カナグル®錠 100mg
製造販売承認申請書添付資料
第 2 部（モジュール 2）

2.6 非臨床試験の概要文及び概要表

2.6.1 緒言

田辺三菱製薬株式会社
目次

略語・略号一覧... 3

2.6 非臨床試験の概要文及び概要表.. 4

2.6.1 緒言.. 4

2.6.1.1 名称及び化学構造式 .. 4

2.6.1.2 カナグリフロジン水和物の薬理作用 .. 4

2.6.1.3 予定する効能・効果 .. 4

2.6.1.4 予定する用法・用量 .. 4

参考文献 .. 5
略語・略号一覧

<table>
<thead>
<tr>
<th>略語・略号</th>
<th>略していない表現（英語）</th>
<th>略していない表現（日本語）</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGLT</td>
<td>sodium glucose co-transporter</td>
<td>ナトリウム-グルコース共輸送体</td>
</tr>
</tbody>
</table>
2.6 非臨床試験の概要文及び概要表

2.6.1 緒言

2.6.1.1 名称及び化学構造式

カナグリフロジン水和物の名称及び化学構造式は以下のとおりである。
一般名: カナグリフロジン水和物 (Canagliflozin Hydrate)
化学名: (1S)-1,5-Anhydro-1-C-(3-{{5-(4-fluorophenyl)thiophen-2-yl}methyl}-4-methylphenyl)-D-glucitol hemihydrate
構造式:

分子式: C_{24}H_{25}FO_{5}S・1/2H_{2}O
分子量: 453.52

2.6.1.2 カナグリフロジン水和物の薬理作用

カナグリフロジン水和物は、田辺三菱製薬株式会社にて創製された、1日1回の経口投与で効力を発揮する、ナトリウム-グルコース共輸送体 (以下、SGLT) 2 阻害薬である。SGLT2は腎臓では近位尿細管に限局して分布しており、糸球体ろ過されたグルコースの約90%を血液中に再吸収させる役割を担っている [1]。

カナグリフロジン水和物は、SGLT2を選択的に阻害し、腎臓近位尿細管でのグルコースの再吸収を抑制することで、血中に過剰に存在するグルコースを尿糖として排泄する作用を有する。その結果、血糖低下作用を発揮し、糖尿病を改善することが期待される。

2.6.1.3 予定する効能・効果

2 型糖尿病

2.6.1.4 予定する用法・用量

通常、成人にはカナグリフロジンとして100 mgを1日1回経口投与する。
参考文献

カナグル®錠 100mg
製造販売承認申請書添付資料
第 2 部（モジュール 2）

2.6 非臨床試験の概要文及び概要表
2.6.2 薬理試験の概要文

田辺三菱製薬株式会社
目次

略語・略号一覧 ... 3
2.6.2 薬理試験の概要文 .. 5
 2.6.2.1 まとめ .. 5
 2.6.2.2 効力を裏付ける試験 ... 8
 2.6.2.2.1 In vitro 薬理試験 ... 8
 2.6.2.2.2 In vivo 薬理試験 ... 17
 2.6.2.3 副次的薬理試験 .. 29
 2.6.2.3.1 各種受容体等に対する選択性 ... 29
 2.6.2.4 安全性薬理試験 .. 29
 2.6.2.4.1 中枢神経系に対する作用 ... 29
 2.6.2.4.2 心血管系に対する作用 ... 30
 2.6.2.4.3 呼吸器系への影響 ... 31
 2.6.2.5 薬力学的薬物相互作用試験 .. 31
 2.6.2.6 考察及び結論 .. 32
 2.6.2.7 図表 .. 35
参考文献 .. 35
略語・略号一覧

<table>
<thead>
<tr>
<th>略語・略号</th>
<th>略していない表現 (英語)</th>
<th>略していない表現 (日本語)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APD</td>
<td>action potential duration</td>
<td>活動電位持続時間</td>
</tr>
<tr>
<td>AUC_{0-24h}</td>
<td>area under the concentration-time curve from time zero to 24 h</td>
<td>投与 24 時間後までの血漿中濃度時間曲線下面積</td>
</tr>
<tr>
<td>AUC_{BG0-120min}</td>
<td>area under the curve for blood glucose from time zero to 120 min</td>
<td>グルコース負荷後 120 分までの血糖値の時間曲線下面積</td>
</tr>
<tr>
<td>AUC_{Ins0-120min}</td>
<td>area under the curve for plasma insulin concentration from time zero to 120 min</td>
<td>グルコース負荷後 120 分までの血漿中インスリン濃度の時間曲線下面積</td>
</tr>
<tr>
<td>AUC_{iRGR0-6h}</td>
<td>area under the curve for inhibition rate of renal glucose reabsorption from time zero to 6 h</td>
<td>投与 6 時間後までの腎糖再吸収阻害率の時間曲線下面積</td>
</tr>
<tr>
<td>AUC_{PG0-6h}</td>
<td>area under the curve for plasma glucose from time zero to 6 h</td>
<td>投与 6 時間後までの血漿中グルコース濃度の時間曲線下面積</td>
</tr>
<tr>
<td>AUC_{PG0-24h}</td>
<td>area under the curve for plasma glucose from time zero to 24 h</td>
<td>投与 24 時間後までの血漿中グルコース濃度の時間曲線下面積</td>
</tr>
<tr>
<td>CHO 細胞</td>
<td>chinese hamster ovary cell</td>
<td>チャイニーズハムスター卵巣由来細胞</td>
</tr>
<tr>
<td>C_{max}</td>
<td>maximum plasma concentration</td>
<td>最高血漿中濃度</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
<td>ジメチルスルホキシド</td>
</tr>
<tr>
<td>2-DG</td>
<td>2-deoxyglucose</td>
<td>2-デオキシ-D-グルコース</td>
</tr>
<tr>
<td>DNJ</td>
<td>1-deoxynojirimycin</td>
<td>1-デオキシノジリマイシン</td>
</tr>
<tr>
<td>ED_{50}</td>
<td>half maximal (50%) effective dose</td>
<td>50% 有効用量</td>
</tr>
<tr>
<td>GLP</td>
<td>Good Laboratory Practice</td>
<td>医薬品の安全性に関する非臨床試験の実施の基準</td>
</tr>
<tr>
<td>GLUT</td>
<td>facilitative glucose transporter</td>
<td>促通拡散型糖輸送担体</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
<td>時間</td>
</tr>
<tr>
<td>HEK293 細胞</td>
<td>human embryonic kidney cell 293</td>
<td>ヒト胎児腎由来細胞 293</td>
</tr>
<tr>
<td>HepG2 細胞</td>
<td>human hepatocellular carcinoma cell</td>
<td>ヒト肝腫瘍由来細胞</td>
</tr>
<tr>
<td>hERG</td>
<td>human ether-a-go-go related gene</td>
<td>ヒト急速活性型遅延整流カリウムチャネル遺伝子</td>
</tr>
<tr>
<td>HPMC</td>
<td>hydroxypropyl methylcellulose</td>
<td>ヒドロキシプロピルメチルセルロース</td>
</tr>
<tr>
<td>5-HT</td>
<td>5-hydroxytryptamine</td>
<td>セロトニン</td>
</tr>
<tr>
<td>IC_{50}</td>
<td>half maximal (50%) inhibitory concentration</td>
<td>50% 阻害濃度</td>
</tr>
<tr>
<td>ICH</td>
<td>International conference on harmonization of technical requirements for registration of pharmaceuticals for human use</td>
<td>日米 EU 医薬品規制調和国際会議</td>
</tr>
<tr>
<td>L6 細胞</td>
<td>rat skeletal muscle cell-derived L6 myoblast cell line</td>
<td>ラット骨格筋由来 L6 細胞</td>
</tr>
<tr>
<td>NOEL</td>
<td>no observed effect level</td>
<td>無影響量</td>
</tr>
</tbody>
</table>
略語・略号 | 略していない表現（英語） | 略していない表現（日本語）
---|---|---
SD | Sprague-Dawley | —
SGLT | sodium glucose co-transporter | ナトリウム−グルコース共輸送体
SMIT | sodium myo-inositol co-transporter | ナトリウム−ミオイノシトール共輸送体
ZDF | Zucker Diabetic Fatty | —
ZDF-lean | Zucker Diabetic Fatty-lean | —
2.6.2 薬理試験の概要文

2.6.2.1 まとめ

カナグリフロジン水和物の効力を裏付ける試験として，*in vitro* 及び *in vivo* 試験を実施した。*In vitro* 試験では，ナトリウム-グルコース共輸送体（以下，SGLT）2 の阻害作用，類縁糖輸送担体である SGLT の各サブタイプ，ナトリウム-ミオイノシトール共輸送体（以下，SMIT）及び促通拡散型糖輸送担体（以下，GLUT）に対する阻害作用をそれぞれ評価した。また，ヒトにおける主な代謝物 M7 及び M5 の SGLT1 及び SGLT2 に対する阻害作用を評価した。*In vivo* 試験では，正常動物及び 2 型糖尿病モデル動物を用いて，カナグリフロジン水和物の作用機序及び血糖低下作用を検討した。副次的薬理試験として，各種受容体，イオンチャネル及び輸送体等の各リガンド結合に対する阻害作用を評価した。更に，安全性薬理試験として中枢神経系，心血管系及び呼吸器系に及ぼす影響について評価した。薬理試験の一覧表を表 2.6.2.1 に示す。

表 2.6.2.1-1 カナグリフロジン水和物の薬理試験一覧

<table>
<thead>
<tr>
<th>試験内容</th>
<th>試験系</th>
<th>投与経路</th>
<th>添付資料番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>効力を裏付ける試験</td>
<td>In vitro薬理試験</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGLT1 及び SGLT2 阻害作用</td>
<td>ヒト SGLT1 及び SGLT2 阻害作用</td>
<td>ヒト SGLT1 又は SGLT2 発現 CHO 細胞</td>
<td>in vitro [4.2.1.1-1]</td>
</tr>
<tr>
<td></td>
<td>ラット SGLT1 及び SGLT2 阻害作用</td>
<td>ラット SGLT1 又は SGLT2 発現 CHO 細胞</td>
<td>in vitro [4.2.1.1-2]</td>
</tr>
<tr>
<td></td>
<td>マウス SGLT1 及び SGLT2 阻害作用</td>
<td>マウス SGLT1 又は SGLT2 発現 CHO 細胞</td>
<td>in vitro [4.2.1.1-3]</td>
</tr>
<tr>
<td>SGLT2 に対する選択性</td>
<td>ヒト SGLT3 阻害作用</td>
<td>ヒト SGLT3 発現アフリカツメガエル卵母細胞</td>
<td>in vitro [4.2.1.1-4]</td>
</tr>
<tr>
<td></td>
<td>ヒト SGLT4 阻害作用</td>
<td>ヒト SGLT4 発現 CHO 細胞</td>
<td>in vitro [4.2.1.1-5]</td>
</tr>
<tr>
<td></td>
<td>ヒト SGLT6 阻害作用</td>
<td>ヒト SGLT6 発現 CHO 細胞</td>
<td>in vitro [4.2.1.1-6]</td>
</tr>
<tr>
<td></td>
<td>ヒト SMIT1 阻害作用</td>
<td>ヒト SMIT1 発現 CHO 細胞</td>
<td>in vitro [4.2.1.1-7]</td>
</tr>
<tr>
<td>L6 細胞における GLUT 阻害作用</td>
<td>L6 細胞</td>
<td>L6 細胞</td>
<td>in vitro [4.2.1.1-8]</td>
</tr>
<tr>
<td>HepG2 細胞における GLUT 阻害作用</td>
<td>HepG2 細胞</td>
<td>HepG2 細胞</td>
<td>in vitro [4.2.1.1-9]</td>
</tr>
<tr>
<td>ヒト初代培養脂肪細胞における GLUT 阻害作用</td>
<td>ヒト初代培養脂肪細胞</td>
<td>ヒト初代培養脂肪細胞</td>
<td>in vitro [4.2.1.1-10]</td>
</tr>
<tr>
<td>ヒト GLUT5 阻害作用</td>
<td>ヒト GLUT5 発現 CHO 細胞</td>
<td>ヒト GLUT5 発現 CHO 細胞</td>
<td>in vitro [4.2.1.1-11]</td>
</tr>
<tr>
<td>ヒトにおける主な代謝物 M7 及び M5 のヒト SGLT1 及び SGLT2 阻害作用</td>
<td>M7 のヒト SGLT1 及び SGLT2 阻害作用</td>
<td>ヒト SGLT1 又は SGLT2 発現 CHO 細胞</td>
<td>in vitro [4.2.1.1-11]</td>
</tr>
<tr>
<td></td>
<td>M5 のヒト SGLT1 及び SGLT2 阻害作用</td>
<td>ヒト SGLT1 又は SGLT2 発現 CHO 細胞</td>
<td>in vitro [4.2.1.1-12]</td>
</tr>
</tbody>
</table>
2.6.2 薬理試験の概要文

表 2.6.2.1-1 カナグリフロジン水和物の薬理試験一覧（続き）

<table>
<thead>
<tr>
<th>試験内容</th>
<th>試験系</th>
<th>投与</th>
<th>添付資料番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vivo 薬理試験</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>正常動物における検討</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>正常ラットにおける腎糖再吸収阻害作用</td>
<td>ラット/SD</td>
<td>経口</td>
<td>[4.2.1.1-13]</td>
</tr>
<tr>
<td>正常ラットにおける尿糖排泄促進作用</td>
<td>ラット/SD</td>
<td>経口</td>
<td>[4.2.1.1-14]</td>
</tr>
<tr>
<td>正常イスにおける尿糖排泄促進作用</td>
<td>イヌ/Beagle</td>
<td>経口</td>
<td>[4.2.1.1-15]</td>
</tr>
<tr>
<td>正常イスにおける曝露量と尿糖排泄促進作用の相関</td>
<td>イヌ/Beagle</td>
<td>経口</td>
<td>[4.2.1.1-16]</td>
</tr>
<tr>
<td>正常マウスにおける尿糖排泄促進作用</td>
<td>マウス/C57BL/6J</td>
<td>経口</td>
<td>[4.2.1.1-17]</td>
</tr>
<tr>
<td>2型糖尿病モデル動物における検討</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZDF ラットにおける腎糖再吸収阻害作用</td>
<td>ラット/ZDF-leprfa/-leprfa</td>
<td>経口</td>
<td>[4.2.1.1-18]</td>
</tr>
<tr>
<td>ZDF 及び ZDF-lean ラットにおける血糖低下作用</td>
<td>ラット/ZDF-leprfa/-leprfa</td>
<td>経口</td>
<td>[4.2.1.1-19]</td>
</tr>
<tr>
<td>ZDF ラットにおける反復投与での糖尿病改善作用</td>
<td>ラット/ZDF-leprfa/-leprfa</td>
<td>経口</td>
<td>[4.2.1.1-20]</td>
</tr>
<tr>
<td>副次的薬理試験</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>各種受容体等に対する選択性 a)</td>
<td>50 種類の受容体, 輸送体等</td>
<td>in vitro</td>
<td>[4.2.1.2-1]</td>
</tr>
<tr>
<td>安全性薬理試験</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中枢神経系に対する作用</td>
<td>ラット/SD</td>
<td>経口</td>
<td>[4.2.1.3-1]</td>
</tr>
<tr>
<td>心血管系に対する作用</td>
<td>hERG 電流への影響</td>
<td>hERG 導入 HEK293 細胞</td>
<td>in vitro</td>
</tr>
<tr>
<td>電位及び冠血流量への影響</td>
<td>ウサギ/albino 摘出心臓</td>
<td></td>
<td>in vitro</td>
</tr>
<tr>
<td>麻酔下モルモットにおける活動電位及び心電図への影響</td>
<td>モルモット/Hartley</td>
<td>静脈内</td>
<td>[4.2.1.3-4]</td>
</tr>
<tr>
<td>警醒下イスにおける血圧, 心拍数及び心電図への影響</td>
<td>イヌ/Beagle</td>
<td>経口</td>
<td>[4.2.1.3-5]</td>
</tr>
<tr>
<td>呼吸器系への影響</td>
<td>警醒下イスにおける一回換気量, 分時換気量及び呼吸数への影響</td>
<td>イヌ/Beagle</td>
<td>経口</td>
</tr>
</tbody>
</table>

a) カナグリフロジンを用いた。

カナグリフロジン水和物はヒト SGLT2 に対して阻害作用を示し, その 50%阻害濃度（以下, IC50) 値は 4.2 nmol/L であった。ラット及びマウス SGLT2 に対する IC50 値は, それぞれ 3.7 nmol/L 及び 5.6 nmol/L であった。また, ヒト, ラット及びマウス SGLT1 に対する IC50 値は, SGLT2 に対する値のそれぞれ 158 倍, 150 倍及び 109 倍であった。

ヒト SGLT3, SGLT4, SGLT6 及び SMIT1 に対する IC50 値は, ヒト SGLT2 に対する値の 738 〜約 2,400 倍以上であった。また, ラット骨格筋由来 L6 細胞（以下, L6 細胞）, ヒト肝臓由来細胞（以下, HepG2 細胞）及びヒト初代培養脂肪細胞における GLUT, 並びに, ヒト GLUT5 に対する IC50 値は, ヒト SGLT2 に対する値の 1,619〜約 12,000 倍以上であった。これらの結果から, カナグリフロジン水和物は SGLT2 に対して高い選択性を有することが示された。

カナグリフロジン水和物のヒトにおける主な代謝物である M7 及び M5 のヒト SGLT2 に対する IC50 値は, それぞれ 7.6 μmol/L 及び 1.0 μmol/L であった。
正常ラットに1～30 mg/kgのカナグリフロジン水和物を単回経口投与すると、1 mg/kgから投与量に応じた腎糖再吸収阻害作用が認められた。同じく、正常ラットに0.3～30 mg/kgのカナグリフロジン水和物を単回経口投与すると、用量依存的な尿糖排泄促進作用が認められ、その作用は1 mg/kg以上の投与量で有意であった。以下の結果から、カナグリフロジン水和物は腎糖再吸収を阻害することによって、尿糖排泄を促進することが示唆された。また、正常イヌに0.3～3 mg/kgのカナグリフロジン水和物を単回経口投与すると、0.3 mg/kg以上の投与量で用量依存的な尿糖排泄促進作用が認められ、この作用は血漿中曝露量との高い相関性が示された。同様に、正常マウスにおいても用量依存的な尿糖排泄促進作用が認められた。

肥満2型糖尿病モデルであり、高血糖を呈するZucker Diabetic Fatty（以下、ZDF）ラットに、0.3～30 mg/kgのカナグリフロジン水和物を単回経口投与すると、用量依存的な腎糖再吸収阻害作用が認められた。投与2及び4時間後では3 mg/kg以上の投与量で、投与6時間後では0.3 mg/kg以上の投与量で、用量依存的な血糖低下作用を認めた。したがって、カナグリフロジン水和物は、2型糖尿病モデルにおいて、腎糖再吸収を阻害することによって血糖低下作用を発揮することが示唆された。

ZDFラット及びその正常対照であるZucker Diabetic Fatty-lean（以下、ZDF-lean）ラットに、1～10 mg/kgのカナグリフロジン水和物を単回経口投与し、血糖低下作用を評価した。ZDFラットにおいて1 mg/kg以上の投与量で、有意な血糖低下作用が認められた。一方、ZDF-leanラットにおいても、媒体群に比し有意な血糖低下が認められたが、ZDFラットに比べてその低下幅は小さかった。このときの各投与量、各時点での血漿中カナグリフロジン濃度は、両系統間で大きな違いは認められなかった。したがって、カナグリフロジン水和物は、正常血糖状態では血糖値への影響が小さいが、高血糖状態で十分な血糖低下作用を発揮するという特徴を有することが示唆された。

ZDFラットに、3～30 mg/kgのカナグリフロジン水和物を4週間反復経口投与すると、3 mg/kg以上の投与量で持続的な血糖低下作用及び有意なHbA1c低下作用が認められ、血漿中インスリン濃度が媒体群に比し有意な高値を示した。4週間反復投与後の経口糖負荷試験において、血糖上昇抑制及びインスリン分泌能の改善が認められた。以上の結果から、2型糖尿病モデルにおいて、カナグリフロジン水和物の反復投与は糖尿病の病態改善に有用であることが示唆された。

カナグリフロジン水和物の副作用の薬理試験として、種々の受容体、イオンチャネル及び輸送体の各リガンド結合に対するカナグリフロジンの阻害作用を評価した。カナグリフロジンは10 μmol/Lの濃度で、アデノシンA1受容体、ノルエピネフリン輸送体及びセロトニン2A（以下、5-HT2A）受容体に対する各リガンドの結合を、それぞれ62、51及び56%阻害したが、1 μmol/Lの濃度では、50%以上の結合阻害を示さなかった。その他の受容体等に対しては、10 μmol/Lの濃度で50%以上の結合阻害を示さなかった。

カナグリフロジン水和物の一般症状及び行動に及ぼす影響について、ラットを用いてIrwin
2.6.2 素理試験の概要文

変法で評価した結果（250, 500 及び 1000 mg/kg），最高用量の 1000 mg/kg において中枢神経症状及び体被に影響が認められなかったが，すべての投薬群で便の異常（便量減少，軟便，水樣便）及び体重増加抑制が認められた。また，カナグラフシジン水和物の hERG 電流に及ぼす影響について，ヒト急速活性型速延整流カリウムチャネル遺伝子（以下，hERG）導入ヒト胎児腎由来細胞 293（以下，HEK293 細胞）を用いてホールセルパッチクランプ法で検討した結果，3 μmol/L まで hERG 電流への影響は認められなかった。ウサギのランゲンドルフ灌流心標本における活動電位及び冠血流量に対して，3 μmol/L 以上で 60% 再分極時活動電位持続時間（以下，APD90）を有意に短縮させ，10 μmol/L では冠血流量の増加傾向が認められた。他の評価項目については 10 μmol/L まで影響は認められなかった。麻酔下モルモットを用いて心血管系への影響を評価したところ，累積投与量 9.86 mg/kg（最終投与後 5 分の血漿中濃度 12,749 ng/mL）まで影響は認められなかった。覚醒下イヌを用いたテレメトリーエ試験（4, 40 及び 400 mg/kg）において，体重，血圧，心拍数，心電図パラメータ，一回換気量，分時換気量及び呼吸数への影響を評価した。その結果，400 mg/kg まで心血管系及び呼吸器系に影響を及ぼさなかった。また，すべての投与量において嘔吐が，40 及び 400 mg/kg 投与時に便の異常（軟便及び水様便など）が認められた。体温については，対照群と比較して高用量群で軽度低下が認められたが，投与 18 時間後には回復した。そのため，体温に対する無影響量（以下，NOEL）は 40 mg/kg，心血管系及び呼吸器系に対する NOEL は 400 mg/kg と判断した。

2.6.2.2 効力の裏付ける試験

カナグラフシジン水和物の濃度及び投与量は無水物換算値として示した。

2.6.2.2.1 In vitro 薬理試験

2.6.2.2.1.1 SGLT1 及び SGLT2 阻害作用

2.6.2.2.1.1.1 ヒト SGLT1 及び SGLT2 阻害作用

[資料番号：4.2.1.1-1，試験番号：DP-329]

目的

ヒト SGLT1 及び SGLT2 に対するカナグラフシジン水和物の阻害作用を評価した。

方法

ヒト SGLT1 及び SGLT2 を安定発現チャイニーズハムスター卵巣由来線維芽細胞（以下，CHO 細胞）を用いて，ナトリウム依存性のメチル-α-D-グルコピラノシド取り込みを指標に，カナグラフシジン水和物の SGLT 阻害活性を測定した。

結果及び結論

カナグラフシジン水和物のヒト SGLT1 及び SGLT2 に対する IC50 値は，それぞれ 663 nmol/L 及び 4.2 nmol/L と算出された [表 2.6.2.2-1]。カナグラフシジン水和物のヒト SGLT1 に対する IC50 値は，ヒト SGLT2 の IC50 値の 158 倍であり，ヒト SGLT2 に対して選択的な阻
表 2.6.2.2-1 ヒト SGLT1 及び SGLT2 阻害作用

<table>
<thead>
<tr>
<th>被検物質</th>
<th>ヒト SGLT1 IC₅₀値 (nmol/L)</th>
<th>ヒト SGLT2 IC₅₀値 (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナワリフロジン水和物</td>
<td>663 ± 180</td>
<td>4.2 ± 1.5</td>
</tr>
</tbody>
</table>

平均値 ± 標準誤差
（異なる 4つの試験報告書の IC₅₀値より算出）

2.6.2.2.1.2 ラット SGLT1 及び SGLT2 阻害作用

【資料番号：4.2.1.1-2，試験番号：DD-322】

目的
ラット SGLT1 及び SGLT2 に対するカナワリフロジン水和物の阻害作用を評価した。

方法
ラット SGLT1 又は SGLT2 安定発現 CHO 細胞を用いて、2.6.2.2.1.1 と同様に、カナワリフロジン水和物の SGLT 阻害活性を測定した。

結果及び結論
カナワリフロジン水和物のラット SGLT1 及び SGLT2 に対する IC₅₀値は、それぞれ 555 nmol/L 及び 3.7 nmol/L と算出された。【表 2.6.2.2-2】。カナワリフロジン水和物のラット SGLT1 に対する IC₅₀値は、ラット SGLT2 の IC₅₀値の 150 倍であり、ラット SGLT2 に対して選択的な阻害作用を有することが示された。

表 2.6.2.2-2 ラット SGLT1 及び SGLT2 阻害作用

<table>
<thead>
<tr>
<th>被検物質</th>
<th>ラット SGLT1 IC₅₀値 (nmol/L)</th>
<th>ラット SGLT2 IC₅₀値 (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナワリフロジン水和物</td>
<td>555 ± 31</td>
<td>3.7 ± 0.2</td>
</tr>
</tbody>
</table>

平均値 ± 標準誤差 (n=3)

2.6.2.2.1.3 マウス SGLT1 及び SGLT2 阻害作用

【資料番号：4.2.1.1-3，試験番号：DD-310】

目的
マウス SGLT1 及び SGLT2 に対するカナワリフロジン水和物の阻害作用を評価した。

方法
マウス SGLT1 又は SGLT2 安定発現 CHO 細胞を用いて、2.6.2.2.1.1 と同様に、カナワリフロジン水和物及びフロリジンの SGLT 阻害活性を測定した。

結果及び結論
カナワリフロジン水和物のマウス SGLT1 及び SGLT2 に対する IC₅₀値は、それぞれ 613
nmol/L 及び 5.6 nmol/L と算出された。表 2.6.2.2-3. カナグリフロジン水和物のマウス SGLT1 に対する IC₅₀ 値は、マウス SGLT2 の IC₅₀ 値の 109 倍であり、マウス SGLT2 に対して選択的な阻害作用を有することが示された。フロリジンのマウス SGLT1 及び SGLT2 に対する IC₅₀ 値は、それぞれ 533 nmol/L 及び 49.4 nmol/L であった。

<table>
<thead>
<tr>
<th>被験物質</th>
<th>マウス SGLT1 IC₅₀ 値 (nmol/L)</th>
<th>マウス SGLT2 IC₅₀ 値 (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナグリフロジン水和物</td>
<td>613 ± 97</td>
<td>5.6 ± 2.0</td>
</tr>
<tr>
<td>フロリジン</td>
<td>533 ± 37</td>
<td>49.4 ± 7.1</td>
</tr>
</tbody>
</table>

平均値 ± 標準偏差 (n=3)

2.6.2.2.1.2 SGLT2 に対する選択性

カナグリフロジン水和物の標的分子である SGLT2 に対する選択性を評価するため、類縁糖輸送担体である SGLT3, SGLT4, SGLT6 及び SMIT1, 並びに GLUT に対する作用を検討した。

2.6.2.2.1.2 ヒト SGLT3 阻害作用

[資料番号: 4.2.1.1-4, 試験番号: DE 353]

目的
カナグリフロジン水和物の SGLT3 阻害作用を評価した。

方法
ヒト SGLT3 を強制発現させたアフリカツメガエル卵母細胞に、50 μmol/L の 1-デオキシノジリマイシン（以下、DNJ) を灌流適用し、持続性の SGLT3 電流を観察した後、10 μmol/L のカナグリフロジン水和物又は 0.1%ジメチルスルホキシド（以下、DMSO）を添加し、DNJ 誘導性 SGLT3 電流に対する阻害活性を二極電圧クラウン法により測定した。続いて、DNJ 阻害性電流が SGLT3 を介することを確認するため、それぞれに対しフロリジンを 3 nmol/L の濃度で適用した。

結果及び結論
SGLT3 強制発現細胞における DNJ 誘導性電流に対する、カナグリフロジン水和物（10 μmol/L, n=9）及び対照群（DMSO, 0.1%, n=7）の阻害率は、それぞれ 23.5%及び 12.4%であった [表 2.6.2.2-4]. DNJ 誘導性 SGLT3 電流に対する DMSO の阻害率と本薬の阻害率の比較検定を行ったところ、有意な差は認められなかった。また、被験物質に続いて適用したフロリジンは、有意な阻害作用を示した。カナグリフロジン水和物のヒト SGLT3 に対する IC₅₀ 値は >10 μmol/L であり、ヒト SGLT2 に対する IC₅₀ 値 [表 2.6.2.2-1] の約 2,400 倍以上高い値であった。
2.6.2.2表 2.6.2.2-4 ヒト SGLT3 に対する阻害作用

<table>
<thead>
<tr>
<th>被験物質 (濃度)</th>
<th>DNJ 誘導性 SGLT3 電流阻害率(%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナグラフロジン水和物 (10 μmol/L)</td>
<td>23.5 ± 4.3</td>
<td>9</td>
</tr>
<tr>
<td>DMSO (0.1%)</td>
<td>12.4 ± 1.9</td>
<td>7</td>
</tr>
</tbody>
</table>

平均値 ± 標準誤差

2.6.2.2.1.2.2 ヒト SGLT4 阻害作用

[資料番号: 4.2.1.1-5、試験番号: DFF303]

目的

ヒト SGLT4 に対するカナグラフロジン水和物の阻害作用を評価した。

方法

ヒト SGLT4 安定発現 CHO 細胞を用いて、2.6.2.2.1.1 と同様に、カナグラフロジン水和物、ダパグラフロジン及びプロリジンの SGLT4 阻害活性を測定した。

結果及び結論

カナグラフロジン水和物のヒト SGLT4 に対する IC₅₀ は、>10 μmol/L であり [表 2.6.2.2-5]、ヒト SGLT2 に対する IC₅₀ は [表 2.6.2.2-1] の約 2,400 倍以上高い値であった。
ダパグラフロジン及びプロリジンの IC₅₀ 値は、それぞれ>3 μmol/L 及び>10 μmol/L であっ

<table>
<thead>
<tr>
<th>被験物質</th>
<th>ヒト SGLT4 IC₅₀ 値 (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナグラフロジン水和物</td>
<td>>10</td>
</tr>
<tr>
<td>ダパグラフロジン</td>
<td>>3</td>
</tr>
<tr>
<td>プロリジン</td>
<td>>10</td>
</tr>
</tbody>
</table>
(n=3)

2.6.2.2.1.2.3 ヒト SGLT6 阻害作用

[資料番号: 4.2.1.1-6、試験番号: DFF304]

目的

ヒト SGLT6 に対するカナグラフロジン水和物の阻害作用を評価した。

方法

ヒト SGLT6 安定発現 CHO 細胞を用いて、ナトリウム依存性のミオイソトール取り込みを指標に、カナグラフロジン水和物、ダパグラフロジン及びプロリジンの SGLT6 阻害活性を測定した。

結果及び結論

カナグラフロジン水和物のヒト SGLT6 に対する IC₅₀ 値は、3.1 μmol/L であり [表 2.6.2.2-
2.6.2 東理試験の概要文

表 2.6.2.2-6 ヒト SGLT6 阻害作用

<table>
<thead>
<tr>
<th>被検物質</th>
<th>ヒト SGLT6 IC₅₀値（μmol/L）</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナグリプロジン水和物</td>
<td>3.1 ± 0.3</td>
</tr>
<tr>
<td>ダバグリプロジン</td>
<td>1.6 ± 0.4</td>
</tr>
<tr>
<td>フロリジン</td>
<td>>10</td>
</tr>
</tbody>
</table>

(平均値 ± 標準偏差 (n=3))

2.6.2.2.1.2.4 ヒト SMIT1 阻害作用

[資料番号: 4.2.1.1-7, 試験番号: D2-305]

目的
ヒト SMIT1 に対するカナグリプロジン水和物の阻害作用を評価した。

方法
ヒト SMIT1 安定発現 CHO 細胞を用いて、2.6.2.2.1.2.3 と同様に、カナグリプロジン水和物、
ダバグリプロジン及びフロリジンの SMIT1 阻害活性を測定した。

結果及び結論
カナグリプロジン水和物のヒト SMIT1 に対する IC₅₀値は、>10 μmol/L であり [表 2.6.2.2
-7], ヒト SGLT2 に対する IC₅₀値 [表 2.6.2.2-1] の約 2,400 倍以上高い値であった。
ダバグリプロジン及びフロリジンの IC₅₀値は、いずれも>10 μmol/L であった。

表 2.6.2.2-7 ヒト SMIT1 阻害作用

<table>
<thead>
<tr>
<th>被検物質</th>
<th>ヒト SMIT1 IC₅₀値（μmol/L）</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナグリプロジン水和物</td>
<td>>10</td>
</tr>
<tr>
<td>ダバグリプロジン</td>
<td>>10</td>
</tr>
<tr>
<td>フロリジン</td>
<td>>10</td>
</tr>
</tbody>
</table>

(n=3)

2.6.2.2.1.2.5 L6 細胞における GLUT 阻害作用

[資料番号: 4.2.1.1-8, 試験番号: D4-413]

目的
カナグリプロジン水和物の L6 細胞における GLUT 阻害作用を評価した。

方法
L6 細胞を用いて、2-デオキシ-D-グルコース (以下、2-DG) 取り込みを指標に、媒体添加
2.6.2 薬理試験の概要文

時を0%。サイトカラシン B (50 μmol/L) 添告時を100%として、カナグリフロジン水和物の2-DG 取り込み阻害率を算出した。

結果及び結論
カナグリフロジン水和物の2-DG 取り込み阻害率は、1, 3 及び 10 μmol/L の濃度において、それぞれ4.7, 8.6 及び 23.4%であり [表 2.6.2.2-8]。L6 細胞におけるカナグリフロジン水和物のGLUT（主にGLUT1 [1]）阻害作用のIC₅₀値は>10 μmol/L であった。

表 2.6.2.2-8 L6 細胞における GLUT 阻害作用

<table>
<thead>
<tr>
<th>被検物質</th>
<th>濃度 (μmol/L)</th>
<th>2-DG 取り込み阻害率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナグリフロジン水和物</td>
<td>1</td>
<td>4.7 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8.6 ± 1.2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>23.4 ± 1.5</td>
</tr>
</tbody>
</table>

平均値 ± 標準偏差 (n=3)

2.6.2.2.1.2.6 HepG2 細胞における GLUT 阻害作用

[資料番号：4.2.1.1-9、試験番号：DD ■ 300]

目的
カナグリフロジン水和物のHepG2 細胞における GLUT 阻害作用を評価した。

方法
HepG2 細胞を用いて、2-DG 取り込みを指標に、1 mmol/L 2-DG 存在下でカナグリフロジン水和物、ダバグリフロジン、プロレチン及びサイトカラシン B の GLUT 阻害活性を測定した。

結果及び結論
カナグリフロジン水和物の2-DG 取り込み阻害率は、10, 20 及び 50 μmol/L の濃度において、それぞれ17.3, 26.8 及び 31.4%であり [表 2.6.2.2-9]。HepG2 細胞におけるカナグリフロジン水和物の GLUT（主に GLUT2 [2]）阻害作用の IC₅₀値は>50 μmol/L であった。ダバグリフロジンの IC₅₀値は>100 μmol/L であった。また、プロレチン及びサイトカラシン B の IC₅₀値は、それぞれ76 μmol/L (n=2 の平均値；個別値：85, 67 μmol/L) 及び 1.3 ± 0.4 μmol/L (n=3, 平均値 ± 標準偏差) であった。

表 2.6.2.2-9 HepG2 細胞における GLUT 阻害作用

<table>
<thead>
<tr>
<th>被検物質</th>
<th>濃度 (μmol/L)</th>
<th>2-DG 取り込み阻害率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナグリフロジン水和物</td>
<td>10</td>
<td>17.3 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>26.8 ± 5.9</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>31.4 ± 9.2</td>
</tr>
<tr>
<td>ダバグリフロジン</td>
<td>100</td>
<td>0.0 ± 13.6</td>
</tr>
</tbody>
</table>

平均値 ± 標準偏差 (n=3)
2.6.2.2.1.2.7 ヒト初代培養脂肪細胞におけるGLUT阻害作用

[資料番号：4.2.1.1-10，試験番号：DD □ 302]

目的
カナグリプロジン水和物のヒト初代培養脂肪細胞におけるGLUT阻害作用を評価した。

方法
ヒト初代培養脂肪細胞を用いて，2-DG取り込みを指標に，10 nmol/Lインスリン存在下及び非存在下におけるカナグリプロジン水和物，ダバグリプロジン，フロレチン及びサイトカシンBのGLUT阻害活性を測定した。

結果及び結論
カナグリプロジン水和物のヒト初代培養脂肪細胞におけるインスリン存在下でのGLUT（主にGLUT4[3]）阻害作用のIC₅₀値は，6.8 µmol/Lであった[表2.6.2.2-10]。ダバグリプロジン，フロレチン及びサイトカシンBのIC₅₀値は，それぞれ>30 µmol/L，3.5 µmol/L及び0.54 µmol/Lであった。

表2.6.2.2-10 ヒト初代培養脂肪細胞におけるインスリン存在下でのGLUT阻害作用

<table>
<thead>
<tr>
<th>被験物質</th>
<th>IC₅₀値（µmol/L）</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナグリプロジン水和物</td>
<td>5.8 ± 2.6</td>
<td>3</td>
</tr>
<tr>
<td>ダバグリプロジン</td>
<td>>30</td>
<td>4</td>
</tr>
<tr>
<td>フロレチン</td>
<td>3.5 ± 1.3</td>
<td>4</td>
</tr>
<tr>
<td>サイトカシンB</td>
<td>0.54</td>
<td>1</td>
</tr>
</tbody>
</table>

平均値 ± 標準偏差

インスリン非存在下でのカナグリプロジン水和物の2-DG取り込み阻害率は，20 µmol/L及び50 µmol/Lの濃度において，それぞれ24.9及び37.5%であり[表2.6.2.2-11]，GLUT阻害作用のIC₅₀値は>50 µmol/Lであった。ダバグリプロジン及びフロレチンのIC₅₀値は，それぞれ>100 µmol/L及び>20 µmol/Lであった。サイトカシンBの2-DG取り込み阻害率は，20 µmol/Lの濃度において59.7%であった。

表2.6.2.2-11 ヒト初代培養脂肪細胞におけるインスリン非存在下でのGLUT阻害作用

<table>
<thead>
<tr>
<th>被験物質</th>
<th>濃度（µmol/L）</th>
<th>2-DG取り込み阻害率(%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナグリプロジン水和物</td>
<td>20</td>
<td>24.9（24.0，25.8） a)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>37.5 ± 22.0</td>
<td>4</td>
</tr>
<tr>
<td>ダバグリプロジン</td>
<td>100</td>
<td>4.2（8.6，-0.2） a)</td>
<td>2</td>
</tr>
<tr>
<td>フロレチン</td>
<td>20</td>
<td>18.6 ± 24.5</td>
<td>4</td>
</tr>
<tr>
<td>サイトカシンB</td>
<td>20</td>
<td>59.7</td>
<td>1</td>
</tr>
</tbody>
</table>

平均値 ± 標準偏差
a) 平均値（個別値）
2.6.2.2.1.2.8 ヒト GLUT5 阻害作用

[資料番号：4.2.1.1-21，試験番号：DD312]

目的
ヒト GLUT5 に対するカナグリフロジン水和物の阻害作用を評価した。

方法
ヒト GLUT5 安定発現 CHO 細胞を用いて、D-フルクトースの取り込みを指標に、カナグリフロジン水和物の GLUT5 阻害活性を測定した。

結果及び結論
カナグリフロジン水和物の D-フルクトースの取り込み阻害率は、10 μmol/L 及び 20 μmol/L の濃度において、それぞれ 8.9 及び 0.0% であり [表 2.6.2.2-12]，ヒト GLUT5 に対する IC₅₀ 値は、>20 μmol/L であった。

表 2.6.2.2-12 ヒト GLUT5 阻害作用

<table>
<thead>
<tr>
<th>被験物質</th>
<th>濃度 (μmol/L)</th>
<th>D-フルクトース取り込み阻害率(%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>カナグリフロジン水和物</td>
<td>10</td>
<td>8.9 ± 6.0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.0 ± 14.0</td>
<td>3</td>
</tr>
</tbody>
</table>

平均値 ± 標準偏差

2.6.2.2.1.3 ヒトにおける主な代謝物 M7 及び M5 のヒト SGLT1 及び SGLT2 阻害作用

ヒトにおける主な代謝物である M7 及び M5 [2.7.2.3.3] のヒト SGLT1 及び SGLT2 阻害作用を評価した。

2.6.2.2.1.3.1 M7 のヒト SGLT1 及び SGLT2 阻害作用

[資料番号：4.2.1.1-11，試験番号：DD08324]

目的
M7 のヒト SGLT1 及び SGLT2 阻害作用を評価した。

方法
ヒト SGLT1 又は SGLT2 安定発現 CHO 細胞を用いて、2.6.2.2.1.1.1 と同様に、M7 及びカナグリフロジン水和物の SGLT 阻害活性を測定した。

結果及び結論
M7 のヒト SGLT1 及び SGLT2 に対する IC₅₀ 値は、それぞれ 10 μmol/L 及び 7.6 μmol/L と算出された [表 2.6.2.2-13]。M7 の SGLT2 に対する IC₅₀ 値はカナグリフロジン水和物 [表 2.6.2.2-1] に比べ 1,810 倍高い値であった。
表 2.6.2.2−13 M7 のヒト SGLT1 及び SGLT2 に対する阻害作用

<table>
<thead>
<tr>
<th>被験物質</th>
<th>ヒト SGLT1 IC₅₀ 値 (μmol/L)</th>
<th>ヒト SGLT2 IC₅₀ 値 (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M7</td>
<td>>10 (10, >10)</td>
<td>7.6 (5.9, 9.4)</td>
</tr>
<tr>
<td>カナグリフロジン水和物</td>
<td>1.2 (1.3, 1.0)</td>
<td>0.0062 (0.0073, 0.0051)</td>
</tr>
</tbody>
</table>

平均値（個別値）(n=2)

2.6.2.2.1.3.2 M5 のヒト SGLT1 及び SGLT2 阻害作用

[資料番号：4.2.1.1-12，試験番号：DD08322]

目的
M5 のヒト SGLT1 及び SGLT2 阻害作用を評価した。

方法
ヒト SGLT1 又は SGLT2 安定発現 CHO 細胞を用いて，2.6.2.2.1.1.1 と同様に，M5 及びカナ
グリフロジン水和物の SGLT 阻害活性を測定した。

結果及び結論
M5 のヒト SGLT1 及び SGLT2 に対する IC₅₀ 値は，それぞれ>5 μmol/L 及び 1.0 μmol/L と算
出された [表 2.6.2.2−14]. M5 の SGLT2 に対する IC₅₀ 値はカナグリフロジン水和物 [表 2.6.2.2−1] に比べ 238 倍高い値であった。

表 2.6.2.2−14 M5 のヒト SGLT1 及び SGLT2 に対する阻害作用

<table>
<thead>
<tr>
<th>被験物質</th>
<th>ヒト SGLT1 IC₅₀ 値 (μmol/L)</th>
<th>ヒト SGLT2 IC₅₀ 値 (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>>5 (5, >5)</td>
<td>1.0 (0.9, 1.1)</td>
</tr>
<tr>
<td>カナグリフロジン水和物</td>
<td>0.44 (0.45, 0.42)</td>
<td>0.0013 (0.0016, 0.0010)</td>
</tr>
</tbody>
</table>

平均値（個別値）(n=2)
2.6.2.2.2 *In vivo* 薬理試験

本項のすべての試験において、0.5％ヒドロキシプロピルメチルセルロース（以下、HPMC）を投与媒体として用いた。なお、特に断りのない限り、自由摂食条件下で实施した。

2.6.2.2.2.1 正常動物における検討

2.6.2.2.2.1.1 正常ラットにおける腎糖再吸収阻害作用

[資料番号：4.2.1.1-13、試験番号：□□223]

目的
正常ラットにおけるカナグリプロジン水和物の腎糖再吸収阻害作用を評価した。

方法
6週齢の雄性 Sprague-Dawley（以下、SD）ラットを1群10匹として使用した。代謝ケージに2日間飼育化させた後、カナグリプロジン水和物（1, 3, 10及び30 mg/kg）を投与媒体をそれぞれ単回経口投与した。代謝ケージを用いて投与後24時間までの尿を採取し、尿量を測定した。また、投与24時間後に採血した。尿中及び血漿中のグルコース濃度とクレアチニン濃度を測定し、これらの測定値から、以下の式に基づいて腎糖再吸収阻害率を算出した。

＜算出式＞

\[
UGE (g/kg/24 h) = \frac{UG (mg/dL)}{100} \times \frac{UV (mL/24 h)}{1000} \div \frac{BW (g)}{1000}
\]

Urinary Glucose Excretion (UGE)：尿糖排泄量

Urinary Glucose (UG)：尿中グルコース濃度

Urinary Volume (UV)：尿量

Body Weight (BW)：体重

\[
Ccr (L/kg/24 h) = \frac{Ucr (mg/dL)}{Pcr (mg/dL)} \times \frac{UV (mL/24 h)}{1000} \div \frac{BW (g)}{1000}
\]

Creatinine Clearance (Ccr)：クレアチニンクリアランス

Urinary Creatinine (Ucr)：尿中クレアチニン濃度

Plasma Creatinine (Pcr)：血漿中クレアチニン濃度

Urinary Volume (UV)：尿量

Body Weight (BW)：体重

\[
RGF (g/kg/24 h) = \frac{PG (mg/dL)}{Ccr (L/kg/24 h)} \times 100
\]

Renal Glucose Filtration (RGF)：グルコースろ過量

Plasma Glucose (PG)：血漿中グルコース濃度

Creatinine Clearance (Ccr)：クレアチニンクリアランス

\[
TG (g/kg/24 h) = RGF (g/kg/24 h) - UGE (g/kg/24 h)
\]

Transport Glucose (TG)：各個体の腎糖再吸収量

Renal Glucose Filtration (RGF)：グルコースろ過量

Urinary Glucose Excretion (UGE)：尿糖排泄量
腎糖再吸収阻害率 = \(\frac{\{ \text{TG}_{\text{vehicle}} (\text{g/kg/24 h}) - \text{TG} (\text{g/kg/24 h}) \} \times 100}{\text{Transport Glucose}_{\text{vehicle}} (\text{g/kg/24 h})} \)

Transport Glucose_{vehicle} (TG_{vehicle})：媒体群の腎糖再吸収量（平均値）
Transport Glucose (TG)：各個体の腎糖再吸収量

結果及び結論
正常ラットにおいて、カナグリフロジン水和物は、1 mg/kg 以上の投与量で、媒体群と比較して有意な腎糖再吸収阻害作用を示した [図 2.6.2.2-1]。また、1 mg/kg 以上の投与量で、媒体群と比較して有意な尿糖排泄促進作用を示した [図 2.6.2.2-2]。

図 2.6.2.2-1 正常ラットにおける腎糖再吸収阻害作用
平均値 ± 標準誤差（n=10）。TA-7284：カナグリフロジン水和物
**：P<0.01，媒体（Vehicle）群との比較（Dunnett の多重比較検定）

図 2.6.2.2-2 正常ラットにおける尿糖排泄促進作用
平均値 ± 標準誤差（n=10）。TA-7284：カナグリフロジン水和物
**：P<0.01，媒体（Vehicle）群との比較（Dunnett の多重比較検定）
UGE：尿糖排泄量
2.6.2.2.1.2 正常ラットにおける尿糖排泄促進作用

【資料番号：4.2.1.1-14，試験番号：■010】

目的
正常ラットにおけるカナグリフロンジン水和物の尿糖排泄促進作用を評価し，50%有効用量（以下，ED₅₀）を求めた。

方法
6週齢の雄性SDラットを1群4匹として使用した。代謝ケージに2日間飼育させた後，カナグリフロンジン水和物（0.3，1，3，10及び30 mg/kg）又は媒体をそれぞれ単回経口投与し，代謝ケージを用いて投与後24時間までの尿を採取した。尿量及び尿中のグルコース濃度を測定し，24時間あたりの尿糖排泄量を算出した。また，サテライト群から，血漿中カナグリフロンジン濃度測定[2.6.4.3.2.3]用の血液を採取した。

結果及び結論
正常ラットにおいて，カナグリフロンジン水和物は用量依存的に尿糖排泄量を増加させ，1mg/kg以上の投与量で，媒体群と比較して有意な尿糖排泄促進作用を示した[図 2.6.2.2-3]。ED₅₀値（95%信頼区間）は1.856（1.190-2.894）mg/kgであった。

![グラフ](image)

図 2.6.2.2-3 正常ラットにおける尿糖排泄促進作用
平均値 ± 標準誤差（n=4）．TA-7284: カナグリフロンジン水和物
**: P<0.01，媒体（Vehicle）群との比較（Dunnettの多重比較検定）
UGE: 尿糖排泄量

2.6.2.2.1.3 正常イヌにおける尿糖排泄促進作用

【資料番号：4.2.1.1-15，試験番号：■431】

目的
正常イヌにおけるカナグリフロンジン水和物の尿糖排泄促進作用を評価した。

方法
7〜8ヶ月齢の雄性ビーグル犬を1群4匹として使用した。カナグリフロンジン水和物（0.3，1及び3 mg/kg）又は媒体をクロスオーバー法によりそれぞれ経口投与した。代謝ケージ収
容後に給餌し、投与後24時間までの尿、及び血漿中カナグリフロジン濃度測定[2.6.4.3.3.3]用の血液を採取した。尿量及び尿中のグルコース濃度を測定し、24時間あたりの尿糖排泄量を算出した。

結果及び結論
正常イヌにおいて、カナグリフロジン水和物は0.3 mg/kg以上の投与量で、用量依存的かつ有意な尿糖排泄促進作用を示した [図 2.6.2.2-4]。

![Graph](image)

図 2.6.2.2-4 正常イヌにおける尿糖排泄促進作用
平均値 ± 標準誤差 (n=4)。TA-7284：カナグリフロジン水和物
**：P<0.01、媒体（Vehicle）群との比較（二元配置型の Dunnett 多重比較検定）
UGE：尿糖排泄量

2.6.2.2.1.4 正常イヌにおける曝露量と尿糖排泄促進作用の相関

[資料番号: 4.2.1.1-16, 試験番号:]

目的
2.6.2.2.1.3 で得られた成績及び試験時の血漿中カナグリフロジン濃度測定の結果[2.6.4.3.3.3]に基づいて、正常イヌにおけるカナグリフロジン水和物投与下の尿糖排泄量と投与24時間後までの血漿中濃度—時間曲線下面積（以下、AUC_{0-24h}）及び最高血漿中濃度（以下、C_{max}）との相関性を評価した。

方法
正常イヌにおけるカナグリフロジン水和物投与下の尿糖排泄量[2.6.2.2.1.3]と AUC_{0-24h}及び C_{max}[2.6.4.3.3.3]との間の Pearson の相関係数を95%信頼区間に共に算出し、相関性を評価した。

結果及び結論
AUC_{0-24h} と尿糖排泄量及び C_{max} と尿糖排泄量の間の Pearson の相関係数（95%信頼区間）は、それぞれ0.962 (0.867 - 0.990)及び0.951 (0.832 - 0.987)であり、カナグリフロジン水和物の曝露量と尿糖排泄量の間に良好な相関が認められた [図 2.6.2.2-5]。カナグリフロジン水和物の尿糖排泄促進作用は、血漿中曝露量に依存することが示された。
2.6.2.2−5 正常イヌにおける曝露量と尿糖排泄量の相関

(A) AUC_{0-24h} 及び(B) C_{max} と尿糖排泄量の相関

× カナグリフロジン水和物 (0.3 mg/kg)；△ カナグリフロジン水和物 (1 mg/kg)；
● カナグリフロジン水和物 (3 mg/kg)
UGE: 尿糖排泄量

2.6.2.2.1.5 正常マウスにおける尿糖排泄促進作用

[資料番号: 4.2.1.1-17, 試験番号: 004]

目的
正常マウスにおけるカナグリフロジン水和物の尿糖排泄促進作用を評価し, ED_{50} 値を求めた。

方法
6〜7 週齢の雄性 C57BL/6J マウスを1群4匹として使用した。代謝ケージに2日間飼育させた後, カナグリフロジン水和物 (0.3, 1, 3, 10, 30 及び 100 mg/kg) 及び空気をそれぞれ単回経口投与し, 2.6.2.2.1.2 同様の方法で24時間あたりの尿糖排泄量を算出した。
また, サテライト群から, 血漿中カナグリフロジン濃度測定 [2.6.4.3.1.2] 用の血液を採取した。

結果及び結論
正常マウスにおいて, カナグリフロジン水和物は用量依存的に尿糖排泄量を増加させ, 10 mg/kg 以上の投与で, 媒体群と比較して有意な尿糖排泄促進作用を示した [図 2.6.2.2−6]. ED_{50} 値 (95%信頼区間) 是 8.174 (4.388 - 15.22) mg/kg であった.
2.6.2 薬理試験の概要文

図 2.6.2.2-6 正常マウスにおける尿糖排泄促進作用

平均値 ± 標準誤差（n=4）．TA-7284：カナグリフロジン水和物
**：P<0.01，対照（Vehicle）群との比較（Dunnett の多重比較検定）
UGE：尿糖排泄量

2.6.2.2.2 2 型糖尿病モデル動物における検討

2.6.2.2.2.1 ZDF ラットにおける糖再吸収阻害作用

目的

肥満2型糖尿病モデルであるZDFラットにおけるカナグリフロジン水和物の糖再吸収阻害作用を評価した。

方法

9〜10週齢の雄性ZDFラットを1群9匹として使用した。代謝ケージに2日間飼育させた後，カナグリフロジン水和物（0.3, 3及び30 mg/kg）又は対照をそれぞれ単回胃口投与した。代謝ケージを用いて投与1, 2, 4及び6時間後に尿を採取し，尿量を測定した。また，投与前及び投与1, 2, 4及び6時間後に採血した。2.6.2.2.2.1と同様の算出方法を用いて，各時点の糖再吸収阻害率を求めた。投与6時間後までの糖再吸収阻害率の時間曲線下面積（以下，AUC_{iRGR_{oab}}）及び投与6時間後までの血漿中グルコース濃度の時間曲線下面積（以下，AUC_{PG_{oab}}）をそれぞれ算出した。

結果及び結論

ZDFラットにおいて，カナグリフロジン水和物は用量依存的に糖再吸収を阻害した。投与2及び4時間後では3mg/kg以上の投与量で，投与6時間後では0.3mg/kg以上の投与量で，糖再吸収阻害率の有意な上昇が認められた[図 2.6.2.2-7, A 及び C]。また，カナグリフロジン水和物はZDFラットの血漿中グルコース濃度を用量依存的に低下させた。投与1, 2, 4及び6時間後のいずれの時点においても，0.3mg/kg以上の投与量で有意な低値を示した[図 2.6.2.2-7, B 及び D]。
図 2.6.2.2-7 ZDF ラットにおける腎糖再吸収阻害作用

平均値 ± 標準誤差．TA-7284 : カナグリフロジン水和物
（A）腎糖再吸収阻害率，及び（B）血漿中グルコース濃度の経時推移
□ 媒体（Vehicle）, n=8; ● カナグリフロジン水和物（0.3 mg/kg）, n=8;
▲ カナグリフロジン水和物（3 mg/kg）, n=8; ◆ カナグリフロジン水和物（30 mg/kg）, n=9

(C) AUC_iRGR_{0-6h} (%·h) （D）AUC_PGo_{0-6h} (mg·h/dL)
媒体（Vehicle）, n=8; カナグリフロジン水和物（0.3 mg/kg）, n=8;
カナグリフロジン水和物（3 mg/kg）, n=8; カナグリフロジン水和物（30 mg/kg）, n=9

**: P<0.01, *: P<0.05，媒体群との比較（Dunnett の多重比較検定）
2.6.2.2.2.2 ZDF及びZDF-leanラットにおける血糖低下作用

【資料番号：4.2.1.1-19、試験番号：831】

目的
ZDFラット及びその正常対照であるZDF-leanラットにおけるカナグリフロジン水和物の血糖低下作用を評価した。

方法
13週齢の雄性ZDFラット及びZDF-leanラットを1群6匹としてそれぞれ使用した。カナグリフロジン水和物（1, 3及び10mg/kg）又は媒体をそれぞれ単回経口投与し、投与前及び投与1, 2, 4, 6及び24時間後に採血し、血漿中グルコース濃度を測定した。各投与群における投与24時間後までの血漿中グルコース濃度の時間曲線面積（以下、AUC_PCo_24）をそれぞれ算出した。同時に、血漿中カナグリフロジン濃度測定[2.6.4.3.2.4]用の血液を採取した。

結果及び結論
ZDFラットにおいて、カナグリフロジン水和物は1mg/kg以上の投与量で、媒体群に比較して、有意に血漿中グルコース濃度を低下させた[表2.6.2.2-16, A][図2.6.2.2-8, C]。10mg/kg投与群では、投与6時間後に血漿中グルコース濃度の低下が最大となり、媒体群に対して約300mg/dLの低下であった[表2.6.2.2-15, A][図2.6.2.2-8, A]。一方、ZDF-leanラットにおいても、カナグリフロジン水和物是有意に血漿中グルコース濃度を低下させた[表2.6.2.2-16, B][図2.6.2.2-8, D]。10mg/kg投与群では、投与2時間後に血漿中グルコース濃度の低下が最大となったが、媒体群に対して約20mg/dLの低下であった[表2.6.2.2-15, B][図2.6.2.2-8, B]。

各投与量各時点の血漿中カナグリフロジン濃度を、ZDFラットとZDF-leanラットで比較したところ、いずれも1.13〜1.68倍の範囲内であり、明らかな系統差は認められなかった[図2.6.4.3-6]。
表 2.6.2.2-15 ZDF（A）及びZDF-lean（B）ラットにおける
血漿中グルコース濃度（mg/dL）推移

(A)

<table>
<thead>
<tr>
<th>系統</th>
<th>ZDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>被験物質</td>
<td>媒体</td>
</tr>
<tr>
<td></td>
<td>カナグリフロジン水和物</td>
</tr>
<tr>
<td>投与量 (mg/kg)</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
</tr>
<tr>
<td>投与後の時間 (h)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>633.42 ± 25.18</td>
</tr>
<tr>
<td>1</td>
<td>614.35 ± 28.18</td>
</tr>
<tr>
<td>2</td>
<td>648.42 ± 23.51</td>
</tr>
<tr>
<td>4</td>
<td>667.48 ± 19.20</td>
</tr>
<tr>
<td>6</td>
<td>653.13 ± 11.29</td>
</tr>
<tr>
<td>24</td>
<td>605.92 ± 24.11</td>
</tr>
</tbody>
</table>

(B)

<table>
<thead>
<tr>
<th>系統</th>
<th>ZDF-lean</th>
</tr>
</thead>
<tbody>
<tr>
<td>被験物質</td>
<td>媒体</td>
</tr>
<tr>
<td></td>
<td>カナグリフロジン水和物</td>
</tr>
<tr>
<td>投与量 (mg/kg)</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
</tr>
<tr>
<td>投与後の時間 (h)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>141.33 ± 1.81</td>
</tr>
<tr>
<td>1</td>
<td>141.73 ± 3.17</td>
</tr>
<tr>
<td>2</td>
<td>141.35 ± 2.65</td>
</tr>
<tr>
<td>4</td>
<td>146.78 ± 4.93</td>
</tr>
<tr>
<td>6</td>
<td>146.60 ± 2.42</td>
</tr>
<tr>
<td>24</td>
<td>144.80 ± 3.53</td>
</tr>
</tbody>
</table>

平均値 ± 標準誤差。
**: P<0.01, *: P<0.05，媒体群との比較（Dunnett の多重比較検定）

表 2.6.2.2-16 ZDF (A) 及びZDF-lean (B) ラットにおけるAUC_PG0-24h（mg·h/dL）

(A)

<table>
<thead>
<tr>
<th>系統</th>
<th>ZDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>被験物質</td>
<td>媒体</td>
</tr>
<tr>
<td></td>
<td>カナグリフロジン水和物</td>
</tr>
<tr>
<td>投与量 (mg/kg)</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
</tr>
<tr>
<td>AUC_PG0-24h</td>
<td>15223.27 ± 389.53</td>
</tr>
</tbody>
</table>

(B)

<table>
<thead>
<tr>
<th>系統</th>
<th>ZDF-lean</th>
</tr>
</thead>
<tbody>
<tr>
<td>被験物質</td>
<td>媒体</td>
</tr>
<tr>
<td></td>
<td>カナグリフロジン水和物</td>
</tr>
<tr>
<td>投与量 (mg/kg)</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
</tr>
<tr>
<td>AUC_PG0-24h</td>
<td>3487.22 ± 44.55</td>
</tr>
</tbody>
</table>

平均値 ± 標準誤差。
**: P<0.01，媒体群との比較（Dunnett の多重比較検定）
図 2.6.2.2-8 ZDF及びZDF-leanラットにおける血糖低下作用

平均値±標準誤差（n=6）、TA-7284：カナグリフロジン水和物
(A) ZDFラット、(B) ZDF-leanラットにおける血漿中グルコース濃度推移
(C) ZDFラット、(D) ZDF-leanラットにおけるAUC_Pg0-24h（mg/dL）
図中の数値は対照群（Vehicle）群のAUC_Pg0-24hに対する低下率を示す。
**: P<0.01, *: P<0.05, 対照群との比較（Dunnettの多重比較検定）

2.6.2.2.2.3 ZDFラットにおける反復投与での糖尿病改善作用

[資料番号：4.2.1.1-20，試験番号：DP-002]

目的
ZDFラットにおけるカナグリフロジン水和物の糖尿病病態改善作用を4週間反復経口投与に
て評価した。
2.6.2 薬理試験の概要文

方法
10~11週齢の雄性ZDFラットを1群8匹として使用した。カナグリフロジン水和物（3, 10及び30mg/kg）又は媒体をそれぞれ1日1回、4週間反復経口投与した。投与開始時に体重、摂餌量及び血糖値を測定した。血糖値の測定には簡易血糖測定器を用いた。投与最経に、血漿中グルコース濃度、血漿中インスリン濃度及びHbA1cを測定した。血漿中グルコース濃度及びHbA1cは生化学自動分析装置を用いて測定し、血漿中インスリン濃度はELISAキットを用いて測定した。

また、投与24日目の投与1時間後に、2g/kgのグルコースを経口負荷し、負荷後4時間の尿糖排泄量をと同様の方法で算出した。投与26日目の投与1時間後に、一晩絶食条件下で2g/kgのグルコースを経口負荷し、グルコース負荷前及び負荷後30, 60及び120分の血糖値及び血漿中インスリン濃度を測定した。各投与群におけるグルコース負荷後120分までの血糖値の時間曲線下面積（以下、AUC BG0~120min）及び血漿中インスリン濃度の時間曲線下面積（以下、AUC Ins0~120min）を算出した。

結果及び結論
ZDFラットにおいて、カナグリフロジン水和物は3mg/kg以上の投与量で血糖値を持続的に低下させた[表2.6.2.2-17]。また、3mg/kg以上の投与量で有意な体重増加が認められた[表2.6.2.2-18]が、摂餌量には有意な差は認められなかった[表2.6.2.2-19]。

投与4週間後において、3mg/kg以上の投与量で血漿中グルコース濃度及びHbA1cの有意な低下、並びに、血漿中インスリン濃度の有意な上昇が認められた[表2.6.2.2-20]。

<table>
<thead>
<tr>
<th>被験物質</th>
<th>媒体</th>
<th>カナグリフロジン水和物</th>
</tr>
</thead>
<tbody>
<tr>
<td>投与量(mg/kg)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>投与開始後の日数</td>
<td>1</td>
<td>433.8 ± 22.7</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>74.3 ± 13.6</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>525.6 ± 7.3</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>472.9 ± 12.7</td>
</tr>
</tbody>
</table>

平均値 ± 標準誤差。投与初日を投与1日目として表した。
*: P<0.05，媒体群との比較（Dunnettの多重比較検定）

<table>
<thead>
<tr>
<th>被験物質</th>
<th>媒体</th>
<th>カナグリフロジン水和物</th>
</tr>
</thead>
<tbody>
<tr>
<td>投与量(mg/kg)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>投与開始後の日数</td>
<td>8</td>
<td>19.4 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>26.6 ± 4.6</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>35.4 ± 3.4</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>34.6 ± 2.6</td>
</tr>
</tbody>
</table>

平均値 ± 標準誤差。投与初日を投与1日目として表した。
*: P<0.05，媒体群との比較（Dunnettの多重比較検定）
2.6.2 薬理試験の概要文

表 2.6.2.2-19 ZDF ラットにおける 4 週間反復投与中の 1 日あたりの摂餌量（g）の推移

<table>
<thead>
<tr>
<th>被験物質</th>
<th>媒体</th>
<th>カナグリフロジン水和物</th>
</tr>
</thead>
<tbody>
<tr>
<td>投与量（mg/kg）</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>投与開始後の日数</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>35.1 ± 0.9</td>
<td>44.6 ± 1.3</td>
<td>44.3 ± 1.0</td>
</tr>
<tr>
<td>35.5 ± 1.2</td>
<td>46.4 ± 1.7</td>
<td>38.5 ± 3.1</td>
</tr>
<tr>
<td>36.6 ± 1.8</td>
<td>43.6 ± 4.6</td>
<td>33.6 ± 3.5</td>
</tr>
<tr>
<td>30.0 ± 0.5</td>
<td>40.7 ± 0.9</td>
<td>35.3 ± 2.8</td>
</tr>
</tbody>
</table>

平均値 ± 標準誤差。投与初日を投与 1 日目として表した。

表 2.6.2.2-20 ZDF ラットにおける 4 週間反復投与後の血漿中グルコース濃度、血漿中インスリン濃度及び HbA1c に対する作用

<table>
<thead>
<tr>
<th>被験物質</th>
<th>媒体</th>
<th>カナグリフロジン水和物</th>
</tr>
</thead>
<tbody>
<tr>
<td>投与量（mg/kg）</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>血漿中グルコース濃度 (mg/dL)</td>
<td>598.2 ± 18.0</td>
<td>248.0 ± 13.5*</td>
</tr>
<tr>
<td>血漿中インスリン濃度 (ng/mL)</td>
<td>5.2 ± 0.4</td>
<td>7.9 ± 0.1*</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>11.5 ± 0.3</td>
<td>7.1 ± 0.3*</td>
</tr>
</tbody>
</table>

平均値 ± 標準誤差。
* : P< 0.05，媒体群との比較（Dunnett の多重比較検定）

投与 24 日目の非絶食下経口糖負荷後 4 時間の尿糖排抜量は、媒体群、3、10 及び 30 mg/kg 投与群で、それぞれ 3,531 ± 232, 2,251 ± 129, 1,357 ± 223 及び 1,815 ± 351 mg/4 h（平均値 ± 標準誤差）であり、3 mg/kg 以上の投与量で媒体群と比較して有意に低下した。
投与 26 日目に実施した経口糖負荷試験において、AUC_BG0-120min は、3 mg/kg 以上の投与量で媒体群と比較して有意な低値を示した。また、AUC_Ins0-120min は、3 mg/kg 以上の投与量で媒体群と比較して有意な高値を示した [表 2.6.2.2-21]。

表 2.6.2.2-21 ZDF ラットにおける経口糖負荷時の AUC_BG0-120min 及び AUC_Ins0-120min に対する作用

<table>
<thead>
<tr>
<th>被験物質</th>
<th>媒体</th>
<th>カナグリフロジン水和物</th>
</tr>
</thead>
<tbody>
<tr>
<td>投与量（mg/kg）</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>AUC_BG0-120min (mg min/dL)</td>
<td>70704 ± 1289</td>
<td>27883 ± 1806*</td>
</tr>
<tr>
<td>AUC_Ins0-120min (ng min/mL)</td>
<td>221 ± 13</td>
<td>342 ± 27*</td>
</tr>
</tbody>
</table>

平均値 ± 標準誤差。
* : P< 0.05，媒体群との比較（Dunnett の多重比較検定）
2.6.2.3 副次的薬理試験

2.6.2.3.1 各種受容体等に対する選択性

【資料番号：4.2.1.2-I，試験番号：DD-395】

目的
各種受容体等の各リガンド結合に対するカナグリプロソジンの阻害作用を評価した。

方法
50 種類の受容体、イオンチャネル及び輸送体の各リガンド結合に対するカナグリプロソジン
(1, 10 μmol/L)の阻害作用を in vitro アッセイにて検討した（n=2）。

結果及び結論
カナグリプロソジンは、アドノシン A1 受容体、ノルヒビネフリン輸送体及び 5-HT2A 受容体
に対する各リガンドの結合を、10 μmol/L の濃度でそれぞれ 62, 51 及び 56%阻害した。1
μmol/L の濃度では 50%以上の結合阻害を示さなかった。
その他の受容体等に対しては、1 及び 10 μmol/L の濃度で 50%以上の結合阻害を示さなかっ
た。

2.6.2.4 安全性薬理試験

カナグリプロソジン水和物の中枢神経系、心血管系及び呼吸器系に及ぼす有害な薬理作用を
動物、摘出組織及び細胞を用いて検討した。参考資料とした試験を除き、いずれの試験も日
米 EU 医薬品規制調和国際会議（以下，ICH）S7A ガイドラインに従い、医薬品の安全性に
に関する非臨床試験の実施の基準（GLP）に準拠して実施した。なお、ICH S7B ガイドライン
施行前に実施した一部試験（hERG 電流に及ぼす影響）については、GLP 非適用試験として
実施した。

2.6.2.4.1 中枢神経系に対する作用

2.6.2.4.1.1 ラットにおける一般症状及び行動への影響

【資料番号：4.2.1.3-I，試験番号：TOX7637】

雄性 SD ラットにカナグリプロソジン水和物の 250, 500 及び 1000 mg/kg（無水物として 245,
490 及び 980 mg/kg）を単回経口投与した（n=5/群）。対照群には 0.5% HPMC を投与した。投
与前及び投与後 2, 4, 6, 24 時間、並びに投與後 8 日に Irwin 変法を用いて一般症状及び行
動を観察した。更に、投与前、投与後 6 時間及び投与後 8 日に体重を、投与前及び投与後 8
日に体重を測定した。

その結果、カナグリプロソジン水和物はいずれの投薬群においても中枢神経症状及び体温に
影響を及ぼさなかった。一方、すべての投薬群で投与日あるいは投与翌日から便の異常（便
量減少，軟便及び水様便，投与後 8 日には回復）及び体重増加抑制が認められた。
2.6.2.4.2 心血管系に対する作用

2.6.2.4.2.1 hERG 電流への影響

【資料番号：4.2.1.3-2（参考資料）, 試験番号：CPF1344】

hERG 導入 HEK293 細胞にカナグリフロジン水和物の 0.1, 0.3 及び 3 μmol/L を低濃度から順次、5 分間隔で漸増適用し (n=3), hERG 電流をホールセルパッチクランプ法により測定した。媒体対照には DMSO を 0.1%（v/v）の割合で添加した灌流液を使用した。

その結果、カナグリフロジン水和物はいずれの濃度においても媒体対照群と比較して hERG 電流に影響を及ぼさなかった。陽性対照である Astemizole は明らかな阻害作用を示した（阻害率：3 nmol/L: 69.7%, 10 nmol/L: 96.0%, 30 nmol/L: 98.0%）。なお、本検討ではカナグリフロジン灌流液中の濃度分析法に不備があり、カナグリフロジン 3 µmol/L 灌流液については正確な定量値を得ることができなかった。

2.6.2.4.2.2 ウサギのランゲンドルフ灌流心標本における活動電位及び冠血流量への影響

【資料番号：4.2.1.3-3（参考資料）, 試験番号：HPC51】

雌性 New Zealand White ウサギから摘出した心臓をランゲンドルフ灌流心標本(n=6)とし、カナグリフロジン水和物の 0.1, 0.3, 1, 3, 10 μmol/L を低濃度から順に 30 分間隔で漸増適用した。媒体対照には DMSO を 0.1%（v/v）の割合で添加した灌流液を使用した。試験では SCREENIT 法【4】により活動電位の 30, 60 及び 90%再分極時の持続時間（以下, APD_{30}, APD_{60} 及び APD_{90}）, APD_{60} の不安定性（instability index of APD）, APD_{60} と APD_{90} の差を指標とした活動電位の第三相の三角形化（triangulation）, 心室性頻拍及び心室細動を除く異所性収縮数を指標とした心不整脈数の逆頻度依存性を 60 beats/min のペーシング下で評価した。更に、冠血流量及び心室内伝導時間の測定、及び早期後脱分極、右室細動の有無も記録した。

その結果、APD_{60} が 3 μmol/L 以上で有意に短縮した。冠血流量が 1 及び 3 μmol/L で有意に増加し、10 μmol/L で増加傾向にあったが、3 μmol/L 以下の冠血流量増加は媒体での変動範囲内であり、被験試薬による影響はないと考えられた。他の評価項目については 10 μmol/L まで影響は認められなかった。

2.6.2.4.2.3 麻酔下モルモットにおける血圧、心拍数及び心電図への影響

【資料番号：4.2.1.3-4（参考資料）, 試験番号：DD06329】

ペントバルビタール麻酔処置を施した Hartley モルモットの雌にカナグリフロジン水和物を 0.16, 0.32, 0.63, 1.25, 2.5 及び 5 mg/kg（無水物として 0.157, 0.314, 0.617, 1.23, 2.45 及び 4.9 mg/kg）の用量を順次、15 分間隔で累積的に静脈内投与し（累積投与量 9.86 mg/kg, n=6）、血圧、心拍数及び心電図（QRS 間隔、PR 間隔、QT/QTc 間隔）に対する作用を検討した。QTc は Bazzet の式を用いて算出した。媒体対照には 10%ポリエチレングリコール(15)-ヒドロキシステアリン酸を添加した 5% dextrose 水溶液を使用した。更に、それぞれの用量の投与後 5 分に血漿中カナグリフロジン濃度を測定した。
その結果，いずれの投与量においても血圧，心拍数及び心電図（QRS 間隔，PR 間隔，QT/QTc 間隔）に影響を及ぼさなかった。QRS 間隔については 0.63，1.25 及び 2.5 mg/kg においてベースラインからの変化率が対照群に比べ有意に高値を示したが，対照群の低値に起因した変化であり，薬剤による変化ではないと考えられた。5 mg/kg 投与後 5 分の血漿中カナグラフリン濃度は 12,749 ng/mL であった。

2.6.2.4.2.4 警告下イヌにおける血圧，心拍数，体温及び心電図への影響

[資料番号：4.2.1.3-5, 試験番号：TOX7722]

テレミトリー送信機を埋め込んだ雄性ビーグル犬に媒体（0.5% HPMC），カナグラフリン水和物の 4，40 及び 400 mg/kg（無水物として 3.92，39.2，392 mg/kg）を順次，1 週間間隔で単回経口投与し（n=4），無麻酔無拘束下における血圧，心拍数，体温及び心電図（RR 間隔，PR 間隔，QRS 間隔，QT/QTc 間隔）を投与後 20 時間まで測定した。QTc については無麻酔無拘束下のイヌにおいて Bazzet や Fridericia 等の QT 補正式と比較しても良好な補正能を示すことが報告されている Miyazaki らの補正式 [5] を用いて算出した。

その結果，いずれの投与量においても血圧，心拍数及び心電図パラメータに影響を及ぼさなかった。体温は，400 mg/kg 投与時に対照群と比較して軽微な低下（投与後 2.25 時間で 0.85℃ 低下）が認められたが，投与後 18 時間には回復した。また，すべての投与量において嘔吐や便の異常（軟便及び水様便など）が認められた。

2.6.2.4.3 呼吸器系への影響

2.6.2.4.3.1 警告下イヌにおける一回換気量，分時換気量及び呼吸数への影響

[資料番号：4.2.1.3-5, 試験番号：TOX7722]

上述の 2.6.2.4.2.4 項と同一試験において，血圧，心拍数，体温及び心電図への影響の評価の終了後，引き続いて呼吸器系への影響も評価した。テレミトリー送信機を埋め込んだ雌性ビーグル犬に，媒体（0.5% HPMC），カナグラフリン水和物を 4，40 及び 400 mg/kg（無水物として 3.92，39.2，392 mg/kg）を順次，1 週間間隔で単回経口投与し，一回換気量，分時換気量及び呼吸数を無麻酔下で投与後 4 時間まで測定した。

その結果，カナグラフリン水和物はいずれの投与量においても測定した呼吸器系パラメータに対して影響を及ぼさなかった。なお，呼吸器系への評価時には，400 mg/kg 投与時の 1 例で嘔吐が認められた。

2.6.2.5 薬効学的薬物相互作用試験

該当なし。
2.6.2.6 考察及び結論

カナグリフロジン水和物の効力を裏付ける試験として、in vitro 及び in vivo 試験を実施した。In vitro 試験では SGLT2 の阻害作用、類縁糖輸送担体である SGLT の各サブタイプ及び GLUT に対する阻害作用をそれぞれ評価した。また、ヒトにおける主な代謝物 M7 及び M5 の SGLT1 及び SGLT2 に対する阻害作用を評価した。In vivo 試験では、正常動物及び 2 型糖尿病モデル動物を用いて、カナグリフロジン水和物の作用機序及び血糖低下作用を検討した。副次的薬理試験として、各種受容体、イオンチャネル及び輸送体等の各リガンド結合に対する阻害作用を評価した。更に、安全性薬理試験を実施した。

日本人の 2 型糖尿病患者に対する 1 日投与量は 100 mg である。2 型糖尿病患者にカナグリフロジン 100 mg/日を 14 日間投与した際の C_{max} は 1,136 ng/mL [2.7.6.12] であった。ヒトの血漿中たん白結合率は 98.30% [表 2.6.4.4-3] であり、非結合型濃度の C_{max} は 19.31 ng/mL （=43.4 nmol/L）と計算される。以下、ヒト曝露量と非臨床成績を比較する場合には、これらの数値に基づいた。

In vitro 試験において、カナグリフロジン水和物はヒト SGLT2 に対して阻害作用を示し、I_{50} 値は 4.2 nmol/L であった。また、ラット及びマウス SGLT2 に対する I_{50} 値は、それぞれ 3.7 nmol/L 及び 5.6 nmol/L であった。一方、ヒト SGLT1 に対する阻害作用は、SGLT2 に対する阻害作用と比較して弱く、I_{50} 値は 663 nmol/L であった。また、ラット及びマウス SGLT1 に対する I_{50} 値は、それぞれ 555 nmol/L 及び 613 nmol/L であった。ヒト SGLT1 の I_{50} 値は、ヒト SGLT2 に対する値の 158 倍であり、日本人の 2 型糖尿病患者における 1 日投与量（100 mg）の C_{max}（非結合型濃度）の約 15 倍であった。

ヒト SGLT3、SGLT4、SGLT6、SMIT1 に対する I_{50} 値は、ヒト SGLT2 に対する値の 738 ～約 2,400 倍以上であった。また、L6 細胞、HepG2 細胞及びヒト初代培養脂肪細胞における GLUT、並びに、ヒト GLUT5 に対する I_{50} 値は、ヒト SGLT2 に対する値の 1,619 ～約 12,000 倍以上であった。これらの結果から、カナグリフロジン水和物は SGLT2 に対して高い選択性を有することが示された。

ヒトにおける主な代謝物である M7 及び M5 のヒト SGLT2 に対する阻害作用の I_{50} 値は、カナグリフロジン水和物の、それぞれ 1,810 倍及び 238 倍であった。したがって、カナグリフロジン水和物の未変化体が血糖低下作用に寄与すると推察された。

In vivo 試験において、カナグリフロジン水和物の単回投与により、正常ラットで腎糖再吸収阻害作用及び用量依存的な尿糖排泄促進作用が認められた。また、正常マウスにおいても用量依存的な尿糖排泄促進作用が認められた。これらの試験において、カナグリフロジン水和物の血漿中曝露量は投与量に応じて増加した [2.6.4.3.2.3] [2.6.4.3.1.2]。更に、正常イヌにおいては、用量依存的な尿糖排泄促進作用が認められ、カナグリフロジン水和物の血漿中曝露量と尿糖排泄促進作用の間に良好な相関が認められた。

肥満 2 型糖尿病モデルで高血糖を呈する ZDF ラットにおいて、カナグリフロジン水和物の
単回投与により、用量依存的な腎糖再吸収阻害作用及び血糖低下作用が認められた。カナグリフロジン水和物は、SGLT2を阻害することによって、腎におけるグルコースの再吸収を阻害し、尿糖としての排泄を促進した結果、血糖低下作用を示すことが示唆された。

ZDFラットとその正常対照であるZDF-leanラットにおいて、カナグリフロジン水和物の血糖低下作用を評価した。ZDFラットに単回投与すると、有意な血糖低下作用が認められた。一方、ZDF-leanラットにおいても、媒体群に比し有意な血糖低下が認められたが、10 mg/kg投与で、ZDFラットにおける血漿中グルコース濃度の低下が最大で約300 mg/dLであったのに対し、ZDF-leanラットでは最大で約20 mg/dLの低下であった。このときの各投与量、各時点での血漿中カナグリフロジン濃度は、両系統間で大きな違いは認められなかった。したがって、カナグリフロジン水和物は、正常血糖状態では血糖値への影響が小さく、高血糖状態で強い血糖低下作用を発揮するという特徴を有することが示唆された。

ZDFラットにカナグリフロジン水和物を4週間に反復投与すると、持続的な血糖低下作用及びHbA1c低下作用、並びに血漿中インスリン濃度の上昇が認められた。また、反復投与後の糖負荷試験では、血糖上昇抑制及びグルコース応答性のインスリン分泌能の改善がそれぞれ認められた。カナグリフロジン水和物の反覆投与により持続的に血糖が低下し、糖毒性が軽減された結果、インスリン分泌能が改善したことが示唆された。

副次的薬理試験として、種々受容体等に対する選択性を検討した。その結果、カナグリフロジンは10 μmol/Lの濃度で、アデノシンA1受容体、ノルエピネフリン輸送体及び5-HT2A受容体に対する各リガンドの結合を、それぞれ62、51及び56%阻害したが、1 μmol/Lの濃度では50%以上の結合阻害を示さなかった。日本人の2型糖尿病患者における1日投与量（100 mg）のCmax（非結合型濃度）と阻害が認められた受容体に作用を示す濃度（10 μmol/L）の比は約230倍以上である。カナグリフロジンの脳内移行性が低い（AUC0-24hの組織/血漿比は約0.1）ことを考えあわせると、上記受容体等に作用を示す濃度はヒトで想定される脳内濃度と比較して極めて高い濃度と考えられる。なお、安全性薬理試験においては、中枢神経系や心血管系に対する軽微な所見が認められているが、これらの所見がみられた用量での血漿中及び脳内濃度は上記の受容体等への作用が発現する濃度に達していないことから、上記受容体等への結合活性に起因した可能性は低いと考えられた。また、日本人の1日投与量（100 mg）よりも高い投与量で実施された臨床試験において、中枢、心血管系及び呼吸器系を含む安全性に問題はなく、忍容性が確認されており、ヒトにおいて上記結合活性に起因する有害事象が発生する可能性は低いと考えられた。

安全性薬理試験として、中枢神経系、心血管系及び呼吸器系に対するカナグリフロジン水和物の影響を検討した。以下にその結果の概要を考察、並びに日本人の1日投与量（100 mg）における曝露（Cmax 即結合型）に基づいた安全域を記載した。なお、麻酔下モルモットにおける血圧、心拍数及び心電図への影響を検討した試験においては、モルモットの血漿たん白結合率が不明のため、総濃度に基づいて安全域を記載した。
中枢神経系については、ラットを用いて一般症状及び行動への影響を検討した結果、最高用量である 1000 mg/kg の単回経口投与でも影響は認められず、安全域は約 79 倍であった。なお、覚醒下イヌを用いた安全性薬理試験では 400 mg/kg の経口投与でわずかな体温低下が認められ、安全域は約 9.8 倍であった。この体温低下は、カナグリフロジン水和物の副次的薬理試験で認められた受容体等への結合活性に起因した可能性は低いと考えられ、高用量のカナグリフロジン水和物をイヌに投与することによって、低血糖によるエネルギー低下に対応した代償性変化 [8] [9] に起因した可能性が考えられた。

心血管系については、hERG 電流への影響、ウサギランゲンドルフ灌流心標本を用いた活動電位及び冠血流量への影響、麻酔下モルモットを用いた血圧、心拍数及び心電図への影響、並びに覚醒下イヌにおける血圧、心拍数及び心電図への影響を検討した。hERG チャネル発現 HEK293 細胞における hERG 電流には 3 μmol/L (=1,334 ng/mL) までの濃度条件下で影響はみられず、安全域は約 69 倍であった。ウサギの灌流心標本では 3 μmol/L 以上で APD60 の短縮が認められたことから、無影響量は 1 μmol/L (=444.5 ng/mL) であり、安全域は約 23 倍であった。麻酔下モルモットを用いた検討では 5 mg/kg まで心血管系には影響を及ぼさず、安全域は約 11 倍であった。覚醒下イヌにおける血圧、心拍数及び心電図では、いずれの投与量でも影響はみられず、安全域は約 35 倍であった。

呼吸については、覚醒下イヌを用いた試験で合わせて評価したが、いずれの投与量でも影響は認められず、安全域は約 35 倍であった。

安全性薬理試験において、中枢神経系、心血管系及び呼吸器系以外に観察された変化として、ラットあるいはイヌで軟便及び水様便等の便の異常や嘔吐が認められた。便の異常に関して、SGLT1 欠損者では下痢、脱水を伴う重篤な腸管からの糖吸収障害（グルコース・ガラクトース吸収不全症）が生じることが知られている [10]。カナグリフロジン水和物は SGLT2 に対して選択的阻害作用を示すが、高用量投与後の消化管内では局所的に高濃度となり、SGLT1 においてても阻害作用を示した結果、グルコースの吸収不全が生じ、消化器症候が生じた可能性が考えられた。なお、ヒトにおけるグルコース負荷試験において、臨床用量では消化管の SGLT1 阻害によるグルコースの吸収不全は生じない結果が得られている [2.7.6.33]。嘔吐に関して、カナグリフロジンはオピオイドやドパミン D2 受容体など嘔吐に関連する受容体への結合活性を有しないこと、及び嘔吐が投与中を含む投与早期に認められていることから、カナグリフロジンが胃腸管粘膜を刺激し、迷走神経の内臓神経路を介して孤束核及び嘔吐中枢を刺激して嘔吐が誘発した可能性と考えられた。しかし、便の異常、嘔吐ともに、臨床試験での増加が認められないこと [2.7.4.2.1.5.2.12] から、臨床用量ではヒトにこれらの異常が生じる可能性は低いと判断した。

以上、カナグリフロジン水和物は、腎におけるグルコース再吸収を阻害し、血中のグルコースを尿糖として排泄することによって血糖低下作用を示し、反復投与により糖尿病の病態改善作用を示すことから、2 型糖尿病治療薬として高い有用性を有すると考えられる。
2.6.2.7 図表
本文中に記載した。

参考文献

カナグル®錠 100mg
製造販売承認申請書添付資料
第 2 部（モジュール 2）

2.6 非臨床試験の概要文及び概要表
2.6.3 薬理試験概要表

田辺三菱製薬株式会社
目次

略語・略号一覧 ... 3

2.6.3 薬理試験概要表 .. 4

2.6.3.1 薬理試験：一覧表 .. 4
2.6.3.2 効力を裏付ける試験 .. 7
2.6.3.3 副次的薬理試験 .. 10
2.6.3.4 安全性薬理試験 .. 11
2.6.3.5 薬力学的薬物相互作用試験 .. 12
略語・略号一覧

<table>
<thead>
<tr>
<th>略語・略号</th>
<th>略していない表現（英語）</th>
<th>略していない表現（日本語）</th>
</tr>
</thead>
<tbody>
<tr>
<td>APD</td>
<td>action potential duration</td>
<td>活動電位持続時間</td>
</tr>
<tr>
<td>AUC_BG0-120min</td>
<td>area under the curve for blood glucose from time zero to 120 min</td>
<td>グルコース負荷後120分までの血糖値の時間曲線下面積</td>
</tr>
<tr>
<td>AUC_Ins0-120min</td>
<td>area under the curve for plasma insulin concentration from time zero to 120 min</td>
<td>グルコース負荷後120分までの血漿中インスリン濃度の時間曲線下面積</td>
</tr>
<tr>
<td>CHO 細胞</td>
<td>chinese hamster ovary cell</td>
<td>チャイニーズハムスター卵巣由来線維芽細胞</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
<td>ジメチルスルホキシド</td>
</tr>
<tr>
<td>ED50</td>
<td>half maximal(50%) effective dose</td>
<td>50% 有効用量</td>
</tr>
<tr>
<td>GLP</td>
<td>Good Laboratory Practice</td>
<td>医薬品の安全性に関する非臨床試験の実施の基準</td>
</tr>
<tr>
<td>GLUT</td>
<td>facilitative glucose transporter</td>
<td>促通拡散型糖輸送担体</td>
</tr>
<tr>
<td>HEK293 細胞</td>
<td>human embryonic kidney cell 293</td>
<td>ヒト胎児腎由来細胞 293</td>
</tr>
<tr>
<td>HepG2 細胞</td>
<td>human hepatocellular carcinoma cell</td>
<td>ヒト肝腫瘍由来細胞</td>
</tr>
<tr>
<td>hERG</td>
<td>human ether a-go-go related gene</td>
<td>ヒト急速活性型遲延整流カリウムチャネル遺伝子</td>
</tr>
<tr>
<td>5-HT</td>
<td>5-hydroxytryptamine</td>
<td>セロトニン</td>
</tr>
<tr>
<td>IC50</td>
<td>half maximal(50%) inhibitory concentration</td>
<td>50% 阻害濃度</td>
</tr>
<tr>
<td>L6 細胞</td>
<td>rat skeletal muscle cell-derived L6 myoblast cell line</td>
<td>ラット骨格筋由来L6細胞</td>
</tr>
<tr>
<td>SD</td>
<td>Sprague-Dawley</td>
<td>－</td>
</tr>
<tr>
<td>SGLT</td>
<td>sodium glucose co-transporter</td>
<td>ナトリウム-グルコース共輸送体</td>
</tr>
<tr>
<td>SMIT</td>
<td>sodium myo-inositol co-transporter</td>
<td>ナトリウム-ミオイノシトール共輸送体</td>
</tr>
<tr>
<td>ZDF</td>
<td>Zucker Diabetic Fatty</td>
<td>－</td>
</tr>
<tr>
<td>ZDF-lean</td>
<td>Zucker Diabetic Fatty-lean</td>
<td>－</td>
</tr>
</tbody>
</table>
2.6.3薬理試験概要表

2.6.3.1薬理試験：一覧表

<table>
<thead>
<tr>
<th>試験の種類</th>
<th>試験系</th>
<th>投与方法</th>
<th>実施施設</th>
<th>試験番号</th>
<th>記載箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>効力を裏付ける試験</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vitro薬理試験</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGLT1及びSGLT2阻害作用</td>
<td>ヒト SGLT1 又は SGLT2発現 CHO 細胞</td>
<td>in vitro</td>
<td>Johnson & Johnson Pharmaceutical Research & Development, L.L.C.</td>
<td>DIL 329</td>
<td>4.2.1.1-1</td>
</tr>
<tr>
<td></td>
<td>ラット SGLT1 又は SGLT2発現 CHO 細胞</td>
<td>in vitro</td>
<td>Johnson & Johnson Pharmaceutical Research & Development, L.L.C.</td>
<td>DIL 322</td>
<td>4.2.1.1-2</td>
</tr>
<tr>
<td></td>
<td>マウス SGLT1 又は SGLT2発現 CHO 細胞</td>
<td>in vitro</td>
<td>Janssen Research & Development, L.L.C.</td>
<td>DIL 310</td>
<td>4.2.1.1-3</td>
</tr>
<tr>
<td>SGLT2に対する選択性</td>
<td>ヒト SGLT3 阻害作用</td>
<td>ヒト SGLT3 発現アフリカツメガエル卵母細胞</td>
<td>in vitro</td>
<td>Johnson & Johnson Pharmaceutical Research & Development, L.L.C.</td>
<td>DIL 353</td>
</tr>
<tr>
<td></td>
<td>ヒト SGLT6 阻害作用</td>
<td>ヒト SGLT6 発現 CHO 細胞</td>
<td>in vitro</td>
<td>Janssen Research & Development, L.L.C.</td>
<td>DIL 304</td>
</tr>
<tr>
<td></td>
<td>ヒト SMIT1 阻害作用</td>
<td>ヒト SMIT1 発現 CHO 細胞</td>
<td>in vitro</td>
<td>Janssen Research & Development, L.L.C.</td>
<td>DIL 305</td>
</tr>
<tr>
<td>L6 細胞におけるGLUT阻害作用</td>
<td>L6 細胞</td>
<td>in vitro</td>
<td></td>
<td></td>
<td>413</td>
</tr>
<tr>
<td>HepG2細胞におけるGLUT阻害作用</td>
<td>HepG2 細胞</td>
<td>in vitro</td>
<td>Janssen Research & Development, L.L.C.</td>
<td>DIL 300</td>
<td>4.2.1.1-9</td>
</tr>
<tr>
<td>ヒト初代培養脂肪細胞におけるGLUT阻害作用</td>
<td>ヒト初代培養脂肪細胞</td>
<td>in vitro</td>
<td>Janssen Research & Development, L.L.C.</td>
<td>DIL 302</td>
<td>4.2.1.1-10</td>
</tr>
<tr>
<td>ヒト GLUT5阻害作用</td>
<td>ヒト GLUT5 発現 CHO 細胞</td>
<td>in vitro</td>
<td>Janssen Research & Development, L.L.C.</td>
<td>DIL 312</td>
<td>4.2.1.1-21</td>
</tr>
</tbody>
</table>
2.6.3 薬理試験概要表

2.6.3.1 薬理試験：一覧表（続き）

<table>
<thead>
<tr>
<th>試験の種類</th>
<th>試験系</th>
<th>投与方法</th>
<th>実施施設</th>
<th>試験番号</th>
<th>記載箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヒトにおける主な代謝物 M7 及び M5 のヒト SGLT1 及び SGLT2 阻害作用</td>
<td>ヒト SGLT1 又は SGLT2 発現 CHO 細胞</td>
<td>in vitro</td>
<td>Johnson & Johnson Pharmaceutical Research & Development, L.L.C.</td>
<td>DD08324</td>
<td>4.2.1.1-11</td>
</tr>
<tr>
<td>M5 のヒト SGLT1 及び SGLT2 阻害作用</td>
<td>ヒト SGLT1 又は SGLT2 発現 CHO 細胞</td>
<td>in vitro</td>
<td>Johnson & Johnson Pharmaceutical Research & Development, L.L.C.</td>
<td>DD08322</td>
<td>4.2.1.1-12</td>
</tr>
<tr>
<td>In vivo 薬理試験</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>正常動物における検討</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>正常ラットにおける腎臓再吸収阻害作用</td>
<td>ラット/SD</td>
<td>経口/単回</td>
<td>田辺三菱製薬株式会社</td>
<td>223</td>
<td>4.2.1.1-13</td>
</tr>
<tr>
<td>正常ラットにおける尿酸排泄促進作用</td>
<td>ラット/SD</td>
<td>経口/単回</td>
<td>田辺三菱製薬株式会社</td>
<td>010</td>
<td>4.2.1.1-14</td>
</tr>
<tr>
<td>正常イヌにおける尿酸排泄促進作用</td>
<td>イヌ/Beagle</td>
<td>経口/単回</td>
<td>田辺三菱製薬株式会社</td>
<td>431</td>
<td>4.2.1.1-15</td>
</tr>
<tr>
<td>正常マウスにおける尿酸排泄促進作用</td>
<td>マウス/C57BL/6J</td>
<td>経口/単回</td>
<td>田辺三菱製薬株式会社</td>
<td>004</td>
<td>4.2.1.1-16</td>
</tr>
<tr>
<td>2型糖尿病モデル動物における検討</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZDF ラットにおける腎臓再吸収阻害作用</td>
<td>ラット/ZDF-lepr<sup>β</sup> / lepr<sup>β</sup></td>
<td>経口/単回</td>
<td></td>
<td>337</td>
<td>4.2.1.1-18</td>
</tr>
<tr>
<td>ZDF 及び ZDF-lean ラットにおける血糖低下作用</td>
<td>ラット/ZDF-lepr<sup>β</sup> / lepr<sup>β</sup></td>
<td>経口/単回</td>
<td></td>
<td>831</td>
<td>4.2.1.1-19</td>
</tr>
<tr>
<td></td>
<td>ラット/ZDF-lepr<sup>β</sup> / lepr<sup>β</sup> / + +</td>
<td>経口/単回</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZDF ラットにおける反復投与での糖尿病改善作用</td>
<td>ラット/ZDF-lepr<sup>β</sup> / lepr<sup>β</sup></td>
<td>経口/4 過間</td>
<td>Johnson & Johnson Pharmaceutical Research & Development, L.L.C.</td>
<td>002</td>
<td>4.2.1.1-20</td>
</tr>
<tr>
<td>副次的薬理試験</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>各種受容体等に対する選択性<sup>a)</sup></td>
<td>50 種類の受容体, 輸送体等</td>
<td>in vitro</td>
<td></td>
<td>395</td>
<td>4.2.1.2-1</td>
</tr>
</tbody>
</table>

^{a)} カナグリプロジンを使用
2.6.3.1 薬理試験：一覧表（続き）

被験物質：カナグリフロジン水和物

<table>
<thead>
<tr>
<th>安全性薬理試験</th>
<th>ラット/SD</th>
<th>経口/単回</th>
<th>Johnson & Johnson Pharmaceutical Research & Development, L.L.C.</th>
<th>TOX7637</th>
<th>4.2.1.3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>hERG電流への影響</td>
<td>hERG 導入 HEK293 細胞</td>
<td>in vitro</td>
<td>Johnson & Johnson Pharmaceutical Research & Development, Division of Janssen Pharmaceutica N.V.</td>
<td>CPF1344</td>
<td>4.2.1.3-2</td>
</tr>
<tr>
<td>活動電位及び冠血流量への影響</td>
<td>ウサギ/albino 摘出心臓</td>
<td>in vitro</td>
<td>Johnson & Johnson Pharmaceutical Research & Development, Division of Janssen Pharmaceutica N.V.</td>
<td>HPC51</td>
<td>4.2.1.3-3</td>
</tr>
<tr>
<td>血圧，心拍数及び心電図への影響（麻酔下）</td>
<td>モルモット/Hartley</td>
<td>静脈内/累積投与</td>
<td>Johnson & Johnson Pharmaceutical Research & Development, L.L.C.</td>
<td>DD06329</td>
<td>4.2.1.3-4</td>
</tr>
<tr>
<td>血圧，心拍数，体温，心電図，呼吸数，一回換気量及び分時換気量への影響（覚醒下）</td>
<td>イヌ/Beagle</td>
<td>経口/単回</td>
<td>Johnson & Johnson Pharmaceutical Research & Development, L.L.C.</td>
<td>TOX7722</td>
<td>4.2.1.3-5</td>
</tr>
</tbody>
</table>
2.6.3 薬理試験概要表

2.6.3.2 効力を裏付ける試験

2.6.3.2.1 In vitro 薬理試験

<table>
<thead>
<tr>
<th>試験の種類</th>
<th>試験系</th>
<th>適用濃度（mmol/L）</th>
<th>試験結果</th>
<th>試験番号</th>
<th>記載箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヒト SGLT1 及び SGLT2 阻害作用</td>
<td>ヒト SGLT1 発現 CHO 細胞</td>
<td>1～30000</td>
<td>IC₅₀値 ヒト SGLT1：663 ± 180 nmol/L</td>
<td>DE52329</td>
<td>4.2.1.1-1</td>
</tr>
<tr>
<td></td>
<td>ヒト SGLT2 発現 CHO 細胞</td>
<td>0.1～1000</td>
<td>IC₅₀値 ヒト SGLT2：4.2 ± 1.5 nmol/L</td>
<td>DE52329</td>
<td>4.2.1.1-1</td>
</tr>
<tr>
<td>ラット SGLT1 及び SGLT2 阻害作用</td>
<td>ラット SGLT1 発現 CHO 細胞</td>
<td>3～10000</td>
<td>IC₅₀値 ラット SGLT1：555 ± 31 nmol/L</td>
<td>DE52329</td>
<td>4.2.1.1-2</td>
</tr>
<tr>
<td></td>
<td>ラット SGLT2 発現 CHO 細胞</td>
<td>0.1～100</td>
<td>IC₅₀値 ラット SGLT2：3.7 ± 0.2 nmol/L</td>
<td>DE52329</td>
<td>4.2.1.1-2</td>
</tr>
<tr>
<td>マウス SGLT1 及び SGLT2 阻害作用</td>
<td>マウス SGLT1 発現 CHO 細胞</td>
<td>10～10000</td>
<td>IC₅₀値 マウス SGLT1：613 ± 97 nmol/L</td>
<td>DE53010</td>
<td>4.2.1.1-3</td>
</tr>
<tr>
<td></td>
<td>マウス SGLT2 発現 CHO 細胞</td>
<td>1～1000</td>
<td>IC₅₀値 マウス SGLT2：5.6 ± 2.0 nmol/L</td>
<td>DE53010</td>
<td>4.2.1.1-3</td>
</tr>
<tr>
<td>ヒト SGLT3 阻害作用</td>
<td>ヒト SGLT3 発現アフリカツメガエル胆管細胞</td>
<td>10000</td>
<td>10 μmol/L：23.5%阻害 媒体対照（0.1%DMSO）：12.4%阻害</td>
<td>DE53535</td>
<td>4.2.1.1-4</td>
</tr>
<tr>
<td>ヒト SGLT4 阻害作用</td>
<td>ヒト SGLT4 発現 CHO 細胞</td>
<td>10～10000</td>
<td>IC₅₀値 ヒト SGLT4：> 10 μmol/L</td>
<td>DE53030</td>
<td>4.2.1.1-5</td>
</tr>
<tr>
<td>ヒト SGLT6 阻害作用</td>
<td>ヒト SGLT6 発現 CHO 細胞</td>
<td>10～10000</td>
<td>IC₅₀値 ヒト SGLT6：3.1 ± 0.3 μmol/L</td>
<td>DE53034</td>
<td>4.2.1.1-6</td>
</tr>
<tr>
<td>ヒト SMIT1 阻害作用</td>
<td>ヒト SMIT1 発現 CHO 細胞</td>
<td>3～1000</td>
<td>IC₅₀値 ヒト SMIT1：> 10 μmol/L</td>
<td>DE53035</td>
<td>4.2.1.1-7</td>
</tr>
<tr>
<td>L6 細胞における GLUT 阻害作用</td>
<td>L6 細胞</td>
<td>1000～10000</td>
<td>1, 3 及び 10 μmol/L の濃度でそれぞれ 4.7, 8.6 及び 23.4%阻害</td>
<td>DE5413</td>
<td>4.2.1.1-8</td>
</tr>
<tr>
<td>HepG2 細胞における GLUT 阻害作用</td>
<td>HepG2 細胞</td>
<td>10000～50000</td>
<td>10, 20 及び 50 μmol/L の濃度でそれぞれ 17.3, 26.8 及び 31.4%阻害</td>
<td>DE53030</td>
<td>4.2.1.1-9</td>
</tr>
<tr>
<td>ヒト初代培養脂肪細胞における GLUT 阻害作用</td>
<td>ヒト初代培養脂肪細胞（インスリン添加）</td>
<td>3～30000</td>
<td>インスリン存在下における GLUT 阻害作用 IC₅₀値：6.8 ± 2.6 μmol/L</td>
<td>DE53032</td>
<td>4.2.1.1-10</td>
</tr>
<tr>
<td></td>
<td>ヒト初代培養脂肪細胞（インスリン非添加）</td>
<td>20000, 50000</td>
<td>インスリン非存在下で阻害作用 IC₅₀値：24.9 及び 37.5%阻害</td>
<td>DE53032</td>
<td>4.2.1.1-10</td>
</tr>
<tr>
<td>ヒト GLUT5 阻害作用</td>
<td>ヒト GLUT5 発現 CHO 細胞</td>
<td>30～20000</td>
<td>IC₅₀値 ヒト GLUT5：> 20 μmol/L</td>
<td>DE5312</td>
<td>4.2.1.1-21</td>
</tr>
<tr>
<td>M7 のヒト SGLT1 及び SGLT2 阻害作用</td>
<td>ヒト SGLT1 発現 CHO 細胞</td>
<td>4.57～30000</td>
<td>代謝物 M7 の IC₅₀値 ヒト SGLT1：> 10 μmol/L</td>
<td>DD08324</td>
<td>4.2.1.1-11</td>
</tr>
<tr>
<td></td>
<td>ヒト SGLT2 発現 CHO 細胞</td>
<td>4.57～30000</td>
<td>代謝物 M7 の IC₅₀値 ヒト SGLT2：7.6 μmol/L</td>
<td>DD08324</td>
<td>4.2.1.1-11</td>
</tr>
<tr>
<td>M5 のヒト SGLT1 及び SGLT2 阻害作用</td>
<td>ヒト SGLT1 発現 CHO 細胞</td>
<td>3～5000</td>
<td>代謝物 M5 の IC₅₀値 ヒト SGLT1：> 5 μmol/L</td>
<td>DD08322</td>
<td>4.2.1.1-12</td>
</tr>
<tr>
<td></td>
<td>ヒト SGLT2 発現 CHO 細胞</td>
<td>3～5000</td>
<td>代謝物 M5 の IC₅₀値 ヒト SGLT2：1.0 μmol/L</td>
<td>DD08322</td>
<td>4.2.1.1-12</td>
</tr>
</tbody>
</table>
2.6.3.2.2 In vivo薬理試験

<table>
<thead>
<tr>
<th>試験の種類</th>
<th>動物種/系統</th>
<th>投与方法</th>
<th>摂食条件</th>
<th>投与量 (mg/kg)</th>
<th>倍数</th>
<th>試験結果</th>
<th>試験番号</th>
<th>記載箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>正常ラットにおける腎糖再吸収阻害作用</td>
<td>ラット/SD</td>
<td>腸口/単回</td>
<td>自由摂食</td>
<td>1〜30<sup>a</sup></td>
<td>10</td>
<td>1 mg/kg 以上で腎糖再吸収を阻害した。</td>
<td>223</td>
<td>4.2.1.1-13</td>
</tr>
<tr>
<td>正常ラットにおける尿糖排泄促進作用</td>
<td>ラット/SD</td>
<td>腸口/単回</td>
<td>自由摂食</td>
<td>0.3〜30<sup>a</sup></td>
<td>4</td>
<td>用量依存的に尿糖排泄を促進し、その作用は1 mg/kg 以上で有意であった。</td>
<td>010</td>
<td>4.2.1.1-14</td>
</tr>
<tr>
<td>正常イヌにおける尿糖排泄促進作用</td>
<td>イヌ/Beagle</td>
<td>腸口/単回</td>
<td>投与直後</td>
<td>0.3〜3<sup>a</sup></td>
<td>4</td>
<td>0.3 mg/kg 以上で用量依存的に尿糖排泄を促進した。</td>
<td>431</td>
<td>4.2.1.1-15</td>
</tr>
<tr>
<td>正常イヌにおける曝露量と尿糖排泄促進作用の相関</td>
<td>イヌ/Beagle</td>
<td>腸口/単回</td>
<td>投与直後</td>
<td>0.3〜3<sup>a</sup></td>
<td>4</td>
<td>血中曝露量と尿糖排泄量に良好な相関性が認められた。</td>
<td>011</td>
<td>4.2.1.1-16</td>
</tr>
<tr>
<td>正常マウスにおける尿糖排泄促進作用</td>
<td>マウス/C57BL/6J</td>
<td>腸口/単回</td>
<td>自由摂食</td>
<td>0.3〜100<sup>a</sup></td>
<td>4</td>
<td>用量依存的に尿糖排泄を促進し、その作用は10 mg/kg 以上で有意であった。</td>
<td>004</td>
<td>4.2.1.1-17</td>
</tr>
<tr>
<td>ZDF ラットにおける腎糖再吸収阻害作用</td>
<td>ラット/ZDF-lpr<sup>®</sup> / lpr<sup>®</sup></td>
<td>腸口/単回</td>
<td>自由摂食</td>
<td>0.3〜30<sup>a</sup></td>
<td>8〜9</td>
<td>用量依存的な腎糖再吸収阻害作用が認められ、投与2及び4時間後では3 mg/kg 以上で、投与6時間後では0.3 mg/kg 以上で、腎糖再吸収阻害率が有意に上昇した。</td>
<td>337</td>
<td>4.2.1.1-18</td>
</tr>
</tbody>
</table>

^a 投与量は無水物換算値で示した。
2.6.3.2.2 In vivo薬理試験（続き）

<table>
<thead>
<tr>
<th>試験の種類</th>
<th>動物種/系統</th>
<th>投与方法</th>
<th>投与条件</th>
<th>投与量 (mg/kg)</th>
<th>個数</th>
<th>試験結果</th>
</tr>
</thead>
</table>
| ZDF 及び ZDF-lean ラットにおける血糖低下作用 | ラット /ZDF-lepr^a,/lepr^b | 食餌/単回 | 自由摂食 | 1〜10^a | 6 | ZDF ラットでは、1 mg/kg 以上で有意に血漿中グルコース濃度を低下させ、10 mg/kg で媒体群に対し最大 300 mg/dL の低下（投与 6 時間後）が認められた。
ZDF-lean ラットにおいても有意に血漿中グルコース濃度を低下させたが、10 mg/kg で媒体群に対し最大 20 mg/dL の低下（投与 2 時間後）であった。 |
| ZDF ラットにおける反復投与での糖尿病改善作用 | ラット /ZDF-lepr^a/lepr^b | 食餌/週間反復 | 自由摂食 | 3〜30^a | 8 | 3 mg/kg 以上で有意な血漿中グルコース濃度及び HbA1c の低下、並びに血漿中インスリン濃度の上昇が認められた。
一晩絶食条件下、投与 1 時間後に実施した経口糖負荷試験において、3 mg/kg 以上で有意な AUC_{OGTT 120min} の低下及び AUC_{Int 120min} の上昇が認められた。 |

a) 投与量は稀有物換算値で示した。
b) 経口糖負荷試験の前一晩絶食
2.6.3.3 副次的薬理試験

<table>
<thead>
<tr>
<th>試験の種類</th>
<th>動物種/系統</th>
<th>投與方法</th>
<th>適用濃度（μmol/L）</th>
<th>例数</th>
<th>試験結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>各種受容体等に対する選択性</td>
<td>50種類の受容体、輸送体等</td>
<td>in vitro</td>
<td>1, 10</td>
<td>2</td>
<td>10 μmol/Lの濃度で、アデノシン A1 受容体 : 62%阻害、ノルエピネフリン輸送体 : 51%阻害、5-HT2A 受容体 : 56%阻害。1 μmol/L の濃度では 50%以上の結合阻害作用を示さなかった。その他の受容体等に対しては、1 及び 10 μmol/Lの濃度で 50%以上の結合阻害作用を示さなかった。</td>
</tr>
</tbody>
</table>

被験物質：カナグリフロジン

<table>
<thead>
<tr>
<th>試験番号</th>
<th>記載箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL</td>
<td>395</td>
</tr>
<tr>
<td>4.2.1.2-1</td>
<td></td>
</tr>
</tbody>
</table>

10
2.6.3.4 安全性薬理試験

<table>
<thead>
<tr>
<th>評価対象 なる組織</th>
<th>動物種／系統</th>
<th>投与方法</th>
<th>投与量 (mg/kg)</th>
<th>性別及び動物数/群</th>
<th>特記すべき所見</th>
<th>GLP適用</th>
<th>試験番号</th>
<th>記載箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般症状及び行動 (Irwin変法)</td>
<td>ラット/SD</td>
<td>経口/単回</td>
<td>250, 500 及び 1000 (245, 490 及び 980) a)</td>
<td>雄 5</td>
<td>中枢神経症状（体温を含む）：作用なし 一般状態： 250 mg/kg 以上：便性状の変化（便量減少、軟便等）、体重増加抑制 500 mg/kg 以上：被毛粗剛、水様便</td>
<td>適</td>
<td>TOX7637</td>
<td>4.2.1.3-1</td>
</tr>
<tr>
<td>hERG電流</td>
<td>hERG導入 HEK293 細胞</td>
<td>in vitro</td>
<td>0.1, 0.3, 3 (μmol/L, 減増適用)</td>
<td>雌 6</td>
<td>hERG電流：作用なし</td>
<td>非適用</td>
<td>CPF1344</td>
<td>4.2.1.3-2</td>
</tr>
<tr>
<td>活動電位及び冠血流量</td>
<td>ウサギ/albino 摘出心臓</td>
<td>in vitro</td>
<td>0.1, 0.3, 1, 3, 10 (μmol/L, 減増適用)</td>
<td>雌 6</td>
<td>3 μmol/L 以上：APD₉₀の短縮 10 μmol/L：冠血流量の増加傾向 APD₉₀, APD₀₁及 APD₉₀の持続時間、APD₀₁の不安定性、三角形化、逆頻度依存性、催不整脈係数、心室内伝導時間、不整脈の有無：作用なし</td>
<td>非適用</td>
<td>HPC51</td>
<td>4.2.1.3-3</td>
</tr>
<tr>
<td>血圧、心拍数及び心電図（麻酔下）</td>
<td>モルモット/Hartley</td>
<td>静脈内/累積投与</td>
<td>0.16, 0.32, 0.63, 1.25, 2.5 及び 5 (0.157, 0.314, 0.617, 1.23, 2.45, 4.9) a) (累積投与)</td>
<td>雌 6</td>
<td>血圧、心拍数、心電図 (QRS 間隔, PR 間隔, QT/QTc 間隔)：作用なし</td>
<td>非適用</td>
<td>DD06329</td>
<td>4.2.1.3-4</td>
</tr>
<tr>
<td>血圧、心拍数、体温及び心電図（覚醒下）</td>
<td>イヌ/Beagle</td>
<td>経口/単回</td>
<td>4, 40 及び 400 (3.92, 39.2 及び 392) a)</td>
<td>雄 4</td>
<td>血圧、心拍数、体温及び心電図（覚醒下）（QT/QTc 間隔）：作用なし</td>
<td>適</td>
<td>TOX7722</td>
<td>4.2.1.3-5</td>
</tr>
<tr>
<td>呼吸数、一回換気量及び分時換気量（覚醒下）</td>
<td>イヌ/Beagle</td>
<td>経口/単回</td>
<td>4, 40 及び 400 (3.92, 39.2 及び 392) a)</td>
<td>雄 4</td>
<td>呼吸数、一回換気量及び分時換気量：作用なし</td>
<td>適</td>
<td>TOX7722</td>
<td>4.2.1.3-5</td>
</tr>
</tbody>
</table>

a)（ ）内は無水物換算値。
2.6.3.5 薬力学的薬物相互作用試験

該当なし.