに封入した 14 C-JNS002 を用いた (図 2.6.4-1)。

図 2.6.4-1 ¹⁴C-塩酸ドキソルビシンの化学構造式(*: ¹⁴C 標識部位)

2.6.4.3 吸収

- (1) 単回静脈内投与
 - 1) ラット
 - a) 臨床ロット,製剤構成成分比及び平均粒子径の違いによる血漿中薬物動態の比較 評価資料 4.2.2.2.1

臨床ロット

ロット間のばらつきをみるため,雄 Sprague-Dawley (SD) ラットに本剤の4つの臨床ロット (Doxil-3:Lot A , B , C 及び D)を1.0 mg/kg 単回静脈内投与し,FLDを用いて,投与2~3分後並びに1,4,24,48 及び72 時間後の血漿中ドキソルビシン濃度を測定した(図2.6.4-2)。

血漿中濃度は、いずれのロットにおいても同様の推移を示した。また,いくつかの薬物動態パラメータで有意差が認められたが,最高血漿中濃度 (C_{max}) 及び CL に有意差は認められず,特定ロットでのみ薬物動態が大きく異なることはなかった(表 2.6.4-2)。

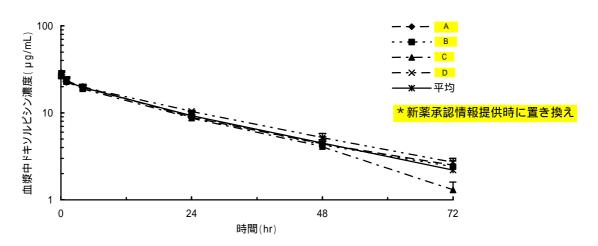


図 2.6.4-2 ラットにロットが異なる本剤を 1.0 mg/kg 単回静脈内投与したときの血漿中ドキソルビシン濃度 (平均値 + 標準偏差, n=3 - 4)

表 2.6.4-2 ラットにロットが異なる本剤を 1.0 mg/kg 単回静脈内投与したときの血漿中薬物動態パラメータ(平均値 ± 標準偏差,n = 4)

 薬物動態パラメータ	ロット番号				平均
果物勤恐ハフグータ	A a	В	С	D a	T-19
C_{max} ($\mu g/mL$)	29.1 ± 0.5	26.4 ± 0.9	27.2 ± 1.9	28.1 ± 2.4	27.6 ± 1.4
$t_{1/2\lambda 1}$ (hr)	3.9 ± 0.3^{b}	1.8 ± 0.9^{a}	0.5 ± 0.2	1.0 ± 1.1	1.7 ± 1.5
$t_{1/2\lambda 2}$ (hr)	28.0 ± 1.4	23.9 ± 3.0	18.2 ± 1.8^{c}	23.6 ± 0.9	23.1 ± 4.1
AUC(0 72) (μg• hr/mL)	581 ± 15	572 ± 57	549 ± 40	650 ± 15^{d}	584 ± 51
AUC (μg• hr/mL)	691 ± 4 ^d	652 ± 72	587 ± 52	738 ± 23^{d}	660 ± 92
CL (mL/hr)	0.35 ± 0.00	0.39 ± 0.04	0.41 ± 0.03	0.37 ± 0.02	0.38 ± 0.03
V_z (mL)	14.7 ± 1.1^{d}	13.3 ± 1.6	10.7 ± 0.5	12.7 ± 0.3	12.7 ± 1.8

a: n=3

b: B , C 及び D に比べて有意に大きい(p<0.05:分散分析により比較) c: A , B 及び D に比べて有意に小さい(p<0.05:分散分析により比較)

d: C に比べて有意に大きい(p<0.05:分散分析により比較)

*新薬承認情報提供時に置き換え

MPEG-DSPE

雄 SD ラットに MPEG-DSPE 含量が異なる製剤 (MPEG-DSPE 含量:■,■及び■mol%)を 0.3 及び 1.0 mg/kg 単回静脈内投与し, FLD を用いて,投与 2~3 分後並びに 1,4,24,48 及び 72 時間後の血漿中ドキソルビシン濃度を測定し,臨床ロットのデータ (MPEG-DSPE 含量:5.3 mol%)と比較した(図 2.6.4-3及び図 2.6.4-4)。なお,臨床ロットは 1.0 mg/kg 投与であるため,0.3 mg/kg 投与後の血漿中濃度との比較では,血液容量を体重の 6.5%,血漿容量を血液容量の 60%と仮定し 1),投与された薬物量に対する血漿中薬物量の割合(投与量率)として表した。

臨床ロットの平均パラメータと比較したところ、1.0 mg/kg 投与の \blacksquare 及び \blacksquare mol% 投与群では、 \blacksquare mol% 投与群の CL 及び \blacksquare mol% 投与群の C_{max} を除いて有意差は認められなかった(表 2.6.4-3)。また, \blacksquare mol% 投与群では、0 時点から 72 時間までの血漿中濃度 - 時間曲線下面積(AUC(0 72))及び 0 時点から無限大時間までの血漿中濃度 - 時間曲線下面積(AUC) は有意に低値であり、CL 及び V_z は有意に高値であった。一方、0.3 mg/kg 投与の \blacksquare mol% 投与群では消失相における消失半減期($t_{1/2\lambda 2}$)及び CL を除き、 \blacksquare mol% 投与群では CL を除き、いずれの薬物動態パラメータにも有意差は認められなかった(表 2.6.4-4)。

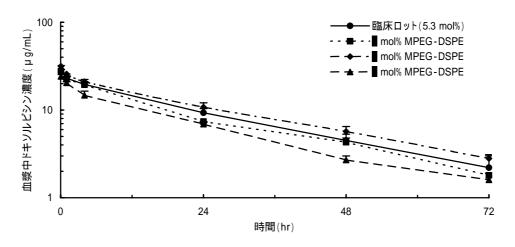


図 2.6.4-3 ラットに臨床ロットと MPEG-DSPE 含量が異なる製剤を 1.0 mg/kg 単回静脈 内投与したときの血漿中ドキソルビシン濃度(平均値 + 標準偏差,n = 4)

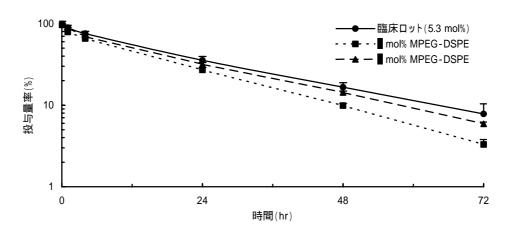


図 2.6.4-4 ラットに臨床ロットと MPEG-DSPE 含量が異なる製剤を 0.3 mg/kg 単回静脈 内投与したときの投与量に対する血漿中ドキソルビシン量の割合 (平均値 + 標準偏差, n = 4)

表 2.6.4-3 ラットに臨床ロットと MPEG-DSPE 含量が異なる製剤を 1.0 mg/kg 単回静脈内 投与したときの血漿中薬物動態パラメータ (平均値 ± 標準偏差, n = 4)

薬物動態パラメータ	MPEG-DSPE 含量 (mol%)					
条初動態パクスータ				5.3 ^a		
C_{max} ($\mu g/mL$)	27.7 ± 1.2	31.5 ± 0.7^{b}	24.2 ± 1.2	27.6 ± 1.4		
$t_{1/2\lambda 1}$ (hr)	0.7°	1.3 ± 0.7	2.0 ± 1.5	1.7 ± 1.5		
$t_{1/2\lambda 2}$ (hr)	20.0 ± 1.1	24.1 ± 1.5	21.6 ± 3.0	23.1 ± 4.1		
AUC(0 72) ($\mu g \cdot hr/mL$)	545 ± 42	683 ± 52	428 ± 30^{b}	584 ± 51		
AUC (μg• hr/mL)	589 ± 45	780 ± 69	472 ± 40^{b}	660 ± 92		
CL (mL/hr)	$0.50 \pm 0.04^{\rm b}$	0.37 ± 0.03	0.52 ± 0.04^{b}	0.38 ± 0.03		
V_z (mL)	14.6 ± 0.7	13.0 ± 0.8	16.2 ± 1.7^{b}	12.7 ± 1.8		

a:臨床ロット(A,B,B,C,D,)の平均値(n=13-14) *新薬承認情報提供時に置き換え

b:臨床ロットとの有意差あり(p<0.05:分散分析により比較)

c: n=2

表 2.6.4-4 ラットに臨床ロットと MPEG-DSPE 含量が異なる製剤を 0.3 mg/kg 単回静脈内 投与したときの血漿中薬物動態パラメータ(平均値±標準偏差, n = 4)

薬物動態パラメータ	_ MPEG-DSPE 含量 (mol%)				
果物動感パング			5.3 ^a		
C_{max} ($\mu g/mL$)	7.41 ± 0.23	7.97 ± 0.23	27.6 ± 1.4		
$t_{1/2\lambda 1}$ (hr)	0.5 ± 0.5	1.6 ± 0.8	1.7 ± 1.5		
$t_{1/2\lambda 2}$ (hr)	15.9 ± 0.5^{b}	20.2 ± 1.4	23.1 ± 4.1		
AUC(0 72) (μg• hr/mL)	132 ± 7	155 ± 7	584 ± 51		
AUC (μg• hr/mL)	138 ± 8	169 ± 6	660 ± 92		
CL (mL/hr)	0.55 ± 0.03^{b}	0.50 ± 0.02^{b}	0.38 ± 0.03		
V_z (mL)	12.5 ± 0.5	14.5 ± 1.3	12.7 ± 1.8		

a:臨床ロット(A,B,C,D,O平均値(n=13-14)*新薬承認情報提供時に置き換え

b: 臨床ロットとの有意差あり (p < 0.05: 分散分析により比較)

C_{max}, AUC(0 72)及び AUC については検定を実施していない

コレステロール

雄 SD ラットにコレステロール含量が異なる製剤 (コレステロール含量: mol%)を 1.0 mg/kg 単回静脈内投与し, FLD を用いて,投与 2~3 分後並びに 1,4,24,48 及び 72 時間後の血漿中ドキソルビシン濃度を測定し,臨床ロットのデータ (コレステロール含量:38.3 mol%)と比較した(図 2.6.4-5)。

臨床ロットの平均パラメータと比較したところ, いずれのパラメータも有意差は認められなかった(表 2.6.4-5)。

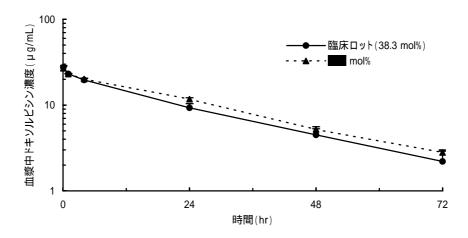


図 2.6.4-5 ラットに臨床ロットとコレステロール含量が異なる製剤を 1.0 mg/kg 単回静脈 内投与したときの血漿中ドキソルビシン濃度(平均値+標準偏差,n=4)

表 2.6.4-5 ラットに臨床ロットとコレステロール含量が異なる製剤を 1.0 mg/kg 単回静脈 内投与したときの血漿中薬物動態パラメータ (平均値 ± 標準偏差 , n = 4)

「11人」のたことの血水「米物動心バング・ブ(「物に上版中間在「ローチ)					
薬物動態パラメータ		コレステロール含量 (mol%)			
果物勤恐ハフハーク		38.3 ^a			
C_{max} ($\mu g/mL$)	26.9 ± 1.4	27.6 ± 1.4			
$t_{1/2\lambda 1}$ (hr)	0.5 ± 0.2	1.7 ± 1.5			
$t_{1/2\lambda 2}$ (hr)	24.0 ± 0.8	23.1 ± 4.1			
AUC(0 72) (μg• hr/mL)	685 ± 16	584 ± 51			
AUC (μg• hr/mL)	782 ± 26	660 ± 92			
CL (mL/hr)	0.37 ± 0.01	0.38 ± 0.03			
V_z (mL)	12.7 ± 0.2	12.7 ± 1.8			

a: 臨床ロット(A , B , C 及び D) の平均値(n=13-14) *新薬承認情報提供時に置き換え 臨床ロットとの有意差は認められなかった(分散分析により比較)

平均粒子径

雄 SD ラットに平均粒子径が異なる製剤(平均粒子径: nm)を 0.3 及び 1.0 mg/kg 単回静脈内投与し, FLD を用いて, 投与 2~3 分後並びに 1, 4, 24, 48 及び 72 時間後の血漿中ドキソルビシン濃度を測定し, 臨床ロットのデータ(平均粒子径: nm)と比較した(図 2.6.4-6 及び図 2.6.4-7)。 なお, 臨床ロットは 1.0 mg/kg 投与であるため, 0.3 mg/kg 投与後の血漿中濃度との比較では, 投与量率として表した。

AUC(0 72), AUC 及び CL は,平均粒子径が大きくなるに伴いそれぞれ減少及び増加し,臨床ロットの平均パラメータと比較したところ,1.0 mg/kg 投与では mm 投与群の AUC を除き,有意差が認められた(表 2.6.4-6)。また, 及び mm 投与群の Vz には有意差は認められなかったものの, 及び mm 投与群では有意に高値であった。一方,0.3 mg/kg 投与ではいずれの平均粒子径でも CL 及び Vz に有意差が認められたものの, mm 投与群と mm 投与群では同様の AUC(0 72)及び AUC を示した(表 2.6.4-7)。

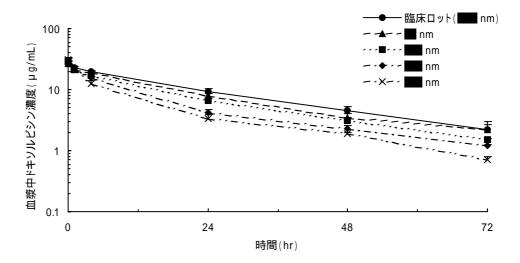


図 2.6.4-6 ラットに臨床ロットと平均粒子径が異なる製剤を 1.0 mg/kg 単回静脈内投与したときの血漿中ドキソルビシン濃度(平均値+標準偏差,n=3-4)

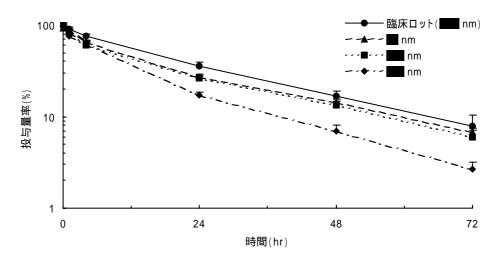


図 2.6.4-7 ラットに臨床ロットと平均粒子径が異なる製剤を 0.3 mg/kg 単回静脈内投与したときの投与量に対する血漿中ドキソルビシン量の割合

(平均值 + 標準偏差, n = 4)

表 2.6.4-6 ラットに臨床ロットと平均粒子径が異なる製剤を 1.0 mg/kg 単回静脈内投与 したときの血漿中薬物動態パラメータ(平均値 ± 標準偏差,n = 4)

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
 薬物動態パラメータ	平均粒子径 (nm)				
条例勤恩ハフグータ			a		b
C_{max} ($\mu g/mL$)	26.4 ± 0.6	28.4 ± 1.5	30.2 ± 1.9	31.1 ± 2.3^{c}	27.6 ± 1.4
$t_{1/2\lambda 1}$ (hr)	0.3 ± 0.2	1.2 ± 1.5	3.4 ± 0.8	1.8 ± 0.4	1.7 ± 1.5
$t_{1/2\lambda 2}$ (hr)	18.8 ± 1.6	18.1 ± 3.9	28.0 ± 2.3	20.7 ± 4.4	23.1 ± 4.1
AUC(0 72) (μg• hr/mL)	537 ± 39	453 ± 23^{c}	344 ± 6^{c}	304 ± 54^{c}	584 ± 51
AUC (μg• hr/mL)	578 ± 50	483 ± 35^{c}	393 ± 1^{c}	300 ± 32^{c}	660 ± 92
CL (mL/hr)	0.46 ± 0.04^{c}	0.55 ± 0.04^{c}	0.67 ± 0.01^{c}	0.89 ± 0.09^{c}	0.38 ± 0.03
V_z (mL)	12.5 ± 0.7	14.3 ± 2.2	27.1 ± 2.1^{c}	26.7 ± 6.4^{c}	12.7 ± 1.8

a: n=3

b:臨床ロット(A,B,C)及びD)の平均値(n=13-14)*新薬承認情報提供時に置き換え

c:臨床ロットとの有意差あり (p < 0.05:分散分析により比較)

 12.7 ± 1.8

0/2220	ひたことの血永下来物勤恐ハング・ノ(十岁心:惊干闹左,川・・)						
薬物動態パラメータ	平均粒子径 (nm)						
条例勤恩バングーク				a			
C_{max} ($\mu g/mL$)	7.2 ± 0.5	7.7 ± 0.3	7.6 ± 0.2	27.6 ± 1.4			
$t_{1/2\lambda 1}$ (hr)	3.4 ± 1.7	1.6 ± 0.9	3.9 ± 0.6^{b}	1.7 ± 1.5			
$t_{1/2\lambda 2}$ (hr)	24.4 ± 3.1	22.0 ± 2.5	18.2 ± 1.2	23.1 ± 4.1			
AUC(0 72) (μg• hr/mL)	142 ± 5	135 ± 3	101 ± 5	584 ± 51			
AUC (μg• hr/mL)	155 ± 9	150 ± 6	106 ± 6	660 ± 92			
CL (mL/hr)	0.49 ± 0.02^{b}	0.58 ± 0.04^{b}	0.74 ± 0.05^{b}	0.38 ± 0.03			

表 2.6.4-7 ラットに臨床ロットと平均粒子径が異なる製剤を 0.3 mg/kg 単回静脈内投与 したときの血漿中薬物動態パラメータ (平均値 ± 標準偏差, n = 4)

a:臨床ロット(A,B,C及びD)の平均値(n=13-14)*新薬承認情報提供時に置き換え

 18.6 ± 3.2^{b}

 19.3 ± 0.8^{b}

b:臨床ロットとの有意差あり(p<0.05:分散分析により比較)

 $17.0 \pm \overline{1.6^{b}}$

C_{max}, AUC(0 72)及び AUC については検定を実施していない

LPC

 V_z (mL)

雄 SD ラットに LPC 含量が異なる製剤 (LPC 含量: ■, ■, ■ 及び ■%)を 1.0 mg/kg 単回静脈 内投与し, FLD を用いて, 投与 2~3 分後並びに 1, 4, 24, 48 及び 72 時間後の血漿中ドキソルビシン濃度を測定し, 臨床ロットのデータ (LPC 含量: ■%未満)と比較した(図 2.6.4-8)。

臨床ロットの平均パラメータと比較したところ,LPC 含量 \blacksquare %投与群ではいずれのパラメータにも有意差は認められなかったが, \blacksquare , 及び \blacksquare %投与群では AUC(0 72)及び AUC の有意な減少,CL 及び V_z の有意な増加が認められた(表 2.6.4-8)。

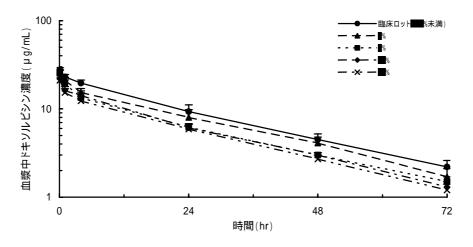


図 2.6.4-8 ラットに臨床ロットと LPC 含量が異なる製剤を 1.0 mg/kg 単回静脈内投与 したときの血漿中ドキソルビシン濃度(平均値 + 標準偏差, n = 5 - 7)

表 2.6.4-8 ラットに臨床ロットと LPC 含量が異なる製剤を 1.0 mg/kg 単回静脈内投与 したときの血漿中薬物動態パラメータ(平均値 ± 標準偏差,n = 7)

	LPC 含量 ^a				
薬物動態パラメータ	% ^b	%	%°	%	%未満 ^d
C _{max} (μg/mL)	26.3 ± 1.8	25.3 ± 1.5	21.9 ± 2.0^{e}	21.0 ± 2.7^{e}	27.6 ± 1.4
$t_{1/2\lambda 1}$ (hr)	1.0 ± 0.2	1.0 ± 0.4^{c}	2.7 ± 2.0	0.9 ± 0.5^{c}	1.7 ± 1.5
$t_{1/2\lambda 2}$ (hr)	22.6 ± 1.6	21.4 ± 4.1	22.8 ± 1.8	20.7 ± 3.2	23.1 ± 4.1
AUC(0 72) (μg• hr/mL)	503 ± 72	407 ± 69^{e}	400 ± 20^{e}	385 ± 24^{e}	584 ± 51
AUC (μg• hr/mL)	564 ± 84	456 ± 78^{e}	444 ± 18^{e}	409 ± 63^{e}	660 ± 92
CL (mL/hr)	0.46 ± 0.05	$0.63 \pm 0.07^{\rm e}$	$0.58 \pm 0.04^{\rm e}$	$0.62 \pm 0.06^{\rm e}$	0.38 ± 0.03
V_z (mL)	15.0 ± 1.9	19.8 ± 5.3^{e}	18.9 ± 2.4^{e}	18.3 ± 1.4^{e}	12.7 ± 1.8

a:総STEALTH®リポソーム脂質に対する重量%

b : n = 5

c: n = 6

d:臨床ロット(A,B,C及びD)の平均値(n=13-14)*新薬承認情報提供時に置き換え

e: 臨床ロットとの有意差あり (p<0.05: 分散分析により比較)

b) 硫酸アンモニウム濃度の違いによる血漿中薬物動態の比較

Doxil- 及び Doxil-250 の比較 (TK 試験)

評価資料 4.2.2.2.2

雄 SD ラットに硫酸アンモニウム濃度が異なる製剤である Doxil- (Doxil-1: Lot E (硫酸アンモニウム濃度 mmol/L)) 又は Doxil-2: Lot F (硫酸アンモニウム濃度は 250 mmol/L)) を 4.0,8.0 及び 12.0 mg/kg 単回静脈内投与し,FLD を用いて,投与 2~3 分後並びに 0.5,1,2,4,8,12,24,36,48,72 及び 96 時間後の血漿中ドキソルビシン濃度を測定した(図 2.6.4-9,図 2.6.4-10及び図 2.6.4-11)。 *新薬承認情報提供時に置き換え

Doxil-250 投与群に比べて Doxil- 投与群の CL 及び V_z は高値であり,AUC は有意に低値であった。また, $t_{1/2\lambda2}$ 及び MRT にも有意差が認められ,Doxil-250 に比べて Doxil- ではやや速やかに消失することが示唆された(表 2.6.4-9)。

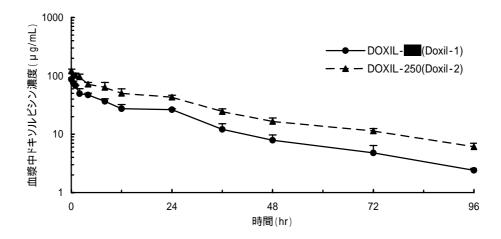


図 2.6.4-9 ラットに硫酸アンモニウム濃度が異なる製剤を 4.0 mg/kg 単回静脈内投与 したときの血漿中ドキソルビシン濃度(平均値 + 標準偏差,n = 4)

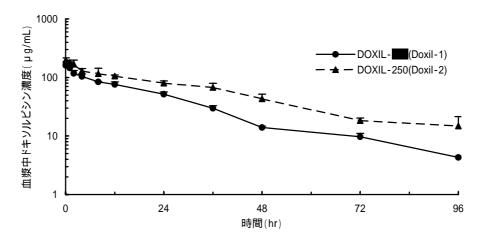


図 2.6.4-10 ラットに硫酸アンモニウム濃度が異なる製剤を 8.0 mg/kg 単回静脈内投与 したときの血漿中ドキソルビシン濃度 (平均値 + 標準偏差, n = 4)

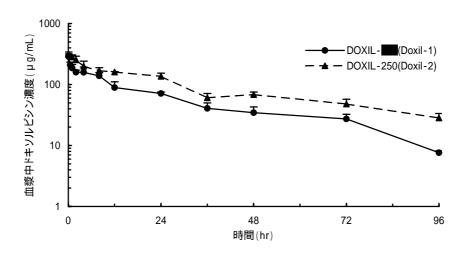


図 2.6.4-11 ラットに硫酸アンモニウム濃度が異なる製剤を 12.0 mg/kg 単回静脈内投与したときの血漿中ドキソルビシン濃度(平均値 + 標準偏差, n = 4)

表 2.6.4-9 ラットに硫酸アンモニウム濃度が異なる製剤を 4.0, 8.0 及び 12.0 mg/kg 単回静脈内投与したときの血漿中薬物動態パラメータ

(平均値±標準偏差,n=4)

薬物動態パラメータ	投与量 (mg/kg)				
条物勤忠ハファータ	4.0	8.0	12.0		
Doxil- (Doxil-1)投与群					
C_{max} ($\mu g/mL$)	86.7 ± 5.4	164.6 ± 6.4	289.9 ± 29.8		
$t_{1/2\lambda 1}$ (hr)	1.8 ± 0.9	1.81 ± 0.96	0.61 ± 0.28		
$t_{1/2\lambda 2}$ (hr)	22.8 ± 1.7	19.2 ± 1.1	22.3 ± 2.5		
AUC(0 96) (μg• hr/mL)	1348.0 ± 142.3	3085.0 ± 227.6	4358.0 ± 426.9		
AUC (μg• hr/mL)	1418.8 ± 142.5	3208.5 ± 216.6	4633.5 ± 408.7		
MRT (hr)	30.5 ± 1.5	24.0 ± 2.5	31.3 ± 3.2		
CL (mL/hr)	0.63 ± 0.06	0.56 ± 0.04	0.58 ± 0.04		
V_z (mL)	20.8 ± 3.3	15.4 ± 0.5	18.6 ± 1.9		
Doxil-250 (Doxil-2)投与群					
C_{max} ($\mu g/mL$)	121.2 ± 9.0^{a}	196.7 ± 20.1	311.5 ± 30.4		
$t_{1/2\lambda 1}$ (hr)	3.55 ± 2.0	1.5 ± 1.2	2.55 ± 1.6		
$t_{1/2\lambda 2}$ (hr)	30.2 ± 4.0^{a}	26.9 ± 3.1^{a}	35.9 ± 7.5^{a}		
AUC(0 96) (μg• hr/mL)	2474.9 ± 122.9	4958.0 ± 367.5	7770.2 ± 842.9		
AUC (μg• hr/mL)	2740.0 ± 121.3^{a}	5483.3 ± 317.1^{a}	9059.7 ± 538.0^{a}		
MRT (hr)	39.2 ± 3.1^{a}	28.2 ± 2.8^{a}	48.5 ± 8.3^{a}		
CL (mL/hr)	0.33 ± 0.01^{a}	0.33 ± 0.02^{a}	0.30 ± 0.02^{a}		
V_z (mL)	14.2 ± 1.9^{a}	12.6 ± 2.0	15.9 ± 3.4		

a: Doxil- との有意差あり (p < 0.05: Mann-Whitney 検定により比較)

c) の違いによる血漿中薬物動態の比較

評価資料 4.2.2.2.3

雄 SD ラットに が異なる製剤 (Doxil-250/ (Doxil-3: Lot 7 G / M) 及び Doxil-250/Histidine (Doxil-3: Lot G / Histidine) を 0.3 mg/kg 単回静脈内投与し, FLD を用いて,投与3~4分後並びに1,2,4,24及び48時間後の血漿中ドキソルビシン濃度を測定した(図2.6.4-12)。なお,臨床ロットでは Histidine が用いられている。 *新薬承認情報提供時に置き換え

血漿中濃度は両**の**で同様の推移を示し、いずれの薬物動態パラメータにも有意差は認められなかった(表 2.6.4-10)。



図 2.6.4-12 ラットに が異なる製剤を 0.3 mg/kg 単回静脈内投与したときの 血漿中ドキソルビシン濃度 (平均値 + 標準偏差, n = 4)

皿浆中架初割態ハフメータ <u>(平</u> 均恒± 標竿偏差,Ⅱ - 4)								
薬物動態パラメータ	Doxil-250/	Doxil-250/Histidine						
C_{max} ($\mu g/mL$)	8.54 ± 0.58	8.29 ± 0.27						
$t_{1/2\lambda 1}$ (hr)	1.29 ± 0.51	1.20 ± 1.03						
$t_{1/2\lambda 2}$ (hr)	21.9 ± 0.8	21.4 ± 1.5						
AUC(0 48) (μg• hr/mL)	159.5 ± 9.4	145.8 ± 14.7						
AUC (μg• hr/mL)	203.0 ± 11.2	184.2 ± 22.0						
MRT (hr)	31.0 ± 1.1	30.3 ± 1.8						
CL (mL/hr)	0.38 ± 0.03	0.44 ± 0.07						
V_z (mL)	12.5 ± 1.1	14.6 ± 2.2						

表 2.6.4-10 ラットに が異なる製剤を 0.3 mg/kg 単回静脈内投与したときの 血漿 中 薬物 動能 パラメータ (平均値 + 煙準偏差

の違いによる有意差は認められなかった (Mann-Whitney 検定により比較) 両製剤の

d) JNS002 と塩酸ドキソルビシンの比較試験 (TK 試験)

評価資料 4.2.2.2.4

雌雄 SD ラットに本剤 (Lot A) 又は塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与し, HPLC-FLD を用いて,投与 0.5,4,24,48 及び 72 時間後の血漿中ドキソルビシン濃度を測定し た(図2.6.4-13)。なお,血漿中濃度に性差は認められなかったため,血漿中濃度は雌雄を合算 して表示した。 *新薬承認情報提供時に置き換え

塩酸ドキソルビシン投与後に比べて本剤投与後の血漿中ドキソルビシン濃度は極めて高く、か つ緩やかに消失した。塩酸ドキソルビシン投与群に比べて本剤投与群の Cmax は約 2000 倍, AUC は約 26000 倍それぞれ高値であり, t_{1/2} は約 15 倍, MRT は約 14 倍それぞれ長かった。また, CL は約 27000 倍, Vz は約 1800 倍それぞれ低値であった(表 2.6.4-11)。

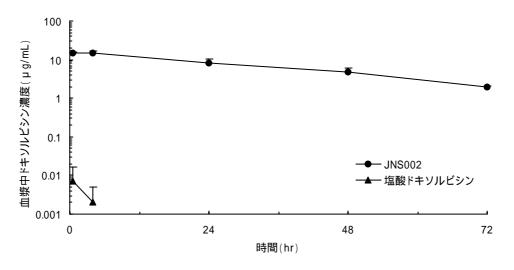


図 2.6.4-13 ラットに本剤又は塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与 したときの血漿中ドキソルビシン濃度(平均値+標準偏差,n=6)

薬物動態パラメータ	JNS002	塩酸ドキソルビシン					
C _{max} (μg/mL)	15.1	0.007					
t _{1/2} (hr)	27.7	1.9					
AUC(0 72) (μg• hr/mL)	520.8	0.036					
AUC (μg• hr/mL)	605.3	0.023					
MRT (hr)	37.9	2.8					
CL (mL/hr)	0.41	10869					
V_{z} (mL)	16.5	30193					

表 2.6.4-11 ラットに本剤又は塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与 したときの血漿中薬物動態パラメータ(平均値より推定, n=6)

e) 血漿中総ドキソルビシン濃度及び STEALTH[®]リポソーム封入ドキソルビシン濃度の比較 参考資料 4.2.2.2.5

(state of the s

血漿中総ドキソルビシン濃度及び STEALTH[®]リポソーム封入ドキソルビシン濃度は全ての時点で類似しており,薬物動態パラメータも以前実施した試験(2.6.4.3(1), 1), b),)と類似していた(表 2.6.4-12)。また,遊離型ドキソルビシンの割合は総ドキソルビシンの $2.5\sim5.0\%$ であり,イヌ 2 やヒト 3 での結果と類似していた。

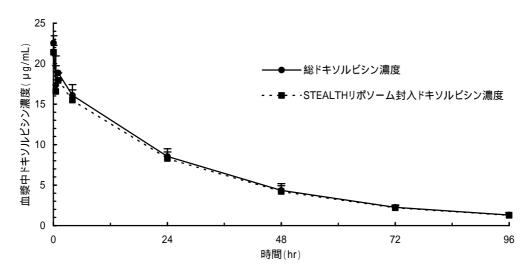


図 2.6.4-14 ラットに本剤を 1.0 mg/kg 単回静脈内投与したときの血漿中総ドキソ ルビシン及び STEALTH[®]リポソーム封入ドキソルビシン濃度 (平均値 + 標準誤差, n=2 - 3)

薬物動態パラメータ	総ドキソルビシン	STEALTH [®] リポソーム封入 ドキソルビシン
C_{max} ($\mu g/mL$)	22.54	21.41
$t_{1/2\lambda 1}$ (hr)	2.8	2.9
$t_{1/2\lambda 2}$ (hr)	25.5	25.7
AUC(0 96) (μg• hr/mL)	551.9	536.2
AUC (μg• hr/mL)	594.7	578.6
MRT (hr)	36.0	36.3
CL (mL/hr)	0.45	0.47
V_z (mL)	16.8	17.3

表 2.6.4-12 ラットに本剤を 1.0 mg/kg 単回静脈内投与したときの血漿中薬物動態 パラメータ(平均値より推定, n = 2 - 3)

2) ウサギ

参考資料 4.2.2.2.6

雄 New Zealand White ウサギに本剤 (Lot C) 又は塩酸ドキソルビシンを 1.0 mg/kg 単回静脈 内投与し,FLD を用いて,本剤は投与 2~3,15 及び 30 分後並びに 1,2,4,6,24,48,72 及び 96 時間後,塩酸ドキソルビシンは投与 2~3,5,10,20 及び 30 分後並びに 1,2,4,6,24,48,72 及び 96 時間後の血漿中ドキソルビシン濃度を測定した(図 2.6.4-15)。*新薬承認情報提供時に置き換え

ラット (2.6.4.3 (1), 1), d)) と同様に , 塩酸ドキソルビシンに比べて本剤投与後の血漿中濃度は極めて高く , かつ緩やかに消失した。塩酸ドキソルビシン投与群に比べて本剤投与群の C_{max} は約 20 倍 , AUC は約 450 倍それぞれ高値であり , $t_{1/2\lambda 2}$ は約 5 倍長かった。また , CL は約 400 倍 , V_z は約 80 倍それぞれ低値であった (表 2.6.4-13)。

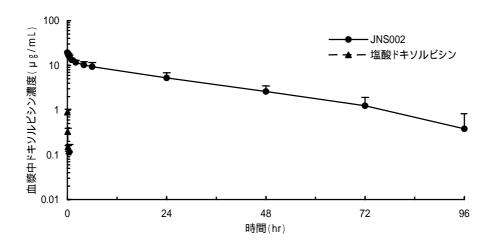


図 2.6.4-15 ウサギに本剤又は塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与 したときの血漿中ドキソルビシン濃度(平均値+標準偏差, n=4)

ひたことの血水中未物動窓バング・ノ(十物直:15千趺左,11-4)								
薬物動態パラメータ	JNS002	塩酸ドキソルビシン						
C_{max} ($\mu g/mL$)	19.2 ± 0.4	0.9 ± 0.14						
$t_{1/2\lambda 1}$ (hr)	0.53 ± 0.08	0.03 ± 0.002						
$t_{1/2\lambda 2}$ (hr)	21.3 ± 2.0	4.0 ± 0.7						
$AUC(0 t) (\mu g \cdot hr/mL)^a$	348.9 ± 51.2	0.30 ± 0.01						
AUC (μg• hr/mL)	367.7 ± 58.6	0.82 ± 0.09						
CL (mL/hr)	6.0 ± 1.1	2536 ± 299						
V_{α} (mL)	176 0 ± 17 0	13651 ± 1028						

表 2.6.4-13 ウサギに本剤又は塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与 したときの血漿中薬物動態パラメータ(平均値 + 標準誤差、n=4)

a: JNS002 投与群は AUC(0 96), 塩酸ドキソルビシン投与群は AUC(0 2)

3) イヌ

a) 硫酸アンモニウム濃度の違いによる血漿中薬物動態の比較

Doxil- 及び Doxil-250 の比較 (TK 試験)

評価資料 4.2.2.2.7

雌雄ビーグル犬に硫酸アンモニウム濃度が異なる製剤 (Doxil- (Doxil-1: Lot E) 及び Doxil-250 (Doxil-2: Lot H)) を 1.5 mg/kg 単回静脈内投与し, FLD を用いて,投与 2~3 分後並びに 0.5,1,2,4,8,12,24,36,48,72 及び 96 時間後の血漿中ドキソルビシン濃度を測定した(図 2.6.4-16)。なお,血漿中濃度に性差は認められなかったため,血漿中濃度は雌雄を合算して表示した。 *新薬承認情報提供時に置き換え

ラット (2.6.4.3 (1), 1), b),)と同様に , イヌにおいても Doxil-250 投与群に比べて Doxil-投与群の CL は有意に高値であり , AUC は有意に低値であった。また , t_{1/2λ2} 及び MRT にも有意 差が認められ , Doxil-250 に比べて Doxil-ではやや速やかに消失することが示唆された (表 2.6.4-14) 。

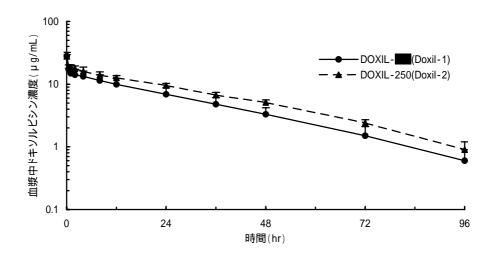


図 2.6.4-16 イヌに硫酸アンモニウム濃度が異なる製剤を 1.5 mg/kg 単回静脈内投与 したときの血漿中ドキソルビシン濃度(平均値+標準偏差, n=6)

こんことの血水「米内部心バング」と(「写に上版中間生)につり								
薬物動態パラメータ	Doxil-1)	Doxil-250 (Doxil-2)						
C _{max} (μg/mL)	27.9 ± 7.9	29.0 ± 4.1						
$t_{1/2\lambda 1}$ (hr)	0.55 ± 0.89	0.20 ± 0.10						
$t_{1/2\lambda 2}$ (hr)	21.6 ± 1.8	25.9 ± 3.5^{a}						
AUC(0 96) (μg• hr/mL)	441.0 ± 112.2	605.0 ± 53.4						
AUC (μg• hr/mL)	462.6 ± 120.0	655.9 ± 59.1^{a}						
MRT (hr)	30.7 ± 2.6	37.2 ± 4.9^{a}						
CL (mL/hr)	24.0 ± 8.5	15.5 ± 1.6^{a}						
V_z (mL)	746.5 ± 274.4	595.0 ± 84.8						

表 2.6.4-14 イヌに硫酸アンモニウム濃度が異なる製剤を 1.5 mg/kg 単回静脈内投与 したときの血漿中薬物動態パラメータ(平均値 ± 標準偏差,n=6)

a: Doxil- との有意差あり (p < 0.05: Mann-Whitney 検定により比較)

(2) 反復静脈内投与

1) ラット (TK 試験)

評価資料 4.2.2.2.8

雌雄 SD ラットに本剤 (Lot A)を 0.25 及び 1.0 mg/kg/回又は塩酸ドキソルビシンを 1.0 mg/kg/回 , それぞれ 3 日に 1 回 , 13 回反復静脈内投与し , HPLC-FLD を用いて , 初回 (Day 1)及び最終回 (Day 37)投与 0.5 , 2 , 4 , 8 , 24 , 48 及び 72 時間後 (Day 37 は投与前も測定)の血漿中ドキソルビシン濃度を測定した (図 2.6.4-17及び図 2.6.4-18)。なお , 血漿中濃度に性差は認められなかったため , 血漿中濃度は雌雄を合算して表示した。 *新薬承認情報提供時に置き換え

初回及び最終回ともに,塩酸ドキソルビシンに比べて本剤投与後の血漿中濃度は極めて高く,かつ緩やかに消失した。また,本剤の最終回投与では,投与直前と投与 72 時間後の血漿中濃度はほぼ同様であった。本剤投与群では, C_{max} 及び AUC は用量依存的に増加した(表 2.6.4-15及び表 2.6.4-16)。 $t_{1/2}$,CL 及び MRT は,各投与回数では用量に関わらずほぼ同様の値を示したが, $t_{1/2}$ 及び MRT は初回に比べて最終回で長く,CL は減少した。一方, V_z 及び V_{ss} は初回及び最終回ともにほぼ同様の値を示した。

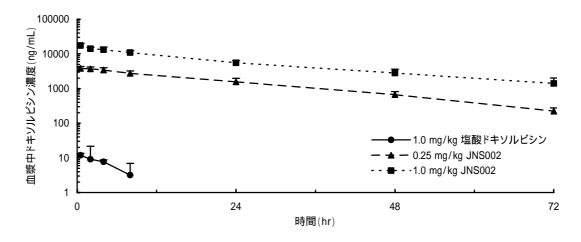


図 2.6.4-17 ラットに本剤又は塩酸ドキソルビシンを 3 日に 1 回 , 13 回反復静脈内投与 したときの初回投与後の血漿中ドキソルビシン濃度

(平均值+標準偏差,n=4-8)

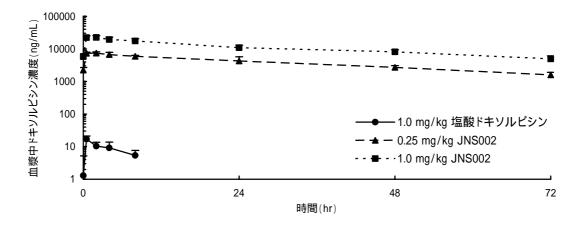


図 2.6.4-18 ラットに本剤又は塩酸ドキソルビシンを 3 日に 1 回 , 13 回反復静脈内投与 したときの最終回投与後の血漿中ドキソルビシン濃度

(平均值+標準偏差,n=8)

表 2.6.4-15 ラットに本剤又は塩酸ドキソルビシンを 3 日に 1 回, 13 回反復静脈内投与したときの初回投与後の血漿中薬物動態パラメータ

(平均値より推定,n=4-8)

薬物動態パラメータ	JNS	塩酸ドキソルビシン	
条 の 動恐 ハ フ ハ フ	0.25 mg/kg	1.0 mg/kg	1.0 mg/kg
C _{max} (ng/mL)	3833	17425.5	11.9
t _{1/2} (hr)	17.6	20.3	6.6
AUC(0 72) (μg• hr/mL)	94.5	395.8	0.13
AUC (μg• hr/mL)	100.4	432.6	0.13
MRT (hr)	25.5	29.2	9.46
CL (mL/hr)	0.5	0.5	1643.4
V _{ss} (mL)	13.6	14.2	15239
V _z (mL)	13.5	16.7	14940

表 2.6.4-16 ラットに本剤又は塩酸ドキソルビシンを 3 日に 1 回, 13 回反復静脈内投与したときの最終回投与後の血漿中薬物動態パラメータ

(平均値より推定,n=8)

薬物動態パラメータ	JNS	塩酸ドキソルビシン	
案 初勤恐ハング フ	0.25 mg/kg	1.0 mg/kg	1.0 mg/kg
C _{max} (ng/mL)	7380	22463	17.0
Trough (投与前) (ng/mL) a	2230 ± 445	5756 ± 1373	2.2 ± 5.1
t _{1/2} (hr)	32.7	33.3	9.5
AUC(0 72) (μg• hr/mL)	271.0	785.7	0.20
AUC (μg• hr/mL)	346.3	1011.2	0.20
MRT (hr)	47.2	48.0	13.6
CL (mL/hr)	0.3	0.3	1571.8
V _{ss} (mL)	12.1	14.2	21373
V_z (mL)	12.9	14.8	22454

a:平均值 ± 標準偏差, n=16

2.6.4.4 分布

(1) 単回静脈内投与

1) マウス

a) C26 細胞移植マウス

評価資料 4.2.2.3.1

マウス結腸癌由来 C26 細胞を移植 14 日後の雄 Balb/c マウスに本剤(Lot C)) 又は塩酸ドキソルビシンを 6.0 mg/kg 単回静脈内投与し,FLD 又は HPLC-FLD を用いて,投与 1,4,24,48,96 及び 120 時間後の組織内ドキソルビシン濃度を測定した(表 2.6.4-17)。**新薬承認情報提供時に置き換え

血漿中ドキソルビシンは,本剤投与群ではすべての時点で検出されたが,塩酸ドキソルビシン投与群ではいずれも BLQ であった。塩酸ドキソルビシン投与後,最高組織内濃度は投与 1 又は 4 時間後に認められ,投与 120 時間後の組織内濃度は脾臓を除き BLQ であった。一方,本剤投与後,各組織内濃度は塩酸ドキソルビシン投与後に比べて遅延した推移を示し,投与 120 時間後の各組織内濃度は約 $0.5 \sim 5~\mu g/g$ であった。投与 1 時間後,心臓,腎臓,肝臓及び脾臓では本剤投与群に比べて塩酸ドキソルビシン投与群の方が高値であり,腫瘍では両投与群で同様の濃度を示したが,投与 24 時間後以降,いずれの組織においても塩酸ドキソルビシン投与群に比べて本剤投与群の方が高値であった。

AUC は , 両投与群ともに脾臓で最高値を示した。また , 塩酸ドキソルビシン投与群に対する 本剤投与群の AUC 比は , 脾臓で 1.8 , 腎臓で 2.4 , 肝臓で 3.2 , 心臓で 3.8 及び腫瘍で 7.0 であり , 特に腫瘍で高い比を示した。

表 2.6.4-17 マウス結腸癌由来 C26 細胞移植マウスに本剤又は塩酸ドキソルビシン を 6.0 mg/kg 単回静脈内投与したときの組織内ドキソルビシン濃度 ^a (平均値±標準偏差,AUC は平均値より推定,n=3-4)

	(
組織		AUC									
が日が民	1	4	24	48	96	120	($\mu g \cdot hr/mL$ or g)				
JNS002											
血漿	99.6 ± 3.5	61.9 ^b	38.3 ± 6.7	21.6 ± 5.0	6.3 ± 1.3	1.6 ± 0.5	NC				
腫瘍	1.9 ± 0.1	3.2^{b}	7.2 ± 0.8	4.6 ± 1.2	7.4 ^c	1.4 ± 0.6	596.0				
心臓	8.4 ± 1.4	5.7 ^b	4.9 ± 0.7	3.0 ± 0.8	1.8 ^c	0.6 ± 0.2	473.6				
肝臓	7.0 ± 0.2	7.1 ^b	11.0 ± 4.5	6.2 ± 0.9	2.7°	1.4 ± 0.3	775.6				
脾臓	7.5 ± 0.7	6.6 ^b	26.5 ± 16.0	17.3 ± 3.6	9.4 ^c	4.4 ± 0.8	1982.5				
腎臓	7.2 ± 1.5	5.2 ^b	7.3 ± 1.2	5.4 ± 1.1	3.8 ^c	2.1 ± 0.4	799.9				
塩酸ド	キソルビシ	ン									
血漿	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	NC				
腫瘍	1.7 ± 0.5	2.0 ± 0.7	1.1 ± 0.2	0.5°	BLQ	BLQ	84.9				
心臓	9.1 ± 2.2	5.1 ± 1.5	1.6 ± 0.4	BLQ	BLQ	BLQ	125.2				
肝臓	20.3 ± 1.8	11.6 ± 5.4	2.3 ± 0.4	$0.6^{\rm c}$	0.5 ± 0.1	BLQ	239.3				
脾臓	15.9 ± 3.4	15.4 ± 3.3	9.7 ± 0.8	5.9 ^b	5.1 ± 0.4	2.6°	1075.1				
腎臓	21.8 ± 2.7	14.8 ± 2.8	4.6 ± 0.3	1.6 ^b	0.7 ± 0.2	BLQ	339.4				

 $a: \mu g/mL$ or g

b: n=1

c:n=2(平均値) NC:算出せず

BLQ:定量下限未満(血漿: <0.05 µg/mL, その他: <0.5 µg/g)

b) PC-3 細胞移植マウス

参考資料 4.2.2.3.2

ヒト前立腺癌由来 PC-3 細胞を移植 30 日後の胸腺欠損 Swiss nude マウスに Doxil-2 (Lot H) 又は塩酸ドキソルビシンを 0.9 mg/kg 単回静脈内投与し,共焦点レーザースキャン顕微鏡を用いた蛍光強度測定により,投与 1 及び 24 時間後の組織内ドキソルビシン濃度を測定した(図 2.6.4-19)。 *新薬承認情報提供時に置き換え

肝臓,腎臓及び腫瘍における Doxil-2 投与群の組織内濃度(% of dose)は,塩酸ドキソルビシン投与群に比べて,投与1時間後ではそれぞれ1.3,2.5 及び3.0倍,投与24時間後ではそれぞれ10,3.0 及び80倍高値であった。

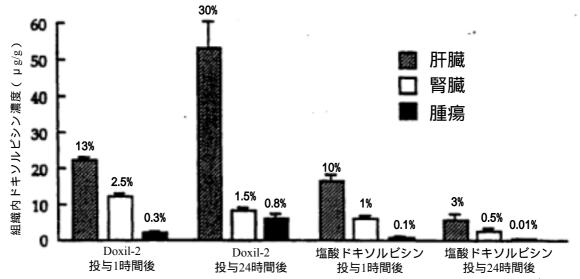


図 2.6.4-19 ヒト前立腺癌由来 PC-3 細胞移植マウスに Doxil-2 又は塩酸ドキソルビシンを 0.9 mg/kg 単回静脈内投与したときの組織内ドキソルビシン濃度 (平均値+標準偏差,各棒上の数値は% of dose を表す, n=10)

2) ラット

a) 非標識体の組織分布

評価資料 4.2.2.3.3

雌雄 SD ラットに本剤 (Lot A) 又は塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与し, HPLC-FLD を用いて, 投与 0.5, 4, 24, 48 及び 72 時間後の組織内ドキソルビシン濃度を測定した (表 2.6.4-18)。なお,組織内濃度に性差は認められなかったため,組織内濃度は雌雄を合算して表示した。 *新薬承認情報提供時に置き換え

最高組織内濃度は,塩酸ドキソルビシン投与群では脾臓を除き投与 0.5 時間後に認められたのに対し,本剤投与群では血漿を除き投与 24 時間後に認められた。本剤投与群の各組織内濃度は塩酸ドキソルビシン投与群に比べて遅延した推移を示し,投与後短時間では塩酸ドキソルビシン投与群に比べて本剤投与群の方が有意に低値であったが,時間の経過とともに有意に高値となった。

AUC は,両投与群ともに脾臓で最高値を示し,次いで肺で高値を示した。塩酸ドキソルビシン投与群に対する本剤投与群の AUC 比は,胃で 1.3,皮膚で 1.7,脾臓で 2.6,肝臓で 4.1,腎臓及び肺で 4.2 並びに心臓で 4.8 であった。

表 2.6.4-18 ラットに本剤又は塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与したときの 組織内ドキソルビシン濃度 ^a

(平均値±標準偏差,AUCは平均値より推定,n=6)

			「十圴世ュ	"惊牛佣在,	AUC は十均	<u> 但より推走,N=6)</u>				
組織		試料	采取時点(hr)		AUC				
加工市场	0.5	4	24	48	72	($\mu g \cdot hr/mL$ or g)				
JNS002										
血漿	15.1 ± 0.7	14.4 ± 2.2	8.4 ± 1.9	4.9 ± 1.3	1.9 ± 0.2	605.3				
脳	BLQ	BLQ	BLQ	BLQ	BLQ	NC				
肺	1.2 ± 0.2	1.3 ± 0.1	1.6 ± 0.3	1.6 ± 0.3	1.4 ± 0.3	469.2				
心臓	0.9 ± 0.1	1.2 ± 0.1	1.7 ± 0.6	1.2 ± 0.4	1.0 ± 0.3	182.6				
肝臓	0.9 ± 0.2	1.0 ± 0.1	1.3 ± 0.1	1.1 ± 0.3	0.6 ± 0.1	124.9				
脾臓	2.0 ± 0.6	4.3 ± 0.5	7.2 ± 1.4	4.9 ± 0.5	3.3 ± 0.4	647.5				
腎臓	1.2 ± 0.2	1.3 ± 0.1	1.7 ± 0.1	1.4 ± 0.2	1.3 ± 0.3	293.9				
骨髄 ^b	BLQ	BLQ	2.2	BLQ	BLQ	NC				
皮膚	0.3 ± 0.1	0.3 ± 1.1	0.5 ± 0.1	0.4 ± 0.2	0.4 ± 0.0	88.0				
胃	0.3 ± 0.1	0.4 ± 0.1	0.9 ± 0.2	0.6 ± 0.1	0.5 ± 0.2	105.1				
十二指腸	BLQ	BLQ	2.5 ± 0.9	BLQ	BLQ	NC				
塩酸ドキン	ノルビシン									
血漿	0.007 ± 0.01	0.002 ± 0.003	BLQ	BLQ	BLQ	0.023				
脳	BLQ	BLQ	BLQ	BLQ	BLQ	NC				
肺	2.7 ± 0.5^{c}	2.2 ± 0.3^{c}	1.4 ± 0.3	0.8 ± 0.1^{c}	0.5 ± 0.1^{c}	110.6				
心臓	2.2 ± 0.2^{c}	1.3 ± 0.1	0.6 ± 0.1^{c}	0.3 ± 0.1^{c}	BLQ	38.0				
肝臓	1.7 ± 0.2^{c}	0.7 ± 0.2	0.3 ± 0.1^{c}	BLQ	BLQ	30.8				
脾臓	2.36 ± 0.3	2.30 ± 0.4^{c}	$2.56 \pm 0.3^{\circ}$	1.84 ± 0.4^{c}	1.34 ± 0.3^{c}	247.4				
腎臓	3.6 ± 0.4^{c}	1.7 ± 0.1^{c}	0.8 ± 0.1^{c}	0.5 ± 0.1^{c}	0.3 ± 0.1^{c}	69.5				
骨髄 ^b	BLQ	BLQ	BLQ	BLQ	BLQ	NC				
皮膚	0.5 ± 0.1^{c}	0.4 ± 0.1	0.4 ± 0.1	0.3 ± 0.0	0.3 ± 0.0^{c}	50.5				
胃	1.5 ± 0.2^{c}	1.3 ± 0.1^{c}	0.8 ± 0.2	0.6 ± 0.1	0.4 ± 0.1^{c}	81.7				
十二指腸	BLQ	BLQ	BLQ	BLQ	BLQ	NC				

 $a: \mu g/mL$ or g

b: 各測定ポイントのラット 6 匹分をプールして測定

c: 本剤との有意差あり(p<0.05: Fisher の LSD 検定により比較)

NC:算出せず

BLQ:定量下限未満(血漿: <0.005 μg/mL, 骨髄及び十二指腸: <2 μg/g, その他: <0.25 μg/g)

b) 標識体の組織分布

評価資料 4.2.2.3.4

雌雄 SD ラットに 14 C-JNS002 又は 14 C-塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与し,LSC を用いて, 14 C-JNS002 は投与 1,24,96 及び 240 時間後, 14 C-塩酸ドキソルビシンは投与 0.25,1,24 及び 72 時間後の組織内 TR 濃度を測定した(表 2.6.4-19及び表 2.6.4-20)。

 $^{14}\text{C-JNS}002$ 投与群における組織内 TR 濃度は,血液,血漿及び脾臓で高値であり, $^{14}\text{C-塩酸}$ ドキソルビシン投与群では,腎臓,脾臓,肝臓及び甲状腺で高値であった。また両投与群ともに,生殖器における組織内 TR 濃度は,雄よりも雌の方が高値であった。

多くの組織において,投与 1 時間後の組織内 TR 濃度は, 14 C-JNS002 投与群に比べて 14 C-塩酸ドキソルビシン投与群の方が高値であったのに対し,投与 24 時間後以降では, 14 C-塩酸ドキソルビシン投与群に比べて 14 C-JNS002 投与群の方が高値であり,非標識体を投与したときとほぼ同様の結果であった。

表 2.6.4-19 ラットに ¹⁴C-JNS002 を 1.0 mg/kg 単回静脈内投与したときの組織内 TR 濃度 ^a(平均値,AUC は平均値より推定,n=3)

TR 濃度 * (平均値 , AUC は平均値より推定 , n=3)										
					寺点(hr)				AUC(0 240)	
組織		1		4	9			40	(μg eq	
	雄	雌	雄	雌	雄	雌	雄	雌	雄	雌
血漿	18.9	20.1	7.44	10.8	1.04	1.45	0.0178	0.0513	572	761
血液	12.0 ^b	11.8	3.47 ^b	6.07	0.614	0.833	0.0189	0.0370	313	437
動脈	2.38	2.86	0.758	1.12	0.477	0.402	0.220	0.157	125	132
静脈	3.09	4.12	1.43	1.70	0.492	0.607	0.171	0.226	158	197
大脳	0.442	0.419	0.128	0.134	0.0117 ^c	0.0291	BLQ	BLQ	9.91	12.2
小脳	0.883	0.657	0.256	0.322	BLQ ^c	0.0599	BLQ	BLQ	NC	24.8
下垂体	2.13	3.09	1.49	2.14	0.980	0.870	0.400	0.383	223	248
眼球	0.0859	0.0790	0.157	0.152	0.275	0.170	0.121	0.165	45.4	38.4
甲状腺	1.48	1.30	2.53	2.76	2.53	2.24	0.595	1.20	422	466
肺	2.72	3.69	1.42	1.99	1.06	0.886	0.273	0.267	219	238
心臓	1.02	1.00	0.912	0.920	0.495	0.470	0.156	0.135	114	109
肝臓	1.37	1.34	1.20	2.00	0.362	0.718	0.205	0.258	120	194
脾臓	3.47	3.74	14.2	19.6	5.08	8.27	2.41	5.05	1360	2160
膵臓	0.313	0.290	0.318	0.438	0.434	0.475	0.193	0.196	77.3	86.8
腎臓	1.19	1.14	1.51	1.29	0.891	0.782	0.368	0.355	201	180
副腎	1.57	2.95	1.56	2.12	0.870	0.845	BLQ ^c	0.562	122 ^d	259
子宮	-	0.353	-	1.23	-	0.620	-	0.360	-	151
乳腺	-	0.195	-	0.681	-	0.696	-	0.375	-	134
卵巣	-	1.06	-	3.18	-	1.52	-	0.432	-	335
精嚢	0.0890	-	0.106	-	0.143	-	0.0670	-	25.7	-
精巣	0.135	-	0.172	-	0.189	-	0.134	-	39.6	-
前立腺	0.267	-	0.332	-	0.389	-	0.133	-	67.3	-
骨髄	1.46	1.53	3.81	3.12	1.44	1.58	1.04	0.695	414	373
筋肉	0.133	0.0800	0.0767	0.0952	0.106	0.0777	0.0362	0.0403	18.3	16.5
腎周囲脂肪	0.109	0.101	0.114	0.126	0.103	0.145	0.0953	0.101	24.7	29.9
皮膚	0.178	0.211	0.442	0.617	0.621	0.699	0.198	0.290	197	137
足底(前足)	0.221	0.154	0.922	0.630	1.08	0.757	0.536	0.375	308	147
足底(後足)	0.247	0.140^{b}	1.60	0.637	1.85	0.765°	0.624	0.479	98.7	124
胃	0.125	0.179	0.322	0.504	0.466	0.363	0.109	0.153	69.0	73.9
小腸	0.486	0.378	1.54	1.85	1.29	1.21	0.258	0.340	218	233
大腸	0.156	0.169	0.416	0.793	0.532	0.677	0.198	0.241	89.5	125

a: μg eq/g b: n=2 c:中央値 d: AUC(0 96)

BLQ:検出下限(バックグラウンドの1.4倍)未満

NC:算出せず

表 2.6.4-20 ラットに 14 C-塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与したときの 組織内 TR 濃度 a (平均値 , AUC は平均値より推定 , n=3)

組織内 IR 濃度 (平均恒,AUC は平均恒より推定,N=3)										
			È	式料採取					AUC(
組織	0.2		1	<u> </u>		24	72		(μg ec	• hr/g)
	雄	雌	雄	雌	雄	雌	雄	雌	雄	雌
血漿	0.168	0.179	0.100	0.102	0.0362	0.0481	0.0190	0.0275	2.87	3.57
血液	0.185	0.192	0.114	0.102	0.0345	0.0406	0.0208	0.0283	2.99	3.32
動脈	0.945	1.03	0.910	0.988	0.832	0.815	0.594	0.626	54.7	55.9
静脈	1.37	1.73	1.39	1.49	0.886	0.736	0.492	0.471	59.1	54.5
大脳	0.0226	0.0172	0.0179	0.0182	BLQ ^b	0.0212	BLQ	BLQ	NC	0.469 ^c
小脳	0.0497	0.0427	0.0334	0.0342	BLQ	0.0223^{b}	BLQ	BLQ	NC	0.674 ^c
下垂体	1.70	1.79	1.51	1.92	1.68	1.19	0.985	0.874	101	85.9
眼球	0.265	0.236	0.238	0.200	0.170	0.152 ^d	0.107	0.0935	11.4	10.0
甲状腺	2.30	2.32	2.36	3.42	2.23	1.79	1.43	1.22	141	132
肺	2.66	2.00	1.11	2.11	0.829	0.902	0.174	0.324	44.0	61.6
心臓	1.60	1.72	0.609	1.35	0.330	0.285	0.0640	0.149	19.2	27.1
肝臓	3.81	3.33	1.71	2.33	0.493	0.508	0.173	0.276	39.6	48.3
脾臓	3.50	3.07	3.03	4.00	2.98	2.86	2.30	2.30	198	204
膵臓	1.95	1.75	1.85	1.95	1.34	1.30	0.696	0.663	85.1	84.0
腎臓	4.96	4.31	3.40	3.26	1.25	1.21	0.534	0.610	93.7	93.0
副腎	2.59	1.97	1.90	2.45	1.37	1.30	0.740	0.829	88.5	94.0
子宮	-	1.02	-	1.08	-	0.689	-	0.454	-	47.9
乳腺	-	0.316	-	0.241	-	0.259	-	0.117	-	14.6
卵巣	-	1.08	-	1.23	-	0.801	-	0.585	-	57.0
精囊	0.197	ı	0.279	-	0.281	-	0.205	-	18.2	-
精巣	0.0600	ı	0.0677	-	0.0895	-	0.0761	-	5.83	-
前立腺	0.767	ı	0.779	-	0.579	-	0.353	-	38.1	-
骨髄	1.62	1.49	1.37 ^d	1.83	1.70	1.94	1.14	0.988	103	112
筋肉	0.497	0.299	0.214	0.338	0.169	0.140	0.0391	0.0645	8.95	10.1
腎周囲脂肪	0.354	0.201	0.261	0.290	0.160	0.178	0.150	0.0949	12.4	11.8
皮膚	0.552	0.490	0.508	0.533	0.460	0.438	0.335	0.421	21.2	20.2
足底(前足)	0.335	0.227	0.239	0.239	0.316	0.308	0.290	0.264	17.6	15.0
足底(後足)	0.234	0.213	0.204	0.204	0.260	0.223	0.245	0.192	30.5	32.2
胃	0.720	0.764	0.689	0.985	0.323	0.313	0.210	0.236	24.3	27.3
小腸	1.97	3.27	1.31	2.33	0.372	0.381	0.276	0.275	34.0	42.9
大腸	0.832	0.766	0.538	0.732	0.338	0.416	0.271	0.275	25.1	29.9

a: μg eq/g b: 中央値 c: AUC(0 24)

d: n=2

BLQ:検出下限(バックグラウンドの1.4倍)未満

NC:算出せず

(2) 反復静脈内投与

1) ラット 評価資料 4.2.2.3.5

雌雄 SD ラットに本剤 (Lot A)を 0.25 及び 1.0 mg/kg/回又は塩酸ドキソルビシンを 1.0 mg/kg/回,それぞれ 3 日に 1 回,13 回反復静脈内投与し,HPLC-FLD を用いて,最終回(Day 37)投与 1,3,10 及び 31 日後 (それぞれ Day 38,40,47 及び 68)の組織内ドキソルビシン濃度を測定した(表 2.6.4-21)。また,本剤 1.0 mg/kg 投与群の雄では,損傷皮膚内ドキソルビシン濃度も測定し,正常皮膚内濃度と比較した(表 2.6.4-22)。なお,組織内濃度に性差は認められなかったため,組織内濃度は雌雄を合算して表示した。 *新薬承認情報提供時に置き換え

本剤投与後の各組織内濃度は,用量依存的に増加した。また,すべての組織において,本剤 1.0~mg/kg 投与群は塩酸ドキソルビシン 1.0~mg/kg 投与群に比べて高値であった。塩酸ドキソルビシン 1.0~mg/kg 投与群の組織内濃度は,本剤 0.25~mg/kg 投与群と類似していた。

いずれの投与群においても,組織内濃度は脾臓で最高値を示した。本剤 0.25~mg/kg 投与群及び塩酸ドキソルビシン 1.0~mg/kg 投与群では,最終回投与 10~ 日後の組織内濃度は脾臓のみ定量下限を超え,最終回投与 31~ 日後ではすべての組織で BLQ となった。一方,本剤 1.0~mg/kg 投与群では,最終回投与 31~ 日後も脾臓及び腎臓で定量下限を超える濃度が認められたが,いずれも 0.5~ $\mu g/g$ 以下であり,最終回投与 1~ 日後の 1/10~ 以下に減少した。

正常皮膚に比べて損傷皮膚の組織内ドキソルビシン濃度は高値であり,最終回投与 1,3 及び 10 日後における正常皮膚に対する損傷皮膚内ドキソルビシン濃度比は,それぞれ 7.1,6.9 及び 5.1 であった。しかし,最終回投与 31 日後の損傷皮膚内ドキソルビシン濃度は $0.4~\mu g/g$ であり,最終回投与 1 日後の約 1/50 に減少した。

表 2.6.4-21 ラットに本剤又は塩酸ドキソルビシンを 3 日に 1 回 , 13 回反復静脈内投与 したときの組織内ドキソルビシン濃度 ^a (平均値 ± 標準偏差 , n = 6)

		トイソルにソノ派は		·····································
組織		最終回投与後		Γ
	1	3	10	31
JNS002 0.25 mg/kg	DI O	DI O	DI O	DI O
脳	BLQ	BLQ	BLQ	BLQ
肺	0.97 ± 0.16	0.67 ± 0.09	BLQ	BLQ
心臓	0.42 ± 0.09	0.36 ± 0.09	BLQ	BLQ
肝臓	0.47 ± 0.22	0.34 ± 0.11	BLQ	BLQ
脾臓	4.02 ± 0.55	2.76 ± 0.70	0.79 ± 0.17	BLQ
腎臓	0.77 ± 0.13	0.68 ± 0.10	BLQ	BLQ
骨髄 ^b	2.06 ± 1.88	BLQ	BLQ	BLQ
正常皮膚	0.38 ± 0.17	0.35 ± 0.09	BLQ	BLQ
胃	0.44 ± 0.07	0.28 ± 0.07	BLQ	BLQ
十二指腸	BLQ	BLQ	BLQ	BLQ
JNS002 1.0 mg/kg				
脳	BLQ	BLQ	BLQ	BLQ
肺	$3.44 \pm 0.45^{c, d}$	$2.59 \pm 0.52^{c, d}$	0.67 ± 0.16	BLQ
心臓	$1.34 \pm 0.36^{c, d}$	1.38 ± 0.19^{c}	0.28 ± 0.07	BLQ
肝臓	$1.65 \pm 0.43^{c, d}$	1.30 ± 0.38^{c}	BLQ	BLQ
脾臓	15.11 ± 5.00^{d}	$12.01 \pm 6.66^{c, d}$	$2.04 \pm 0.98^{c, d}$	0.45 ± 0.15
腎臓	$4.30 \pm 1.48^{c, d}$	$4.21 \pm 1.39^{c, d}$	1.44 ± 0.64	0.33 ± 0.21
骨髄 ^b	5.43 ± 3.99	5.1 ± 3.70	BLQ	BLQ
正常皮膚	$2.89 \pm 0.94^{c, d}$	$1.88 \pm 0.74^{c, d}$	0.89 ± 0.35	BLQ
胃	$1.67 \pm 0.60^{c, d}$	$1.12 \pm 0.12^{c, d}$	0.37 ± 0.09	BLQ
十二指腸	$5.3 \pm 1.9^{c, d}$	$5.2 \pm 0.6^{c, d}$	BLQ	BLQ
塩酸ドキソルビシ	ン 1.0 mg/kg			
脳	BLQ	BLQ	BLQ	BLQ
肺	1.81 ± 0.39^{c}	0.78 ± 0.16^{c}	BLQ	BLQ
心臓	0.54 ± 0.10	BLQ	BLQ	BLQ
肝臓	0.34 ± 0.09	BLQ	BLQ	BLQ
脾臓	3.65 ± 0.53	1.95 ± 0.80	0.39 ± 0.05	BLQ
腎臓	1.41 ± 0.32^{c}	0.53 ± 0.11	BLQ	BLQ
骨髄 ^b	2.49 ± 2.91	BLQ	BLQ	BLQ
正常皮膚	0.47 ± 0.14	0.30 ± 0.11	BLQ	BLQ
胃	1.27 ± 0.20^{c}	0.58 ± 0.06^{c}	BLQ	BLQ
十二指腸	BLQ	BLQ	BLQ	BLQ

- $a: \mu g/g$
- b: 各測定ポイントのラット雌雄各3匹をプールして測定
- c: JNS002 0.25 mg/kg との有意差あり (p < 0.05: Fisher の LSD 検定により比較)
- d: 塩酸ドキソルビシン 1.0 mg/kg との有意差あり (p < 0.05: Fisher の LSD 検定により比較)
- BLQ:定量下限未満(骨髄及び十二指腸: <2.0 µg/g, その他: <0.25 µg/g)

表 2.6.4-22 ラットに本剤 1.0 mg/kg を 3 日に 1 回 , 13 回反復静脈内投与したときの 正常及び損傷皮膚内ドキソルビシン濃度^a (平均値±標準偏差 , n = 3)

組織	最終回投与後日数 (day)					
	1	3	10	31		
正常皮膚	2.8 ± 1.0	2.1 ± 0.7	0.8 ± 0.2	BLQ		
損傷皮膚 ^b	19.9 ± 9.8	14.4 ± 8.4	4.1 ± 3.0	0.4 ± 0.5		

 $a: \mu g/g$

b:損傷皮膚は同一個体から数箇所採取した

BLQ:定量下限未満 (<0.25 μg/g)

2) イヌ

評価資料 4.2.2.3.6

雌雄ビーグル犬に本剤(Lot A) 0.75 及び 1.0 mg/kg を 3 週に 1 回 , 10 回反復静脈内投与し , HPLC-FLD を用いて , 最終回投与 1 及び 5 週後の正常並びに損傷皮膚内ドキソルビシン濃度を測定した(表 2.6.4-23)。 *新薬承認情報提供時に置き換え

最終回投与1週後では,正常皮膚に比べて損傷皮膚内濃度はほぼ同様又は高値であった。最終回投与5週後では,最終回投与1週後に比べていずれの部位においても皮膚内濃度は減少し,正常皮膚と損傷皮膚内ドキソルビシン濃度に明らかな差は認められなかった。

表 2.6.4-23 イヌに本剤 0.75 及び 1.0 mg/kg を 3 週に 1 回 , 10 回反復静脈内投与したとき の最終回投与 1 及び 5 週後の正常及び損傷皮膚内ドキソルビシン濃度 ^a

(中央値,括弧内は範囲を表す,n=4)

投与量	0.75 r	ng/kg	1.0 mg/kg			
	正常皮膚	損傷皮膚	正常皮膚	損傷皮膚		
採取部位	投与 1 週後					
鼻	1.29 (1.05 - 2.12)	2.30 (1.61 - 3.00)	1.70 (1.40 - 5.12) ^b	1.87 (1.78 - 2.79) ^b		
首(腹側)	0.70 (0.25 - 1.42)	0.98 (0.44 - 1.11)	1.01 (0.86 - 1.50) ^b	0.80 (0.46 - 1.11) ^b		
腹部	0.42 (0.28 - 0.68) ^b	0.74 (0.39 - 1.46) ^b	1.53 (0.44 - 1.56) ^b	1.29 (0.60 - 3.44) ^b		
背部	0.94 (0.86 - 1.15) ^b	ND	1.57 (1.06 - 1.81) ^b	ND		
左前足	1.46 (0.89 - 1.91)	2.29 (1.04 - 3.53)	1.98 (1.04 - 3.58) ^b	1.48 (1.10 - 2.64) ^b		
肛門	ND	ND	1.50 (0.77 - 1.86) ^b	1.79 (1.19 - 4.60) ^b		
尾	1.45 (1.07 - 1.90)	2.20 (1.59 - 2.72)	4.94 (1.80 - 7.31) ^b	4.23 (1.70 - 5.84) ^b		
採取部位	投与 5 週後					
鼻	0.19 ^c 0.23 (0.21 - 0.24)		0.61°	0.74 (0.37 - 1.10) ^d		
首(腹側)	BLQ ^d BLQ ^d		0.44 ^c	0.53 (0.15 - 0.92) ^d		
腹部	0.20°	BLQ^d	0.52°	0.33 (0.20 - 0.45) ^d		
背部	0.19 ^c	ND	0.62 (0.46 - 0.77) ^d	ND		
左前足	0.21°	0.27 ^c	1.15°	0.30 (0.25 - 0.35) ^d		
肛門	ND ND		0.36°	0.57 (0.20 - 0.93) ^d		
尾	0.36 (0.24 - 0.47) ^d BLQ ^d		0.78 (0.77 - 0.78) ^d	1.43°		

 $a:\mu g/g$

b: n=3

c: n=1

d:n=2 ND:測定せず

BLQ:定量下限未満 (<0.125 μg/g)

2.6.4.5 代謝(動物種間の比較)

(1) 推定代謝経路

本剤投与後,STEALTH®リポソームは徐々に崩壊し,放出されたドキソルビシンが代謝を受けることから,ドキソルビシンの代謝経路は STEALTH®リポソーム封入の有無に関わらず同じであると考えられる。このことから,ドキソルビシンの推定代謝経路はラットを用いて検討した文献より引用した 4)(図 2.6.4-20)。

ドキソルビシンは,肝臓において代謝を受け,主代謝物であるドキソルビシノールは,サイト ゾール画分のカルボニル還元酵素により生成し,ドキソルビシノンは脱グリコシド化により生成 する。

図 2.6.4-20 ドキソルビシンの推定代謝経路

(2) 血漿中代謝物

評価資料 4.2.2.4.1

雌雄 SD ラットに本剤 (Lot A) 又は塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与したとき,両投与群ともに,投与 $0.5 \sim 72$ 時間後の血漿中にドキソルビシノールは検出されなかった。

*新薬承認情報提供時に置き換え

J Chromatgr B. 2004; 808: P.142 Fig.1 を一部改変

(3) 組織内代謝物

1) 単回静脈内投与

評価資料 4.2.2.4.1

雌雄 SD ラットに本剤 (Lot A) 又は塩酸ドキソルビシンを 1.0~mg/kg 単回静脈内投与したとき,両投与群ともに,投与 $0.5\sim72~$ 時間後の組織内ドキソルビシノール濃度は,いずれの組織においても BLQ であった。 *新薬承認情報提供時に置き換え

2) 反復静脈内投与

a) ラット

評価資料 4.2.2.4.2

雌雄 SD ラットに本剤 (Lot A) を 0.25 及び 1.0 mg/kg/回又は塩酸ドキソルビシンを 1.0 mg/kg/回 , それぞれ 3 日に 1 回 13 回 反復静脈内投与したとき , すべての投与群において , 最終 回投与 1~31 日後の組織内ドキソルビシノール濃度はいずれの組織においても BLQ であった。

*新薬承認情報提供時に置き換え

b) イヌ

評価資料 4.2.2.4.3

雌雄ビーグル犬に本剤(Lot A)0.75 及び 1.0 mg/kg を 3 週に 1 回,10 回反復静脈内投与し, HPLC-FLD を用いて,最終回投与1及び5週後の正常並びに損傷皮膚内ドキソルビシノール濃度 を測定した(表2.6.4-24)。 *新薬承認情報提供時に置き換え

投与1及び5週後ともに,一部の部位でドキソルビシノールが検出されたものの,ほとんどの 部位で 0.5 µg/g 以下と低く,正常皮膚と損傷皮膚の間に明らかな差は認められなかった。

表 2.6.4-24 イヌに本剤 0.75 及び 1.0 mg/kg を 3 週に 1 回 , 10 回反復静脈内投与したとき の最終回投与1及び5週後の正常及び損傷皮膚内ドキソルビシノール 濃度 a (中央値,括弧内は範囲を表す,n=4)

投与量							
投与里	0.75 mg/kg		1.0 mg/kg				
	正常皮膚	損傷皮膚	正常皮膚	損傷皮膚			
採取部位	投与1週後						
鼻	0.17 ^b	BLQ	0.27 (0.20 - 0.33) °	0.26 (0.13 - 0.28) ^d			
首(腹側)	BLQ	BLQ	0.23 (0.15 - 0.31) ^c	0.21 ^b			
腹部	BLQ	BLQ	0.21 (0.20 - 0.21) ^c	0.31 ^b			
背部	0.14^{b}	ND	0.17 (0.14 - 0.19) ^c	ND			
左前足	0.13 ^b	0.27 ^b	0.17 (0.16 - 0.18) ^c	0.30^{b}			
肛門	ND	ND	0.23 (0.20 - 0.25) ^c	0.34 (0.22 - 0.45) ^c			
尾	BLQ	0.94 ^b	0.21 (0.15 - 0.26) ^c	0.38 ^b			
採取部位	投与 5 週後						
鼻	0.16 ^b BLQ ^c		0.22 ^b	0.38 ^b			
首(腹側)	BLQ^{c}	BLQ^{c}	BLQ^{c}	0.19 ^b			
腹部	0.13 ^b	0.16 ^b	0.16 ^b	0.14 (0.13 - 0.15) ^c			
背部	BLQ ^c	ND	0.14 ^b	ND			
左前足	BLQ^{c}	BLQ ^c	0.25^{b}	0.36 (0.26 - 0.46) ^c			
肛門	ND	ND	0.15 ^b	0.18 ^b			
尾	BLQ^{c}	BLQ^{c}	0.19 ^b	BLQ ^c			

 $a: \mu g/g$ b: n=1c: n=2d: n=3ND: 測定せず

BLQ:定量下限未満 (<0.125 μg/g)

2.6.4.6 排泄

(1) 単回静脈内投与

1) ラット

a) 非標識体の排泄

評価資料 4.2.2.5.1

雌雄 SD ラットに本剤 (Lot A) 又は塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与し, HPLC-FLD を用いて,投与 72 時間後までの尿及び糞中ドキソルビシン濃度を測定した。ドキソルビシンの尿中排泄率を表 2.6.4-25に示す。なお,糞中にドキソルビシンは検出されなかった。

本剤投与群における投与 72 時間後までの尿中排泄率は約 3%であり,投与後 48~72 時間で最も排泄率が高かった。一方,塩酸ドキソルビシン投与群における投与 72 時間後までの尿中排泄率は約 8%であり,投与後 0~24 時間で最も排泄率が高かった。

*新薬承認情報提供時に置き換え

表 2.6.4-25 ラットに本剤又は塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与したときの ドキソルビシンの尿中排泄率 ^a (平均値 ± 標準偏差 , n = 6)

時間 (hr)	JNS002	塩酸ドキソルビシン
0 - 24	0.6 ± 0.1	6.6 ± 1.3
24 - 48	1.0 ± 0.3	1.2 ± 0.1
48 - 72	1.2 ± 0.3	0.6 ± 0.3

a: % of dose

b) 標識体の排泄

評価資料 4.2.2.5.2

雌雄 SD ラットに 14 C-JNS002 又は 14 C-塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与し,LSC を用いて, 14 C-JNS002 は投与 240 時間後, 14 C-塩酸ドキソルビシンは投与 72 時間後までの尿及び糞中 TR を測定した。また,両投与群ともに投与 72 時間後までの呼気中 TR を測定し,最終測定時点でのカーカス中 TR も測定した。

 14 C-JNS002 投与群における放射能の主排泄経路は糞中であり,投与 240 時間後までの糞中排泄率は約 $55\sim60\%$,尿中排泄率は約 $8\sim11\%$ であった。また呼気中にも約 $1.3\sim1.8\%$ 排泄されており,カーカスを含めた総回収率は約 $91\sim94\%$ であった(表 2.6.4-26)。

 14 C-塩酸ドキソルビシン投与群における放射能の主排泄経路も糞中であり,投与 72 時間後までの尿及び糞中排泄率はそれぞれ約 9~14 及び約 49~54%であった。呼気中にも約 3~5%排泄されており,カーカスを含めた総回収率は約 90~92%であった(表 2.6.4-27)。

両投与群ともに,放射能の排泄に性差は認められなかった。

表 2.6.4-26 ラットに ¹⁴C-JNS002 を 1.0 mg/kg 単回静脈内投与したときの尿,糞,呼気 及びカーカス中 TR^a(平均値,n=3)

試料	尿		之	堂	呼気 ^b		カーカス	
時間 (hr)	雄	雌	雄	雌	雄	雌	雄	雌
0 - 4	0.35	0.23))))))
4 - 8	0.06	0.13	2.91	} 5.72	} 0.46	} 0.64		
8 - 24	0.89	0.67	J	J	J	J		
24 - 48	1.62	1.07	7.62	8.61	0.45	0.62		
48 - 72	1.38	1.28	7.90	9.12	0.38	0.54		
72 - 96	1.42	1.02	9.59	6.78		/	22.3	14.7
96 - 120	1.48	1.07	7.07	8.10			22.3	(14./
120 - 144	1.11	0.76	5.74	6.98				
144 - 168	0.94	0.67	4.49	5.07				
168 - 192	0.67	0.46	3.85	4.39				
192 - 216	0.58	0.46	3.09	3.21				
216 - 240	0.50	0.33	2.79	2.59	/		J	ノ
合計	11.0	8.15	55.0	60.6	1.29	1.80	-	-

a: % of dose

b: n=1

表 2.6.4-27 ラットに ¹⁴C-塩酸ドキソルビシンを 1.0 mg/kg 単回静脈内投与したときの尿 , 糞 , 呼気及びカーカス中 TR^a (平均値 , n = 3)

試料	尿		美	糞	呼気 ^b		カーカス	
時間 (hr)	雄	雌	雄	雌	雄	雌	雄	雌
0 - 4	4.27	2.84)]))	
4 - 8	2.19	1.16	24.0	25.4	2.08	3.66		
8 - 24	3.53	2.78	J	J	J	J	19.7	15.5
24 - 48	2.27	1.68	15.7	20.0	0.49	1.04		
48 - 72	1.49	1.14	9.79	8.45	0.34	0.72	J)
合計	13.8	9.59	49.4	53.9	2.90	5.42	-	-

a: % of dose

b: n=1

2.6.4.7 薬物動態学的薬物相互作用

該当資料なし

2.6.4.8 その他の薬物動態試験

該当資料なし

2.6.4.9 考察及び結論

(1) 吸収

ラット,ウサギ及びイヌに Doxil-2 又は本剤を静脈内投与したとき,いずれの動物種においても血漿中ドキソルビシン濃度は緩やかに消失した。一方,ラット及びウサギに塩酸ドキソルビシンを静脈内投与したとき,両動物種とも本剤投与に比べて血漿中ドキソルビシン濃度は極めて低く,かつ速やかに消失した。本剤投与後の V_z は血液容量と同程度であったのに対し,塩酸ドキソルビシン投与後の V_z は血液容量よりはるかに高値であった。また,血液容量を体重の 6.5%,血漿容量を血液容量の 60%と仮定して,投与された薬物量に対する血漿中薬物量の割合(投与量率)を推定したところ,ラットに臨床ロットの本剤を静脈内投与した $2\sim3$ 分後の投与量率はほぼ 100%であり,少なくとも投与後 96 時間にわたって,大部分の血漿中ドキソルビシンは STEALTH®リポソームに封入されていることが示された。これらのことから,ドキソルビシンを STEALTH®リポソームに封入することより,組織分布が制限され,安定した状態で血中を循環していることが示唆された。

硫酸アンモニウム濃度が異なる製剤(Doxil- 及び Doxil-250:硫酸アンモニウム濃度がそれ でれ 及び 250 mmol/L)をラット及びイヌに単回静脈内投与し,血漿中ドキソルビシンの薬物 動態について検討したところ,Doxil-250 投与群に比べて Doxil- 投与群の CL 及び Vz は高値であり,t_{1/2λ2} 及び MRT は有意に短かった。また,ラットの投与量率を推定したところ,投与 2~3 分後における割合は,Doxil-250 投与群では約 100%であったのに対し,Doxil- では約 80~96%であった。これらのことから,硫酸アンモニウム濃度は STEALTH®リポソームからのドキソルビシンの放出に影響を与え,その放出は 250 mmol/L に比べて mmol/L の方が速やかであることが示唆された。

が異なる製剤(Doxil-250/ 及び Doxil-250/Histidine)をラットに単回静脈内投与し,血漿中ドキソルビシンの薬物動態について検討したところ,両投与群で有意差は認められず, 及び Histidine の違いはドキソルビシンの体内動態に影響を与えないことが示唆された。

ラットに本剤を 3 日に 1 回,13 回反復静脈内投与し,血漿中ドキソルビシンの薬物動態について検討したところ,最終回投与直前と投与 72 時間後の血漿中濃度はほぼ同様であったことから,最終回投与ではほぼ定常状態に達していることが示唆された。 V_{ss} 及び V_{z} は初回及び最終回ともに同様の値を示したが, $t_{1/2}$ 及び MRT は初回に比べて最終回で長く,CL は減少した。これらのことから,本剤を反復投与することにより,ドキソルビシンの体内からの消失は遅延することが示唆された。

(2) 分布

マウス結腸癌由来 C26 細胞を移植したマウスに本剤又は塩酸ドキソルビシンを単回静脈内投与し,組織内ドキソルビシン濃度を測定したところ,塩酸ドキソルビシン投与群に対する本剤投与群の組織内 AUC 比は,脾臓で 1.8,腎臓で 2.4,肝臓で 3.2,心臓で 3.8 及び腫瘍で 7.0 であった。また,ヒト前立腺癌由来 PC-3 細胞を移植したマウスに Doxil-2 又は塩酸ドキソルビシンを単回静脈内投与し,組織内ドキソルビシン濃度を測定したところ,塩酸ドキソルビシン投与群に対する

Doxil-2 投与群の肝臓,腎臓及び腫瘍内濃度(% of dose)比は,投与 1 時間後ではそれぞれ 1.3, 2.5 及び 3.0 であり,投与 24 時間後ではそれぞれ 10,3.0 及び 80 であった。このように,塩酸ドキソルビシンを STEALTH®リポソームに封入して投与することにより,ドキソルビシンの腫瘍選択性が高まることが示された。

ラットに本剤又は塩酸ドキソルビシンを単回静脈内投与し,組織内ドキソルビシン濃度を測定したところ,本剤投与群の各組織内濃度は塩酸ドキソルビシン投与群に比べて遅延した推移を示し,投与後短時間では塩酸ドキソルビシン投与群に比べて本剤投与群の方が有意に低値であったが,投与後長時間経過すると有意に高値であった。これらの結果は,塩酸ドキソルビシン投与群に比べて本剤投与群で V_z が小さいこと及び $t_{1/2}$ が長いことと一致している。

ラットに 14 C-JNS002 又は 14 C-塩酸ドキソルビシンを単回静脈内投与した試験においても,非標識体と同様の結果が得られた。また,本剤は雄性生殖器より,雌性生殖器(標的部位の卵巣を含む)に高濃度に分布することが示された。

ラットに本剤を 3 日に 1 回 , 13 回反復静脈内投与したとき,皮膚に損傷が認められ,損傷皮膚内ドキソルビシン濃度は正常皮膚に比べて高値であった。皮膚毒性は塩酸ドキソルビシンの持続投与時にもみられる毒性であり,ドキソルビシンを低濃度で長時間曝露することにより発症すると考えられている 5 。

(3) 代謝

ドキソルビシンは,肝臓でカルボニル還元酵素により主代謝物であるドキソルビシノールに代謝されると報告されているが 4),ラットに本剤を単回又は 3 日に 1 回, 1 3回反復静脈内投与したとき,血漿中及び組織内ドキソルビシノール濃度はいずれも 1 8日以であった。この結果は,本剤投与群の 1 7日によと一致しているが,塩酸ドキソルビシンを同様に投与したときも血漿中及び組織内ドキソルビシノール濃度はいずれも 1 8日以であったことから,用量及び定量下限も関連しているものと考えられる。

(4) 排泄

ラットに本剤又は塩酸ドキソルビシンを単回静脈内投与し、尿糞中ドキソルビシン濃度を測定したところ、本剤投与群における投与 72 時間後までの尿中排泄率は約 3%であり、投与後 48~72 時間で最も排泄率が高かった。一方、塩酸ドキソルビシン投与群における投与 72 時間後までの尿中排泄率は約 8%であり、投与後 0~24 時間で最も排泄率が高かった。本試験で得られた塩酸ドキソルビシンの尿中排泄率は文献値に類似していた 6)。

塩酸ドキソルビシンの主排泄経路は胆汁中であり、未変化体及び数種の代謝物が糞中より排泄されると報告されているが 6)、非標識体を用いた排泄試験において、糞中にドキソルビシンは検出されなかった。この原因の1つとして、腸内細菌叢によりドキソルビシンの蛍光発色基が分解され、本試験で用いた蛍光測定法では検出されなかったことが考えられる。

ラットに 14 C-JNS002 又は 14 C-塩酸ドキソルビシンを単回静脈内投与したときのマスバランスについて検討したところ, 14 C-塩酸ドキソルビシン投与群の尿中排泄率は文献値に類似していた 7)。また,両投与群ともに性差は認められず,主排泄経路は糞中であった。

2.6.4.10 図表

図表は本文中に記載した。

2.6.4.11 参考文献

- 1) Baker HJ, Lindsey JR, Weisbroth SH. Selected normative data. Appendix 1. In: The laboratory rat, vol. 1. New York: Academic Press; 1979; p. 411-2.
- 2) Gabizon AA, Barenholz Y, Bialer M. Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm Res 1993; 10: 703-8.
- 3) Gabizon A, Catane R, Uziely B, Kaufman, B, Safra T, Cohen R, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994; 54: 987-92.
- 4) Arnold RD, Slack JE, Straubinger RM. Quantification of doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J Chromatgr B. 2004; 808: 141-52.
- 5) Samuels BL, Vogelzang NJ, Ruane M, Simon MA. Continuous venous infusion of doxorubicin in advanced sarcomas. Cancer Treat Rep. 1987; 71: 971-2.
- 6) Tavoloni N, Guarino AM. Disposition and metabolism of adriamycin in the rat. Pharmacology. 1980; 21: 244-55.
- 7) Arcamone F, Lazzati M, Vicario GP, Zini G. Disposition of ¹⁴C-labelled 4'-epidoxorubicin and doxorubicin in the rat. A comparative study. Cancer Chemother Pharmacol. 1984; 12: 157-66.

2.6.5 薬物動態試験概要表

2.6.5 薬物動態試験概要表

2.6.5.1 薬物動態試験:一覧表

被験物質:SLD

試験の種類	試験系	投与方法	試験施設	試験番号	CTD 項目番号
吸収					
単回投与:血漿中ドキソルビシン濃度	ラット	静脈内	Liposome Technology, Inc.	LTI-30-94-15	4.2.2.2.1
単回投与:血漿中ドキソルビシン濃度	ラット	静脈内	Liposome Technology, Inc.	LTI-30-93-06	4.2.2.2.2
単回投与:血漿中ドキソルビシン濃度	ラット	静脈内	Liposome Technology, Inc.	LTI-30-92-14	4.2.2.2.3
単回投与:血漿中ドキソルビシン濃度	ラット	静脈内	Liposome Technology, Inc.	LTI-30-93-23	4.2.2.2.4
単回投与:血漿中ドキソルビシン濃度	ラット	静脈内	Liposome Technology, Inc.	LTI-30-93-27	4.2.2.2.5
単回投与:血漿中ドキソルビシン濃度	ウサギ	静脈内	Liposome Technology, Inc.	LTI-30-93-28	4.2.2.2.6
単回投与:血漿中ドキソルビシン濃度	イヌ	静脈内	Liposome Technology, Inc.	LTI-30-93-07	4.2.2.2.7
反復投与:血漿中ドキソルビシン濃度	ラット	静脈内	Liposome Technology, Inc.	LTI-30-93-24	4.2.2.2.8
分布					
□ 単回投与:組織内ドキソルビシン濃度	マウス	静脈内	Liposome Technology, Inc.	LTI-30-94-11	4.2.2.3.1
単回投与:組織内ドキソルビシン濃度	マウス	静脈内		LTI-30-93-15	4.2.2.3.2
単回投与:組織内ドキソルビシン濃度	ラット	静脈内	Liposome Technology, Inc.	LTI-30-93-23	4.2.2.3.3
単回投与:組織内総放射能濃度	ラット	静脈内	Janssen Pharmaceutica N.V.	FK5903	4.2.2.3.4
反復投与:組織内ドキソルビシン濃度	ラット	静脈内	Liposome Technology, Inc.	LTI-30-93-24	4.2.2.3.5
反復投与:組織内ドキソルビシン濃度	イヌ	静脈内	Liposome Technology, Inc.	LTI-30-94-18	4.2.2.3.6
代謝					
反復投与:組織内代謝物濃度	イヌ	静脈内	Liposome Technology, Inc.	LTI-30-94-18	4.2.2.4.3
排泄		•	•		
単回投与:尿中排泄(非標識体)	ラット	静脈内	Liposome Technology, Inc.	LTI-30-93-23	4.2.2.5.1
単回投与:尿糞及び呼気中総放射能濃度	ラット	静脈内	Janssen Pharmaceutica N.V.	FK5903	4.2.2.5.2

2.6.5 渠物凱恳試験概要表

2.6.5.2 分析方法及びバリデーション試験

被験物質:SLD

動物種	方法	内標準物質	前処理	定量下限	室内再現真度	室内再現料	情度 (%)	報告書番号	CTD 項目番号	
三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三	7374	7374	1717年170月	HIXELE	(μg/mL)	(%)	日内変動	日間変動	松口目田与	
マウス(血漿)				0.05	95.7 - 128.5	1.11 - 1.94	0.41 - 3.10			
ラット(血漿)				0.06	95.2 - 106.8	1.67 - 2.85	2.31 - 7.20			
ウサギ(血漿)	FLD	-	IPA	0.11	100.3 - 117.4	0.89 - 2.55	2.16 - 3.84	LTI-30-ADVR-93-17	4.2.2.1.1	
イヌ(血漿)				0.22	101.1 - 136.6	1.80 - 6.01	1.60 - 8.82			
ラット(血漿)			IPA	0.005	105.1 - 107.2	2.3 - 7.4	<7.2			
ラット(尿)	HPLC-FLD	daunorubicin	-	0.01	103.6 - 105.0	1.1 - 4.8	< 5.0	LTI-30-MV-92-14	4.2.2.1.2	
ラット(糞)			SPE	0.005	102.7 - 105.4	1.0 - 3.3	< 5.4			
イヌ(血漿)	HPLC-FLD	daunorubicin	IPA	0.005	105.3 - 108.1	2.9 - 6.8	-	LTI-30-MV-94-05	4.2.2.1.3	

IPA:イソプロパノール

SPE: 固相抽出

被験物質:SLD CTD における記載箇所: 4.2.2.2.1

試験番号:LTI-30-94-15

	13/1/5 田 つ ・ L11-30-74-13					
動物種		ラット (Sprague-Dawley)				
性別(雄/雌)/動物数			4M/ 群			
投与製剤			JNS002			
投与方法			静脈内			
投与量 (mg/kg)			1.0			
試料			血漿			
定量(対象)物質			ドキソルビシン			
定量法			FLD			
薬物動態パラメータ						
ロット番号	A a	В	С	D a	平均	
C_{max} ($\mu g/mL$)	29.1 ± 0.5	26.4 ± 0.9	27.2 ± 1.9	28.1 ± 2.4	27.6 ± 1.4	
t _{1/2 1} (hr)	3.9 ± 0.3^{b}	1.8 ± 0.9^{a}	0.5 ± 0.2	1.0 ± 1.1	1.7 ± 1.5	
$t_{1/2}$ 2 (hr)	28.0 ± 1.4	23.9 ± 3.0	18.2 ± 1.8^{c}	23.6 ± 0.9	23.1 ± 4.1	
AUC(0 72) ($\mu g \cdot hr/mL$)	581 ± 15	572 ± 57	549 ± 40	650 ± 15^{d}	584 ± 51	
AUC (μg• hr/mL)	691 ± 4^{d}	652 ± 72	587 ± 52	738 ± 23^{d}	660 ± 92	
CL (mL/hr)	0.35 ± 0.00	0.39 ± 0.04	0.41 ± 0.03	0.37 ± 0.02	0.38 ± 0.03	
V_z (mL)	14.7 ± 1.1^{d}	13.3 ± 1.6	10.7 ± 0.5	12.7 ± 0.3	12.7 ± 1.8	

平均值 ± 標準偏差 , n=4

a: n=3

2.6.5.3

薬物動態試験:吸収:単回投与(その1:臨床ロット)

b: B , C 及び D に比べて有意に大きい(p<0.05:分散分析により比較) c: A , B 及び D に比べて有意に小さい(p<0.05:分散分析により比較) d: C に比べて有意に大きい(p<0.05:分散分析により比較)

2.6.5.3 薬物動態試験:吸収:単回投与(その1:MPEG-DSPE)

被験物質:SLD CTD における記載箇所: 4.2.2.2.1

試驗番号·ITI-30-94-15

					百八尚	映笛写:LII-3U-94-I3
動物種		ラット (Sprague-Dawley)				
性別(雄/雌)/動物数			4M/₹	詳		
投与製剤			SLI)		
投与方法			静脈	 内		
投与量 (mg/kg)			0.3 及し	ў 1.0		
試料			血漿	₹		
定量(対象)物質			ドキソル	ビシン		
定量法		FLD				
薬物動態パラメータ						
投与量 (mg/kg)		1.0)		0.3	
MPEG-DSPE 含量 (mol%)				5.3ª		
C_{max} ($\mu g/mL$)	27.7 ± 1.2	31.5 ± 0.7^{b}	24.2 ± 1.2	27.6 ± 1.4	7.41 ± 0.23	7.97 ± 0.23
t _{1/2 1} (hr)	$0.7^{\rm c}$	1.3 ± 0.7	2.0 ± 1.5	1.7 ± 1.5	0.5 ± 0.5	1.6 ± 0.8
t _{1/2 2} (hr)	20.0 ± 1.1	24.1 ± 1.5	21.6 ± 3.0	23.1 ± 4.1	15.9 ± 0.5^{b}	20.2 ± 1.4
AUC(0 72) (μg• hr/mL)	545 ± 42	683 ± 52	428 ± 30^{b}	584 ± 51	132 ± 7	155 ± 7
AUC (μg• hr/mL)	589 ± 45	780 ± 69	472 ± 40^{b}	660 ± 92	138 ± 8	169 ± 6
CL (mL/hr)	0.50 ± 0.04^{b}	0.37 ± 0.03	0.52 ± 0.04^{b}	0.38 ± 0.03	0.55 ± 0.03^{b}	0.50 ± 0.02^{b}
V_z (mL)	14.6 ± 0.7	13.0 ± 0.8	$16.2 \pm 1.7^{\rm b}$	12.7 ± 1.8	12.5 ± 0.5	14.5 ± 1.3
7.45. 描绘位关 4						

平均値 ± 標準偏差, n=4
a:臨床ロット(A , B , C 及び D) の平均値(n=13-14)
b:臨床ロットとの有意差あり(p<0.05:分散分析により比較)

c: n=2

0.3 mg/kg 投与時の C_{max}, AUC(0 72)及び AUC については検定を実施していない

*新薬承認情報提供時に置き換え

2.6.5.3 薬物動態試験:吸収:単回投与(その1:コレステロール)

被験物質:SLD

CTD における記載箇所: 4.2.2.2.1

試験番号:LTI-30-94-15

動物種	ラット (Spr	ラット (Sprague-Dawley)		
性別(雄/雌)/動物数	4N	M/群		
投与製剤	S	SLD		
投与方法	静	脈内		
投与量 (mg/kg)		1.0		
試料	П	11漿		
定量(対象)物質	ドキソルビシン			
定量法	FLD			
薬物動態パラメータ				
コレステロール含量 (mol%)		38.3 ^a		
C_{max} ($\mu g/mL$)	26.9 ± 1.4	27.6 ± 1.4		
$t_{1/2}$ 1 (hr)	0.5 ± 0.2	1.7 ± 1.5		
t _{1/2 2} (hr)	24.0 ± 0.8	23.1 ± 4.1		
AUC(0 72) ($\mu g \cdot hr/mL$)	685 ± 16	584 ± 51		
AUC (μg• hr/mL)	782 ± 26	660 ± 92		
CL (mL/hr)	0.37 ± 0.01	0.38 ± 0.03		
V _z (mL)	12.7 ± 0.2	12.7 ± 1.8		

*新薬承認情報提供時に置き換え

平均値±標準偏差,n=4 a:臨床ロット(A,B,C,D)の平均値(n=13-14)

臨床ロットとの有意差は認められなかった(分散分析により比較)

2.6.5.3 薬物動態試験:吸収:単回投与(その1:平均粒子径)

被験物質:SLD

CTD における記載箇所: 4.2.2.2.1

*新薬承認情報提供時に置き換え

試験番号:LTI-30-94-15

動物種		ラット (Sprague-Dawley)						
性別(雄/雌)/動物数				4	4M/群			
投与製剤					SLD			
投与方法				Ē	静脈内			
投与量 (mg/kg)				0.3	及び 1.0			
記米斗					血漿			
定量(対象)物質				ドキ)	ノルビシン			
定量法					FLD			
薬物動態パラメータ								
投与量 (mg/kg)			1.0			0.3		
平均粒子径(nm)			a		b			
C_{max} ($\mu g/mL$)	26.4 ± 0.6	28.4 ± 1.5	30.2 ± 1.9	$31.1 \pm 2.3^{\circ}$	27.6 ± 1.4	7.2 ± 0.5	7.7 ± 0.3	7.6 ± 0.2
t _{1/2 1} (hr)	0.3 ± 0.2	1.2 ± 1.5	3.4 ± 0.8	1.8 ± 0.4	1.7 ± 1.5	3.4 ± 1.7	1.6 ± 0.9	3.9 ± 0.6^{c}
$t_{1/2}$ 2 (hr)	18.8 ± 1.6	18.1 ± 3.9	28.0 ± 2.3	20.7 ± 4.4	23.1 ± 4.1	24.4 ± 3.1	22.0 ± 2.5	18.2 ± 1.2
AUC(0 72) ($\mu g \cdot hr/mL$)	537 ± 39	$453 \pm 23^{\circ}$	344 ± 6^{c}	304 ± 54^{c}	584 ± 51	142 ± 5	135 ± 3	101 ± 5
AUC (μg• hr/mL)	578 ± 50	483 ± 35^{c}	393 ± 1^{c}	300 ± 32^{c}	660 ± 92	155 ± 9	150 ± 6	106 ± 6
CL (mL/hr)	0.46 ± 0.04^{c}	0.55 ± 0.04^{c}	0.67 ± 0.01^{c}	0.89 ± 0.09^{c}	0.38 ± 0.03	0.49 ± 0.02^{c}	0.58 ± 0.04^{c}	0.74 ± 0.05^{c}
V_z (mL)	12.5 ± 0.7	14.3 ± 2.2	$27.1 \pm 2.1^{\circ}$	26.7 ± 6.4^{c}	12.7 ± 1.8	17.0 ± 1.6^{c}	18.6 ± 3.2^{c}	19.3 ± 0.8^{c}

平均值 ± 標準偏差, n=4

a: n=3

b:臨床ロット(A, B, C 及び D)の平均値(n=13-14)

- c:臨床ロットとの有意差あり(p<0.05:分散分析により比較)
- 0.3 mg/kg 投与時の C_{max}, AUC(0 72)及び AUC については検定を実施していない

2.6.5.3 薬物動態試験:吸収:単回投与(その1:LPC)

被験物質:SLD

CTD における記載箇所: 4.2.2.2.1

試験番号:LTI-30-94-15

動物種	ラット (Sprague-Dawley)				
性別(雄/雌)/動物数			7M/ 群		
投与製剤			SLD		
投与方法			静脈内		
投与量 (mg/kg)			1.0		
試料			血漿		
定量(対象)物質			ドキソルビシン		
定量法	FLD				
薬物動態パラメータ					
LPC 含量 ^a	% ^b	%	%°	%	%未満 ^d
C_{max} ($\mu g/mL$)	26.3 ± 1.8	25.3 ± 1.5	21.9 ± 2.0^{e}	21.0 ± 2.7^{e}	27.6 ± 1.4
t _{1/2 1} (hr)	1.0 ± 0.2	1.0 ± 0.4^{c}	2.7 ± 2.0	0.9 ± 0.5^{c}	1.7 ± 1.5
t _{1/2 2} (hr)	22.6 ± 1.6	21.4 ± 4.1	22.8 ± 1.8	20.7 ± 3.2	23.1 ± 4.1
AUC(0 72) (μg• hr/mL)	503 ± 72	407 ± 69^{e}	$400 \pm 20^{\rm e}$	385 ± 24^{e}	584 ± 51
AUC (μg• hr/mL)	564 ± 84	$456 \pm 78^{\rm e}$	444 ± 18^{e}	$409 \pm 63^{\rm e}$	660 ± 92
CL (mL/hr)	0.46 ± 0.05	$0.63 \pm 0.07^{\rm e}$	0.58 ± 0.04^{e}	$0.62 \pm 0.06^{\rm e}$	0.38 ± 0.03
V_z (mL)	15.0 ± 1.9	$19.8 \pm 5.3^{\rm e}$	18.9 ± 2.4^{e}	$18.3 \pm 1.4^{\rm e}$	12.7 ± 1.8

平均值 ± 標準偏差, n=7

a:総STEALTH®リポソーム脂質に対する重量%

b : n = 5

c: n = 6

d: 臨床ロット(A, B, C) 及び D) の平均値(n=13-14) e: 臨床ロットとの有意差あり(p<0.05:分散分析により比較)

*新薬承認情報提供時に置き換え

被験物質:SLI

CTD における記載箇所: 4.2.2.2.2

試験番号:LTI-30-93-06

動物種	ラット (Sprague-Dawley)						
性別(雄/雌)/動物数		4M/群					
投与製剤		Dox	il- (Doxil-1)及	び Doxil-250 (Dox	2)		
投与方法			静服	低内			
投与量 (mg/kg)			4.0, 8.0 7	文び 12.0			
試料			Ш	漿			
定量(対象)物質			ドキソノ	レビシン			
定量法			FI	LD			
薬物動態パラメータ	Г	Ooxil-1)		Doxil-250 (Doxil-2)			
投与量 (mg/kg)	4.0	8.0	12.0	4.0	8.0	12.0	
C_{max} ($\mu g/mL$)	86.7 ± 5.4	164.6 ± 6.4	289.9 ± 29.8	121.2 ± 9.0^{a}	196.7 ± 20.1	311.5 ± 30.4	
∞ $t_{1/2}$ 1 (hr)	1.8 ± 0.9	1.81 ± 0.96	0.61 ± 0.28	3.55 ± 2.0	1.5 ± 1.2	2.55 ± 1.6	
$t_{1/2}$ 2 (hr)	22.8 ± 1.7	19.2 ± 1.1	22.3 ± 2.5	30.2 ± 4.0^{a}	26.9 ± 3.1^{a}	35.9 ± 7.5^{a}	
AUC(0 96) (μg• hr/mL)	1348.0 ± 142.3	3085.0 ± 227.6	4358.0 ± 426.9	2474.9 ± 122.9	4958.0 ± 367.5	7770.2 ± 842.9	
AUC (μg• hr/mL)	1418.8 ± 142.5	3208.5 ± 216.6	4633.5 ± 408.7	2740.0 ± 121.3^{a}	5483.3 ± 317.1^{a}	9059.7 ± 538.0^{a}	
MRT (hr)	30.5 ± 1.5	24.0 ± 2.5	31.3 ± 3.2	39.2 ± 3.1^{a}	28.2 ± 2.8^{a}	48.5 ± 8.3^{a}	
CL (mL/hr)	0.63 ± 0.06	0.56 ± 0.04	0.58 ± 0.04	0.33 ± 0.01^{a}	0.33 ± 0.02^{a}	0.30 ± 0.02^{a}	
V_z (mL)	20.8 ± 3.3	15.4 ± 0.5	18.6 ± 1.9	14.2 ± 1.9^{a}	12.6 ± 2.0	15.9 ± 3.4	

平均值 ± 標準偏差, n=4

a: Doxil- との有意差あり (p < 0.05: Mann-Whitney 検定により比較)

2.6.5.3 薬物動態試験:吸収:単回投与(その3)

被験物質:SLD

CTD における記載箇所: 4.2.2.2.3

試験番号:LTI-30-92-14

		お のた 田 コ・ こ 11 0 0 7 2 1 1			
動物種	ラット (Sprague-Dawley)				
性別(雄/雌)/動物数	4	4M/群			
投与製剤	;	SLD			
投与方法	靜	争脈内			
投与量 (mg/kg)		0.3			
試料		血漿			
定量(対象)物質	ドキン	ルビシン			
定量法	FLD				
薬物動態パラメータ	Doxil-250/	Doxil-250/Histidine			
C_{max} ($\mu g/mL$)	8.54 ± 0.58	8.29 ± 0.27			
t _{1/2 1} (hr)	1.29 ± 0.51	1.20 ± 1.03			
\circ $t_{1/2}$ (hr)	21.9 ± 0.8	21.4 ± 1.5			
AUC(0 48) (μg• hr/mL)	159.5 ± 9.4	145.8 ± 14.7			
AUC (μg• hr/mL)	203.0 ± 11.2	184.2 ± 22.0			
MRT (hr)	31.0 ± 1.1	30.3 ± 1.8			
CL (mL/hr)	0.38 ± 0.03	0.44 ± 0.07			
V_z (mL)	12.5 ± 1.1	14.6 ± 2.2			

平均値 ± 標準偏差, n=4

両製剤の の違いによる有意差は認められなかった (Mann-Whitney 検定により比較)

被験物質:SLD

CTD における記載箇所: 4.2.2.2.4

試験番号:LTI-30-93-23

	動物種	ラット (Sprague-Dawley)			
	性別(雄/雌)/動物数	3M/3	BF/群		
	投与製剤	JNS002 及び塩酸	ミドキソルビシン		
	投与方法	静肌	派内		
Ī	投与量 (mg/kg)	1.	.0		
	試料		漿		
	定量(対象)物質	ドキソバ	レビシン		
	定量法	HPLC	C-FLD		
	薬物動態パラメータ	JNS002	塩酸ドキソルビシン		
	C_{max} ($\mu g/mL$)	15.1	0.007		
	t _{1/2} (hr)	27.7	1.9		
10	AUC(0 72) (μ g• hr/mL)	520.8	0.036		
	AUC (μg• hr/mL)	605.3	0.023		
	MRT (hr)	37.9	2.8		
	CL (mL/hr)	0.41	10869		
	V_z (mL)	16.5	30193		

平均値より推定, n=6

2.6.5.3 薬物動態試験:吸収:単回投与(その5)

被験物質:SLD

CTD における記載箇所: 4.2.2.2.5

試験番号:LTI-30-93-27

		HANNES CELLEGISCE			
動物種	ラット (Sprague-Dawley)				
性別(雄/雌)/動物数		3M/群			
投与製剤		JNS002			
投与方法		静脈内			
投与量 (mg/kg)		1.0			
試料		血漿			
定量(対象)物質	ドキソルビシン				
定量法	HPLC-FLD				
薬物動態パラメータ	総ドキソルビシン	STEALTH [®] リポソーム封入ドキソルビシン			
C_{max} ($\mu g/mL$)	22.54	21.41			
$t_{1/2\lambda 1}$ (hr)	2.8	2.9			
$t_{1/2\lambda 2}$ (hr)	25.5	25.7			
AUC(0 96) (μg• hr/mL)	551.9	536.2			
AUC (μg• hr/mL)	594.7	578.6			
MRT (hr)	36.0	36.3			
CL (mL/hr)	0.45	0.47			
V_z (mL)	16.8	17.3			

平均値より推定, n=2-3

被験物質:SLD

CTD における記載箇所: 4.2.2.2.6

試験番号:LTI-30-93-28

	動物種	ウサギ (NewZeland White)			
	性別(雄/雌)/動物数	4M	/群		
	投与製剤	JNS002 及び塩酸	ミドキソルビシン		
	投与方法	静胆	[[内		
	投与量 (mg/kg)	1.	.0		
	試料	血	漿		
	定量(対象)物質	ドキソノ	レビシン		
	定量法	FI	LD		
	薬物動態パラメータ	JNS002	塩酸ドキソルビシン		
	C_{max} ($\mu g/mL$)	19.2 ± 0.4	0.9 ± 0.14		
	t _{1/2 1} (hr)	0.53 ± 0.08	0.03 ± 0.002		
12	$t_{1/2}$ ₂ (hr)	21.3 ± 2.0	4.0 ± 0.7		
	AUC(0 t) (μ g• hr/mL) ^a	348.9 ± 51.2	0.30 ± 0.01		
	AUC ($\mu g \cdot hr/mL$)	367.7 ± 58.6	0.82 ± 0.09		
	CL (mL/hr)	6.0 ± 1.1	2536 ± 299		
	V_z (mL)	176.0 ± 17.0	13651 ± 1028		

平均值 ± 標準誤差, n=4

a: JNS002 投与群は AUC(0 96), 塩酸ドキソルビシン投与群は AUC(0 2)

2.6.5.3 薬物動態試験:吸収:単回投与(その7)

被験物質:SLD

CTD における記載箇所: 4.2.2.2.7

試験番号:LTI-30-93-07

		HAVIN E J · EII S V / S V /							
動物種	イヌ (と	イヌ (beagle)							
性別(雄/雌)/動物数	3M/3F/ 群								
投与製剤	Doxil-l (Doxil-1)及	び Doxil-250 (Doxil-2)							
投与方法	静胆	派内							
投与量 (mg/kg)	1.	.5							
試料	血	漿							
定量(対象)物質	ドキソノ	レビシン							
定量法	FLD								
薬物動態パラメータ	Doxil-1 (Doxil-1)	Doxil-250 (Doxil-2)							
C_{max} ($\mu g/mL$)	27.9 ± 7.9	29.0 ± 4.1							
t _{1/2 1} (hr)	0.55 ± 0.89	0.20 ± 0.10							
t _{1/2 2} (hr)	21.6 ± 1.8	25.9 ± 3.5^{a}							
AUC(0 96) (μg• hr/mL)	441.0 ± 112.2	605.0 ± 53.4							
AUC (μg• hr/mL)	462.6 ± 120.0	655.9 ± 59.1^{a}							
MRT (hr)	30.7 ± 2.6	37.2 ± 4.9^{a}							
CL (mL/hr)	24.0 ± 8.5 15.5 ± 1.6^{a}								
V_z (mL)	746.5 ± 274.4	595.0 ± 84.8							

平均值 ± 標準偏差, n=6

a:Doxil-との有意差あり(p<0.05:Mann-Whitney 検定により比較)

2.6.5.4 薬物動態試験:吸収:反復投与

被験物質:SLD

CTD における記載箇所: 4.2.2.2.8

試験番号:LTI-30-93-24

j	動物種	ラット (Sprague-Dawley)								
[性別(雄/雌)/動物数			4M/4	F/ 群					
[投与製剤			JNS002 及び塩酸	ドキソルビシン					
	投与方法			静脈	内					
- [投与量 (mg/kg)			0.25 及	び 1.0					
Ī	試料			血	· 漿					
	定量(対象)物質			ドキソル	/ビシン					
	定量法			HPLC	-FLD					
1	薬物動態パラメータ		Day1 (投与 1	回目)		Day37 (投与	13回目)			
	投与製剤	JNS	002	塩酸ドキソルビシン	JNS	5002	塩酸ドキソルビシン			
14	投与量 (mg/kg)	0.25	1.0	1.0	0.25	1.0	1.0			
	C_{max} (ng/mL)	3833	17425.5	11.9	7380	22463	17.0			
7	Trough (投与前) (ng/mL) a	-	-	-	2230 ± 445	5756 ± 1373	2.2 ± 5.1			
1	t _{1/2} (hr)	17.6	20.3	6.6	32.7	33.3	9.5			
1	AUC(0 72) (μg• hr/mL)	94.5	395.8	0.13	271.0	785.7	0.20			
1	AUC (μg• hr/mL)	100.4	432.6	0.13	346.3	1011.2	0.20			
1	MRT (hr)	25.5	29.2	9.46	47.2	48.0	13.6			
(CL (mL/hr)	0.5	0.5	1643.4	0.3	0.3	1571.8			
1	V_{ss} (mL)	13.6	13.6 14.2 15239 12.1 14.2 21373							
,	V_z (mL)	13.5	16.7	14940	12.9	14.8	22454			

平均値より推定, n=4-8

a:平均值±標準偏差,n=16

2.6.5 薬物動態試験概要表

2.6.5.5 薬物動態試験:分布(その1)

被験物質:SLD

CTD における記載箇所: 4.2.2.3.1

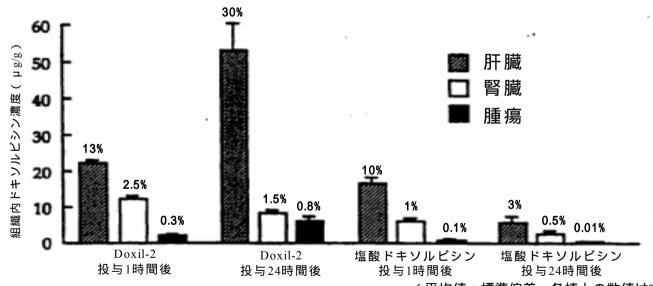
試験番号:LTI-30-94-11

動物種			マウ	ス (Balb/c: C26	5細胞を移植)							
性別(雄/雌)/動物数				3 - 4M/採取	付時点							
投与製剤			JN	S002 及び塩酸ド	キソルビシン							
投与方法	静脈内											
投与量 (mg/kg)		6.0										
試料	血漿及び組織											
定量(対象)物質	ドキソルビシン											
定量法	血漿:FLD,組織:HPLC-FLD											
試料採取時点(hr)	1	4	24	48	96	120	AUC ^a (μg• hr/mL or g)					
JNS002												
血漿 (μg/mL)	99.6 ± 3.5		38.3 ± 6.7	21.6 ± 5.0	6.3 ± 1.3	1.6 ± 0.5	NC					
腫瘍 (μg/g)	1.9 ± 0.1		7.2 ± 0.8	4.6 ± 1.2		1.4 ± 0.6	596.0					
心臓 (μg/g)	8.4 ± 1.4		4.9 ± 0.7	3.0 ± 0.8	1.8 ^c	0.6 ± 0.2	473.6					
肝臓 (μg/g)	7.0 ± 0.2		11.0 ± 4.5	6.2 ± 0.9	2.7°	1.4 ± 0.3	775.6					
脾臓 (μg/g)	7.5 ± 0.7		26.5 ± 16.0	17.3 ± 3.6	9.4 ^c	4.4 ± 0.8	1982.5					
腎臓 (μg/g)	7.2 ± 1.5	5.2 ^b	7.3 ± 1.2	5.4 ± 1.1	3.8°	2.1 ± 0.4	799.9					
塩酸ドキソルビシン												
血漿 (μg/mL)	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	NC					
腫瘍 (μg/g)	1.7 ± 0.5	2.0 ± 0.7	1.1 ± 0.2	0.5°	BLQ	BLQ	84.9					
心臓 (μg/g)	9.1 ± 2.2	5.1 ± 1.5	1.6 ± 0.4	BLQ	BLQ	BLQ	125.2					
肝臓(μg/g)	20.3 ± 1.8	11.6 ± 5.4	2.3 ± 0.4	0.6°	0.5 ± 0.1	BLQ	239.3					
脾臓 (μg/g)	15.9 ± 3.4	15.4 ± 3.3	9.7 ± 0.8		5.1 ± 0.4	2.6°	1075.1					
	21.8 ± 2.7	14.8 ± 2.8	4.6 ± 0.3	1.6 ^b	0.7 ± 0.2	BLQ	339.4					
	投与製剤 投与方法 投与量(mg/kg) 試料 定量(対象)物質 定量法 試料採取時点(hr) JNS002 血漿(μg/mL) 腫瘍(μg/g) 心臓(μg/g) 肝臓(μg/g) 腎臓(μg/g) 窒酸ドキソルビシン 血漿(μg/mL) 腫瘍(μg/g) 塩酸ドキソルビシン 血漿(μg/mL) 腫瘍(μg/g)	性別(雄/雌)/動物数 投与製剤 投与方法 投与量(mg/kg) 試料 定量(対象)物質 定量法 試料採取時点(hr) 1 JNS002 血漿(μg/mL) 99.6±3.5 腫瘍(μg/g) 1.9±0.1 心臓(μg/g) 8.4±1.4 肝臓(μg/g) 7.0±0.2 脾臓(μg/g) 7.5±0.7 腎臓(μg/g) 7.2±1.5 塩酸ドキソルビシン 血漿(μg/mL) BLQ 腫瘍(μg/g) 1.7±0.5 心臓(μg/g) 9.1±2.2 肝臓(μg/g) 9.1±2.2 肝臓(μg/g) 20.3±1.8 脾臓(μg/g) 15.9±3.4	性別(雄/雌)/動物数 投与製剤 投与量(mg/kg) 試料 定量(対象)物質 定量法 試料採取時点(hr) 1 4 JNS002 血漿(μg/mL) 99.6±3.5 61.9 ^b 腫瘍(μg/g) 1.9±0.1 3.2 ^b 心臓(μg/g) 8.4±1.4 5.7 ^b 肝臓(μg/g) 7.0±0.2 7.1 ^b 肝臓(μg/g) 7.5±0.7 6.6 ^b 腎臓(μg/g) 7.2±1.5 5.2 ^b 塩酸ドキソルビシン 血漿(μg/mL) BLQ BLQ 腫瘍(μg/g) 1.7±0.5 2.0±0.7 心臓(μg/g) 9.1±2.2 5.1±1.5 肝臓(μg/g) 9.1±2.2 5.1±1.5 肝臓(μg/g) 15.9±3.4 15.4±3.3	性別(雄/雌)/動物数 投与製剤 JN 投与方法 投与量(mg/kg) 試料 定量(対象)物質 定量法 血 試料採取時点(hr) 1 4 24 JNS002 血漿(μg/mL) 99.6±3.5 61.9 ^b 38.3±6.7 腫瘍(μg/g) 1.9±0.1 3.2 ^b 7.2±0.8 心臓(μg/g) 8.4±1.4 5.7 ^b 4.9±0.7 肝臓(μg/g) 7.0±0.2 7.1 ^b 11.0±4.5 脾臓(μg/g) 7.5±0.7 6.6 ^b 26.5±16.0 腎臓(μg/g) 7.2±1.5 5.2 ^b 7.3±1.2 塩酸ドキソルビシン 血漿(μg/mL) BLQ BLQ BLQ 腫瘍(μg/g) 1.7±0.5 2.0±0.7 1.1±0.2 心臓(μg/g) 9.1±2.2 5.1±1.5 1.6±0.4 肝臓(μg/g) 9.1±2.2 5.1±1.5 1.6±0.4 肝臓(μg/g) 20.3±1.8 11.6±5.4 2.3±0.4 脾臓(μg/g) 15.9±3.4 15.4±3.3 9.7±0.8	世別(雄/雌)/動物数 3 - 4M/採取投与製剤 JNS002 及び塩酸ド投与表法 静脈内投与量(mg/kg) 6.0 証料 血漿及び統定量(対象)物質 ドキソルビ定量法 血漿: FLD , 組織試料採取時点(hr) 1 4 24 48 JNS002 血漿(µg/mL) 99.6±3.5 61.9 ^b 38.3±6.7 21.6±5.0 腫瘍(µg/g) 1.9±0.1 3.2 ^b 7.2±0.8 4.6±1.2 心臓(µg/g) 8.4±1.4 5.7 ^b 4.9±0.7 3.0±0.8 肝臓(µg/g) 7.0±0.2 7.1 ^b 11.0±4.5 6.2±0.9 脾臓(µg/g) 7.5±0.7 6.6 ^b 26.5±16.0 17.3±3.6 腎臓(µg/g) 7.2±1.5 5.2 ^b 7.3±1.2 5.4±1.1 塩酸ドキソルビシン 血漿(µg/mL) BLQ BLQ BLQ 腫瘍(µg/g) 1.7±0.5 2.0±0.7 1.1±0.2 0.5 ^c 心臓(µg/g) 9.1±2.2 5.1±1.5 1.6±0.4 BLQ 肝臓(µg/g) 9.1±2.2 5.1±1.5 1.6±0.4 BLQ 肝臓(µg/g) 20.3±1.8 11.6±5.4 2.3±0.4 0.6 ^c 肿臓(µg/g) 15.9±3.4 15.4±3.3 9.7±0.8 5.9 ^b	世別(雄/雌)/動物数 3 - 4M/採取時点 投与製剤 JNS002 及び塩酸ドキソルビシン 投与量(mg/kg) 6.0 試料 血漿及び組織 定量(対象)物質 ドキソルビシン 定量法 血漿: FLD,組織: HPLC-FLD 試料採取時点(hr) 1 4 24 48 96 JNS002 血漿(µg/mL) 99.6±3.5 61.9 ^b 38.3±6.7 21.6±5.0 6.3±1.3 腫瘍(µg/g) 1.9±0.1 3.2 ^b 7.2±0.8 4.6±1.2 7.4 ^c 心臓(µg/g) 8.4±1.4 5.7 ^b 4.9±0.7 3.0±0.8 1.8 ^c 肝臓(µg/g) 7.0±0.2 7.1 ^b 11.0±4.5 6.2±0.9 2.7 ^c 脾臓(µg/g) 7.5±0.7 6.6 ^b 26.5±16.0 17.3±3.6 9.4 ^c 腎臓(µg/g) 7.2±1.5 5.2 ^b 7.3±1.2 5.4±1.1 3.8 ^c 塩酸ドキソルビシン 血漿(µg/mL) BLQ	世別(雄/雌)/動物数 3 - 4M/採取時点 投与製剤 JNS002 及び塩酸ドキソルビシン 投与方法 静脈内 投与量(mg/kg) 6.0 試料 血漿及び組織 定量(対象)物質 ドキソルビシン 定量法 血漿: FLD , 組織: HPLC-FLD 試料採取時点(hr) 1 4 24 48 96 120 JNS002 歴境 (μg/mL) 99.6±3.5 61.9 ^b 38.3±6.7 21.6±5.0 6.3±1.3 1.6±0.5 1.4±0.6 心臓(μg/g) 1.9±0.1 3.2 ^b 7.2±0.8 4.6±1.2 7.4 ^c 1.4±0.6 心臓(μg/g) 8.4±1.4 5.7 ^b 4.9±0.7 3.0±0.8 1.8 ^c 0.6±0.2 肝臓(μg/g) 7.0±0.2 7.1 ^b 11.0±4.5 6.2±0.9 2.7 ^c 1.4±0.3 μ腱(μg/g) 7.5±0.7 6.6 ^b 26.5±16.0 17.3±3.6 9.4 ^c 4.4±0.8 腎臓(μg/g) 7.2±1.5 5.2 ^b 7.3±1.2 5.4±1.1 3.8 ^c 2.1±0.4 塩酸ドキソルビシン 血漿(μg/g) 月.±2.2 5.1±1.5 1.6±0.4 BLQ					

平均值 ± 標準偏差 , n=3 - 4

a:平均値より推定, b: n=1, c: n=2(平均値), NC:算出せず, BLQ:定量下限未満(血漿:<0.05 μg/mL, その他:<0.5 μg/g)

2.6.5.5 薬物動態試験:分布(その2)


16

被験物質:SLD

CTD における記載箇所: 4.2.2.3.2

試験番号:LTI-30-93-15

動物種	マウス(胸腺欠損 Swiss nude:PC3 細胞を移植)
性別(雄/雌)/動物数	10(雌雄は不明)
投与製剤	Doxil-2 及び塩酸ドキソルビシン
投与方法	静脈内
投与量 (mg/kg)	0.9
試料	組織
定量(対象)物質	ドキソルビシン
定量法	共焦点レーザースキャン顕微鏡

2.6.5 薬物動態試験概要表

2.6.5.5 薬物動態試験:分布(その3:JNS002)

被験物質: SLD CTD における記載箇所: 4.2.2.3.3

試験番号:LTI-30-93-23

						H-N-N/C I I - L-11 - 00 7 - 2 - 2 - 2					
動物種		ラット (Sprague-Dawley)									
性別(雄/雌)/動物数			3	M/3F/採取時点							
投与製剤		JNS002									
投与方法		静脈内									
投与量 (mg/kg)				1.0							
記半斗				血漿及び組織							
定量(対象)物質				ドキソルビシン							
定量法				HPLC-FLD							
試料採取時点(hr)	0.5	4	24	48	72	AUC ^a (μg• hr/mL or g)					
血漿 (μg/mL)	15.1 ± 0.7	14.4 ± 2.2	8.4 ± 1.9	4.9 ± 1.3	1.9 ± 0.2	605.3					
脳 (μg/g)	BLQ	BLQ	BLQ	BLQ	BLQ	NC					
i 肺 (μg/g)	1.2 ± 0.2	1.3 ± 0.1	1.6 ± 0.3	1.6 ± 0.3	1.4 ± 0.3	469.2					
心臓 (μg/g)	0.9 ± 0.1	1.2 ± 0.1	1.7 ± 0.6	1.2 ± 0.4	1.0 ± 0.3	182.6					
肝臓 (μg/g)	0.9 ± 0.2	1.0 ± 0.1	1.3 ± 0.1	1.1 ± 0.3	0.6 ± 0.1	124.9					
脾臓 (μg/g)	2.0 ± 0.6	4.3 ± 0.5	7.2 ± 1.4	4.9 ± 0.5	3.3 ± 0.4	647.5					
腎臓 (μg/g)	1.2 ± 0.2	1.3 ± 0.1	1.7 ± 0.1	1.4 ± 0.2	1.3 ± 0.3	293.9					
骨髄 (μg/g) ^b	BLQ	BLQ	2.2	BLQ	BLQ	NC					
皮膚 (μg/g)	0.3 ± 0.1	0.3 ± 0.1 0.3 ± 1.1 0.5 ± 0.1 0.4 ± 0.2 0.4 ± 0.0 88.0									
胃 (µg/g)	0.3 ± 0.1	0.4 ± 0.1	0.9 ± 0.2	0.6 ± 0.1	0.5 ± 0.2	105.1					
十二指腸 (μg/g)	BLQ	BLQ	2.5 ± 0.9	BLQ	BLQ	NC					

平均值 ± 標準偏差, n=6

a: 平均値より推定

b: 各測定ポイントのラット 6 匹分をプールして測定

BLQ:定量下限未満(血漿: <0.005 μg/mL,骨髄及び十二指腸: <2 μg/g,その他: <0.25 μg/g)

2.6.5.5 薬物動態試験:分布(その3:塩酸ドキソルビシン)

被験物質: SLD CTD における記載箇所: 4.2.2.3.3

試験番号:LTI-30-93-23

							H-V-0/A D 1 D11 30 73 23					
	動物種			ラット	(Sprague-Dawley)							
	性別(雄/雌)/動物数			3	M/3F/採取時点							
	投与製剤		塩酸ドキソルビシン									
	投与方法		静脈内									
	投与量 (mg/kg)	1.0										
	記半斗	血漿及び組織										
	定量(対象)物質			ŀ	ドキソルビシン							
	定量法				HPLC-FLD							
	試料採取時点(hr)	0.5	4	24	48	72	AUC ^a (μg• hr/mL or g)					
	血漿 (μg/mL)	0.007 ± 0.01	0.002 ± 0.003	BLQ	BLQ	BLQ	0.023					
	脳(µg/g)	BLQ	BLQ	BLQ	BLQ	BLQ	NC					
18	肺(μg/g)	2.7 ± 0.5^{b}	2.2 ± 0.3^{b}	1.4 ± 0.3	0.8 ± 0.1^{b}	0.5 ± 0.1^{b}	110.6					
	心臓 (μg/g)	2.2 ± 0.2^{b}	1.3 ± 0.1	0.6 ± 0.1^{b}	0.3 ± 0.1^{b}	BLQ	38.0					
	肝臓(μg/g)	1.7 ± 0.2^{b}	0.7 ± 0.2	0.3 ± 0.1^{b}	BLQ	BLQ	30.8					
	脾臓(μg/g)	2.36 ± 0.3	2.30 ± 0.4^{b}	2.56 ± 0.3^{b}	1.84 ± 0.4^{b}	1.34 ± 0.3^{b}	247.4					
	腎臓(μg/g)	3.6 ± 0.4^{b}	1.7 ± 0.1^{b}	0.8 ± 0.1^{b}	0.5 ± 0.1^{b}	0.3 ± 0.1^{b}	69.5					
	骨髄(μg/g) ^c	BLQ	BLQ	BLQ	BLQ	BLQ	NC					
	皮膚 (μg/g)	0.5 ± 0.1^{b}	0.4 ± 0.1	0.4 ± 0.1	0.3 ± 0.0	0.3 ± 0.0^{b}	50.5					
	胃 (μg/g)	1.5 ± 0.2^{b}	1.3 ± 0.1^{b}	0.8 ± 0.2	0.6 ± 0.1	0.4 ± 0.1^{b}	81.7					
	十二指腸 (μg/g)	BLQ	BLQ	BLQ	BLQ	BLQ	NC					

平均值 ± 標準偏差, n=6

a: 平均値より推定, b: JNS002 との有意差あり (p < 0.05: Fisher の LSD 検定により比較)

c: 各測定ポイントのラット 6 匹分をプールして測定

BLQ:定量下限未満(血漿: <0.005 μg/mL,骨髄及び十二指腸: <2 μg/g,その他: <0.25 μg/g)

2.6.5 薬物動態試験概要表

2.6.5.5 薬物動態試験:分布(その4:¹⁴C-JNS002)

被験物質:SLD

CTD における記載箇所: 4.2.2.3.4

試験番号:FK5903

	動物種					ラット(Sp	orague-Dawle	y)				
	性別(雄/雌)/動物数						7/採取時点					
	投与製剤					¹⁴ C	-JNS002					
	投与方法		静脈内									
	投与量 (mg/kg)						1.0					
	放射性核種		$^{14}\mathrm{C}$									
	比放射能 (kBq/mg)						926					
	定量(対象)物質					総	放射能					
	定量法		LSC 1 24 96 240 AUC(0 240) ^a (μg eq• hr/g)									
	試料採取時点(hr)	1										
	組織	太 隹	雌	雄	雌	太 隹	雌	雄	雌	太 隹	雌	
19	血漿(μg eq/g)	18.9	20.1	7.44	10.8	1.04	1.45	0.0178	0.0513	572	761	
	血液 (μg eq/g)	12.0^{b}	11.8	$3.47^{\rm b}$	6.07	0.614	0.833	0.0189	0.0370	313	437	
	動脈 (μg eq/g)	2.38	2.86	0.758	1.12	0.477	0.402	0.220	0.157	125	132	
	静脈(μg eq/g)	3.09	4.12	1.43	1.70	0.492	0.607	0.171	0.226	158	197	
	大脳 (μg eq/g)	0.442	0.419	0.128	0.134	0.0117 ^c	0.0291	BLQ	BLQ	9.91	12.2	
	小脳 (μg eq/g)	0.883	0.657	0.256	0.322	BLQ ^c	0.0599	BLQ	BLQ	NC	24.8	
	下垂体 (μg eq/g)	2.13	3.09	1.49	2.14	0.980	0.870	0.400	0.383	223	248	
	眼球(μg eq/g)	0.0859	0.0790	0.157	0.152	0.275	0.170	0.121	0.165	45.4	38.4	
	甲状腺 (μg eq/g)	1.48	1.30	2.53	2.76	2.53	2.24	0.595	1.20	422	466	
	肺 (μg eq/g)	2.72	3.69	1.42	1.99	1.06	0.886	0.273	0.267	219	238	

平均值, n=3

a:平均値より推定,b:n=2,c:中央値,d:AUC(0 96)

BLQ:検出下限(バックグラウンドの1.4倍)未満

2.6.5.5 薬物動態試験:分布(その4: ¹⁴C-JNS002(続き))

i	試料採取時点(hr)	1		2	4	9	6	24	10	AUC(0 240) ²	(μg eq• hr/g)
#	組織	雄	雌	広 隹	雌	雄	雌	雄	雌	雄	雌
	心臓(μg eq/g)	1.02	1.00	0.912	0.920	0.495	0.470	0.156	0.135	114	109
	肝臓(μg eq/g)	1.37	1.34	1.20	2.00	0.362	0.718	0.205	0.258	120	194
	脾臓 (μg eq/g)	3.47	3.74	14.2	19.6	5.08	8.27	2.41	5.05	1360	2160
	膵臓 (μg eq/g)	0.313	0.290	0.318	0.438	0.434	0.475	0.193	0.196	77.3	86.8
	腎臓 (μg eq/g)	1.19	1.14	1.51	1.29	0.891	0.782	0.368	0.355	201	180
i	副腎 (μg eq/g)	1.57	2.95	1.56	2.12	0.870	0.845	BLQ^{c}	0.562	122 ^d	259
-	子宮 (μg eq/g)	-	0.353	-	1.23	-	0.620	-	0.360	-	151
3	乳腺(μg eq/g)	-	0.195	-	0.681	-	0.696	-	0.375	-	134
	卵巣 (μg eq/g)	-	1.06	-	3.18	-	1.52	-	0.432	-	335
}	精囊(μg eq/g)	0.0890	-	0.106	-	0.143	-	0.0670	-	25.7	-
	精巣 (μg eq/g)	0.135	-	0.172	-	0.189	-	0.134	-	39.6	-
20	前立腺(μg eq/g)	0.267	-	0.332	-	0.389	-	0.133	-	67.3	-
	骨髄 (μg eq/g)	1.46	1.53	3.81	3.12	1.44	1.58	1.04	0.695	414	373
j	筋肉 (μg eq/g)	0.133	0.0800	0.0767	0.0952	0.106	0.0777	0.0362	0.0403	18.3	16.5
	腎周囲脂肪(μg eq/g)	0.109	0.101	0.114	0.126	0.103	0.145	0.0953	0.101	24.7	29.9
	支膚 (μg eq/g)	0.178	0.211	0.442	0.617	0.621	0.699	0.198	0.290	197	137
	足底(前足)(μg eq/g)	0.221	0.154	0.922	0.630	1.08	0.757	0.536	0.375	308	147
,	足底(後足)(μg eq/g)	0.247	0.140^{b}	1.60	0.637	1.85	0.765°	0.624	0.479	98.7	124
	胃 (μg eq/g)	0.125	0.179	0.322	0.504	0.466	0.363	0.109	0.153	69.0	73.9
	小腸(μg eq/g)	0.486	0.378	1.54	1.85	1.29	1.21	0.258	0.340	218	233
	大腸 (μg eq/g)	0.156	0.169	0.416	0.793	0.532	0.677	0.198	0.241	89.5	125

平均值, n=3

a:平均値より推定,b:n=2,c:中央値,d:AUC(0 96)

BLQ: 検出下限 (バックグラウンドの 1.4 倍) 未満

2.6.5 薬物動態試験概要表

2.6.5.5 薬物動態試験:分布(その4: ¹⁴C-塩酸ドキソルビシン)

被験物質: SLD CTD における記載箇所: 4.2.2.3.4

試験番号:FK5903

動物種					ラット (Sp	rague-Dawle	y)			
性別(雄/雌)/動物数		3M/3F/採取時点								
投与製剤					¹⁴ C-塩酸ド	キソルビシ	ン			
投与方法					靜	脈内				
投与量 (mg/kg)						1.0				
放射性核種						¹⁴ C				
比放射能(kBq/mg)						953				
定量(対象)物質					総	放射能				
定量法						LSC				
試料採取時点(hr)	0.2	25	,	1 24			72		AUC(0 72)	(μg eq• hr/g)
組織	太 隹	雌	雄	雌	雄	雌	太佳	雌	雄	雌
型 血漿 (μg eq/g)	0.168	0.179	0.100	0.102	0.0362	0.0481	0.0190	0.0275	2.87	3.57
血液 (μg eq/g)	0.185	0.192	0.114	0.102	0.0345	0.0406	0.0208	0.0283	2.99	3.32
動脈 (μg eq/g)	0.945	1.03	0.910	0.988	0.832	0.815	0.594	0.626	54.7	55.9
静脈 (μg eq/g)	1.37	1.73	1.39	1.49	0.886	0.736	0.492	0.471	59.1	54.5
大脳 (μg eq/g)	0.0226	0.0172	0.0179	0.0182	BLQ^b	0.0212	BLQ	BLQ	NC	0.469 ^c
小脳 (μg eq/g)	0.0497	0.0427	0.0334	0.0342	BLQ	$0.0223^{\rm b}$	BLQ	BLQ	NC	0.674 ^c
下垂体 (μg eq/g)	1.70	1.79	1.51	1.92	1.68	1.19	0.985	0.874	101	85.9
眼球 (µg eq/g)	0.265	0.236	0.238	0.200	0.170	0.152 ^d	0.107	0.0935	11.4	10.0
甲状腺 (μg eq/g)	2.30	2.32	2.36	3.42	2.23	1.79	1.43	1.22	141	132
肺 (µg eq/g)	2.66	2.00	1.11	2.11	0.829	0.902	0.174	0.324	44.0	61.6

平均值, n=3

a: 平均値より推定, b: 中央値, c: AUC(0 24), d: n=2

BLQ:検出下限(バックグラウンドの1.4倍)未満

2.6.5.5 薬物動態試験:分布(その4: ¹⁴C-塩酸ドキソルビシン(続き))

趌	料採取時点(hr)	0	25	1		2	4	72	2	AUC(0 72) ^a	(μg eq• hr/g)
組	織	広 隹	雌	太 隹	雌	広 住	雌	太隹	雌	太 隹	雌
心	N臓(μg eq/g)	1.60	1.72	0.609	1.35	0.330	0.285	0.0640	0.149	19.2	27.1
	·臓(μg eq/g)	3.81	3.33	1.71	2.33	0.493	0.508	0.173	0.276	39.6	48.3
膊	l臓(μg eq/g)	3.50	3.07	3.03	4.00	2.98	2.86	2.30	2.30	198	204
	臓(μg eq/g)	1.95	1.75	1.85	1.95	1.34	1.30	0.696	0.663	85.1	84.0
腎	l臓(μg eq/g)	4.96	4.31	3.40	3.26	1.25	1.21	0.534	0.610	93.7	93.0
	腎(µg eq/g)	2.59	1.97	1.90	2.45	1.37	1.30	0.740	0.829	88.5	94.0
	·宮(μg eq/g)	-	1.02	-	1.08	-	0.689	-	0.454	-	47.9
	.腺(μg eq/g)	-	0.316	-	0.241	-	0.259	-	0.117	-	14.6
	I巣(μg eq/g)	-	1.08	-	1.23	-	0.801	-	0.585	-	57.0
	囊(µg eq/g)	0.197	-	0.279	-	0.281	-	0.205	-	18.2	-
	巣(μg eq/g)	0.0600	-	0.0677	-	0.0895	-	0.0761	-	5.83	-
22 前	i立腺(μg eq/g)	0.767	-	0.779	-	0.579	-	0.353	-	38.1	-
	'髄(μg eq/g)	1.62	1.49	1.37 ^d	1.83	1.70	1.94	1.14	0.988	103	112
	i肉(μg eq/g)	0.497	0.299	0.214	0.338	0.169	0.140	0.0391	0.0645	8.95	10.1
腎	·周囲脂肪(μg eq/g)	0.354	0.201	0.261	0.290	0.160	0.178	0.150	0.0949	12.4	11.8
	属(μg eq/g)	0.552	0.490	0.508	0.533	0.460	0.438	0.335	0.421	21.2	20.2
足	.底(前足)(μg eq/g)	0.335	0.227	0.239	0.239	0.316	0.308	0.290	0.264	17.6	15.0
足	.底(後足)(μg eq/g)	0.234	0.213	0.204	0.204	0.260	0.223	0.245	0.192	30.5	32.2
胃	(μg eq/g)	0.720	0.764	0.689	0.985	0.323	0.313	0.210	0.236	24.3	27.3
小	腸(μg eq/g)	1.97	3.27	1.31	2.33	0.372	0.381	0.276	0.275	34.0	42.9
大	腸(μg eq/g)	0.832	0.766	0.538	0.732	0.338	0.416	0.271	0.275	25.1	29.9

平均值, n=3

a: 平均値より推定, b: 中央値, c: AUC(0 24), d: n=2

BLQ:検出下限(バックグラウンドの14倍)未満

2.6.5 薬物動態試験概!

2.6.5.5 薬物動態試験:分布(その5: JNS002 0.25 mg/kg)

被験物質: SLD CTD における記載箇所: 4.2.2.3.5

試験番号:LTI-30-93-24

				武贺笛 5 · L11-3U-93-24								
動物種		ラット (Spra	gue-Dawley)									
性別(雄/雌)/動物数		3M/3F/‡	采取時点									
投与製剤		JNS002										
投与方法		静脈内										
投与量 (mg/kg)		0	25									
試料		組	織									
定量(対象)物質		ドキソノ	レビシン									
定量法		HPLC	C-FLD									
最終回投与後日数(day)	1	3	10	31								
脳 (µg/g)	BLQ	BLQ	BLQ	BLQ								
肺 (μg/g)	0.97 ± 0.16	0.67 ± 0.09	BLQ	BLQ								
²³ 心臓 (μg/g)	0.42 ± 0.09	0.36 ± 0.09	BLQ	BLQ								
肝臓 (μg/g)	0.47 ± 0.22	0.34 ± 0.11	BLQ	BLQ								
脾臓 (μg/g)	4.02 ± 0.55	2.76 ± 0.70	0.79 ± 0.17	BLQ								
腎臓 (μg/g)	0.77 ± 0.13	0.68 ± 0.10	BLQ	BLQ								
骨髄 (μg/g) ^a	2.06 ± 1.88	BLQ	BLQ	BLQ								
正常皮膚 (μg/g)	0.38 ± 0.17	0.35 ± 0.09	BLQ	BLQ								
胃 (µg/g)	0.44 ± 0.07	0.28 ± 0.07	BLQ	BLQ								
十二指腸 (μg/g)	BLQ	BLQ	BLQ	BLQ								

平均値 ± 標準偏差, n=6

a: 各測定ポイントのラット雌雄各3匹をプールして測定

BLQ:定量下限未満(骨髄及び十二指腸: $<2.0~\mu g/g$, その他: $<0.25~\mu g/g$)

2.6.5.5 薬物動態試験:分布(その5: JNS002 1.0 mg/kg)

被験物質: SLD CTD における記載箇所: 4.2.2.3.5

試験番号:LTI-30-93-24

				14小大田 つ ・ 1211-20-22-24						
動物種		ラット (Spr	ague-Dawley)							
性別(雄/雌)/動物数	3M/3F/採取時点									
投与製剤		JNS002								
投与方法		静	脈内							
投与量 (mg/kg)			1.0							
言式米斗		糸	且織							
定量(対象)物質		ドキソ	ルビシン							
定量法		HPL	C-FLD							
最終回投与後日数(day)	1	3	10	31						
脳 (µg/g)	BLQ	BLQ	BLQ	BLQ						
肺 (μg/g)	$3.44 \pm 0.45^{a, b}$	$2.59 \pm 0.52^{a, b}$	0.67 ± 0.16	BLQ						
○ 心臓 (μg/g)	$1.34 \pm 0.36^{a, b}$	1.38 ± 0.19^{a}	0.28 ± 0.07	BLQ						
肝臓 (μg/g)	$1.65 \pm 0.43^{a, b}$	1.30 ± 0.38^{a}	BLQ	BLQ						
脾臓 (μg/g)	$15.11 \pm 5.00^{\rm b}$	$12.01 \pm 6.66^{a, b}$	$2.04 \pm 0.98^{a, b}$	0.45 ± 0.15						
腎臓 (μg/g)	$4.30 \pm 1.48^{a, b}$	$4.21 \pm 1.39^{a, b}$	1.44 ± 0.64	0.33 ± 0.21						
骨髄 (μg/g) ^c	5.43 ± 3.99	5.1 ± 3.70	BLQ	BLQ						
正常皮膚(μg/g)	$2.89 \pm 0.94^{a, b}$	$1.88 \pm 0.74^{a, b}$	0.89 ± 0.35	BLQ						
胃 (μg/g)	$1.67 \pm 0.60^{a, b}$	$1.12 \pm 0.12^{a, b}$	0.37 ± 0.09	BLQ						
十二指腸 (μg/g)	$5.3 \pm 1.9^{a, b}$	$5.2 \pm 0.6^{a, b}$	BLQ	BLQ						

平均值 ± 標準偏差, n=6

a: JNS002 0.25 mg/kg との有意差あり (p<0.05: Fisher の LSD 検定により比較)

b: 塩酸ドキソルビシン 1.0 mg/kg との有意差あり (p < 0.05: Fisher の LSD 検定により比較)

c: 各測定ポイントのラット雌雄各3匹をプールして測定

BLQ:定量下限未満(骨髄及び十二指腸: <2.0 μg/g, その他: <0.25 μg/g)

2.6.5 薬物動態試験概要表

2.6.5.5 薬物動態試験:分布(その5:塩酸ドキソルビシン 1.0 mg/kg)

被験物質: SLD CTD における記載箇所: 4.2.2.3.5

試験番号:LTI-30-93-24

					叫来由 与 · L11-30-33-24				
	動物種	ラット (Sprague-Dawley)							
	性別(雄/雌)/動物数	3M/3F/採取時点							
	投与製剤	塩酸ドキソルビシン							
	投与方法	静脈内							
	投与量 (mg/kg)	1.0							
	記米斗	組織							
	定量(対象)物質	ドキソルビシン							
	定量法	HPLC-FLD							
	最終回投与後日数(day)	1	3	10	31				
	脳 (µg/g)	BLQ	BLQ	BLQ	BLQ				
	肺 (μg/g)	1.81 ± 0.39^{a}	0.78 ± 0.16^{a}	BLQ	BLQ				
25	心臓 (μg/g)	0.54 ± 0.10	BLQ	BLQ	BLQ				
	肝臓 (μg/g)	0.34 ± 0.09	BLQ	BLQ	BLQ				
	脾臓 (μg/g)	3.65 ± 0.53	1.95 ± 0.80	0.39 ± 0.05	BLQ				
	腎臓 (μg/g)	1.41 ± 0.32^{a}	0.53 ± 0.11	BLQ	BLQ				
	骨髄(μg/g) ^b	2.49 ± 2.91	BLQ	BLQ	BLQ				
	正常皮膚 (μg/g)	0.47 ± 0.14	0.30 ± 0.11	BLQ	BLQ				
	胃 (μg/g)	1.27 ± 0.20^{a}	0.58 ± 0.06^{a}	BLQ	BLQ				
	十二指腸(μg/g)	BLQ	BLQ	BLQ	BLQ				

平均值 ± 標準偏差, n=6

a: JNS002 0.25 mg/kg との有意差あり (p < 0.05: Fisher の LSD 検定により比較)

b: 各測定ポイントのラット雌雄各3匹をプールして測定

BLQ:定量下限未満(骨髄及び十二指腸: <2.0 μg/g, その他: <0.25 μg/g)

2.6.5.5 薬物動態試験:分布(その5:正常及び損傷皮膚内ドキソルビシン濃度)

被験物質:SLD

CTD における記載箇所: 4.2.2.3.5

試験番号:LTI-30-93-24

動物種	ラット (Sprague-Dawley)							
性別(雄/雌)/動物数	3M/採取時点							
投与製剤		JNS002						
投与方法		静	脈内					
投与量 (mg/kg)			1.0					
試料	正常及び損傷皮膚							
定量(対象)物質		ドキソルビシン						
定量法	HPLC-FLD							
最終回投与後日数 (day)	1 3 10							
正常皮膚(μg/g)	2.8 ± 1.0 2.1 ± 0.7 0.8 ± 0.2							
損傷皮膚 ^a (μg/g)	19.9 ± 9.8 14.4 ± 8.4 4.1 ± 3.0 0.4 ± 0.5							

26 平均値 ± 標準偏差, n=3

a:損傷皮膚は同一個体から数箇所採取した

BLQ:定量下限未満 (<0.25 μg/g)

2.6.5 薬物動態試験概要表

2.6.5.5 薬物動態試験:分布(その6)

被験物質: SLD CTD における記載箇所: 4.2.2.3.6

試験番号:LTI-30-94-18

動物種	イヌ (beagle)								
性別(雄/雌)/動物数	3M/3F/群								
投与製剤	JNS002								
投与方法	静脈内								
試料	正常及び損傷皮膚								
定量(対象)物質		ドキソルビシン							
定量法	HPLC-FLD								
投与量 (mg/kg)	0	.75	1.0)					
	正常皮膚	損傷皮膚	正常皮膚	損傷皮膚					
採取部位		投与 1 週後							
鼻 (μg/g)	1.29 (1.05 - 2.12)	2.30 (1.61 - 3.00)	1.70 (1.40 - 5.12) ^a	1.87 (1.78 - 2.79) ^a					
3	0.70 (0.25 - 1.42)	0.98 (0.44 - 1.11)	1.01 (0.86 - 1.50) ^a	0.80 (0.46 - 1.11) ^a					
腹部 (μg/g)	0.42 (0.28 - 0.68) ^a	0.74 (0.39 - 1.46) ^a	1.53 (0.44 - 1.56) ^a	1.29 (0.60 - 3.44) ^a					
背部 (μg/g)	0.94 (0.86 - 1.15) ^a	ND	1.57 (1.06 - 1.81) ^a	ND					
左前足 (μg/g)	1.46 (0.89 - 1.91)	2.29 (1.04 - 3.53)	1.98 (1.04 - 3.58) ^a	1.48 (1.10 - 2.64) ^a					
肛門 (μg/g)	ND	ND	1.50 (0.77 - 1.86) ^a	1.79 (1.19 - 4.60) ^a					
尾 (μg/g)	1.45 (1.07 - 1.90)	2.20 (1.59 - 2.72)	4.94 (1.80 - 7.31) ^a	4.23 (1.70 - 5.84) ^a					
採取部位	投与 5 週後								
鼻 (μg/g)	0.19 ^b	0.23 (0.21 - 0.24) °	0.61 ^b	0.74 (0.37 - 1.10) ^c					
首(腹側)(μg/g)	BLQ ^c	BLQ^{c}	0.44 ^b	0.53 (0.15 - 0.92) °					
腹部 (μg/g)	0.20 ^b	BLQ^{c}	0.52 ^b	0.33 (0.20 - 0.45) ^c					
背部 (μg/g)	0.19 ^b	ND	0.62 (0.46 - 0.77) °	ND					
左前足(μg/g)	0.21 ^b	0.27 ^b	1.15 ^b	0.30 (0.25 - 0.35) ^c					
肛門 (μg/g)	ND	ND	0.36 ^b	0.57 (0.20 - 0.93) °					
尾 (µg/g)	0.36 (0.24 - 0.47) ^c	BLQ^{c}	0.78 (0.77 - 0.78) ^c	1.43 ^b					

中央値(範囲), n=4, a:n=3, b:n=1, c:n=2, ND:測定せず, BLQ:定量下限未満 (<0.125 μg/g)

2.6.5.6 薬物動態試験:たん白結合

2.6.5 薬物動態試験概要表

2.6.5.7 薬物動態試験:妊娠又は授乳動物における試験

2.6.5.8 薬物動態試験:その他の分布試験

2.6.5.9 薬物動態試験: In Vivo における代謝

被験物質: SLD CTD における記載箇所: 4.2.2.4.3

試験番号:LTI-30-94-18

				H-V-S/C 3 - 2-1-2-0-3 - 1-0				
動物種	イヌ (beagle)							
性別(雄/雌)/動物数	3M/3F/ 群							
投与製剤	JNS002							
投与方法		静脈						
試料	正常及び損傷皮膚							
定量(対象)物質	ドキソルビシノール							
定量法	HPLC-FLD							
投与量 (mg/kg)	0.	75	1.0)				
	正常皮膚	損傷皮膚	正常皮膚	損傷皮膚				
採取部位		投与 1 週後						
鼻 (μg/g)	0.17 ^a	BLQ	0.27 (0.20 - 0.33) ^b	0.26 (0.13 - 0.28) °				
[≃] 首(腹側)(μg/g)	BLQ	BLQ	0.23 (0.15 - 0.31) ^b	0.21 ^a				
腹部 (μg/g)	BLQ	BLQ	0.21 (0.20 - 0.21) ^b	0.31 ^a				
背部 (μg/g)	0.14 ^a	ND	0.17 (0.14 - 0.19) ^b	ND				
左前足(μg/g)	0.13 ^a	0.27^{a}	0.17 (0.16 - 0.18) ^b	0.30^{a}				
肛門 (μg/g)	ND	ND	0.23 (0.20 - 0.25) ^b	0.34 (0.22 - 0.45) ^b				
尾 (µg/g)	BLQ	0.94 ^a	0.21 (0.15 - 0.26) ^b	0.38 ^a				
採取部位		投与 5 週後						
鼻 (μg/g)	0.16 ^a	BLQ^b	0.22 ^a	0.38^{a}				
首(腹側)(μg/g)	BLQ^b	BLQ^b	BLQ^b	0.19^{a}				
腹部 (μg/g)	0.13 ^a	0.16^{a}	0.16 ^a	0.14 (0.13 - 0.15) ^b				
背部 (μg/g)	BLQ^b	ND	0.14 ^a	ND				
左前足 (μg/g)	BLQ^b	BLQ^b	0.25 ^a	0.36 (0.26 - 0.46) ^b				
肛門 (μg/g)	ND	ND	0.15 ^a	0.18 ^a				
尾 (µg/g)	BLQ^b	BLQ^b	0.19 ^a	BLQ^b				

中央値(範囲), n=4, a:n=1, b:n=2, c:n=3, ND:測定せず, BLQ:定量下限未満(<0.125 μg/g)

2.6.5.10 薬物動態試験: In Vitro における代謝

2.6.5.11 薬物動態試験:推定代謝経路

7-デオキシドキソルビシノロン

J Chromatgr B. 2004; 808: P.142 Fig.1 を一部改変

2.6.5.12 薬物動態試験:薬物代謝酵素の誘導/阻害

2.6.5.13 薬物動態試験:尿中排泄(その1)

被験物質:SLD

CTD における記載箇所: 4.2.2.5.1

試験番号:LTI-30-93-23

動物種	ラット (Sprag	gue-Dawley)				
性別(雄/雌)/動物数	3M/3F	F/ 群				
投与製剤	JNS002 及び塩酸ドキソルビシン					
投与方法	静脈	内				
投与量 (mg/kg)	1.0					
試料						
定量(対象)物質	ドキソルビシン					
定量法	HPLC-FLD					
時間 (hr)	JNS002	塩酸ドキソルビシン				
0 - 24	0.6 ± 0.1	6.6 ± 1.3				
24 - 48	1.0 ± 0.3	1.2 ± 0.1				
48 - 72	1.2 ± 0.3 0.6 ± 0.3					

% of dose, 平均值 ± 標準偏差, n=6

2.6.5.13 薬物動態試験:マスバランス(その2:¹⁴C-JNS002)

0.67

0.58

0.50

11.0

0.46

0.46

0.33

8.15

3.85

3.09

2.79

55.0

放験初員:SLD CTD における記載箇所:4.2.2.5.2

							挝	験番号:FK590	
動物種				ラット (Spra	igue-Dawley)				
性別(雄/雌)/動物数	尿及び糞:3M/3F,呼気:1M/1F								
投与製剤		¹⁴ C-JNS002							
投与方法		静脈内							
投与量 (mg/kg)	1.0								
放射性核種		$^{14}\mathrm{C}$							
比放射能(kBq/mg)	926								
定量(対象)物質	総放射能								
定量法	LSC								
試料	厉	{		糞		呼気 ^a		-カス	
時間 (hr)	雄	雌	雄	雌	雄	雌	太 隹	雌	
0 - 4	0.35	0.23))	J	J)		
4 - 8	0.06	0.13	2.91	5.72	} 0.46	} 0.64			
8 - 24	0.89	0.67	J	J	J	J			
24 - 48	1.62	1.07	7.62	8.61	0.45	0.62			
48 - 72	1.38	1.28	7.90	9.12	0.38	0.54			
72 - 96	1.42	1.02	9.59	6.78		/	1 \ 22.2	147	
96 - 120	1.48	1.07	7.07	8.10			22.3	14.7	
120 - 144	1.11	0.76	5.74	6.98					
144 - 168	0.94	0.67	4.49	5.07					

% of dose, 平均值, n=3

a: n=1

合計

168 - 192

192 - 216

216 - 240

4.39

3.21

2.59

60.6

1.29

1.80

2.6.5.13 薬物動態試験:マスバランス(その2: ¹⁴C-塩酸ドキソルビシン)

被験物質:SLD

CTD における記載箇所: 4.2.2.5.2

試験番号:FK5903

動物種		ラット (Sprague-Dawley)							
性別(雄/雌)/動物数	尿及び糞:3M/3F , 呼気:1M/1F								
投与製剤									
投与方法				静	<u></u> 脈内				
投与量 (mg/kg)				1	.0				
放射性核種				1	⁴ C				
比放射能(kBq/mg)				9	53				
定量(対象)物質		総放射能							
定量法		LSC							
試料	月	₹	糞		Д	呼気 ^a		-カス	
時間 (hr)	広 隹	雌	雄	雌	雄	雌	雄	雌	
0 - 4	4.27	2.84))))))	
4 - 8	2.19	1.16	} 24.0	25.4	2.08	3.66			
8 - 24	3.53	2.78	J	J	J	J	19.7	15.5	
24 - 48	2.27	1.68	15.7	20.0	0.49	1.04			
48 - 72	1.49	1.14	9.79	8.45	0.34	0.72))	
合計	13.8	9.59	49.4	53.9	2.90	5.42	-	-	

% of dose, 平均值, n=3

a: n=1

2.6.5.14 薬物動態試験:胆汁中排泄

2.6.5.15 薬物動態試験:薬物相互作用

2.6.5.16 薬物動態試験:その他