SECTION 2.6.4—PHARMACOKINETICS WRITTEN SUMMARY

BICTEGRAVIR/EMTRICITABINE/TENOFOVIR ALAFENAMIDE FIXED-DOSE COMBINATION (B/F/TAF FDC)

Gilead Sciences

CONFIDENTIAL AND PROPRIETARY INFORMATION

TABLE OF CONTENTS

SEC	TION 2	2.6.4—PHARMACOKINETICS WRITTEN SUM	/MARY
TAE	BLE OF	CONTENTS	
LIST	Г OF IN	-TEXT TABLES	
LIST	Г OF IN	-TEXT FIGURES	
PHA	RMAC	OKINETIC ABBREVIATIONS	
NOT	FE TO F	REVIEWER	
1.	BRIEF	SUMMARY	
2.	METH	IODS OF ANALYSIS	
	2.1.	BIC	
	2.1.		harmacokinetic Studies
		2.1.2. Other In Vivo Methods	
	2.2.		
			harmacokinetic Studies
	2.3.		24
			harmacokinetic Studies
			GLP Studies
		2.3.3. Other In Vivo Bioanalytical Method	ls
		2.3.4. In Vitro Methods	
3.	ABSO	RPTION	
	3.1.	In Vitro Absorption Studies	
	3.2.		
	3.3.		
	5.5.	÷	
		3.3.3. TAF	
	3.4.	B/F/TAF	
4.	DISTR	RIBUTION	
	4.1.	In Vitro Protein Binding	
	4.2.		
	1.2		
	4.3.		
		т.3.2. ГТС	

		4.3.3.	TAF	
	4.4.		Pregnant or Nursing Animals	
		4.4.1.	BIC	
		4.4.2.	FTC	
		4.4.3.	TAF and TFV	
	4.5.			
5.	MET	ABOLISM .		61
	5.1.	Metabolis	sm In Vitro	
		5.1.1.	BIC	
		5.1.2.	FTC	
		5.1.3.	TAF and TFV	
	5.2.		Metabolic Pathways	
		5.2.1.	BIC	
		5.2.2.	FTC	
		5.2.3.	TAF	
	5.3.	Metabolis	m In Vivo	
		5.3.1.	BIC	
		5.3.2.	FTC	
		5.3.3.	TAF and TFV	
	5.4.	B/F/TAF		74
6.	EXCI	RETION		75
	6.1.	BIC		75
	0.11	6.1.1.	Studies in Intact Mice, Rats and Monkeys and Bile Duct-Cannulated Rats	
		0.1.1.	and Monkeys	75
	6.2.	FTC		
		6.2.1.	Excretion of Radioactivity after Administration of [³ H]FTC to Mice	
		6.2.2.	Excretion of Radioactivity after Administration of [³ H]FTC to Rats	
		6.2.3.	Excretion of Radioactivity after Administration of FTC to Monkeys	
	6.3.	TAF/TFV	7	
		6.3.1.	Excretion of Radioactivity after Administration of [¹⁴ C]TAF to Mice	76
		6.3.2.	Excretion of Radioactivity after Administration of [¹⁴ C]TAF or [¹⁴ C]TFV	
			to Rats	77
		6.3.3.	Excretion of Radioactivity after Administration of [¹⁴ C]TAF or [¹⁴ C]TFV to Dogs	77
		6.3.4.	Excretion into Rat and Dog Bile	
		6.3.5.	Excretion into Kat and Dog Die	
	6.4.			
-				
7.			NETIC DRUG INTERACTIONS	
	7.1.			
		7.1.1.	Cytochrome P450 and UGT1A1 Inhibition	
		7.1.2.	Enzymology of Metabolism	
		7.1.3.	Assessment of Induction Liability	
		7.1.4.	Interactions with Transporters	
	7.2.			
	7.3.		TFV	
		7.3.1.	Cytochrome P450 and UGT1A1 Inhibition	
		7.3.2.	Enzymology of Metabolism	
		7.3.3.	Assessment of Induction Liability	
	7 4	7.3.4.	Potential for Transporter-Mediated Drug Interactions with TAF and TFV	
	7.4.			
8.	OTH	ER PHARM	ACOKINETIC STUDIES	94

9.	DISCU	USSION AND CONCLUSIONS	95
	9.1.	BIC	
	9.2.	FTC	
	9.3.	TAF	
	9.4.	B/F/TAF	
10.	REFE	RENCES	99

LIST OF IN-TEXT TABLES

Table 1.	Names and Structures of BIC and Related Compounds	11
Table 2.	Names and Structures of FTC and Related Compounds	
Table 3.	Names and Structures of TFV, TAF, and Related Compounds	13
Table 4.	Bidirectional Permeability of BIC in Caco-2 Monolayers	29
Table 5.	Dose-Dependent Bidirectional Permeability of TAF in Caco-2 Cells	30
Table 6.	Plasma Pharmacokinetic Parameters for BIC Following a Single Intravenous	
	Infusion Administration to Rat, Dog, and Monkey	30
Table 7.	Plasma Pharmacokinetic Parameters Following a Single Oral Administration of BIC	
	in Solution to Rat, Dog and Monkey	31
Table 8.	Plasma Pharmacokinetic Parameters for BIC Following Single Oral Administration	
	to Transgenic (wild type) RasH2 Mouse ^a	31
Table 9.	Plasma Pharmacokinetic Parameters for BIC Following Single Oral Administration	
	to Male Wistar Han Rat	32
Table 10.	Plasma Pharmacokinetic Parameters for BIC (Sodium Salt) Following Single Oral	
	Administration to Female NZW Rabbits	33
Table 11.	Plasma Pharmacokinetic Parameters for BIC (Sodium Salt) in Male Cynomolgus	
	Monkeys Following Single Ascending Oral Doses in Aqueous Suspension	33
Table 12.	Dose Dependent Plasma Pharmacokinetic Parameters Following a Single Oral	
	Administration of GS-7340-02 and GS-7340-03 to Male CD-1 Mice	37
Table 13.	Dose Dependent Plasma Pharmacokinetic Parameters Following a Single Oral	
	Administration of GS-7340-03 to 001178-W Wild Type Mice	37
Table 14.	Dose Dependent Plasma Pharmacokinetic Parameters following a Single Oral	
	Administration of GS-7340-02 and GS-7340-03 to Male Sprague-Dawley Rats	38
Table 15.	Dose Dependent Plasma Pharmacokinetic Parameters for TAF and TFV Following	
	a Single Oral Administration of GS-7340-02 to Rhesus Monkeys	39
Table 16.	Concentrations of TFV in PBMCs from Monkeys Following a Single Oral	
	Administration of GS-7340-02 at 5 and 50 mg/kg	
Table 17.	Protein Binding of BIC in Plasma from Different Species	46
Table 18.	Concentrations of Radioactivity in Blood and Selected Tissues Determined by	
	QWBA After a Single Oral Administration of [¹⁴ C]BIC to Male Wistar Han Rats at	
	2 mg/kg (100 µCi/kg)	49
Table 19.	Concentrations of Radioactivity in Blood and Selected Tissues Determined by	
	QWBA After a Single Oral Administration of [¹⁴ C]BIC to Male Long Evans Rats at	
	2 mg/kg (100 µCi/kg)	50
Table 20.	Comparative Tissue Concentrations of Radioactivity in Male CD-1 and C57 Black	
	Mice After Oral Administration of $[^{14}C]TAF$ (n = 1 per time point)	52
Table 21.	Comparative Tissue Concentrations of Radioactivity in Male Sprague-Dawley and	
	Long Evans Rats After Oral Administration of $[^{14}C]TAF$ (n = 1 per time point)	
Table 22.	In Vitro Rates of Metabolism of BIC by Hepatic Microsomal Fractions	
Table 23.	Metabolites of BIC Detected In Cyropreserved Hepatocytes from Different Species	
Table 24.	Stability of TAF in Biological Matricies from Dog and Human	
Table 25.	Plasma Profile Following Oral Administration of [¹⁴ C]BIC	69

Table 26.	Relative quantification of TAF Metabolites in Plasma, Urine, Feces, and Bile as %	
1000 20.	Total Dose Quantified	72
Table 27.	Cumulative Dose Recovery Following a Single Oral Administration of [¹⁴ C]BIC to	
	Male Transgenic Mice at 2 mg/kg (300 µCi/kg, n=4), Intact and BDC Wistar Han	
	Rats at 2 mg/kg (100 µCi/kg, n=3), and Intact and BDC Cynomolgus Monkeys at 1	
	mg/kg (25 μCi/kg, n=3)	
Table 28.	Assessment of CYP Inhibition Potential of BIC	80
Table 29.	Rates of Generation of BIC Metabolites by Human CYP Enzymes	81
Table 30.	Rates of Formation of BIC Glucuronide by Major Human UGT Enzymes	82
Table 31.	Effect of BIC Treatment on CYP Activity in Cultured Human Hepatocytes	83
Table 32.	Effect of BIC Treatment on mRNA Levels in Cultured Human Hepatocytes	
Table 33.	Permeability of BIC (10 µM) in Wild Type, Pgp- or BCRP-Overexpressing	
	MDCKII Cells	84
Table 34.	Inhibition Potential of Transporters by BIC	
Table 35.	Steady State Pharmacokinetic Parameters for TAF and TFV	
Table 36.	Stability of TAF in Human Intestinal Subcellular Fraction in the Absence and	
	Presence of Test Compounds	
Table 37.	Effect of TAF Treatment on CYP mRNA Levels and Activity in Cultured Human	
	Hepatocytes (mean, n = 3 donors)	
Table 38.	Transporter Substrate and Inhibition Assessment of TAF and TFV	
Table 39.	Effect of COBI on the Bidirectional Permeability of TAF in Caco-2 Cells	
Table 40.	Mean Plasma Pharmacokinetic Parameters for TAF and TFV Following Oral	

LIST OF IN-TEXT FIGURES

Figure 1.	Mean Plasma Concentration vs Time Profile Following an Intravenous Bolus Dose of FTC in Solution to Male CD-1 Mice (mean ± SD)	34
Figure 2.	Mean Plasma Concentration vs Time Profile Following an Oral Dose of FTC in	
-	Solution to Male CD-1 Mice (mean ± SD)	34
Figure 3.	Mean Plasma Concentration vs Time Profile Following an Intravenous Bolus Dose	
	of FTC in Solution to Male Cynomolgus Monkeys (mean \pm SD, n = 4)	35
Figure 4.	Mean Plasma Concentration vs Time Profile Following an Oral Dose of FTC in	
	Solution to Male Cynomolgus Monkeys (mean \pm SD, $n = 4$)	36
Figure 5.	Plasma and Liver PK following a single dose of TAF to Beagle Dogs	
Figure 6.	Plasma PK of TAF and TFV on Day 1 and Day 7 Following Repeat Dose Oral	
	Administration of TAF at 8.29 mg/kg/day	43
Figure 7.	Liver Concentrations of TFV, TFV-MP, and TFV-DP Following Repeat Dose Oral	
	Administration of TAF on Day 7	44
Figure 8.	Annotated Whole-Body Autoradiograph at 1 Hour After a Single Oral	
	Administration of [¹⁴ C]BIC to a Male Long Evans Rat (2 mg/kg, 100 µCi/kg)	
	(Animal B39349)	48
Figure 9.	Annotated Whole-Body Autoradiograph for a Male Sprague-Dawley Rat 0.25 hours	
	after a Single Oral Administration of ¹⁴ C-GS-7340 at 5 mg/kg	56
Figure 10.	Annotated Whole-body Autoradiograph for a Male Long Evans Rat 0.25 hours after	
	a Single Oral Administration of ¹⁴ C-GS-7340 at 5 mg/kg	57
Figure 11.	Intracellular Metabolism of TAF, TDF, and TFV in Primary Human Hepatocytes	64
Figure 12.	Proposed Identities of BIC Metabolites Identified In Vitro	65
Figure 13.	Pathways for Metabolism of FTC Identified In Vitro and In Vivo	66
Figure 14.	Metabolites of TAF	67
Figure 15.	Proposed Biotransformation Pathways of BIC Following Oral Administration of	
	[¹⁴ C]BIC	70

20

Figure 16.	Cumulative Percent Total Radioactive Dose Recovered in Urine, Feces, Bile, and	
	Cage Rinse Following Oral Administration of [¹⁴ C]TAF at 5 mg/kg to Bile	
	Duct-Cannulated Dogs	78
Figure 17.	Effects of Esterase and CYP inhibitors on Intracellular Activation of TAF in	
	Primary Human Hepatocytes	88
Figure 18.	OATP1B1- and OATP1B3-Mediated Uptake of TAF	92
Figure 19.	Effect of Rifampicin on Uptake of TAF into Primary Human Hepatocytes	93

LIST OF ABBREVIATIONS

ADME	absorption, distribution, metabolism, and excretion
AhR	aryl hydrocarbon receptor
ARV	antiretroviral
AUC	area under the plasma concentration versus time curve
AUC _{0-t}	area under the time-concentration curve from time zero to last measured time-point
AUC _{inf}	area under the concentration versus time curve extrapolated to infinite time, calculated as $AUC_{last} + (C_{last}/\lambda_z)$
AUCR	AUC ratio
B/F/TAF	bictegravir/emtricitabine/tenofovir alafenamide (coformulated)
B/P	blood to plasma ratio
BCRP	breast cancer resistance protein
BDC	bile duct cannulated
BIC	bictegravir (GS-9883)
BLQ	below the limit of quantitation
BNPP	bis-p-nitrophenyl phosphate
BSEP	bile salt export pump
CAR	constitutive androstane receptor
CatA	cathepsin A
ССМ	cell culture medium
cDNA	complementary DNA
CES1	carboxylesterase 1
CHB	chronic hepatitis B
СНО	Chinese hamster ovary
CL	clearance
CL/F	apparent oral clearance after administration of the drug: $CL/F = Dose/AUC_{inf}$, where "Dose" is the dose of the drug
C _{last}	last observed quantifiable concentration of the drug in plasma
C _{max}	maximum observed concentration of drug in plasma
CNS	central nervous system
COBI	cobicistat
CsA	cyclosporine (cyclosporin A)
CSF	cerebrospinal fluid
СҮР	cytochrome P450 enzyme
DDI	drug-drug interaction
DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
E/C/F/TAF	elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide (coformulated; Genvoya [®])
EC ₅₀	half-maximal effective concentration
EMA	European Medicines Agency
EVG	elvitegravir (Vitekta [®])
F/TAF	emtricitabine/tenofovir alafenamide

FDA	Food and Drug Administration	
FDC	fixed-dose combination	
FMO	flavin monooxygenase	
FTC	emtricitabine	
FTC/RPV/TAF	emtricitabine/rilpivirine/tenofovir alafenamide (coformulated; Odefsey®)	
FTC/TDF	emtricitabine/tenofovir disoproxil fumarate (coformulated; Truvada®)	
GD	gestation day	
GI	gastrointestinal	
GLP	Good Laboratory Practice	
GFR	glomerular filtration rate	
HBV	hepatitis B virus	
HIV-1	human immunodeficiency virus type 1	
HPLC	high-performance liquid chromatography	
HPMC	hydroxypropyl methyl cellulose	
HRMS	high resolution mass spectrometry	
IC ₅₀	half-maximal inhibitory concentration	
ICH	International Council for Harmonisation (of Technical Requirements for Pharmaceuticals for Human Use)	
IV	intravenous	
K _i	kinetic inhibition constant	
λ_z	terminal elimination rate constant, estimated by linear regression of the terminal elimination phase of the log plasma/serum concentration of drug versus time curve of the drug	
LC	liquid chromatography	
LC-MS/MS	liquid chromatography-tandem mass spectrometry	
LC-UV	liquid chromatography coupled to ultraviolet detection	
LLOQ	lower limit of quantitation	
LSC	liquid scintillation counting	
MATE	multidrug and toxin extrusion	
MATEx	multidrug and toxin extrusion x	
MDCK	Madin-Darby canine kidney	
MDCKII	Madin-Darby canine kidney strain II	
mRNA	messenger RNA	
MRP	multidrug resistance-associated protein	
MRP2	multidrug resistance-associated protein 2	
MRP4	multidrug resistance-associated protein 4	
MRT	mean residence time	
MS	mass spectrometry	
NA	not applicable	
NADPH	nicotinamide adenine dinucleotide phosphate, reduced	
ND	not detectable	
NR	not represented (tissue not present in section)	
NRTI	nucleoside reverse transcriptase inhibitor	

NS3	nonstructural protein 3
NtRTI	nucleotide reverse transcriptase inhibitor
NZW	New Zealand White
OAT	organic anion transporter
OATP	organic anion transporting polypeptide
OCT	organic cation transporter
OGTT	oral glucose tolerance test
P _{app}	apparent permeability coefficient
PBMC	peripheral blood mononuclear cell
PCR	polymerase chain reaction
PD	pharmacodynamics(s)
PEG	polyethylene glycol
P-gp	P-glycoprotein
PI	protease inhibitor
РК	pharmacokinetic(s)
PXR	pregnane X receptor
QWBA	quantitative whole body autoradiography
RBC	red blood cell
RFD	radio flow-through detector
RNA	ribonucleic acid
RPV	rilpivirine
RT	reverse transcriptase
RT-PCR	reverse transcriptase polymerase chain reaction
SD	standard deviation
t _{1/2}	estimate of the terminal elimination half-life of the drug in plasma/serum, calculated by dividing the natural log of 2 by the terminal elimination rate constant (λ_z)
TAF	tenofovir alafenamide
TDF	tenofovir disoproxil fumarate
TFV	tenofovir
TFV-DP	tenofovir diphosphate
TFV-MP	tenofovir monophosphate
ТК	toxicokinetic(s)
T _{last}	time (observed time point) of C _{last}
T _{max}	time (observed time point) of C _{max}
UDP	uridine diphosphate
UDPGA	uridine diphosphate glucuronic acid
UGT	uridine diphosphate glucuronosyltransferase
UGT1A1	uridine diphosphate glucuronosyltransferase 1A1
ULOQ	upper limit of quantitation
VS	versus
V_{ss}	volume of distribution at steady state

PHARMACOKINETIC ABBREVIATIONS

λ_z	terminal elimination rate constant, estimated by linear regression of the terminal elimination phase of the log plasma/serum concentration of drug versus time curve of the drug		
AUC	area under the plasma concentration versus time curve		
$AUC_{0\text{-}}$, AUC_{inf}	area under the plasma concentration versus time curve extrapolated to infinite time, calculated as $AUC_{0-last}+(C_{last}/\lambda_z)$		
AUC _{x-xx}	partial area under the plasma/serum concentration versus time curve from time "x" to time "xx"		
CL	clearance		
CL/F	apparent oral clearance after administration of the drug: $CL/F = Dose/AUC_{inf}$, where "Dose" is the dose of the drug		
Clast	last observed quantifiable concentration of the drug in plasma		
C _{max}	maximum observed concentration of drug in plasma		
C _x	plasma concentration at time "x" (default units are hours)		
F	estimated oral bioavailability of the drug (%)		
t _{1/2}	estimate of the terminal elimination half-life of the drug in plasma/serum, calculated by dividing the natural log of 2 by the terminal elimination rate constant (λ_z)		
T _{last}	time (observed time point) of C _{last}		
T _{max}	time (observed time point) of C _{max}		
V _{ss}	volume of distribution at steady state		

NOTE TO REVIEWER

BIC

The structure of BIC and related compounds are illustrated in Table 1. The following conversions are provided to aid the reviewer.

 $1 \ \mu M BIC (GS-9883) = 0.449 \ \mu g/mL$

1 ng/mL BIC = 2.23 nM

Table 1.Names and Structures of BIC and Related Compounds

Name	Alternative Names	Identity	Structure
BIC	Bictegravir, GS-9883	Parent Compound	
[¹⁴ C]BIC	[10- ¹⁴ C]BIC	Radiolabeled parent	$H = {}^{H} H = {}^{O} H = {}^{F} H = {}^{F$

FTC

Structures of emtricitabine (FTC) and related compounds are illustrated in Table 2. The following conversions are provided to aid the reviewer:

 $1 \ \mu M \ FTC \ (GS-9019) = 0.247 \ \mu g/mL$

1 ng/mL FTC = 4.05 nM

Name	Alternative Names	Identity	Structure
FTC	Emtricitabine, GS-9019, TP-0006, 524W91, Emtriva, Coviracil	Parent Compound	HO O N S N NH2 F
[³ H]FTC	[6- ³ H]FTC	Radiolabeled parent	$(\mathbf{T} = {}^{3}\mathbf{H})$ $HO \qquad O \qquad N$ $S \qquad N \qquad NH_{2}$ $\mathbf{T} \qquad F$
[¹⁴ C]FTC	[2- ¹⁴ C]FTC	Radiolabeled parent	$HO O N N N H_2$ $(* = {}^{14}C) F$
M1, M2	M950, 3742W92, 3743W92	3'-Sulfoxide metabolites (2 diastereomers)	HO O N NH2 Or S F
М3		2'-O-Glucuronide metabolite	G S F

Table 2.	Names and Structures of FTC and Related Compounds
----------	---

G = Glucuronic acid

TAF

Structures of tenofovir (TFV), tenofovir alafenamide (TAF), and related compounds are illustrated in Table 3. The following conversions are provided to aid the reviewer:

 $1 \,\mu\text{M}$ TFV (GS-1278) = 0.287 $\mu\text{g/mL}$

1 ng/mL TFV = 3.48 nM

 $1 \mu M TAF (GS-7340) = 0.477 \mu g/mL$

1 ng/mL TAF = 2.10 nM

Name	Alternative Names	Identity	Structure
TFV	Tenofovir, GS-1278, R-PMPA	Parent Compound	NH ₂ N N O O O O O O O O O O H
[³ H]TFV	[Adenine-2,8- ³ H]TFV	Radiolabeled Parent	$\mathbf{T} \xrightarrow{\mathbf{N}}_{\mathbf{N}} \xrightarrow{\mathbf{N}}_{\mathbf{N}} \mathbf{T}$ $(\mathbf{T} = {}^{3}\mathbf{H}) \xrightarrow{\mathbf{O}}_{\mathbf{O}} \xrightarrow{\mathbf{O}}_{\mathbf{O}} \xrightarrow{\mathbf{O}}_{\mathbf{O}}$
[¹⁴ C]TFV	[Adenine-8- ¹⁴ C]TFV	Radiolabeled Parent	$* \bigvee_{N \to N}^{NH_2} (* = {}^{14}C)$
TAF (free base)		Parent Compound, free base	
GS-7340-02		Parent Compound, monofumarate	
GS-7340-03		Parent Compound, hemifumarate	$\begin{array}{c} \begin{array}{c} & & \\ N \\ \\ N \\ \\ \\ \end{array} \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Table 3.	Names and Structures of TFV, TAF, and Related Compounds
----------	---

Name	Alternative Names	Identity	Structure
[¹⁴ C]TAF	[Adenine-2- ¹⁴ C]TAF	Radiolabeled Parent	$ \begin{array}{c} $
[CJIAF	[Adenine-8- ¹⁴ C]TAF	Radiolabeled Parent	$\begin{array}{c} \overset{NH_2}{\underset{=}{\overset{NH_2}}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}}{\overset{NH_2}{\overset{NH_2}}{\overset{NH_2}{\overset{NH_2}}{\overset{NH_2}{\overset{NH_2}{\overset{NH_2}}{\overset{NH_2}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}{\overset{NH_2}}}}}}}}}}}}}}}}}}}$
GS-342031	GS-77389, PMPAp, TFV-MP	Monophosphorylated Anabolite of Parent	
GS-077635	PMPApp, TFV-DP	Diphosphorylated Anabolite of Parent	

1. BRIEF SUMMARY

This dossier is being submitted in support of a marketing application for a fixed dose combination (FDC) of bictegravir (BIC, B, GS-9883), emtricitabine (FTC, F, GS-9019) and tenofovir alafenamide (TAF, GS-7340): the B/F/TAF (50/200/25 mg) FDC. Bictegravir is a low molecular weight HIV-1 integrase strand transfer inhibitor (INSTI) active against a broad panel of HIV-1 viral lab strains and clinical isolates and is fully active against a panel of mutant viruses with resistance to nucleoside reverse transcriptase inhibitors (NRTI), non-nucleoside reverse-transcriptase inhibitors (NNRTI) and protease inhibitors (PI). Emtricitabine is a nucleoside reverse transcriptase inhibitor (NRTI) and is approved for the treatment of HIV-1 infection as a single agent (Emtriva[®]) for use in combination with other ARVs for the treatment of HIV-1 infection, and in the FDC products Truvada[®] (FTC/tenofovir disoproxil fumarate [TDF]), Atripla[®] (efavirenz/FTC/TDF), Complera[®]/ Eviplera[®] (FTC/rilpivirine [RPV]/TDF), Stribild[®] (elvitegravir [EVG; E]/cobicistat [COBI; C]/ FTC/TDF), Genvoya[®] (E/C/F/TAF), Descovy[®] (F/TAF) and Odefsey[®] (FTC/RPV/TAF). Tenofovir alafenamide is a prodrug of tenofovir (TFV), a nucleotide reverse transcriptase inhibitor (NtRTI). Tenofovir alafenamide is approved for the treatment of HIV-1 infection in the FDC products Genvoya[®], Descovy[®] and Odefsey[®]. Tenofovir alafenamide is also approved for the treatment of hepatitis B virus (HBV) infection as a single agent (Vemlidy[®]). Information from all nonclinical studies with FTC, and TAF/TFV should be considered in the context of their clinical experience within ARV combination therapy for the treatment of HIV-1 infection.

BIC

Bictegravir is a potent HIV-1 integrase strand transfer inhibitor. BIC was highly permeable and showed efflux transport in vitro. Nonclinical studies to characterize the absorption and disposition of BIC have been performed in rats and monkeys. Bictegravir systemic plasma clearance (CL) was low in nonclinical species (0.1% to 1.3% of hepatic blood flow). Bictegravir volume of distribution (V_{ss}; 0.09 to 0.22 L/kg) in animals was lower than total body water. Bictegravir showed moderate to high oral bioavailability (42% to 74%) in nonclinical species. Overall, these data support high intestinal absorption for BIC in humans. Bictegravir plasma exposure increased following repeat oral administration of BIC; the increases were less than dose proportional. In rats, females had higher BIC exposures than males (2-to 3-fold at the high 300 mg/kg/day dose). None to slight accumulation (up to 3-fold) of BIC was observed in rats after repeat dosing. In cynomolgus monkeys, gender-based differences were less than 2-fold in BIC exposures and no accumulation (< 2-fold) of BIC was observed after repeat dosing.

Bictegravir was highly bound to plasma proteins in all species tested (> 98% bound) and was 99.75% bound in humans. Bictegravir has minimal binding to erythrocytes; the blood to plasma BIC concentration ratio was close to 0.6 in all species.

[¹⁴C]BIC was widely distributed in tissues following oral administration in non-pigmented and pigmented rats. [¹⁴C]BIC-derived radioactivity in most tissues reached maximum concentration by 1 hour post dose. Steady excretion of BIC radioactive equivalents in urine and feces coupled with declines in all tissues was consistent with the long mean residence time (MRT) of BIC in

rats (46 hours) and suggested no irreversible binding. $[^{14}C]BIC$ -derived radioactivity poorly crossed the blood to brain barriers (< 4% relative to blood). $[^{14}C]BIC$ -derived radioactivity was not selectively bound to melanin containing tissues.

Bictegravir was mainly eliminated by hepatic metabolism followed by excretion into feces and urine. Metabolic pathways included hydroxylation, oxidative defluorination, direct glucuronidation, and oxidation followed by phase II conjugation. There were no unique human metabolites; all human metabolites were also found in nonclinical species.

Bictegravir metabolism was predominantly mediated by cytochrome P450 (CYP)3A and uridine diphosphate glucuronosyltransferase (UGT)1A1. Bictegravir had little or no inhibitory effect (50% inhibitory concentration $[IC_{50}] > 100 \mu M$) on the activities of CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A or UGT1A1. Bictegravir showed no time-dependent inhibition against CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, or CYP2D6. Bictegravir was a very weak mechanism based inhibitor of CYP3A ($K_I > 100 \mu M$). Bictegravir is unlikely to be a clinically relevant mechanism-based inhibitor of CYP3A because the computed K_I greatly exceeds the unbound C_{max} in human plasma (~34 nM). Bictegravir was not an inducer of CYPs 1A2, 2C8 or 2C9. BIC was a weak inducer of CYP3A4 as concentration-dependent CYP3A4 messenger RNA (mRNA) increases were observed up to 16.7-fold at 60 µM BIC. Bictegravir presents a low potential as an inducer at clinically relevant concentrations because it is highly bound to plasma proteins (human > 99%). The low potential for clinically meaningful DDIs was confirmed in dedicated clinical studies; the plasma PK of CYP3A4 sensitive substrate midazolam and partial substrates velpatasvir, voxilaprevir, norgestimate, and ethinyl estradiol PK were each unaffected following repeat dose administration of B/F/TAF FDC. Further, repeat dose administration of BIC resulted in no change in BIC elimination half-life, suggesting a lack of autoinduction.

Bictegravir was a substrate for intestinal efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) and its intestinal absorption may be decreased by inducers or increased by coadministered inhibitors of P-gp and BCRP. Bictegravir was not an inhibitor of the hepatic transporters organic anion transporting polypeptide (OATP)1B1 or OATP1B3, organic cation transporter (OCT)1, and bile salt export pump (BSEP), or the renal transporters OAT1 and OAT3. BIC was an inhibitor of renal efflux transporter multidrug and toxin extrusion (MATE)1 with an 50% inhibitory concentration (IC₅₀) value of 8.0 μ M. Bictegravir was an inhibitor of renal uptake transporter, OCT2, with an IC₅₀ value of 0.42 μ M. Clinical studies with B/F/TAF FDC and metformin coadministration showed a minimal change in the plasma exposure (AUC) of metformin (39% increase) with no effect on the pharmacodynamics (PD) end points such as glucose metabolism, and active GLP-1 and lactate levels after oral glucose tolerance test (OGTT).

FTC

Emtricitabine is a nucleoside reverse transcriptase inhibitor (NRTI). Nonclinical studies to characterize the absorption and disposition of FTC have been performed in mice, rats, and primates. The PK studies are listed in the overview table (m2.6.5, Section 1), and study details are provided in the individual study overview tables in m2.6.5. The tabulated summaries in m2.6.5 also provide toxicokinetic (TK) data for studies described in m2.6.6.

In mice, rats, and cynomolgus monkeys, FTC was rapidly and extensively absorbed with oral bioavailability ranging from 58% to 97%. In general, there were no differences in PK profiles following single and multiple dosing. Systemic exposure to FTC (C_{max} and AUC) increased approximately proportionally with dose and was similar between males and females. With chronic dosing, somewhat higher exposures were observed in the mouse and rat studies when compared to short term dosing; however, there was no evidence of accumulation in the monkey studies.

Emtricitabine is widely distributed throughout the body, with a volume of distribution similar to that of total body water. After oral administration, the highest concentrations of FTC were found in the kidneys, intestine, and liver, and exceeded those in plasma, while concentrations in central nervous system (CNS) tissues were less than 10% of those in plasma. Emtricitabine was also readily transferred across the placenta. Emtricitabine is almost completely eliminated within 72 hours following dosing, with no evidence of tissue accumulation. Emtricitabine does not undergo extensive first-pass or systemic metabolism, and is eliminated primarily by renal excretion of unchanged drug. The total body clearance of FTC exceeds the glomerular filtration rate, suggesting that the drug is actively secreted by the kidney.

Metabolism is a minor route of elimination and is similar in humans and monkeys. It includes oxidation of the thiol moiety (Phase 1 metabolism) to form the 3'-sulfoxide diastereomers (M1 and M2) and conjugation with glucuronic acid (Phase 2 metabolism) to form the 2'-O-glucuronide (M3). The most abundant metabolite was one of the 3'-sulfoxides (M1 or M2). Several minor metabolites account for < 2% of the dose and are eliminated primarily in the urine. Importantly, FTC is not converted to 5-fluorouracil. Oxidation of FTC is largely catalyzed by CYP3A, but flavin monooxygenase (FMO) enzymes may also play a role. Emtricitabine does not inhibit human CYP and demonstrates no liability to be an inducer.

TAF

Tenofovir alafenamide is a prodrug of TFV, a nucleotide reverse transcriptase inhibitor (NtRTI). In target cells, TAF is rapidly hydrolyzed to TFV and sequentially phosphorylated to the pharmacologically active metabolite tenofovir diphosphate (TFV-DP). Tenofovir diphosphate is an inhibitor of HIV-1 reverse transcriptase (RT) and HBV RT that terminates the elongation of the viral DNA chain {Cherrington 1995, Yokota 1994}. Because TAF is more stable in plasma than tenofovir disoproxil fumarate (TDF), higher intracellular levels of TFV-DP are formed and approximately 90% lower circulating levels of TFV relative to TDF are observed when TAF is administered at approximately one tenth the TDF dose {Birkus 2007a, Birkus 2008, Lee 2005, Markowitz 2011}. This distinct metabolism of TAF offers the potential for an improved clinical profile compared with TDF.

Tenofovir alafenamide has minimal interaction with typical xenobiotic metabolizing enzymes and is primarily hydrolyzed by carboxylesterase 1 (CES1) in primary human hepatocytes {Birkus 2007a, Birkus 2008, Murakami 2015}. Additionally, in vitro TAF has been shown to be efficiently taken up by hepatocytes primarily by passive permeability with a small contribution by hepatic uptake transporters OATP1B1 and OATP1B3 {Murakami 2015}. Because of the efficient uptake and intracellular metabolism, TAF resulted in intracellular concentrations of TFV-DP that are 120-fold higher compared with TFV and 5-fold higher compared with TDF in vitro {Murakami 2015}. Thus, TAF provides enhanced delivery of TFV to the liver. In support of the concept of enhanced delivery of active drug for treatment of HIV-1 infection, a study in dogs showed approximately 70% of the orally administered TAF dose is extracted by the liver during first pass metabolism and high levels of TFV-DP were observed in the dog liver {Babusis 2013, Murakami 2015}.

Comprehensive studies have been completed characterizing the ADME profiles of TAF (and/or TFV). In addition, the potential of each agent to be involved in PK DDI has been characterized. Tabulated summaries of these results are presented in m2.6.5. The nonclinical data discussed within this document support the proposed use of TAF for the treatment of HIV-1 and chronic hepatitis B (CHB) infection. All information from nonclinical PK studies that is of relevance to the prescriber and patient has been included in the proposed prescribing information.

Nonclinical studies to characterize the absorption and disposition of TAF have been performed in mice, rats, dogs, and monkeys. The PK studies are listed in the overview table (m2.6.5, Section 1), and study details are provided in the individual study overview tables in m2.6.5. The tabulated summaries in m2.6.5 also provide TK data for studies described in m2.6.6. For the PK studies using GS-7304-02 or GS-7340-03, all doses are presented as TAF free base equivalent.

Tenofovir alafenamide was rapidly absorbed with T_{max} values of 0.08 hours in mouse and dog and 0.5 hours in monkey (the first time point assessed). Tenofovir alafenamide was undetectable in any of the rat plasma samples. Thereafter, TAF plasma concentrations declined rapidly with a terminal half-life of less than 1 hour. Concomitant with the rapid decline in TAF concentrations in plasma, the predominant metabolite TFV was formed and persisted in plasma over the dosing interval. Following oral administration of TAF to dog, high levels of TFV-DP were observed in liver and persisted with a half-life of greater than 20 hours. Furthermore, incubation of primary human hepatocytes with TAF resulted in high levels of intracellular TFV-DP in vitro.

Protein binding of TAF was moderate in human plasma with the percent unbound of 46.8% in vitro which was higher than values observed in multiple human ex vivo studies where the mean percent unbound of TAF ranged from 14% to 23% in all subjects. Following oral administration of [¹⁴C]TAF to mouse, rat, and dog, [¹⁴C]TAF-derived radioactivity was widely distributed to most of the tissues in all species studied. Consistent with high hepatic extraction, high levels of radioactivity were observed in the liver. High levels of radioactivity were also measured in the kidney. Low levels of radioactivity were observed in brain and testis in mouse. No evidence for melanin binding was observed in rats. Distribution trends in the pigmented uveal tract of the eye and pigmented skin suggested that [¹⁴C]TAF-related radioactivity was not selectively associated with melanin-containing tissues in the pigmented mouse. TAF poorly penetrates into cerebrospinal fluid (CSF) following oral administration in monkeys.

Metabolite profiling of TAF in mice, rats, dogs and humans demonstrated formation of purine metabolites that are also present endogenously including hypoxanthine, xanthine, allantoin, and uric acid in all species including humans. Tenofovir accounted for a majority of drug-related material in plasma, urine, and feces from all species except for human plasma in which uric acid was the predominant metabolite accounting for 73.9% of the total AUC over 96 hours. No metabolites unique to human were observed. Tenofovir alafenamide is not an inhibitor of

UGT1A1 and CYP enzymes except for weak inhibition observed for CYP3A in vitro. While TAF is a weak inhibitor of CYP3A in vitro, it is not a clinically meaningful inhibitor of CYP3A. Tenofovir alafenamide is not a clinically relevant inducer of CYP enzymes, UGT1A1, or P-gp. Tenofovir alafenamide was not an inhibitor of any of the transporters tested in vitro indicating that TAF is unlikely to be a perpetrator of transporter-mediated drug interactions. Tenofovir alafenamide was found to be a substrate for efflux transporters P-gp and BCRP and hepatic uptake transporters OATP1B1 and OATP1B3. A modest increase in TAF absorption has been observed upon inhibition of the intestinal efflux transporters in vitro and in vivo. Hepatic uptake transporters OATP1B1 and OATP1B3 make small contributions to TAF uptake into hepatocytes and the effects of changes in the transporter activities are not expected to be clinically relevant given the high passive permeability of TAF.

Following oral dosing of mice, rats, and dogs with [¹⁴C]TAF, the majority of radiolabel is recovered in the feces or urine in all species. The elimination of a large amount of radioactivity in bile of bile duct cannulated (BDC) dogs indicates that biliary excretion is a major route of elimination of [¹⁴C]TAF-derived radioactivity in dogs. Total recovery of radiolabel was high for all species. Renal excretion was identified as the primary route of elimination of TFV in all species tested, and is achieved by a combination of glomerular filtration and active tubular secretion. In vitro transport studies indicate that the active tubular secretion of TFV in humans is mediated by OAT1 and multidrug resistance-associated protein (MRP)4 acting in series, as the major uptake and efflux transporters in proximal tubules, respectively. Human OAT3 may play a secondary role in the tubular uptake of TFV. Neither P-gp nor MRP1 or MRP2 are involved in the tubular efflux of TFV. While OAT1 and OAT3 transport TFV from the bloodstream into the renal proximal tubule cell, TAF is not a substrate for these transporters suggesting that TAF is not contributing to renal tubular cell loading of TFV; as a result, intracellular TFV concentrations in renal cells correlate with plasma TFV levels, which are lower following the administration of TAF than that of TDF. As the primary transporter for the tubular uptake of TFV, OAT1 has been assessed for its potential as a target for DDIs between TFV and other renally secreted therapeutics including antibiotics, anti-inflammatory agents, and other antivirals (including COBI and protease inhibitors [PIs]). Under physiologically relevant conditions, a number of renally excreted drugs showed no effect in vitro on the OAT1-mediated transport of TFV. Similarly, PIs and COBI did not exhibit any effect on the cellular elimination of TFV mediated by the MRP4 efflux pump in vitro, indicating that PIs and COBI do not exert an effect on the accumulation of TFV in renal proximal tubules or renal elimination of TFV. Tenofovir did not inhibit the activity of the renal uptake transporter, OCT2, or the renal efflux transporter, MATE1.

B/F/TAF

No nonclinical studies have been performed assessing the metabolism of the B/F/TAF drug combination because BIC, FTC and TAF have distinct metabolic and excretion pathways for elimination. Bictegravir is metabolized by CYP3A-mediated oxidation and conjugation by UGT enzymes and then eliminated into bile, feces and urine. FTC is eliminated primarily intact by renal excretion. TAF is predominantly hydrolyzed intracellularly to TFV and is then eliminated by renal excretion. This was confirmed in a clinical DDI study (GS-US-141-1218) wherein concomitant administration of BIC and F/TAF showed no significant PK DDI and no dose adjustment was necessary when BIC was administered or coformulated together with F/TAF.

2. METHODS OF ANALYSIS

The in vivo PK, distribution, and excretion of BIC, FTC, and TAF were assessed in mouse, rat, rabbit, dog, and monkey. The in vitro absorption, metabolism, and potential for CYP or transporter mediated DDI were studied in appropriate model systems.

2.1. BIC

2.1.1. Bioanalytical Methods Supporting Pharmacokinetic Studies

2.1.1.1. Pharmacokinetic Studies

The plasma BIC concentrations in nonclinical PK studies in mouse, rat, rabbit, dog, and monkey were quantified by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) or by liquid chromatography (LC) coupled to ultraviolet (UV) detection (LC-UV) methods (m2.6.5, Section 3.1, AD-141-2307, AD-141-2279, AD-141-2286, AD-141-2296, AD-141-2306, AD-141-2300, AD-141-2280, AD-141-2281, AD-141-2284, AD-141-2297, AD-141-2282; and m2.6.5, Section 13.1.1, AD-141-2283). These methods did not strictly conform to Good Laboratory Practice (GLP) guidelines but were evaluated for selectivity, sensitivity, and linearity, as well as intra-assay accuracy and precision. The PK parameters were determined by non-compartmental analysis.

2.1.1.2. Toxicokinetic Studies

The plasma concentrations of BIC were quantified in GLP repeat-dose toxicology studies in mouse (m2.6.7, Section 7.1.1, TX-141-2042), rat (m2.6.7, Section 7.1.2, TX-141-2029 and Section 7.1.3, TX-141-2031), rabbit (m2.6.7, Section 11.1, TX-141-2035 and TX-141-2038), and monkey (m2.6.7, Section 7.1.4, TX-141-2030 and Section 7.1.5, TX-141-2032) using fully validated LC-MS/MS methods (m2.6.5, Section 2.1, BA-141-2001, BA-141-2002, BA-141-2006, BA-141-2007, and BA-141-2008). Validated parameters included selectivity, sensitivity, linearity, recovery, carryover, intra- and inter-assay precision and accuracy, sample collection stability, stock solution stability, injection medium integrity, short-term matrix stability, freeze-thaw matrix stability, long-term matrix stability, dilution integrity, and re-injection reproducibility. The lower limit of quantitation (LLOQ) for BIC was 1000 ng/mL and the upper limit of quantitation (ULOQ) for BIC was 50,000 ng/mL in mouse, rat, rabbit, and monkey plasma. The results of incurred sample reproducibility analyses in toxicology studies confirmed the repeatability of the methods. The toxicokinetic (TK) parameters were determined by non-compartmental analysis.

2.1.2. Other In Vivo Methods

Absorption, distribution, metabolism, and excretion studies were performed in mouse, rat, and monkey following a single oral dose of $[^{14}C]BIC$ with the $[^{14}C]$ label incorporated on the carbonyl group of the trifluorobenzyl acetamide moiety of the molecule (Table 1). Tissue distribution was determined following a single dose $[^{14}C]BIC$ administration in non-pigmented and pigmented rats by quantitative whole body autoradiography (QWBA) and scintillation

counting (m2.6.5, Section 5.1.2 and 5.1.3, AD-141-2276). Radiocounting in the ADME study matrices were determined by liquid scintillation counting (LSC). Radiochromatograms of plasma, urine, bile, and feces were generated by LC with fraction collection followed by offline radio-detection and also characterized by LC-high resolution mass spectrometry (HRMS) (m2.6.5, Section 12.1, AD-141-2303, AD-141-2276, and AD-141-2298, and m2.6.5, Section 8.1, AD-141-2304, AD-141-2277, and AD-141-2299).

2.1.3. In Vitro Methods

2.1.3.1. Metabolism

The rate of hepatic metabolism of $[{}^{3}H]BIC$ (1 μ M) was assessed in hepatic microsomal fractions (1 mg/mL protein) in the presence of reduced -nicotinamide adenine dinucleotide phosphate (NADPH) regenerating system (m2.6.5, Section 9.1.1, AD-141-2289) from nonclinical species and human.

CYP reaction phenotyping was determined by incubating [3 H]BIC (2 μ M) with individual human recombinant CYPs (1A1, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4, and 3A5) co-expressed with NADPH CYP reductase (m2.6.5, Section 9.1.2, AD-141-2290). Uridine disphosphate (UDP) glucuronosyl transferase reaction phenotyping was determined by incubating BIC (5 μ M) with complementary DNA (cDNA)-expressed human UGTs (1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17; m2.6.5, Section 9.1.3, AD-141-2291).

Metabolism of [¹⁴C]BIC was determined in cryopreserved hepatocyte preparations from human and nonclinical species (m2.6.5, Section 9.1.4, AD-141-2288).

The method of analysis was LC-MS/MS for in vitro studies with unlabeled BIC, and HPLC with radioflow detection for radiolabeled BIC.

2.1.3.2. Plasma and Microsomal Protein Binding, Blood to Plasma Ratio

The extent of BIC (2 μ M) binding in plasma was assessed by equilibrium dialysis for 3 hours at 37°C (m2.6.5, Section 6.1.1, AD-141-2287). The relative protein binding of BIC (2 μ M) between human plasma and cell culture medium (CCM) containing 10% fetal bovine serum was assessed in a competitive equilibrium dialysis assay at 37°C (m2.6.5, Section 6.1.1, AD-141-2287). The extent of BIC (3 μ M) binding to human hepatic microsome fraction (0.5 mg protein/mL) was assessed by equilibrium dialysis at 37°C (m2.6.5, Section 6.1.2, AD-141-2281).

Blood to plasma (B/P) ratios were determined following BIC (0.5 μ M) incubation in whole blood from nonclinical species and human at 37°C for 6 hours (m2.6.5, Section 5.1.1, AD-141-2312).

2.1.3.3. Permeability

The bi-directional permeability of BIC at two concentrations (10 μ M and 88 μ M) was assessed in human Caco-2 cell monolayers (m2.6.5, Section 3.1.1, AD-141-2295). The bi-directional permeability of BIC (10 μ M) was also assessed across Madin-Darby canine kidney strain II (MDCKII) cell monolayers of wild type and in MDCKII cells overexpressing either P-gp or BCRP (m2.6.5, Section 14.1.1, AD-141-2278).

2.1.3.4. Inhibition of Cytochrome P450 enzymes and UGT1A1

The potential for BIC to reversibly inhibit the major human drug metabolizing CYP enzymes (1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4) and UGT1A1 was assessed using human hepatic microsomal fraction and enzyme-selective activities (m2.6.5, Section 11.1.1, AD-141-2293, and Section 11.1.2, AD-141-2294). The probe substrates for each enzyme were incubated individually with pooled human liver microsomes in the presence and absence of BIC (0 - 100 μ M for CYPs; 0 – 300 μ M for UGT1A1) or positive control inhibitors. The production of the enzyme-specific metabolites was measured and, where possible, the IC₅₀ values were determined.

The potential for BIC mediated mechanism-based inhibition of CYPs (1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A) was assessed using human hepatic microsomal fraction and enzyme-selective activities with a 2-step incubation protocol (m2.6.5, Section 11.1.3, AD-141-2308). The first stage allowed for inactivation of the enzyme in the absence of substrate, and the second stage was used to assay the remaining enzyme activity. A 10-fold dilution was performed between the 2 stages to reduce the direct inhibitory effects of the test compounds.

2.1.3.5. Induction Potential

The potential for BIC to induce metabolizing enzymes through activation of aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) was assessed in reporter cell lines (m2.6.5, Section 11.1.4, AD-141-2292). DPX2 cells, stably transformed with an expression vector for human PXR and a reporter gene vector containing the enhancer regions of CYP3A4 linked to luciferase, were used for assessment of PXR activation. DRE12.6 cells, transformed with an expression vector for human AhR and the dioxin response element of the human CYP1A2 gene linked to a luciferase reporter, were used to determine AhR activation. Appropriate control compounds were also analyzed along with BIC in order to evaluate the relative induction potential of BIC.

The induction potential of BIC on CYP enzymes, UGT1A1, and P-gp was assessed in cryopreserved hepatocytes (m2.6.5, Section 11.1.5, AD-141-2305). Hepatocytes from 3 separate donors were incubated with vehicle control, appropriate positive controls, or BIC $(1 - 60 \mu M)$ for a total of 3 days. Induction of CYPs (1A2, 2B6, and 3A) was measured by in situ catalytic activity assays selective for each CYP isoform. Induction of mRNA expression was determined for CYPs (1A2, 2B6, 3A4, 2C8 and 2C9), UGTs (1A1, 1A3 and 1A9) and P-gp by quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis.

2.1.3.6. Interaction with Transporters

BIC (10 μ M) was assessed as a substrate for efflux transporters in transwell assays using P-gp- and BCRP-transfected MDCKII cell monolayers (m2.6.5, Section 14.1.1, AD-141-2278). Transporter expression-dependent changes in the bidirectional permeability assay were confirmed using control inhibitors. BIC (1 μ M) was also evaluated as a potential substrate for uptake transporters OATP1B1 and OATP1B3 using Chinese hamster ovary (CHO) cells transfected with the individual transporters (m2.6.5, Section 14.1.2, AD-141-2275). The uptake rate of BIC in OATP1B1- and OATP1B3-overexpressing cells was determined in the absence or presence of a control inhibitor. BIC was assessed as an inhibitor of influx and efflux using cell lines transfected with the individual transporters or membrane vesicle preparations. Inhibition of OATP1B1, OATP1B3, OAT1, OCT1, and MATE1 was studied in transfected CHO cells (m2.6.5, Section 14.1.4, AD-141-2274, Section 14.1.5, AD-141-2285, and Section 14.1.6, AD-141-2310). Inhibition of OAT3 was studied in transfected Flp-In293 cells (m2.6.5, Section 14.1.6, AD-141-2310). Inhibition of P-gp, BCRP, and OCT2 was studied in transfected MDCKII cells (m2.6.5, Section 14.1.3, AD-141-2273 and Section 14.1.5, AD-141-2285). Inhibition of BSEP was studied in cell membrane vesicles of Spodoptera frugiperda (Sf9) ovarian cells individually expressing BSEP drug transporter (m2.6.5, Section 14.1.6, AD-141-2310). Inhibition of the transport of transporter-specific probe substrates was assessed in the presence of increasing concentrations of BIC. The inhibition of the transporter-specific substrates was measured and, where possible, IC₅₀ values were determined. Appropriate positive control compounds were included in each transporter assessment.

2.2. FTC

The in vivo PK, TK, distribution, and excretion of FTC were assessed in mouse, rat, and monkey. The in vitro metabolism and drug interaction characteristics of FTC were studied in appropriate model systems.

2.2.1. Bioanalytical Methods Supporting Pharmacokinetic Studies

Analytical methods used to quantify FTC in mouse, rat, and monkey plasma from the early preclinical ADME studies employed reverse-phase high-performance liquid chromatography (HPLC) with ultraviolet detection at 280 nm. The LLOQ was 0.063 to 0.125 μ g/mL {Frick 1994}. Additional mouse, rat, rabbit, and monkey PKc and TK studies used HPLC-mass spectrometry (MS)-based assays for the quantitation of FTC in plasma and urine. Initially, a method employing selected ion monitoring was developed (m2.6.5, Section 2.2, 97/001.01) and this was subsequently improved by incorporation of MS/MS detection (m2.6.5, Section 2.2, 6447v5, 7582v1, and 6159v1). Methods were cross-validated, and the LLOQ was generally in the range of 0.100 to 0.200 µg/mL.

2.2.2. Other In Vivo Methods

The recovery of radioactivity in urine and feces was determined after administration of [³H]FTC to CD-1 mice (m2.6.5, Section 8.2.1, TEIN/93/0015) and samples were also subject to LC-radioprofiling. The recovery of radioactivity in feces and urine after administration of [¹⁴C]FTC to Sprague-Dawley and Long Evans rats was determined (m2.6.5, Section 5.2.1, TOX092). Samples were subject to LC-radioprofiling and tissue distribution was determined by QWBA. Radioactive recovery and LC-radioprofiling studies were performed with cynomolgus monkeys after administration of [³H]FTC (m2.6.5, Section 8.2.2, TOX063).

2.2.3. In Vitro Methods

The extent of binding of [³H]FTC in plasma from mouse, rabbit, monkey, and human plasma was determined by equilibrium dialysis (m2.6.5, Section 6.2.1, TBZZ/93/0025). The potential for FTC to inhibit human CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A was determined by examining its effects on selective activities catalyzed by human hepatic microsomal fraction (m2.6.5, Section 11.2.1, 15247). Positive control inhibitors were tested in parallel. The effect of FTC on glucuronidation by human hepatic microsomal fraction was also determined using 7-hydroxycoumarin as a general UGT substrate. The potential for FTC to be a substrate for human CYP enzymes was determined with 9 individual bacterially expressed CYP enzymes and through the use of human hepatic microsomal fraction and enzyme-selective inhibitors (m2.6.5, Section 9.2.1, 15396v1). Positive control substrates were tested in parallel. The role of glucuronide conjugation in the metabolism of FTC was also determined with human hepatic microsomal fraction and uridine diphosphate glucuronic acid (UDPGA) as the cofactor.

2.3. TAF

The in vivo PK, TK, distribution, and excretion of TAF were assessed in mouse, rat, dog, and monkey. The in vitro absorption, metabolism, and drug interaction characteristics of TAF were studied in appropriate model systems.

2.3.1. Bioanalytical Methods Supporting Pharmacokinetic Studies

In the early preclinical absorption studies, TFV levels in rat plasma and TAF and TFV levels in dog plasma and peripheral blood mononuclear cells (PBMCs) were determined using a fluorescence derivitization/HPLC procedure (m2.6.5, Section 3.3, R990130 and 99-DDM-1278-001-PK). Analyses of TAF and TFV in plasma and PBMCs during PK studies following single or multiple oral administration to rats (m2.6.5, Section 3.3, R2000065, AD-120-2015), mice (m2.6.5, Section 3.3, AD-120-2014 and AD-120-2016; m2.6.7, Section 6.2, TX-120-2006), dogs (m2.6.5, Section 3.3, AD-120-2034, and Section 14.3.14, AD-120-2035), and monkeys (m2.6.5, Section 3.3, P2000087) were performed using LC-MS/MS (m2.6.5, Section 2.3, BA-120-2003, BA-120-2004, BA-120-2010, BA-120-2011, BA-120-2012, and BA-120-2013). Some of these methods did not strictly conform to GLP guidelines but were evaluated for appropriate selectivity, sensitivity, linearity, as well as intra-assay accuracy and precision.

2.3.2. Bioanalytical Methods Supporting GLP Studies

Validated methods of HPLC with MS detection were used for the earlier rat TK studies (m2.6.5, Section 2.3, 001092/NGE and R-BA-Tox-120-001). Plasma concentrations of TAF and TFV were quantified in toxicology studies in pregnant mouse, rat, and rabbit using validated LC-MS/MS methods (m2.6.5, Section 2.3, BA-120-2003, BA-120-2004, and BA-120-2005). In a 28-day toxicology study in dog, the plasma TAF concentrations were determined using a validated LC-MS/MS assay with a limit of quantification of 5 ng/mL and the concentrations of TFV in plasma and in PBMCs were determined using fluorescence derivitization followed by HPLC with fluorescence detection (m2.6.5, Section 2.4, P1278-00017) and HPLC with MS

detection (m2.6.5, Section 2.3, 993680 MYS), respectively. Analytical methods for determination of TAF in plasma and TFV in plasma and PBMCs from a 9-month dog toxicology study (m2.6.5, Section 2.3, TOX-120-002) are described within the appendices of the study report.

In a 28-day repeat dose study in monkeys, validated methods were used to determine TAF and TFV in plasma (m2.6.5, Section 2.3, 010520/PDW and 010521/PHZ) and TFV in PBMCs (m2.6.5, Section 2.3, AA01240-RQZ).

Two assay techniques were used to determine plasma TFV concentrations. The first was a reverse phase ion-pair HPLC method following fluorescence derivatization (m2.6.5, Section 2.4, P4331-00008 [mouse], P1278-00001 [rat, monkey], and P1278-00017 [dog]). This assay was validated with a LLOQ of 25 ng/mL, and was used in earlier studies. The second assay utilized LC-MS/MS and was validated with LLOQs of 1–3 ng/mL (m2.6.5, Section 2.4, P1278-00028 [rat], P1278-00029 [monkey], and P4331-0037 [dog]). The LC-MS/MS assay was also validated for the determination of TFV in rat milk with an LLOQ of 10 ng/mL (m2.6.5, Section 2.4, P1278-00034).

2.3.3. Other In Vivo Bioanalytical Methods

The ADME of TAF were assessed in various species following a single oral administration of $[^{14}C]TAF$. The location of $[^{14}C]$ label at the 2- or 8-position of the adenine base is indicated by an asterisk in the structures described in Table 3. The tissue distribution of $[^{14}C]TAF$ -derived material was assessed using QWBA of pigmented and nonpigmented male mice and rats or by LSC in dogs (m2.6.5, Section 5.3, AD-120-2009, AD-120-2011, and AD-120-2020). The metabolism and excretion of $[^{14}C]TAF$ has been assessed in intact male mice, and in intact and BDC rats and dogs (m2.6.5, Section 8.3, AD-120-2008, AD-120-2012, and AD-120-2021). HPLC or LC-MS/MS coupled with radio flow-through detector (RFD) analysis was used for metabolite profiling and identification. Tenofovir alafenamide and its metabolites were separated using reverse phase chromatography, and detected using RFD and MS technology simultaneously. The retention times of the metabolites using reverse phase chromatography were determined by the peaks on radiochromatograms generated by an inline RFD, and the molecular ions of the metabolites were determined on the full scan mass spectra by tandem MS corresponding to the retention times of metabolites on the radiochromatograms. Tandem MS of the molecular ions was performed, and the structures of the metabolites were proposed based on their mass spectra. Where possible, the structures of the metabolites were confirmed by comparison of the chromatographic and mass spectral characteristics of the metabolites with authentic reference standards.

2.3.4. In Vitro Methods

2.3.4.1. Permeability Across Caco-2 Cell Monolayers

In vitro bidirectional permeability of TAF (incubated at 10 μ M) was assessed using monolayers of the human colonic adenocarcinoma cell line Caco-2, on 12 well transwell dual chamber plates. Permeability rates were determined by quantifying the TAF levels in each chamber by LC-MS/MS (m2.6.5, Section 3.3.1, AD-120-2037). Experiments were done in the absence or in the presence of COBI, a known inhibitor of P-gp (m2.6.5, Section 14.3.3, AD-120-2013).

2.3.4.2. Stability

The stability of TAF has been assessed in plasma, intestinal S9 and hepatic S9 fractions from dog and human (m2.6.5, Section 9.3, AD-120-2025, AD-120-2024, and AD-120-2023). Intestinal stability of TAF was also studied in the presence of HIV PIs or pharmacoenhancers using intestinal S9 fractions (m2.6.5, Section 9.3.7, AD-120-2027). The disappearance of the parent prodrug was monitored by LC-MS/MS.

The stability of [¹⁴C]TFV in rat hepatic microsomal fractions and in liver S9, intestinal S9, and plasma from dog and human was determined by LC-radioprofiling (m2.6.5, Section 9.3, 96-DDM-1278-003).

CYP-mediated metabolism was assessed with CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 by incubating TAF at 5 μ M with bacterially expressed each human CYP450 enzyme preparations (Bactosomes) coexpressed with human NADPH CYP reductase in the presence of NADPH (m2.6.5, Section 9.3, AD-120-2004). The disappearance of the parent prodrug was monitored by LC-MS/MS.

2.3.4.3. Intracellular Metabolism

Intracellular activation of TAF was assessed in primary human hepatocytes. Tenofovir alafenamide was continuously incubated with primary human hepatocytes for 24 hours and cell samples were collected at select time point followed by washing and extraction. The samples were analyzed by LC-MS/MS and intracellular concentrations of TFV-DP were quantified (m2.6.5, Section 9.3, AD-120-2017 and AD-120-2031).

2.3.4.4. Plasma Protein Binding

The binding of TAF to plasma was assessed by equilibrium dialysis against phosphate buffer at 37°C using pooled plasma from Beagle dogs and humans (m2.6.5, Section 6.3.1, AD-120-2026). Unbound TAF was quantified by LC-MS/MS.

The binding of $[{}^{3}H]TFV$ in human plasma was determined by ultrafiltration (m2.6.5, Section 6.3.2, P0504-00039.1).

2.3.4.5. Inhibition of Cytochrome P450 Enzymes and UGT1A1

The inhibition of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A was assessed by incubating TAF with human liver microsomes and NADPH in the presence of individual probe substrates. Each probe substrate metabolite was quantified by LC-MS/MS. The following positive control inhibitors for each CYP isoform were used to establish the validity of the assay; -naphthoflavone (CYP1A2), ticlopidine (CYP2B6), montelukast (CYP2C8), sulfaphenazole (CYP2C9), tranylcypromine (CYP2C19), quinidine (CYP2D6), and ketoconazole (CYP3A4) (m2.6.5, Section 11.3.1, AD-120-2003). The mechanism-based inhibition was assessed using CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A following a 2-step incubation protocol. First, TAF or positive control inhibitors were incubated with human liver microsomes in the presence or absence of NADPH for 30 min at

 37° C. The mixture was then diluted 10-fold with a phosphate buffer containing the respective probe substrate and fresh NADPH to initiate the second incubation for the CYP reaction. Each probe substrate metabolite was quantified by LC-MS/MS. The following positive control inhibitors for each CYP isoform were used to establish the validity of the assay: resveratrol and furafylline (CYP1A2); ticlopidine (CYP2B6); gemfibrozil glucuronide (CYP2C8); tienilic acid (CYP2C9); ticlopidine (CYP2C19); paroxetine (CYP2D6); and mibefradil and mifepristone (CYP3A4) (m2.6.5, Section 11.3.3, AD-120-2040). The inhibition of UGT1A1 was assessed by incubating TAF (up to 50 μ M) with insect cell microsomal fraction containing expressed human UGT1A1, UDP-glucuronic acid, and a probe substrate, estradiol at 37°C. Formation of the metabolite, estradiol 3-glucuronide was monitored by LC-MS/MS (m2.6.5, Section 11.3.6, AD-120-2006).

The effects of TFV on human CYP1A2, CYP2C9, CYP2E1, CYP2D6, and CYP3A activity were determined with human hepatic microsomal fraction and enzyme-selective activities (m2.6.5, Section 11.3.2, V990172-104).

2.3.4.6. Induction Potential

The potential of TAF to induce human drug metabolizing enzymes and transporters through the activation of AhR and PXR was assessed in vitro in reporter cell lines (m2.6.5, Section 11.3.4, AD-120-2005). Briefly, assessments of induction were done using Puracyp's hepatoma-derived cell lines, DRE12.6 and DPX2. DPX2 cells are stably transformed with an expression vector for human PXR and a reporter gene vector containing the enhancer regions of CYP3A4 linked to luciferase. DRE12.6 cells are transformed with an expression vector for human AhR and the drug/dioxin response element of the human CYP1A2 gene linked to a luciferase reporter.

The induction potential of TAF on CYP activity and CYP, P-gp, and UGT1A1 mRNA levels was assessed in primary human hepatocytes (m2.6.5, Section 11.3.5, AD-120-2032). Three preparations of cryopreserved human hepatocytes isolated from 3 separate livers were treated once daily for 3 consecutive days with dimethyl sulfoxide (DMSO, 0.1% v/v, vehicle control), 1 of 3 concentrations of TAF (1, 10, or 100 μ M). For positive controls for induction, omeprazole (CYP1A2) at 50 μ M, phenobarbital (CYP2B6 and P-gp) at 100 μ M, rifampin (CYP3A4) at 10 μ M, or -naphthoflavone (UGT1A1) at 20 μ M were used. After treatment, the cells were incubated with CYP probe substrate for the analysis of phenacetin O dealkylation (marker for CYP1A2), bupropion hydroxylation (marker for CYP2B6), and testosterone 6 hydroxylation (marker for CYP3A4) by LC-MS/MS. After the activity assay, RNA was analyzed by quantitative RT-PCR (qRT PCR) to assess the effect of TAF on CYP1A2, CYP2B6, CYP3A4, P-gp, and UGT1A1 mRNA levels. In addition, a test to assess toxicity potential of TAF to human hepatocytes during the course of induction treatment was conducted with the same lots of cryopreserved human hepatocytes using the

3-[4,5-Dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay.

2.3.4.7. Interaction with Transporters

The potential for TAF and TFV to be a substrate for human P-gp or BCRP was assessed using monolayers of Caco-2 cells, or MDCKII cells transfected with an expression vector for the protein, and through the use of chemical inhibitors (m2.6.5, Section 14.3, AD-120-2018, AD-236-2004, AD-236-2005, and AD-104-2002). The potential for TAF and TFV to inhibit P-gp or BCRP was assessed using MDCK II cells expressing each of the transporters (m2.6.5, Section 14.3, AD-120-2019 and AD-236-2003). The potential of TAF to be a substrate or an inhibitor and the potential of TFV to be an inhibitor of human OATP1B1 and OATP1B3 were evaluated using CHO cells (m2.6.5, Section 14.3, AD-120-2019, AD-120-2022, and AD-236-2006). Interactions of FTC with human OAT1 and OAT3 (m2.6.5, Section 14.4.2, AD-236-2010) and TAF with human OAT1, OCT1, MATE1, and OCT2 were studied using CHO cells expressing the individual transporters (m2.6.5, Section 14.3.6, AD-120-2036). The effect of TAF on BSEP and OAT3 was determined using the transporter expressing Sf9 cell membrane vesicles and Flp-In 293 cells, respectively (AD-120-2036). The effects of TFV on OCT1, OCT2, MATE1, OAT1, and OAT3 were tested in CHO cells and on MRP4 and BSEP were evaluated using vesicles containing the transporter (m2.6.5, Section 14.3, AD-236-2011, AD-236-2007, AD-236-2008, and AD-104-2012).

Interactions of TFV with human MRP2 were evaluated with the human ovarian carcinoma cell line, 2008, transfected with an expression vector for the protein (m2.6.5, Section 14.3.7, AD-104-2001). Interactions of TFV with human MRP4 were performed with the human T-cell leukemic lymphoblast cells line, CEM-R1, overexpressing the protein, and were compared with the CEM-SS parental line. The potential for TFV to be a substrate for human OAT3, OCT1, or OCT2 was determined by examining uptake of [³H]TFV by microinjected Xenopus laevis oocytes (m2.6.5, Section 14.3.13, PC-103-2001). The effect of TFV on human MRP1 activity was determined using MDCK II cells overexpressing the protein (m2.6.5, Section 14.3.11, PC-104-2014).

3. ABSORPTION

3.1. In Vitro Absorption Studies

3.1.1. BIC

The in vitro absorption potential of BIC was assessed by measuring the permeability across Caco-2 cell monolayers. The in vivo disposition of BIC was determined following intravenous (IV) and oral administration to Sprague-Dawley rats, beagle dogs, cynomolgus monkeys, and rhesus monkeys. Additional oral studies were conducted in transgenic mice, Wistar Han rats, and New Zealand White (NZW) rabbits.

Permeability of BIC was studied in vitro using bidirectional permeability across Caco-2 monolayers and the results are shown in Table 4 (m2.6.5, Section 3.1.1, AD-141-2295). Bictegravir showed a dose-dependent increase in forward permeability and a decrease in efflux ratio indicating saturable efflux transport. Overall, these data support high intestinal absorption potential for BIC in humans.

Table 4.Bidirectional Permeability of BIC in Caco-2 Monolayers

	Mean P _{app} (
BIC Concentration (µM)	Forward	Reverse	Efflux Ratio
10	6.2	27.2	4.4
88	14.8	22.6	1.5

Caco-2 = human colon carcinoma cell line; P_{app} = apparent permeability coefficient Source: AD-141-2295

3.1.2. FTC

Emtricitabine shows high, dose-independent bioavailability in vivo in mice and monkeys (m2.6.5, Section 3.2); thus, in vitro absorption studies were not considered necessary.

3.1.3. TAF

Permeability of TAF was studied in both apical to basolateral (forward) and basolateral to apical (reverse) directions at 10, 100, and 1000 μ M using Caco-2 monolayers (m2.6.5, Section 3.3.1, AD-120-2037). Tenofovir alafenamide showed a dose dependent increase in forward permeability and a decrease in efflux ratio indicating saturable efflux transport (Table 5). At 100 μ M TAF, the apparent forward permeability rate was 0.63×10^{-6} cm/s and the efflux ratio was 13.6. Addition of the efflux transport inhibitor, cyclosporine A (CsA) diminished the efflux ratio and increased the forward permeability.

			Mean P _{app} (
Compound	Inhibitor	Concentration (µM)	Forward	Reverse	Efflux Ratio
TAF	None	10	0.34	6.98	20.2
TAF	None	100	0.63	8.47	13.6
TAF	None	1000	1.08	5.86	6.28
TAF	10 µM CsA	10	1.51	1.34	1.00

Table 5.Dose-Dependent Bidirectional Permeability of TAF in Caco-2 Cells

CsA = cyclosporine A

3.2. Single Dose In Vivo Studies

3.2.1. BIC

3.2.1.1. Pharmacokinetics Following Intravenous Administration

Single-dose IV PK of BIC was determined in male rat, dog, and cynomolgus and rhesus monkeys (m2.6.5, Section 3.1, AD-141-2279, AD-141-2280, AD-141-2281, and AD-141-2282). The plasma PK parameters are summarized in Table 6.

The CL of BIC was low in rats, dogs, and monkeys (0.1% to 1.3% of hepatic blood flow). Bictegravir had a V_{ss} in animals in the range of 0.09 to 0.22 L/kg, which was lower than total body water.

Table 6.Plasma Pharmacokinetic Parameters for BIC Following a Single
Intravenous Infusion Administration to Rat, Dog, and Monkey

Species	Dose ^a (mg/kg)	AUC _{inf} (nM•h)	CL (L/h/kg)	V _{ss} (L/kg)	t _{1/2} (h)	MRT (h)
Sprague-Dawley Rat	0.5	246000 ± 39400	0.0049 ± 0.0007	0.22 ± 0.04	32.4 ± 1.2	45.7 ± 1.7
Beagle Dog	0.5	58700 ± 17700	0.022 ± 0.006	0.15 ± 0.02	5.34 ± 0.18	7.10 ± 1.32
Cynomolgus Monkey	0.5	49400 ± 12400	0.024 ± 0.007	0.095 ± 0.010	3.58 ± 0.23	4.16 ± 0.93
Rhesus Monkey	0.5	43000 ± 5050	0.026 ± 0.003	0.11 ± 0.02	3.76 ± 0.76	4.36 ± 1.30

AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; CL = plasma clearance;

MRT = mean residence time; $t_{1/2}$ = estimated plasma elimination half-life; V_{ss} = volume of distribution at steady state

a Formulated as solution in 5% ethanol, 55% PEG 300, and 40% water.

Values are the mean \pm standard deviation from 3 animals.

BIC: 1 nM = 0.449 ng/mL

Source: AD-141-2279, AD-141-2280, AD-141-2281, and AD-141-2282

3.2.1.2. Pharmacokinetics Following Single Dose Oral Administration

The PK of BIC was determined in male rat, dog, and monkey following administration of oral solutions (m2.6.5, Section 3.1, AD-141-2279, AD-141-2280, and AD-141-2281). The plasma PK parameters are summarized in Table 7. Bictegravir was absorbed quickly following oral solution administration, reaching maximal plasma concentrations (C_{max}) within 4 hours postdose. The oral

20

Final

bioavailability of BIC solution formulation was moderate to high (42% to 74%). The high forward permeability of BIC in Caco-2 cells and the high bioavailability of BIC in monkeys were consistent with high intestinal absorption in humans.

				, 0	·	
Species	Dose ^a (mg/kg)	AUC _{inf} (nM•h)	C _{max} (nM)	T _{max} (h)	t _{1/2} (h)	F (%)
Sprague-Dawley Rat	0.5	125000 ± 43000	3480 ± 773	4.00 ± 2.00	25.7 ± 1.9	49.8 ± 16.8
Beagle Dog	1.0	55900 ± 18500	9720 ± 1130	0.83 ± 0.29	4.26 ± 0.40	41.8 ± 13.9
Cynomolgus Monkey	1.0	72500 ± 39500	16600 ± 4540	0.83 ± 0.29	3.26 ± 0.50	73.8 ± 40.3

Plasma Pharmacokinetic Parameters Following a Single Oral Administration of BIC in Solution to Rat, Dog and Monkey

 AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; C_{max} = maximum plasma concentration; F = oral bioavailability; $t_{1/2}$ = estimated plasma elimination half-life; T_{max} = time to reach the maximum plasma concentration a Formulated as a solution - 5% ethanol, 55% PEG 300, and 40% water for rat and 30% Captisol in water for dog and monkey. Values are the mean ± standard deviation from 3 animals.

BIC: 1 nM = 0.449 ng/mL

Table 7.

Source: AD-141-2279, AD-141-2280, and AD-141-2281

The PK of BIC was also determined in mouse, rat, rabbit, and monkey following single increasing oral doses to inform dose and formulation selection for repeat dose toxicology studies (m2.6.5, Section 3.1, AD-141-2307, AD-141-2286, AD-141-2306, AD-141-2296, AD-141-2300, and AD-141-2297).

3.2.1.2.1. Mouse

The oral PK of BIC was determined over a dose range of 30 to 1500 mg/kg in the transgenic mouse (model 001178-W [wild type] RasH2; Table 8). The plasma exposure (AUC and C_{max}) of BIC increased with dose in the range of 30 to 1000 mg/kg; the increase in exposure was less than dose proportional. At 1000 mg/kg, exposure to BIC plateaued, with a decrease in exposure noted at the higher dose of 1500 mg/kg in both males and female mice. No gender differences in AUC or C_{max} were observed.

Table 8.		harmacokinetic Parai ration to Transgenic (0 0
	AUC	C	т	C

Dose ^b	AUC _{0-24h} (μg•h/mL)		С _n (µg/1			max h)		^{24h} mL)
(mg/kg)	Male	Female	Male	Female	Male	Female	Male	Female
30	660 ± 34	745 ± 37	59.3 ± 22.2	71.8 ± 7.3	0.5	2.0	5.88 ± 0.90	5.66 ± 1.48
100	1257 ± 53	1509 ± 141	97.9 ± 16.9	108 ± 16	1.0	8.0	8.98 ± 1.89	11.1 ± 3.8
300	2106 ± 107	2173 ± 232	116 ± 10	127 ± 15	4.0	8.0	24.2 ± 6.2	20.2 ± 2.4
1000	2568 ± 100	3197 ± 301	135 ± 7	163 ± 13	0.5	2.0	43.3 ± 19.8	57.9 ± 15.7
1500	2155 ± 110	2366 ± 143	123 ± 6	164 ± 2	4.0	2.0	45.3 ± 28.3	37.4 ± 36.6

AUC_{0-24h} = area under the plasma concentration-time curve from zero to 24 h; C_{max} = maximum plasma concentration;

 C_{24h} = measured concentration at 24 h post dose; T_{max} = time to reach the maximum plasma concentration.

a Transgenic mouse model 001178-tg/wt [CByB6F1-Tg(HRAS)2Jic]

b Formulated as a suspension in 0.5% HPMC K100LV and 0.1% Tween 20 in water.

BIC: 1 nM = 0.449 ng/mL

Source: AD-141-2307

3.2.1.2.2. Rat

The oral PK of BIC (free acid and the sodium salt) was determined over a wide dose range in the male Wister Han rat. Aqueous suspension and organic solution formulation were compared using BIC free acid to identify a formulation that provided optimal exposure for use in repeat-dose toxicology studies and the results are summarized in Table 9. At low doses (10 and 30 mg/kg), the organic vehicle provided higher plasma exposures (AUC and C_{max}) of BIC compared to the aqueous suspension. At 100 mg/kg, exposure to BIC plateaued with the organic vehicle, with a decrease in exposure noted at the higher dose of 300 mg/kg. Similarly, exposure to BIC plateaued at 300 mg/kg with the aqueous vehicle with a decrease noted at 1000 mg/kg. Maximal exposures were similar with the aqueous and organic vehicles. Thus the aqueous suspension was chosen for use in single dose safety pharmacology and repeat dose toxicity studies in rats. The PK following oral dosing of BIC sodium salt, the form used in pivotal repeat-dose toxicology studies, is also summarized in Table 9. The C_{max} and AUC were comparable between the free acid and sodium salt form of BIC.

Table 9.	Plasma Pharmacokinetic Parameters for BIC Following Single Oral
	Administration to Male Wistar Han Rat

	А	UC _{0-24h} (µg•h/m	L)	C _{max} (µg/mL)		
Dose (mg/kg)	Organic Vehicle ^a (Free Acid)	Aqueous Suspension ^b (Free Acid)	Aqueous Suspension ^b (Sodium Salt)	Organic Vehicle ^a (Free Acid)	Aqueous Suspension ^b (Free Acid)	Aqueous Suspension ^b (Sodium Salt)
10	929 ± 97	471 ± 142	-	61.5 ± 2.1	31.1 ± 6.0	-
30	1904 ± 249	849 ± 66	926 ± 209	114 ± 5	54.3 ± 5.8	55.3 ± 6.0
100	2847 ± 229	1625 ± 826	1896 ± 331	148 ± 7	104 ± 30	102 ± 17
300	2137 ± 570	2205 ± 248	2436 ± 481	105 ± 26	120 ± 23	129 ± 9
1000	-	1931 ± 109	-	-	115 ± 14	-

 AUC_{0-24h} = area under the plasma concentration-time curve from zero to 24 h; C_{max} = maximum plasma concentration

a Formulated as a solution in 10% ethanol, 10% propylene glycol, 40% Labrasol, and 40% Solutol[®] HS 15.

b Formulated as a suspension in 0.5% HPMC K100LV and 0.1% Tween 20 in water.

Values are the mean \pm standard deviation from 3 animals.

1 nM BIC = 0.449 ng/mL

Source: AD-141-2306, AD-141-2286 and AD-141-2296

3.2.1.2.3. Rabbit

The oral PK of BIC over a dose range from 100 to 1000 mg/kg was determined in the NZW rabbit and the results are summarized in Table 10. The systemic plasma exposure (AUC and C_{max}) of BIC administered as an aqueous suspension increased with dose level from 100 to 1000 mg/kg. The increase in AUC exposure was dose proportional from 100 to 300 mg/kg, but less than dose proportional from 300 to 1000 mg/kg.

Single Of al Auministiation to Female 142 W Rabbits							
Dose ^a (mg/kg)	AUC _{0-24h} (μg•h/mL)	C _{max} (µg/mL)	T _{max} (h)	C _{24h} (µg/mL)			
100	23.3 ± 1.9	4.38 ± 0.21	1.67 ± 0.58	0.32 ± 0.12			
300	69.7 ± 6.9	6.41 ± 1.73	2.00 ± 0.00	1.82 ± 0.37			
1000	171 ± 64	9.76 ± 3.49	16.7 ± 12.7	9.29 ± 4.30			

Table 10.Plasma Pharmacokinetic Parameters for BIC (Sodium Salt) Following
Single Oral Administration to Female NZW Rabbits

 $AUC_{0.24h}$ = area under the plasma concentration-time curve from zero to 24 h; C_{max} = maximum plasma concentration; C_{24h} = measured concentration at 24 h post dose; T_{max} = time to reach the maximum plasma concentration.

a Formulated as a suspension in 0.5% HPMC K100LV and 0.5% Tween 20 in water.

Values are the mean \pm standard deviation from 3 animals.

1 nM BIC = 0.449 ng/mL

Source: AD-141-2300

3.2.1.2.4. Monkey

The oral PK of BIC was determined in the cynomolgus monkey with two forms of BIC (free acid and the sodium salt) at doses up to 1000 mg/kg and the results are summarized in m2.6.5, Section 3.1. The plasma exposures were similar between the free acid and the sodium salt forms. The PK following oral dosing of the BIC sodium salt, the form selected for pivotal toxicology studies, is summarized in Table 11. The plasma exposure (AUC and C_{max}) of BIC increased with dose in the range of 30 to 1000 mg/kg; the increase was less than dose proportional.

Table 11.Plasma Pharmacokinetic Parameters for BIC (Sodium Salt) in Male
Cynomolgus Monkeys Following Single Ascending Oral Doses in
Aqueous Suspension

Dose ^a (mg/kg)	AUC _{0-24h} (µg•h/mL)	C _{max} (µg/mL)	T _{max} (h)	C _{24h} (µg/mL)
30	171 ± 73	18.7 ± 4.0	2.67 ± 1.15	2.32 ± 1.93
100	348 ± 51	42.1 ± 10.3	2.67 ± 1.15	3.42 ± 1.21
1000	1056 ± 339	80.9 ± 25.6	5.33 ± 1.15	13.4 ± 3.6

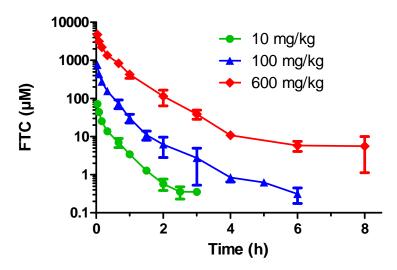
 AUC_{0-24h} = area under the plasma concentration-time curve from zero to 24 h; C_{max} = maximum plasma concentration; C_{24h} = measured concentration at 24 h post dose; T_{max} = time to reach the maximum plasma concentration.

a Formulation contained 0.5% HPMC K100LV and 0.1% Tween 20 in water.

Values are the mean \pm standard deviation from 3 animals. BIC: 1 nM = 0.449 ng/mL

Source: AD-141-2297

3.2.2. FTC


3.2.2.1. Mouse

The FTC PK profile was determined after IV and oral administration to nonfasted male CD-1 mice at doses of 10 mg/kg (m2.6.5, Section 3.2.1, TEIN/93/0003), 100 mg/kg (m2.6.5, Section 3.2.2, TEIN/93/0004), and 600 mg/kg (m2.6.5, Section 3.2.3, IUW00101). Pharmacokinetic profiles are illustrated in Figure 1 and Figure 2. After IV administration, the decline in plasma concentration was bi- or tri-exponential, with V_{ss} values close to that of total

Final

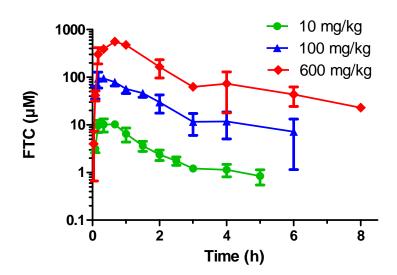
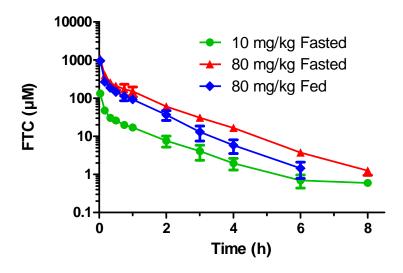

body water (0.89–1.1 L/kg) and clearance values (1.28–2.33 L/h/kg) exceeding the glomerular filtration rate in mice. After oral administration, absorption was rapid and extensive, with absolute bioavailability values of 96%, 79%, and 63% at 10, 100, and 600 mg/kg, respectively. C_{max} and AUC values increased roughly dose-proportionally from 10 to 600 mg/kg.

Figure 1.Mean Plasma Concentration vs Time Profile Following an
Intravenous Bolus Dose of FTC in Solution to Male CD-1 Mice
(mean ± SD)

FTC = emtricitabine; SD = standard deviation Source: Reports TEIN/93/0003 (10 mg/kg, n=5), TEIN/93/0004 (100 mg/kg, n=5) and IUW00101 (100 mg/kg, n=3)

Figure 2. Mean Plasma Concentration vs Time Profile Following an Oral Dose of FTC in Solution to Male CD-1 Mice (mean ± SD)


FTC = emtricitabine; SD = standard deviation Source: Reports TEIN/93/0003 (10 mg/kg, n=5), TEIN/93/0004 (100 mg/kg, n=5) and IUW00101 (100 mg/kg, n=3)

Final

3.2.2.2. Monkey

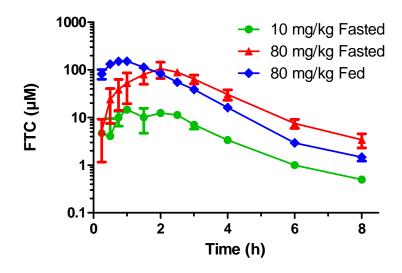

Two studies were performed with male cynomolgus monkeys dosed with a solution of FTC orally or by slow (2-minute) IV bolus administration. In the first study, 8 monkeys were administered single 10 mg/kg or 80 mg/kg doses of FTC (4 monkeys at each dose) in a crossover design study (m2.6.5, Section 3.2.4, TEZZ/93/0019). Animals were fasted overnight to 2 hours postdose. In a second study (m2.6.5, Section 3.2.5, IUW00301), 4 nonfasted monkeys were administered 80 mg/kg FTC intravenously or orally in a crossover design. Pharmacokinetic profiles are illustrated in Figure 3 and Figure 4. Pharmacokinetic parameters were similar for all 3 IV dose groups with V_{ss} values similar to those for total body water (0.77–0.80 L/kg) and moderate clearance values (0.70–0.97 L/kg). Half-lives were independent of dose and route of administration. In the fasted state, absorption was rapid and oral bioavailability values were 62.7% and 57.5% at 10 and 80 mg/kg, respectively. In the fed state, absorption was slower and the oral bioavailability was 97.4% at 80 mg/kg.

Figure 3.Mean Plasma Concentration vs Time Profile Following an
Intravenous Bolus Dose of FTC in Solution to Male Cynomolgus
Monkeys (mean ± SD, n = 4)

FTC = emtricitabine; SD = standard deviation Source: Reports TEZZ/93/0019 (fasted animals) and IUW00301 (fed animals)

Figure 4.Mean Plasma Concentration vs Time Profile Following an Oral Dose
of FTC in Solution to Male Cynomolgus Monkeys (mean ± SD, n = 4)

FTC = emtricitabine; SD = standard deviation Source: Reports TEZZ/93/0019 (fasted animals) and IUW00301 (fed animals)

3.2.3. TAF and TFV

3.2.3.1. Mouse

The mouse plasma PK studies were conducted by dosing either GS-7340-02 or GS-7340-03 to male CD-1 mice, or GS-7340-03 to both male and female 001178-W mice (m2.6.5, Section 3.3.2, AD-120-2014 and Section 3.3.3, AD-120-2016). Although TAF was observed in mouse plasma in a dose dependent manner, the concentrations were limited and $t_{1/2}$ could not be determined. Tenofovir exposure increased with the increase in dose and was greater than dose proportional between 10 to 100 mg/kg. Gender differences in plasma TFV levels were less than 2-fold in C_{max} and AUC_{0-t} values. The PK profiles for the 2 different fumarate forms were generally similar. Pharmacokinetic parameters for GS-7340-02 and GS-7340-03 are summarized in Table 12. Values for C_{max} and AUC_{0-t} for TFV were generally similar between GS-7340-02 and GS-7340-03. Together with the rat PK results, the 2 different forms of TAF do not affect the pharmacokinetic properties. The PK parameters following a single dose of GS-7340-03 to 001178-W wild type mice are summarized in Table 13. Measurable concentrations were limited for TAF. No consistent gender-based differences were observed in TAF C_{max} and AUC_{0-t} values. Tenofovir alafenamide was extensively converted to TFV in 001178-W mice following oral gavage administration of GS-7340-03. Exposure to TFV increased with the increase in dose level from 10 to100 mg/kg. The increases in C_{max} and AUC_{0-t} were greater than dose proportional between the 10 to 100 mg/kg. Gender differences in plasma concentration of TFV were less than 2-fold in C_{max} and AUC_{0-t} values.

Table 12.	Dose Dependent Plasma Pharmacokinetic Parameters Following a
	Single Oral Administration of GS-7340-02 and GS-7340-03 to Male
	CD-1 Mice

Test Article		GS-7340-02					GS-7340-03					
Dose (mg/kg)	1	0	3	60	1	00	1	0	3	0	1	00
Analyte	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV
C_{max} (µg/mL)	5.53	106	NA	440	37.1	1827	NA	85.4	10.3	383	34.7	2152
T _{max} (h)	0.083	0.50	NA	0.25	0.083	0.75	NA	0.50	4.00	0.50	0.25	1.50
t _{1/2} (h)	NA	NA	NA	NA	NA	NA	NA	5.16	NA	10.1	NA	NA
AUC _{0-t} (ng•h/mL)	NA	455	NA	2005	26.0	10643	NA	493	NA	2477	11.3	10866

NA = not applicable

Source: AD-120-2014

Table 13.Dose Dependent Plasma Pharmacokinetic Parameters Following a
Single Oral Administration of GS-7340-03 to 001178-W Wild Type
Mice

Dose (mg/kg)	10			30				100				
Analyte	TA	٩F	TI	FV	TA	٨F	TI	FV	TA	٩F	TI	TV
Sex	М	F	М	F	М	F	М	F	М	F	М	F
C _{max} (ng/mL)	NA	NA	175	100	8.80	117	615	421	648	280	1988	1733
T _{max} (h)	NA	NA	0.25	0.50	0.083	0.5	0.25	0.25	0.25	0.50	0.50	0.50
t _{1/2} (h)	NA	NA	9.78	8.20	NA	NA	9.51	10.9	NA	NA	8.04	11.0
AUC _{0-t} (ng•h/mL)	NA	NA	735	354	NA	NA	2639	2053	194	104	10026	7131

NA = not applicable Source: AD-120-2016

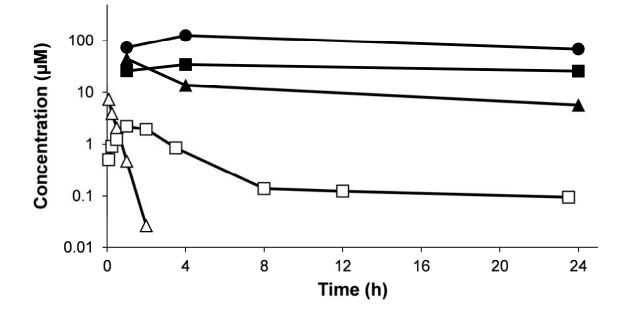
3.2.3.2. Rat

Plasma PK studies following a single oral administration of TAF were performed to determine PK parameters for TFV, to assess potential differences between GS-7340-02 and GS-7340-03, and to compare exposure to TFV between TAF and TDF (m2.6.5, Section 3.3, R990130, AD-120-2015, and R2000065). In all cases TAF was rapidly absorbed and converted to TFV. The plasma TFV T_{max} was less than 1 hour for all doses tested. Tenofovir exposure increased with the increase in dose and was greater than dose proportional between 5 to 100 mg/kg. No significant differences in PK profiles were observed between GS-7340-02 and GS-7340-03 (Table 14). The plasma C_{max} and AUC for TFV were 2- to 3-fold higher when Sprague-Dawley rats were orally dosed with 400 mg/kg TAF compared to 400 mg/kg TDF (R2000065).

Test Article		GS-7340-02		GS-7340-03			
Dose (mg/kg)	5	25	100	5	25	100	
Analyte	TFV	TFV	TFV	TFV	TFV	TFV	
$C_{max}(\mu g/mL)$	32.5	199	1240	39.3	364	1670	
T _{max} (h)	0.667	0.583	0.833	0.583	0.833	0.667	
t _{1/2} (h)	NA	11.2	10.3	NA	7.89	7.85	
AUC _{0-t} (ng•h/mL)	122	1395	7771	88.5	1810	9759	

Table 14.Dose Dependent Plasma Pharmacokinetic Parameters following a
Single Oral Administration of GS-7340-02 and GS-7340-03 to Male
Sprague-Dawley Rats

3.2.3.3. Dog


In order to assess the effects of the stereo configuration, fumarate form, food, and the route of administration, the plasma and PBMC PK profiles were determined in Beagle dogs following IV bolus (GS-7340-02 [6.3 mg/kg]), or oral administration (TAF as free base [18.0 mg/kg], its diastereomer GS-7339 [18.0 mg/kg], the mixture GS-7171 [16.0 mg/kg], or GS-7340-02 [4,8, 5.0, and 20 mg/kg under fasted and 5.0 mg/kg under fed conditions]) (m2.6.5, Section 3.3.7, 99-DDM-1278-001-PK). Following oral administration, TAF and its diasteroisomer were rapidly absorbed and eliminated with a T_{max} of less than 0.5 h and $t_{1/2}$ ranging from 0.2 hours to 0.9 hours. The plasma exposures to the intact prodrugs were similar when TAF or GS-7339 were dosed separately, however, when the isomeric mixture, GS-7171, was dosed, the exposure to GS-7339 was approximately 3-fold higher than TAF. The TFV exposure in plasma was similar for both diastereomers. The TFV exposure in PBMCs was approximately 4-fold higher when animals were dosed with TAF than GS-7339. All the PK parameters were similar for the free base and fumarate form. Plasma exposures to TAF and TFV and PBMC exposure to TFV were approximately 2.5-fold higher in fasted dogs than in fed dogs.

The plasma and liver PK profiles were determined following a single oral dose of 10 mg/kg TAF to male Beagle dogs (m2.6.5, Section 3.3.8, AD-120-2034). Tenofovir alafenamide was rapidly absorbed and eliminated with observed plasma T_{max} of 0.08 hours and $t_{1/2}$ of 0.24 hours. Tenofovir was the major metabolite found in plasma with a C_{max} value of 2.23 μ M. The pharmacologically active metabolite, TFV-DP was the major metabolite in liver achieving a C_{max} of 126 μ M at 4.0 hours postdose. The plasma and liver PK profiles are summarized in Figure 5.

Final

Figure 5. Plasma and Liver PK following a single dose of TAF to Beagle Dogs

- → TAF, Plasma - → TFV, Plasma - → TFV, Liver - → TFV-MP, Liver - → TFV-DP, Live

3.2.3.4. Monkey

The plasma PK profiles for TAF and TFV as well as TFV concentrations in PBMCs were determined in rhesus monkeys following a single oral dose of GS-7340-02 at 0.5, 5.0, and 50 mg/kg (m2.6.5, Section 3.3.9, P2000087). The plasma PK parameters are summarized in Table 15. Tenofovir alafenamide and TFV levels increased rapidly with T_{max} values of approximately 0.5 and 1 hour, respectively. The TFV levels in PBMCs were determined before and after treatment with acid phosphatase, which was used to convert the phosphorylated metabolites to TFV (Table 16). Tenofovir persisted in PBMCs up to 96 hours with an apparently slower decline in PBMCs than in plasma. The TFV levels were significantly higher in the samples treated with acid phosphatase suggesting that a significant proportion of TFV-related material in PBMCs was in phosphorylated forms.

	lonkeys					
GS-7340-02 Dose (mg/kg)	0.5	5	50	0.5	5	50
Analyte		TAF			TFV	
C _{max} (ng/mL)	2.79	125	4143	7.72	161	1326
T _{max} (h)	0.38	0.8	0.5	1	1.33	1.0
t _{1/2} (h)	0.61	0.23	0.40	4.62	9.92	17.33
$AUC_{0-last}(ng \cdot h/mL)$	1.22	95.1	3811	39.9	1037	9934
AUC_{0-} (ng·h/mL)	2.47	80.0	3846	52.7	1069	10250

Table 15.Dose Dependent Plasma Pharmacokinetic Parameters for TAF and
TFV Following a Single Oral Administration of GS-7340-02 to Rhesus
Monkeys

Oral Administration of GS-7340-02 at 5 and 50 mg/kg								
		TFV PBMC Levels (ng/10 ⁶ Cells)						
	Without Phosph	Without Phosphatase Treatment With Phosphatase Treatment						
GS-7340-02 Dose (mg/kg)	5	50	5	50				
2 h	0.47	17.0	0.73	34.2				
24 h	0.06	6.82	0.62	20.1				
96 h	BLQ	3.03	0.18	8.68				

Table 16.Concentrations of TFV in PBMCs from Monkeys Following a Single
Oral Administration of GS-7340-02 at 5 and 50 mg/kg

BLQ = below the limit of quantitation

3.3. Repeat-Dose In Vivo Studies

3.3.1. BIC

The TK profiles of BIC following repeat dose oral administration were examined in mouse (m2.6.7, Section 7.1.1, TX-141-2042), rat (m2.6.7, Section 7.1.2, TX-141-2029 and Section 7.1.3, TX-141-2031), rabbit (m2.6.7, Section 11.1, TX-141-2035 and TX-141-2038), and monkey (m2.6.7, Section 7.1.4, TX-141-2030 and Section 7.1.5, TX-141-2032) as part of toxicology studies. The results of these studies are detailed in Section 3.1 of m2.6.6. Bictegravir plasma exposure increased following repeat oral administration of BIC; the increases were less than dose proportional. In rats, females had 2-to 3-fold higher BIC exposures than males at the high 300 mg/kg/day dose. None to low accumulation (up to 3-fold) of BIC was observed in rats after repeat dosing. In cynomolgus monkeys, gender-based differences were less than 2-fold in BIC exposures and no accumulation (< 2-fold) of BIC was observed after repeat dosing.

3.3.2. FTC

Multiple dose in vivo TK studies were performed in mouse, rat, and monkey in support of safety evaluation. The results are presented in detail in m2.6.7, Section 3.2 and general conclusions from representative studies are noted below.

3.3.2.1. Mouse

Toxicokinetic data have been generated from a number of short- to long-term studies in mice, following 14-day to 6-month dosing of FTC with doses ranging from 0 to 3000 mg/kg/day. The systemic exposure of FTC at steady state increased proportionally with dose administered (m2.6.7, Section 7.2, TOX001, TOX599, TOX022 [and TOX022 PK report], TOX628).

In a 2-year oral oncogenicity study, FTC was administered once daily to CD-1 mice by oral gavage at doses of 0, 80, 250, and 750 mg/kg/day (m2.6.5, Section 4.2.1, TOX-109). Emtricitabine was rapidly absorbed following all doses with peak plasma concentrations occurring 0.5 to 1.0 hour postdose. C_{max} and AUC₀₋₂₄ results are summarized in (TOX-109). AUC₀₋₂₄ and C_{max} increased proportionally with dose over the range of 80 to 750 mg/kg/day. In general, the exposures (AUC₀₋₂₄) in male mice were similar to those in female mice at all doses. AUC₀₋₂₄ and C_{max} values were higher on Week 26 compared to Week 2.

3.3.2.2. Rat

Toxicokinetic data from a subchronic study in rats with FTC doses showed linear relationship between systemic exposure and daily dose of FTC from 120 to 3000 mg/kg (m2.6.7, Section 7.2.5, TOX097).

In a 2-year oral oncogenicity study, FTC was administered once daily to Sprague-Dawley rats by oral gavage at doses of 0, 60, 200, and 600 mg/kg/day. Emtricitabine was rapidly absorbed following all doses with peak plasma concentrations occurring at 0.5 hours postdose. C_{max} and AUC₀₋₂₄ results are summarized in m2.6.5, Section 4.2.2, TOX-108. AUC₀₋₂₄ and C_{max} increased with dose over the range of 60 to 600 mg/kg/day. In general, exposure (AUC₀₋₂₄) in male rats was similar to those in female rats. AUC₀₋₂₄ and C_{max} values were higher on Week 26 compared to Week 2.

3.3.2.3. Monkey

A 1-month toxicology study of FTC was conducted in cynomolgus monkeys at oral doses of 0, 80, 400, and 2000 mg/kg/day, given in 2 divided doses, 6 hours apart (m2.6.7, Section 7.2.6, TOX600). Plasma concentrations of FTC were measured in samples drawn predose and over the first 6 hours after the first dose on Days 3 and 27. Cerebrospinal fluid and corresponding plasma samples were obtained for analysis at 1 hour postdose on Day 28. There were no significant differences in drug levels in plasma and CSF between males and females. No significant differences in PK parameters were determined between Day 3 and Day 28. Mean C_{max} values increased with dose and AUC₀₋₆ were proportional to the dose. The overall mean (combined male, female and dose day) C_{max} values were 13.9, 62.8, and 198 µg·h/mL for monkeys given 40, 200, and 1000 mg/kg/dose, respectively. The overall AUC₀₋₆ were 13.9, 62.8, and 198 µg·h/mL for monkeys given 40, 200, and 1000 mg/kg/dose, respectively. The overall AUC₀₋₆ were the overall of FTC in CSF 1 hour after dosing on Day 28 averaged 3.9 ± 0.7 percent of the corresponding plasma levels.

A 3-month oral toxicity study was performed with FTC in cynomolgus monkeys (m2.6.7, Section 7.2.7, TOX627). The doses tested were 0, 40, 200, and 1000 mg/kg/day (n = 5/sex/group), given as 2 divided doses by nasogastric intubation, with approximately 6 hours between doses. Emtricitabine was rapidly and well absorbed with peak plasma concentrations occurring between 0 and 2 hours. No significant differences were seen between results from males and females at any dose level and there were no significant changes in PK parameters between dose Days 3 and 87. Maximum plasma levels of FTC increased with dose, but increased linearly only between the 40 and 200 mg/kg/day doses. The overall mean (combined male, female and dose day) C_{max} values were 5.63, 25.2, and 101 µg·h/mL for monkeys given 40, 200, and 100 mg/kg/day, respectively. The AUC₀₋₆ values were proportional to the dose. The overall AUCs were 13.3, 60.8, and 310 µg·h/mL for monkeys given 40, 200, and 1000 mg/kg/day, respectively. Similar AUCs across multiple days suggest that there was no significant accumulation of FTC over the dosing period.

A 1-year oral toxicity study was performed with FTC in cynomolgus monkeys (m2.6.7, Section 7.2.8, TOX032). The doses tested were 0, 50, 200, and 500 mg/kg/day, each given as 2 divided doses by nasogastric intubation, with approximately 5 hours between doses. Emtricitabine was rapidly and well absorbed with peak plasma concentrations occurring between 0.5 to 2 hours after dosing. Plasma FTC was eliminated with a terminal $t_{1/2}$ of 2 to 4 hours at all dose levels. The $t_{1/2}$ estimates did not change after multiple-dose administration. There were no major differences in plasma FTC exposure between male and female monkeys. Slightly higher plasma exposures to FTC were achieved at Weeks 13, 26, and 52 as compared to Day 0 for each dose level. Plasma C_{max} , AUC₀₋₆, and estimated steady-state AUC₀₋₂₄ (Weeks 13, 26, and 52) increased linearly with the dose administered over the range of 50 to 500 mg/kg/day in both male and female monkeys.

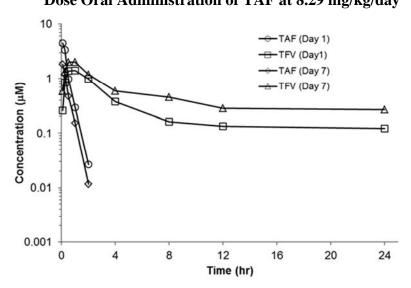
3.3.3. TAF

3.3.3.1. Mouse

GS-7340-02 was administered by oral gavage for up to 14 days to male and female Crl:CD1(ICR) mice at a dose of 100, 500, or 1000 mg/kg/day (m2.6.7, Section 6.2, TX-120-2006). Due to early death for animals given 500 or 1000 mg/kg/day, only the 100 mg/kg/day dose group was evaluated. GS-7340 at 100 mg/kg/day corresponded to a Day 14 C_{max} of 27.1 and 2.89 ng/mL for males and females, respectively; the AUC₀₋₂₄ could not be calculated due to the lack of a distinct elimination phase. GS-7340 rapidly converted to its metabolite TFV. There were no significant differences in TFV PK profiles between males and females.

Following daily administration of GS-7340-02 to mice via oral gavage for at least 13 weeks at doses of 0, 10, 30, and 100 mg/kg/day, the PK parameters for TAF and TFV were determined (m2.6.7, Section 7.3.1, TX-120-2007). Blood samples were collected from up to 3 TK animals/sex/group/time point on Day 1 and during Week 13 predose and at approximately 0.25, 0.5, 1, 4, 8, and 24 hours postdose. Exposure to TFV increased with the increase in GS-7340-02 dose from 10 to 100 mg/kg/day. The increases in C_{max} and AUC_{0-t} were generally greater than proportional between the 10 to 100 mg/kg/day dose levels. Gender-based differences were less than 2-fold in TFV C_{max} and AUC_{0-t} values. No unexpected accumulation of TFV was observed after multiple dosing. Tenofovir alafenamide was rapidly and extensively converted to TFV after oral administration in mice.

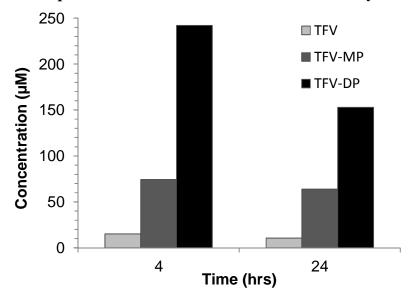
3.3.3.2. Rat


The plasma PK profile of TFV was determined during the course of a 28 day oral gavage toxicity study in adult male and female albino (Sprague-Dawley) rats following daily administration of either 1.5, 6.25, 25, 100 or 400 mg/kg/day of GS-7340-02 (m2.6.7, Section 7.3.2, R990182). A nonlinear PK response was observed for total plasma exposure versus dose for both sexes on both Day 1 and Day 28. A greater than linear increase in plasma exposure was observed as the dose was increased. There was no observed plasma accumulation (accumulation ratio 0.96 to 1.11) over the 28-day study for any dose group.

In a 26-week toxicology study, GS-7340-02 was administered once daily at doses of 0 (vehicle only), 5, 25 and 100 mg/kg/day by oral gavage and plasma PK parameters of TFV were determined on Day 1 and during Weeks 13 and 26 (m2.6.7, Section 7.3.3, TOX-120-001). No consistent differences in plasma PK parameters were found between male and female rats. Mean TFV C_{max} and AUC values increased dose proportionally over the dose range of 5 to 100 mg/kg/day. Mean TFV AUC obtained on Day 1 was slightly lower than that measured during Weeks 13 and 26, which suggested that there was a slight accumulation of TFV with repeat dosing.

3.3.3.3. Dog

Following daily oral administration of 8.29 mg/kg TAF for 7 days to male Beagle dogs, the plasma and liver PK profiles were determined on Day 1 and 7 (m2.6.5, Section 4.3.1, AD-120-2033). As shown in Figure 6, TAF was rapidly absorbed and exhibited a short terminal half-life ($t_{1/2}$) of 0.3 hours in plasma on both Day 1 and 7. The rapid disappearance of TAF was accompanied by an increase in TFV. Tenofovir was the major metabolite detected in plasma achieving a maximal plasma concentration (C_{max}) of 1.47 and 2.12 μ M on Day 1 and 7, respectively. The pharmacologically active diphosphate metabolite, TFV-DP, was efficiently formed in dog livers achieving concentrations of 242 and 153 μ M at 4.0 and 24 hours postdose on Day 7, respectively (Figure 7).


Figure 6. Plasma PK of TAF and TFV on Day 1 and Day 7 Following Repeat Dose Oral Administration of TAF at 8.29 mg/kg/day

Final

Page 43

Figure 7.Liver Concentrations of TFV, TFV-MP, and TFV-DP Following
Repeat Dose Oral Administration of TAF on Day 7

The plasma PK of TAF and TFV as well as TFV levels in PBMCs were determined during the course of a 28-day oral gavage toxicity study in adult male and female beagle dogs following daily administration of either vehicle, 0.1, 0.3, 1.0, 3.0, or 10 mg/kg/day GS-7340-02 (m2.6.5, Section 4.3.2, D990175-PK). Repeat dosing at 10 mg/kg/day resulted in nonlinear PK between Days 1 and 28 with TAF median AUC values of 0.454 and 0.985 μ g·h/mL, C_{max} values of 582 and 1280 ng/mL, and t_{1/2} z values of 18 and 23 minutes, respectively. The TFV C_{max} values appeared to be linear with increasing dose as well as repeat dosing. The TFV t_{1/2} was estimated to be 37 hours and substantial accumulation of TFV was observed after repeat dosing. The TFV levels in PBMCs were not linear with increasing dose; however, a linear correlation was observed between TFV levels in PBMCs and corresponding trough plasma concentrations. PBMC concentrations were approximately 100-fold higher than corresponding plasma concentrations.

In a 9-month toxicology study in dogs, GS-7340-02 was administered once daily at doses of 0, 2, 6, and 18 mg/kg/day (m2.6.7, Section 7.3.5, TOX-120-002). The dose of 18 mg/kg/day was decreased to 12 mg/kg/day on Day 2 of Week 7 for males and Day 2 of Week 8 for females due to severe clinical signs and reduced body weight and food consumption. The concentrations of GS-7340 and TFV in plasma samples and total TFV in Week 39/40 PBMC samples were determined. GS-7340 was rapidly absorbed and converted to TFV following oral dose administration, with peak plasma concentrations of GS-7340 and TFV occurring at 0.5 and 1 hour postdose, respectively. GS-7340 was eliminated rapidly from the plasma with a terminal phase half-life of less than 1 hour. The median $t_{1/2}$ of TFV was estimated to be in the range of 25 to 31 hours on Day 1. The plasma PK of GS-7340 and TFV were comparable between male and female dogs after oral administration. Plasma C_{max} and AUC values for TAF increased more than proportionally over the dose range of 2 to 18/12 mg/kg/day. The plasma

TFV C_{max} and AUC increased in an approximately dose proportional manner. There was some accumulation of TFV following repeat dosing (~3-fold). Tenofovir concentrations in PBMCs were measurable at 24-hour postdose for all dose groups. The median terminal phase half-life of total TFV in PBMCs was estimated to be 31 hours (similar to the TFV plasma estimate) from the recovery animals with PBMC concentrations measured up to 72 hours. Dose-normalized PBMC mean AUC values of total TFV increased more than dose proportionally during Week 39/40.

3.3.3.4. Monkey

Following daily oral administration of GS-7340-02 at 0, 3, and 30 mg/kg/day or TFV at 15 mg/kg/day for 28 days, PK profiles of TAF and/or TFV were determined on Day 1, Day 14, and Day 28 (m2.6.5, Section 4.3.3 and m2.6.7, Section 7.3.6, P2000114). Concentrations of TFV in PBMCs were determined on Day 14 and Day 28. No significant differences in PK parameters were found between males and females. The PK parameters for TFV were dose-linear on Day 1 but were greater than dose-linear on Day 28 after oral administration of GS-7340-02. There was no statistically significant accumulation of TFV following repeat dosing of either GS-7340-02 or TFV. The intracellular TFV concentrations in PBMCs were only determined from the 30 mg/kg/day GS-7340-02 dose group where 72.3 and 27.2 µg/mL were detected on Day 14 and Day 28, respectively.

3.4. B/F/TAF

No formal nonclinical studies of the absorption kinetics of the B/F/TAF FDC have been conducted. However, comprehensive clinical studies on the combination product have been performed (m2.7.2, Section 1.2).

Final

Final

4. **DISTRIBUTION**

4.1. In Vitro Protein Binding

4.1.1. BIC

4.1.1.1. Plasma Protein Binding

The binding of BIC (2 μ M) in plasma was determined in vitro with equilibrium dialysis (m2.6.5, Section 6.1.1, AD-141-2287). Bictegravir was highly bound to plasma protein in all species tested (> 98% bound; Table 17).

Table 17. Protein Binding of BIC in Plasma from Different Species

Matrix	Unbound (%) ^a	Bound (%) ^a
Sprague-Dawley Rat Plasma	0.01 ± 0.00	99.99 ± 0.00
Beagle Dog Plasma	1.24 ± 0.06	98.76 ± 0.06
Cynomolgus Monkey Plasma	0.31 ± 0.01	99.69 ± 0.01
Rhesus Monkey Plasma	0.32 ± 0.02	99.68 ± 0.02
Human Plasma	0.25 ± 0.01	99.75 ± 0.01

a Values are the mean \pm standard deviation of 3 determinations. Source: AD-141-2287

4.1.1.2. Relative Protein Binding in Human Plasma and Cell Culture Medium

The relative binding of BIC (2 μ M) between human plasma and cell culture media (CCM) was determined by a competitive equilibrium dialysis method (Section 2.1.3.2). At equilibrium the concentration of BIC in human plasma was 43.6-fold higher than in CCM (m2.6.5, Section 6.1.1, AD-141-2287). This ratio was used to obtain the plasma protein binding-adjusted half-maximal effective concentration (EC₅₀) values by multiplying it by the in vitro EC₅₀ values measured in CCM (m2.6.3, Section 1.1, PC-141-2032).

4.1.1.3. Protein Binding to Human Microsomal Fraction

The binding of BIC in human hepatic microsomal fraction was determined in vitro using equilibrium dialysis (m2.6.5, Section 6.1.2, AD-141-2311). There was little binding of BIC to the liver microsomes (mean % fraction unbound 86.3%).

4.1.2. FTC

The binding of FTC to mouse, rabbit, monkey, and human plasma was determined over the concentration range 0.020 to 200 μ g/mL by equilibrium dialysis at 37°C (m2.6.5, Section 6.2.1, TBZZ/93/0025). The mean percentage bound for all species studied was 3.6%, with no indication of concentration dependence.

4.1.3. TAF and TFV

Since TAF is highly unstable in rodent plasma due to high levels of plasma esterases expressed in some rodent species, the extent of TAF binding to plasma could only be determined in dog and human plasma in vitro (m2.6.5, Section 6.3.1, AD-120-2026). Protein binding of TAF was moderate in dog and human plasma with the percent unbound values of 48.0% and 46.8%, respectively. These in vitro values were higher than those observed in multiple human ex vivo studies with the mean percent of unbound TAF ranging from 14% to 23% in all subjects (GS-US-120-0108 and GS-US-120-0114). Since the ex vivo results should be more clinically relevant, the percent of unbound TAF of 20% was used for the assessments for potential drug interactions (Section 7).

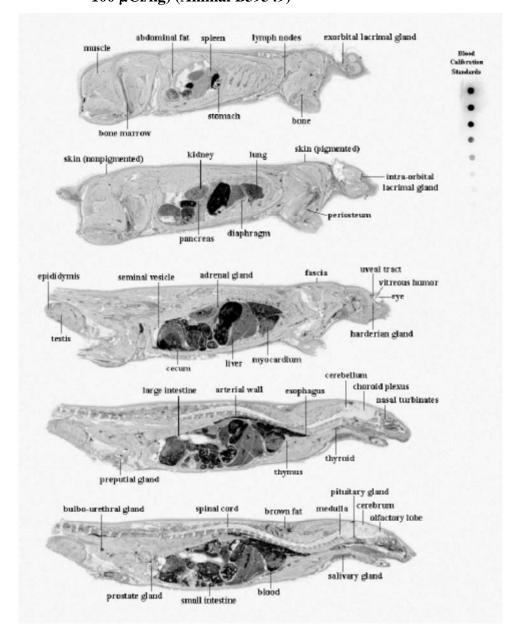
The protein binding of TFV has been determined in human plasma and serum using centrifugal ultrafiltration over the range of 0.01 to 25 μ g/mL (m2.6.5, Section 6.3.2, P0504-00039.1). The percent of unbound TFV was 99.3 \pm 3.3% in human plasma, and 92.8 \pm 3.6% in human serum. Tenofovir therefore showed very low protein binding in either human plasma or serum.

4.2. Blood to Plasma Ratio

4.2.1. BIC

The in vitro B/P BIC concentration ratio was close to 0.6, measured as 0.58, 0.60, 0.65, 0.62 and 0.64 for the rat, dog, cynomolgus monkey, rhesus monkey, and human, respectively (m2.6.5, Section 5.1.1, AD-141-2312). The low B/P ratio of BIC suggests minimal binding to erythrocytes.

4.3. Tissue Distribution Studies


4.3.1. BIC

4.3.1.1. Wistar Han and Long Evans Rats

The tissue distribution of BIC following a single oral dose of $[^{14}C]BIC$ at 2 mg/kg to male Wistar Han (non-pigmented) and Long Evans (pigmented) rats was determined by QWBA (m2.6.5, Section 5.1.2, AD-141-2276). A total of 52 tissues were examined and results from representative tissues are shown in Table 18 and Table 19.

The [¹⁴C]BIC-derived radioactivity was rapidly (0.25 hours postdose) and widely distributed to most tissues and was similar in both Wistar Han and Long Evans rat. The autoradiograph of Long Evans rats 1 hour following a single oral dose is shown in Figure 8. Concentrations in tissues were lower than in blood and decreased throughout the course of the study (168 hours). Low levels of radioactivity were detected in brain (< 4% relative to blood), suggesting that [¹⁴C]BIC-derived radioactivity poorly crossed the blood brain barrier. By 168 hours, quantifiable radioactivity was observed in tissues, but concentrations were declining, suggesting reversible binding. Distribution trends in the pigmented uveal tract of the eye and pigmented skin suggested that [¹⁴C]BIC-related radioactivity was not selectively associated with melanin-containing tissues.

Figure 8.Annotated Whole-Body Autoradiograph at 1 Hour After a Single
Oral Administration of [14C]BIC to a Male Long Evans Rat (2 mg/kg,
100 μCi/kg) (Animal B39349)

Table 18.Concentrations of Radioactivity in Blood and Selected TissuesDetermined by QWBA After a Single Oral Administration of[14C]BIC to Male Wistar Han Rats at 2 mg/kg (100 µCi/kg)

	ng [¹⁴ C]BIC Equivalents/g Tissue									
Tissue/Matrix	1 h	4 h	12 h	48 h	96 h	168 h				
Adrenal gland	4170	2890 ^a	1250	719	96.7ª	246				
Bile	8310	6350	4480	1400	ND	ND				
Blood	18700	10000	7530	3640	473	709				
Bone	282	190	87.2	70.0	BLQ	BLQ				
Bone marrow	3820	2250	1520	576	66.4	103				
Brain medulla	150	121	86.9	37.5	ND	ND				
Eye uveal tract	914	1570	1130	655	128	170				
Eye	341	614	288	229	32.7	69.5				
Fat (brown)	2810	1990	923	483	135	131				
Kidney	3210	2940	1850	872	109	213				
Large intestine	668	2210	2780	716	145	200				
Liver	3290	2860	1110	869	498	270				
Pancreas	1540	1600	969	390	59.4	107				
Skin (nonpigmented)	243	1400	1650	958	195	266				
Small intestine	8050	2800	1120	436	89.8	98.4				
Spinal cord	249	196	95.7	26.8	ND	ND				
Stomach	1030	1280	2360	888	96.2	136				
Testis	943	2600	1300	699	74.4	136				
Urinary bladder	905	2340	3720	2520	305	ND				
Urine	238	281	446	236	95.5	ND				

BIC = bictegravir (GS-9883); BLQ = below the limit of quantitation (<18.7 ng equivalents 14 C-GS-9883/g); h = hours;

ND = not detectable (sample shape not discernible from background or surrounding tissue); QWBA = quantitative whole body autoradiography

a Tissue appeared to be fat soaked.

Source: AD-141-2276

Table 19.	Concentrations of Radioactivity in Blood and Selected Tissues
	Determined by QWBA After a Single Oral Administration of
	[¹⁴ C]BIC to Male Long Evans Rats at 2 mg/kg (100 µCi/kg)

		ng [¹⁴ C]BIC Equivalents /g Tissue									
Tissue/Matrix	1 h	4 h	12 h	48 h	96 h	168 h					
Adrenal gland	2820	2750	979	978	349 ^a	310 ^a					
Bile	7430	5120	2670	4190	ND	ND					
Blood	11500	12500	7790	4430	1860	1320					
Bone	169	211	108	76.7	22.8	BLQ					
Bone marrow	2350	2700	1320	683	252	161					
Brain medulla	134	143	83.9	60.9	20.2	BLQ					
Eye uveal tract	2120	3830	2780	1960	687	383					
Eye	224	552	372	271	99.1	60.5					
Fat (brown)	1490	2320	879	798	240	204					
Kidney	2950	3460	1570	1130	551	313					
Large intestine	1580	2360	2650	1280	560	269					
Liver	4110	3690	1100	567	491	314					
Pancreas	1400	1630	895	643	251	157					
Skin (nonpigmented)	458	670	1210	1340	655	350					
Skin (pigmented)	468	948	1540	1300	747	385					
Small intestine	5590	2610	1280	527	366	212					
Spinal cord	249	129	73.5	49.5	25.1	BLQ					
Stomach	1560	1500	1370	796	255	161					
Testis	669	2030	1110	1020	319	203					
Urinary bladder	ND	1270	1240	2460	1220	582					
Urine	ND	155	151	104	82.4	BLQ					

BIC = bictegravir (GS-9883); BLQ = below the limit of quantitation (<18.7 ng equivalents 14 C-GS-9883/g); h = hours; ND = not detectable (sample shape not discernible from background or surrounding tissue); QWBA = quantitative whole body autoradiography

a Tissue appeared to be fat soaked. Source: AD-141-2276

4.3.2. FTC

4.3.2.1. Rat

To examine brain penetration of FTC, male Sprague-Dawley rats were administered FTC intraperitoneally at 10 mg/kg, and brain and plasma concentrations were determined. Brain/plasma ratios were low (3.4%–6.9%) and were unaffected by pretreatment with probenecid (60 mg/kg 15 minutes prior to treatment with FTC) {Frick 1993}.

Male Sprague-Dawley nonpigmented rats and Long Evans pigmented rats received a single 200 mg/kg oral dose containing approximately 135 μ Ci/kg of [¹⁴C]FTC via gavage (m2.6.5, Section 5.2.1, TOX092). The distribution of radioactivity in the nonpigmented tissues of Long Evans pigmented rats was similar to that of Sprague-Dawley rats (56 tissues assessed). For both groups, the absorption of [¹⁴C]FTC following oral administration was rapid, and the radioactivity was widely distributed among all of the examined tissues. The clearance of radioactivity from the plasma and tissues was also rapid with a t_{1/2} of approximately 1 to 6 hours for blood and tissues, and 2.7–3.4 hours for plasma. In agreement with the previous study with unlabeled FTC, tissue:plasma ratios for radioactivity in CNS tissues were all < 0.1.

The PK parameters for [¹⁴C]FTC derived radioactivity in eyes and skin were not markedly different for nonpigmented and pigmented rats, indicating that [¹⁴C]FTC-associated radioactivity does not bind appreciably to melanin.

4.3.2.2. Monkey

To assess brain penetration of FTC, cynomolgus monkeys were dosed orally with 40, 200, and 1000 mg/kg of FTC and concentrations were determined in plasma and CSF. Concentrations of FTC in the CSF were dose- and concentration-independent and were $4\% \pm 0.7\%$ of the corresponding levels in plasma {Frick 1994}.

Male cynomolgus monkey received an oral dose of 200 mg/kg FTC containing 42.9 μ Ci/kg [¹⁴C]FTC. The tissue distribution of radioactivity after oral administration of [¹⁴C]FTC in the cynomolgus monkey is described in detail in Section 5.3.2 (m2.6.5, Section 8.2.2, TOX063). Radioactivity was widely distributed to all tissues by 1 hour postdose. Plasma concentrations of radioactivity declined in parallel of those of parent FTC. Concentrations of radioactivity in tissues were similar to those in plasma except for the gastrointestinal (GI). The mean whole blood to plasma ratio was 0.87.

4.3.3. TAF

4.3.3.1. Mouse

After oral dosing of 100 mg/kg [¹⁴C]TAF to male CD-1 mice, [¹⁴C]TAF-derived radioactivity was widely distributed to most of the tissues by the first collection time point (0.5 hours postdose) (m2.6.5, Section 5.3.1, AD-120-2011). Most tissues reached maximum concentration by 1 hour postdose. The tissues showing the highest maximum concentrations of radioactivity, excluding GI tract, included liver, gall bladder, urinary bladder, diaphragm, kidney cortex, kidneys, and kidney medulla. The tissues with the lowest C_{max} values were testis, brain cerebrum, fat (abdominal), spinal cord, and brain medulla.

In male C57 Black mice, $[{}^{14}C]$ TAF-derived radioactivity was widely distributed to most of the tissues by the first collection time point (0.5 hours postdose), similar to CD-1 mice. Most tissues reached maximum concentration by 0.5 hours postdose. The tissues showing the highest maximum concentrations of radioactivity, excluding the GI tract, included liver, gall bladder, urinary bladder, kidney cortex, kidneys, kidney medulla, and diaphragm. The tissues with the lowest C_{max} values were testis, spinal cord, brain cerebrum, brain medulla, and brain cerebellum.

Low levels of radioactivity were detected in brain in mice suggesting [¹⁴C]TAF-derived radioactivity poorly crossed the blood:brain barrier. Low levels of radioactivity were also measured in testis in mice, suggesting [¹⁴C]TAF-derived radioactivity poorly crossed the blood:testis barrier.

More persistent exposures in eye lens, eye uveal tract, and eyes were observed in CD57 black mice compared to CD-1 mice. However, no difference in distribution between pigmented and nonpigmented skin was observed illustrating that ¹⁴C-TAF-related radioactivity was not selectively associated with melanin-containing tissues. Comparative quantification data for selected time points are provided in Table 20.

Organ	Radioactivity (µg equivalents [¹⁴ C]TAF/g tissue)										
Time point	0. 5 h		1	h	3	h	12 h		24 h		
Rat Strain	CD-1	C57 Black	CD-1	C57 Black	CD-1	C57 Black	CD-1	C57 Black	CD-1	C57 Black	
Adrenal gland(s)	9.92	34 ^a	27.5	26.4	9.45	20.4	3.01	7.75 ^a	3.6	10.4 ^a	
Bile	60.3	198	127	136	115	150	65.9	40.3	12.9	26.6	
Blood	14.6	16.7	14.5	9.27	5.28	7.91	4.38	4.17	6.1	3.78	
Bone	1.3	11.2	2.42	4.49	1.23	4.9	1.01	2.43	0.525	1.77	
Bone marrow	4.73	24.3	6.61	19	2.03	16.1	2.04	6.44	2.12	6.47	
Brain cerebellum	0.569	0.611	1.94	0.59	0.395	BLQ	BLQ	ND	BLQ	ND	
Brain cerebrum	0.768	1.24	1.43	0.661	BLQ	BLQ	0.379	ND	BLQ	ND	
Brain medulla	0.42	0.886	0.833	BLQ	BLQ	BLQ	BLQ	ND	BLQ	ND	
Brain olfactory lobe	1.12	3.79	2.89	1.73	0.464	1.64	0.461	0.688	BLQ	0.707	
Cecum	3.44	25.4	6.96	95.4	90.5	ND ^b	19.1	50.5	8.31	10.5	
Diaphragm	40.6	60.3	167	103	46.6	114	26.6	27.5	28.3	25.9	
Epididymis	3.6	10.8 ^a	22.3	4.19	1.31	4.99	0.54	2.12	0.864	2.15 ^a	
Esophagus	38.4	76.1	90.8	81.3	57.3	48.9	20.1	27.9	8.66	8.54	
Exorbital lacrimal gland	3.6	18.1	5.46	12	1.4	11.8	1.25	4.91	1.29	3.53	
Eye lens	0.967	4.31	2.98	1.87	0.508	1.11	BLQ	0.527	BLQ	BLQ	
Eye uveal tract	4.18	13.4	3.69	12.2	0.754	11.6	0.947	4.74	0.779	6.14	
Eye(s)	1.88	5	2.66	2.92	0.539	2.44	0.428	1.04	0.363	1.06	
Fat (abdominal)	1.25	5.46	1.17	6.82	0.968	2.14	0.512	4.18	0.787	1.7	
Fat (brown)	3.07	19.2	5.59	18.7	2.53	14.5	2.06	10.8	3.03	8.66	
Gall bladder	335	163	216	379	108	275	68.1	94	37.1	39.8	
Harderian gland	4.24	18.5	6.5	14.6	1.53	13.6	2.17	6.2	1.39	4.58	
Intra-orbital lacrimal gland	7.63	NR	3.58	NR	1.9	NR	2.28	NR	1.5	3.76	
Kidney cortex	92.3	137	89	125	74	104	30	58	23.1	34.5	

Table 20.	Comparative Tissue Concentrations of Radioactivity in Male CD-1
	and C57 Black Mice After Oral Administration of [¹⁴ C]TAF
	(n = 1 per time point)

20

Organ		Radioactivity (µg equivalents [¹⁴ C]TAF/g tissue)									
Time point	0.	5 h	1	h	3 h		12 h		24 h		
Rat Strain	CD-1	C57 Black	CD-1	C57 Black	CD-1	C57 Black	CD-1	C57 Black	CD-1	C57 Black	
Kidney medulla	65	125	70	94.7	54.8	80	18.1	40.2	12.8	19.4	
Kidney	84.8	132	86.1	107	68.9	89.6	25.9	47.5	19.9	29.5	
Large intestine	6.68	25.7	8.09	17.3	7.73	32.3	22.5	74.2	6.77	35	
Liver	282	488	447	490	290	385	197	282	164	118	
Lung	13.2	32.3	23.9	32.5	4	26.5	10	18.1	11.5	13.5	
Lymph node(s)	5.19	17.9	7.75	14.6	1.68	12.6	1.76	8.02	2.28	10.9	
Muscle	1.68	8.78	2.1	4.14	0.466	3.19	0.768	2.01	0.579	3.9	
Myocardium	7.57	23.2	11.7	13.5	2.38	13.6	4.6	8.47	4.62	9.51	
Nasal turbinates	2.72	10.6	6.44	2.98	1.29	3.55	0.983	2.39	1.19	1.92	
Pancreas	6.13	34.9	14.5	26.9	2.95	31.5	3.54	15.4	2.88	13.9	
Pituitary gland	2.91	17.4	7.44	8.44	1.28	6.59	2.51	0.85	1.3	ND	
Preputial gland	1.9	11.5	2.58	6.39	0.635	6.13	0.708	2.24	0.503	1.97	
Prostate gland	5.5	ND ^c	2.88	8.63	2.15	4.84	3.06	8.62	2.59	ND	
Salivary gland	5.39	36.2	11.5	24.2	1.88	27.2	2.42	9.91	2.16	12.2	
Seminal vesicle	1.79	5.54	3.41	3.53	0.957	2.47	0.852	2.15	0.62	0.825	
Skin (nonpigmented)	8.52	NA	5.58	NA	1.51	NA	0.674	NA	0.715	NA	
Skin (pigmented)	NA	11.6	NA	5.93	NA	3.35	NA	1.18	NA	1.34	
Small intestine	8.77	26.9	74.5	56.1	88.1	28	14.1	14.1	4.04	11.3	
Spinal cord	0.757	1.95	1.21	0.742	BLQ	BLQ	BLQ	BLQ	BLQ	ND	
Spleen	6.1	35.3	12.9	29.6	3.85	29.1	5.46	16.6	6.27	12.2	
Stomach	77.6	60.5	39.3	70.6	26.6	29.2	5.46	7.9	5.94	6.73	
Stomach mucosa	96.9	ND	46.9	ND	19.8	ND	5.28	ND	3.66	ND	
Stomach wall	48.6	ND	24.5	ND	26.6	ND	7.69	ND	22.7	ND	
Testis	1.16	2.64	1.49	1.76	0.774	1.07	BLQ	0.512	0.319	0.752	
Thymus	2.51	12.4	6.14	8.19	0.914	7.19	0.903	3.44	1.19	3.41	
Thyroid	7.12	40.7	12.1	32.7	2.83	29	1.2	NR	4.6	10.9	
Urinary bladder	ND ^c	ND ^c	174	138	85.6	49.1	5.8	12	10.3	6.29	
Urine	1790	1170	413	626	200	128	36.8	135	24.7	18.4	

BLQ = below the limit of quantitation [< 311 (CD-1) or < 490 (C57 Black) μ g equivalents [¹⁴C]TAF/g]; h = hours; NA = not applicable; ND = not detectable (sample shape not discernable from background or surrounding tissue);

NA = not applicable; ND = not detectable (sample snape r NR = not represented (tissue not present in section).

a Tissue appeared to be fat-soaked.

a fissue appeared to be fat-soaked.

b Not detectable due to flare from cecum contents.

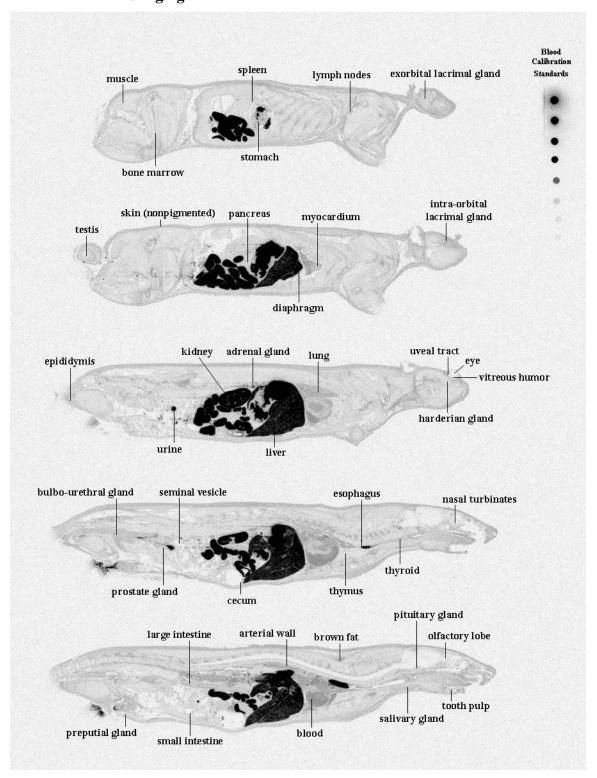
c Not detectable due to flare from urine.

4.3.3.2. Rat

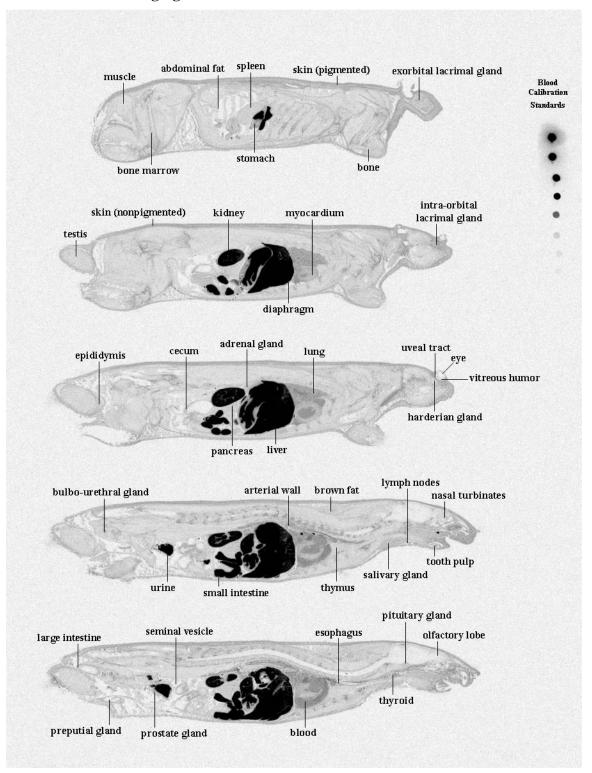
After oral dosing of 5 mg/kg [¹⁴C]TAF to male Sprague-Dawley or Long Evans rats, [¹⁴C]TAF-derived radioactivity was widely distributed to most tissues by the first collection time point (0.25 hours postdose) (m2.6.5, Section 5.3.2, AD-120-2020). Representative autoradiographic images from animals terminated at 0.25 hours postdose are provided in Figure 9 (nonpigmented) and Figure 10 (pigmented). Comparative quantification data for selected time points are provided in Table 21. A full listing of tissue concentrations of radioactivity is provided in tabular form in m2.6.5 (Section 5.3.2 for albino animals and pigmented animals). In both Sprague-Dawley and Long Evans rats, most tissues reached maximum concentrations by the first collection time point. The tissues showing the highest maximum concentrations of radioactivity included kidney cortex, kidney(s), kidney medulla, and liver.

The tissues with the lowest C_{max} values were brain olfactory lobe, seminal vesicle(s), eye vitreous humor, thymus, eyes, testis(es), and harderian gland for Sprague-Dawley rats and bone, brain olfactory lobe, seminal vesicle(s), fat (abdominal), muscle, eye vitreous humor, and eye(s) for Long Evans rats. Transient exposure to low levels of [¹⁴C]TAF-related radioactivity was observed in the eyes of rats decreasing to undetectable levels at 8 hours postdose. No difference in distribution was observed between Sprague-Dawley and Long Evans rats, including in the skin and eyes, suggesting no binding to melanin.

Organ	Radioactivity (ng equivalents [¹⁴ C]TAF/g tissue)									
Time point	0.2	0.25 h 1		h 4 h		h	12 h		24 h	
Rat Strain	SD	LE	SD	LE	SD	LE	SD	LE	SD	LE
Adrenal gland(s)	181 ^a	353 ^a	129 ^a	115	BLQ ^a	48.5 ^a	ND	ND	ND	ND
Arterial wall	817	1350	299	270	118	90.4	ND	ND	ND	ND
Bile	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Blood	1070	1260	334	221	138	116	83.1	117	ND	ND
Bone	BLQ	50.4	ND	BLQ	ND	ND	ND	ND	ND	ND
Bone marrow	233	311	125	84.9	72.6	BLQ	BLQ	BLQ	ND	ND
Brain cerebellum	BLQ	BLQ	ND	ND	ND	ND	ND	ND	ND	ND
Brain cerebrum	BLQ	BLQ	ND	ND	ND	ND	ND	ND	ND	ND
Brain medulla	BLQ	BLQ	ND	ND	ND	ND	ND	ND	ND	ND
Brain olfactory lobe	45.7	57.2	BLQ	51.0	ND	ND	ND	ND	ND	ND
Bulbo-urethral gland	396	831	177	209	236	ND	ND	ND	ND	ND
Cecum	218	603	132	118	541	889	NR	362	323	494
Diaphragm	210	353	145	124	52.9	55.8	ND	ND	ND	ND
Epididymis	249 ^a	516	101 ^a	79.3	BLQ	BLQ	ND	ND	ND	ND
Esophagus	341	923	222	218	187	186	58.9	65.8	ND	ND
Exorbital lacrimal gland	234	353	101	56.1	51.2	BLQ	ND	ND	ND	ND
Eye lens	BLQ	BLQ	ND	BLQ	ND	ND	ND	ND	ND	ND


Table 21.Comparative Tissue Concentrations of Radioactivity in Male
Sprague-Dawley and Long Evans Rats After Oral Administration of
 $[^{14}C]TAF$ (n = 1 per time point)

Organ			Radioac	tivity (n	g equival	ents [¹⁴	C]TAF/g	TAF/g tissue)								
Time point	0.2	5 h	1	h	4 h		12 h		24 h							
Rat Strain	SD	LE	SD	LE	SD	LE	SD	LE	SD	LE						
Eye uveal tract	409	555	187	89.5	78.4	59.4	ND	ND	ND	ND						
Eye vitreous humor	84.9	139	89.3	BLQ	BLQ	BLQ	ND	ND	ND	ND						
Eye	86.1	150	92.7	BLQ	BLQ	BLQ	ND	ND	ND	ND						
Fat (abdominal)	BLQ	70.0	BLQ	BLQ	ND	ND	ND	ND	ND	ND						
Fat (brown)	200	232	97.1	BLQ	48.2	ND	55.7	ND	ND	ND						
Harderian gland	98.6	209	52.4	BLQ	BLQ	ND	ND	ND	ND	ND						
Intra-orbital lacrimal gland	250	402	118	53.4	BLQ	49.1	ND	ND	ND	ND						
Kidney cortex	10700	8000	12400	8890	11800	6980	8300	5150	2010	2440						
Kidney medulla	8240	6900	5040	3670	2800	655	1010	757	317	367						
Kidney	9520	7750	8710	7570	8250	5160	4590	3000	1380	1310						
Large intestine	364	548	140	91.5	55.8	474	ND	133	ND	132						
Liver	6730	10300	6730	7800	4010	7710	3570	5610	1090	1380						
Lung	592	854	211	145	81.1	67.2	ND	66.3	ND	BLQ						
Lymph node	318 ^a	422 ^a	ND	94.9 ^a	ND	ND	ND	ND	ND	ND						
Muscle	101	115	BLQ	BLQ	ND	ND	ND	ND	ND	ND						
Myocardium	361	512	136	46.6	58.6	BLQ	ND	BLQ	ND	ND						
Nasal turbinates	123	201	83.8	71.9	52.8	BLQ	ND	ND	ND	ND						
Pancreas	215	274	120	82.1	68.9	53.5	52.0	ND	ND	ND						
Pituitary gland	335	434	116	53.1	50.5	ND	76.2	ND	ND	ND						
Preputial gland	140 ^a	247	60.1 ^a	67.9	BLQ	ND	ND	ND	ND	ND						
Prostate gland	134	247	88.6	BLQ	117	49.9	BLQ	ND	ND	ND						
Salivary gland	292	368	119	85.3	BLQ	BLQ	ND	BLQ	ND	ND						
Seminal vesicle	62.7	67.7	ND	BLQ	ND	ND	ND	ND	ND	ND						
Skin (nonpigmented)	393	526	123	71.8	BLQ	BLQ	ND	ND	ND	ND						
Skin (pigmented)	NA	623	NA	78.9	NA	BLQ	NA	ND	NA	ND						
Small intestine	479	530	500	376	364	122	86.5	220	171	98.6						
Spinal cord	BLQ	BLQ	ND	BLQ	ND	ND	ND	ND	ND	ND						
Spleen	147	231	105	83.1	59.0	58.3	62.8	60.7	BLQ	BLQ						
Stomach	475	682	126	113	66.6	71.4	ND	159	ND	BLQ						
Testis	98.2	157	50.9	BLQ	BLQ	BLQ	ND	BLQ	ND	ND						
Thymus	91.2	181	68.1	BLQ	BLQ	BLQ	ND	ND	ND	ND						
Thyroid	324	412	147	59.1	63.6	ND	ND	ND	ND	ND						
Tooth pulp	646	793	228	194	84.4	78.7	ND	57.0	ND	NR						
Urinary bladder	925	352 ^a	205	155	ND ^b	125	1050	45.9	BLQ	48.3						
Urine	112000	50200	34400	61000	51100	2280	14500	1140	988	1500						


BLQ = below the limit of quantitation (<45.6 ng equivalents [¹⁴C]TAF/g); h = hours; NA = not applicable; ND = not detectable (sample shape not discernable from background or surrounding tissue).

a Tissue appeared to be fat-soaked.

b Not detectable due to flare from urine.

Figure 10.Annotated Whole-body Autoradiograph for a Male Long Evans Rat
0.25 hours after a Single Oral Administration of ¹⁴C-GS-7340 at
5 mg/kg

4.3.3.3. Dog

The absorption and distribution of $[{}^{14}C]TAF$ were determined following multiple 15-mg/kg oral doses of GS-7340 and a single oral dose of $[{}^{14}C]TAF$ to male dogs at 15-mg/kg or at 18.1 mg/kg (m2.6.5, Section 5.3.3, AD-120-2009 and m2.6.5, Section 5.3.4, D990173-BP). Radioactivity was widely distributed but not detected in brain, eye, and CSF. High concentrations were observed in kidney, liver, GI tract, spleen, lymph nodes and PBMCs. Following multiple or single oral administrations of TAF or $[{}^{14}C]TAF$ to male dogs, the highest concentrations of radioactivity were observed in the liver and kidney through 24 hours postdose. Concentrations of radioactivity in tissues after multiple doses of unlabeled GS-7340 followed by a single dose of $[{}^{14}C]TAF$ were higher compared to tissues from animals dosed only with a single dose of $[{}^{14}C]TAF$.

4.4. Studies in Pregnant or Nursing Animals

4.4.1. BIC

Toxicokinetic parameters for BIC were determined in pregnant rats (m2.6.7, Section 11.1, TX-141-2034 and m2.6.7, Section 14.1, TX-141-2045) and rabbits (m2.6.7, Section 11.1, TX-141-2038). The plasma exposures were comparable between the pregnant and the non-pregnant animals in both species.

The plasma exposure of BIC in nursing pups was determined in a prenatal and postnatal development study in rats (m2.6.7, Section 14.1, TX-141-2045). Bictegravir was detected in the plasma of neonates on lactation day 10. Bictegravir exposure in maternal rats was roughly similar to pups at the 2 mg/kg/day dose level, slightly higher (approximately 1.5-fold) in maternal rats than in pups at the 10 mg/kg/day dose level, and greater than 2-fold higher (approximately 2.8-fold) in maternal rats than in pups at the 300 mg/kg/day dose level. These data suggested that BIC present in maternal rat systemic circulation was distributed to milk and transferred to nursing pups.

4.4.2. FTC

4.4.2.1. Pregnant Mice

Following oral administration of FTC to pregnant mouse dams, the exposure of murine fetuses to FTC was examined (m2.6.5, Section 7.2.1, TOX103 and Addendum report). Emtricitabine suspended in the vehicle, 0.5% methylcellulose (aqueous), was administered orally by gavage to Crl:CDR[®]'-1(TCR) BR mice twice daily (approximately 6 hours between doses) from gestation Days 6 to 14 at a dose of 1000 mg/kg/day administered at a dose volume of 5 mL/kg/dose. On gestation Day 15, following administration of 500 mg/kg of FTC twice daily for approximately 10 days, pregnant mice and their viable fetuses had measurable concentrations of FTC 1 hour following administration of the first 500 mg/kg dose. The mean plasma concentration in the pregnant mice was $137.1 \pm 28.0 \ \mu g/mL$. The mean concentration of FTC in pooled fetal homogenate was $55.7 \pm 10.4 \ \mu g/g$. The mean fetal/maternal concentration ratio was 0.41 ± 0.04 .

4.4.2.2. Pregnant Rabbit

In an oral GLP embryo-fetal toxicity study, pregnant NZW rabbits (20/dose) were given FTC at 0, 100, 300, and 1,000 mg/kg/day in 0.5% aqueous methylcellulose as equal divided doses 6 hours apart on gestation Days 7 to 19. The does were necropsied on gestation Day 19 (m2.6.5, Section 7.2.2, TOX038 and Addendum report). Additional pregnant rabbits were dosed in parallel to provide plasma for systemic exposure assessment on gestation Day 19. They were killed at 1 hour postdose on Day 20 to provide maternal/fetal blood samples to confirm fetal exposures.

Emtricitabine was rapidly absorbed in dams with C_{max} occurring generally within 1 hour postdose. Systemic exposure to FTC (AUC and C_{max}) increased linearly with dose from 100 to 1000 mg/kg/day in both dams and fetuses. On gestation Day 19, AUC₀₋₂₄ in dams was 87, 315, and 1258 µg·h/mL at 100, 300, and 1000 mg/kg/day, respectively. Plasma elimination $t_{1/2}$ was 3 to 4 hours at all dose levels. Fetal/maternal exposure ratios, as determined by analysis of umbilical cord blood, were around 0.4 to 0.5 at 1 hour after dosing (at T_{max}) for all dose levels. Emtricitabine was therefore readily transferred across the placenta (TOX038 and Addendum report).

4.4.3. TAF and TFV

4.4.3.1. TAF: Pregnant Rats

Tenofovir concentrations were determined in plasma from pregnant female rats dosed with GS-7340-02 by oral gavage for at least 12 days (gestation days [GDs] 6 to 17) at 5, 100, and 200 mg/kg as an oral range-finding study (m2.6.7, Section 11.3, TX-120-2001), or at 25, 100, and 250 mg/kg as an embryo-fetal development study (m2.6.7, Section 13.5, TX-120-2002). Blood samples were collected on GDs 6 and 17. Following oral gavage of GS-7340, concentrations of TFV readily appeared in plasma. Exposure to TFV increased with the increase in dose. The increases in C_{max} and AUC_{0-t} were generally greater than dose proportional between the 5 to 200 mg/kg/day dose levels in the range-finding study. In the embryo-fetal development study, C_{max} and AUC_{0-t} were inconsistently proportional between the 25 to 250 mg/kg/day dose levels. While accumulation of TFV was observed after multiple dosing of GS-7340-02 in pregnant rats in the range-finding study, no accumulation of TAF and TFV was observed in the embryo-fetal development study.

4.4.3.2. TAF: Pregnant Rabbits

The TK of TAF and TFV were determined in plasma from pregnant female rabbits following administration of GS-7340-02 via oral gavage once daily on GDs 7 through 20. GS-7340-02 was administered at dose levels of 5, 25, 50, and 100 mg/kg/day as an oral range-finding study (m2.6.7, Section 11.3, TX-120-2004) or at 10, 30, and 100 mg/kg/day as an embryo-fetal development study (m2.6.7, Section 13.6, TX-120-2005). Blood samples were collected from all animals on GDs 7 and 20 predose and approximately 30 minutes and 2, 4, 8, and 24 hours postdose. Tenofovir alafenamide increased with the increase in GS-7340-02 dose level among all groups. The increases in C_{max} and AUC_{0-t} were greater than dose proportional in all dose levels in both studies. Exposure to TFV increased with the increase in GS-7340-02 dose level and the

increases in C_{max} and AUC_{0-t} were approximately proportional in all dose levels. No unexpected accumulation of TFV was observed after repeat dosing of GS-7340-02 in rabbits. GS-7340 was extensively converted to TFV in rabbits following oral administration of GS-7340-02.

4.4.3.3. TFV: Pregnant Monkey

Placental transfer of TFV following subcutaneous administration to a pregnant rhesus monkey was determined (m2.6.5, Section 7.3.2.1, 96-DDM-1278-005). One rhesus monkey received daily subcutaneous injection of 30 mg/kg/day TFV, beginning at Day 111 of gestation. Maternal and fetal blood samples were drawn at Days 115, 127, 134, 140, and 151 of gestation. Placental transfer of TFV appeared to be significant with a fetal/maternal serum concentration ratio of 0.17 ± 0.07 (mean \pm SD) at approximately 30 minutes postdose.

4.4.3.4. TFV: Lactating Monkeys

The PK parameters of TFV were investigated in 2 healthy adult lactating rhesus monkeys which were administered a single 30 mg/kg subcutaneous dose of TFV (m2.6.5, Section 7.3.2.2, P2000116). Following dosing, serum TFV C_{max} values of 18.3 and 30.2 µg /mL were observed in the 2 monkeys. Absorption was rapid, with T_{max} occurring at 0.5 hour. As observed in other species, elimination was biphasic, with apparent half-lives of 3.97 and 2.85 hours for the 2 animals. While this appears shorter than the approximately 9-hour terminal half-life observed in male and nonlactating female monkeys (m2.6.5, Section 3.3.10, P2000031) it may have resulted from the more limited period of sampling (24 versus [vs] 48 hours) in the present experiment.

Serum AUC₀ values in this study were 68.9 and 56.2 μ g·h/mL for the 2 animals. In comparison to AUC values obtained following 30 mg/kg IV doses of TFV (P2000031), these data suggest essentially complete absorption of TFV after subcutaneous administration.

4.4.3.5. TFV: Immature monkeys

The PK parameters of TFV have been determined in infant rhesus monkeys following subcutaneous administration (m2.6.5, Section 7.3.2.1, 96-DDM-1278-005). Tenofovir was formulated as an aqueous solution and was evaluated in monkeys in 4 age groups (newborn, 1, 3, and 12 months old; n = 2 per group). Tenofovir was administered as a 30-mg/kg injection into the dorsal subcutis region. Plasma samples were obtained over the course of 24 hours and concentrations of TFV were determined by HPLC following fluorescence derivatization. The mean TFV C_{max} values in newborn, 1, 3, and 12-month-old monkeys were 51.8, 30.7, 34.6, and 18.8 µg/mL, respectively; with a T_{max} of 0.5 hour for all age groups. The corresponding plasma clearance (CL/F) of TFV was 0.18, 0.54, 0.41, and 1.02 L/h/kg, respectively, showing an increase in the clearance from birth through 1 year. These results suggest that, at an equivalent dose, younger monkeys received greater TFV exposure. The clearance of TFV was dependent on both the weight and the age of the infant monkeys. It is likely that newborn monkeys lack the anion transport system responsible for tubular secretion of TFV.

4.5. B/F/TAF

No nonclinical distribution studies have been performed with the combination of BIC, FTC, and TAF. Coadministration of BIC, FTC, and TAF is not anticipated to alter the distribution profile of the drugs when administered as individual agents.

20

5. METABOLISM

5.1. Metabolism In Vitro

5.1.1. BIC

The rate of metabolism of [³H]BIC (1 μ M), assessed by loss of parent drug, was determined in incubations of pooled hepatic microsomal fractions obtained from human and nonclinical species in the presence of NADPH and UDPGA (m2.6.5, Section 9.1.1, AD-141-2289) and the data are summarized in Table 22. Bictegravir exhibited high metabolic stability (< 30% predicted hepatic extraction). The predicted human hepatic blood clearance, without consideration of plasma binding, was low.

	ractions		
Species	In Vitro t _{1/2} (min)	Predicted Hepatic CL (L/h/kg)	Predicted Hepatic Extraction (%)
Sprague-Dawley Rat	49	1.21	29
Beagle Dog	108	0.29	16
Cynomolgus Monkey	63	0.43	27
Rhesus Monkey	76	0.41	18
Human	194	0.17	13

Table 22.In Vitro Rates of Metabolism of BIC by Hepatic Microsomal
Fractions

Source: AD-141-2289

Further studies were performed using cryopreserved hepatocytes incubated for 4 hours with radiolabeled BIC to identify metabolites, determine their abundance and compare nonclinical species with human. The percentage of parent drug and identified metabolites following incubation with [¹⁴C]BIC (20 μ M) in cryopreserved hepatocytes are summarized in Table 23 and their proposed identities are shown in Figure 12 (m2.6.5, Section 9.1.4, AD-141-2288). Analytes were assigned metabolite numbers (M305, M465, etc.) based on their molecular weight. Metabolic pathways included hydroxylation (3 variants), N-dealkylation, and direct glucuronidation. All human metabolites were also observed in nonclinical species. Using the hepatocyte system where the full range of hepatic metabolic enzymes are represented, it appeared that the metabolism of BIC was extensive in monkey and dog but lower in rat and human.

		Fraction of Radiochromatogram (%)					
Analyte ^a	Identity	Wister-Han Rat	Beagle Dog	CynomolgusMonkey	Human		
BIC	Parent	91.5	78.7	52.4	93.9		
M305	N-dealkylation	1.7	8.7	2.4	1.2		
M465a	Hydroxylation-1	1.2	1.4	2.7	-		
M465b	Hydroxylation-2	-	0.2	11.6	0.6		
M465c	Hydroxylation-3	-	3.6	-	-		
M611	Glucose conjugation	-	0.8	4.4	-		
M625	Glucuronide conjugation	5.2	6.6	21.7	4.3		
M641	Hydroxylation/glucuronidation	-	-	4.1	-		
Total	-	99.6	100	99.3	100		

Table 23.Metabolites of BIC Detected In Cyropreserved Hepatocytes from
Different Species

a Analyte metabolite identification numbers correspond to their molecular weight, eg, M305 = metabolite with 305 Da molecular weight

Source: AD-141-2288

5.1.2. FTC

An in vitro metabolism study was performed to identify the potential human CYP enzyme(s) responsible for the metabolism of FTC using human liver microsomes and Bactosomes containing cDNA-expressed human CYP enzymes (m2.6.5, Section 9.2.1, 15396v1). The results showed that FTC was relatively stable in the incubation medium. One minor metabolite (~1%) was detected only in incubations with cDNA-expressed CYP3A4 incubations. It was not formed by CYP1A2, 2A6, 2B6, 2D6, 2E1, 2C8, 2C9, or 2C19. Human hepatic microsomal incubations in the presence and absence of selective inhibitors of various CYPs confirmed the low rate of FTC metabolism, and due to incomplete inhibition by the CYP3A-selective inhibitor, ketoconazole, also suggested the possible involvement of FMOs in the metabolism of FTC. In vitro glucuronidation of FTC was not detected.

Pharmacological activation of FTC involves metabolism to FTC-triphosphate, which is a direct binding inhibitor of viral polymerases. The active triphosphate is a very weak inhibitor of mammalian DNA polymerases , , and and mitochondrial DNA polymerase {Flint 2003}.

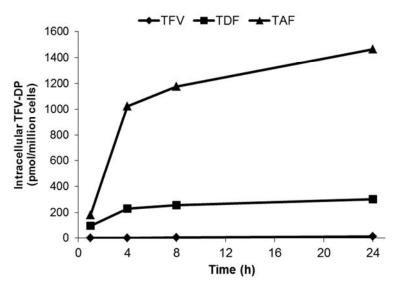
5.1.3. TAF and TFV

Stability of TAF was assessed in plasma, intestinal S9, and hepatic S9 fractions from dogs and humans (m2.6.5, Section 9.3, AD-120-2023, AD-120-2024, AD-120-2025, and AD-120-2027). Tenofovir alafenamide was moderately stable in plasma and intestinal S9 with half-lives of 74.7 and 58.3 minutes for human, and 69.5 and 47.1 minutes for dog, respectively (m2.6.5, Section 9.3, AD-120-2025 and AD-120-2024). The stability of TAF in human intestinal S9 fractions was also determined in a separate study assessing the effect of HIV-PIs on TAF stability in intestinal S9 (discussed in Section 7.3.2) and a somewhat lower but similar half-life

for TAF was observed (24.5 minutes; AD-120-2027). Relative to plasma or intestinal S9, TAF was somewhat less stable in human and dog hepatic S9 fractions with half-lives of 20.6 and 31.1 minutes, respectively (Table 24). Based on these data, predicted hepatic extraction ratios for human and dog were_calculated to be 76.2% and 60.5%, respectively (m2.6.5, Section 9.3.2, AD-120-2023).

	TAF Stability, t _{1/2} (min)						
Species	Plasma	Intestinal S9	Hepatic S9				
Human	74.7	24.5-58.3	20.6				
Beagle Dog	69.5	47.1	31.1				

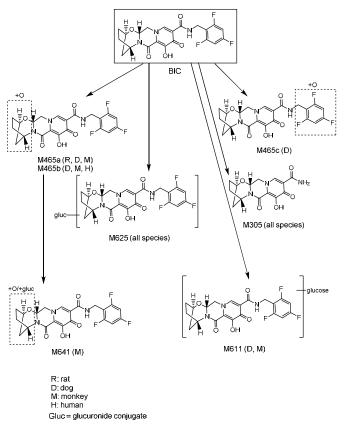
Table 24.	Stability of TAF in Biological Matricies from Dog and Human
-----------	---


The potential for CYP enzymes to metabolize TAF was assessed by incubating TAF with 6 individual bacterially-expressed human CYP enzyme preparations (Bactosomes) coexpressed with human NADPH CYP reductase (m2.6.5, Section 9.3.4, AD-120-2004). Metabolism of TAF was not detected by CYP1A2, CYP2C8, CYP2C9, CYP2C19 or CYP 2D6. Tenofovir alafenamide was slowly metabolized by CYP3A4 at a rate of 1.9 min⁻¹, which was 26.6% of the positive control, testosterone.

TAF is primarily hydrolyzed by CES1 in primary hepatocytes as described in Section 7.3.2 {Birkus 2008, Birkus 2007b, Murakami 2015}, while cathepsin A (CatA) is the major enzyme hydrolyzing TAF to TFV in PBMCs or other HIV-target cells. Tenofovir is then further phosphorylated to TFV-DP by cellular nucleotide kinases. These steps are high capacity and low affinity and are not readily inhibited by other xenobiotics.

The in vitro activation of TAF in human primary hepatocytes was evaluated and compared with that of TDF and TFV (m2.6.5, Section 9.3.5, AD-120-2017). Following a 24-hour continuous incubation of primary hepatocytes with 5 μ M TAF, TDF, or TFV, the levels of TFV-DP increased to 1,470, 302, and 12.1 pmol/million cells illustrating that incubation with TAF resulted in 5- and 120-fold higher intracellular levels of TFV-DP compared to TDF and TFV, respectively (Figure 11). In primary human hepatocytes, the half-life of intracellular TFV-DP was estimated to be greater than 24 hours {Murakami 2015}.

Figure 11. Intracellular Metabolism of TAF, TDF, and TFV in Primary Human Hepatocytes

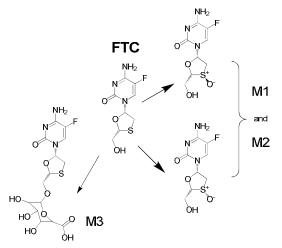

The in vitro metabolism of [¹⁴C]TFV was studied in dog plasma, in control and induced (AroclorTM 1254) rat liver microsomes, and also in dog liver and intestinal S9 fractions (m2.6.5, Section 9.3.6, 96-DDM-1278-003). Potential isomerization of TFV was determined using a chiral HPLC assay with radioactive flow detection. Radioactivity associated with the protein pellet was also determined by sample oxidation and liquid scintillation (< 0.1% of radioactivity). Tenofovir was recovered unchanged under all conditions: no metabolites were detected in either rat microsomal preparation, with or without the addition of NADPH cofactor. There was no evidence of chiral inversion. Similarly, there was no apparent loss of TFV following incubation with dog plasma, liver, or intestinal S9 fractions, and no metabolites were detected.

Summaries of the metabolic pathways for BIC, TFC, and TAF are provided in Figure 12, Figure 13, and Figure 14, respectively.

5.2. Proposed Metabolic Pathways

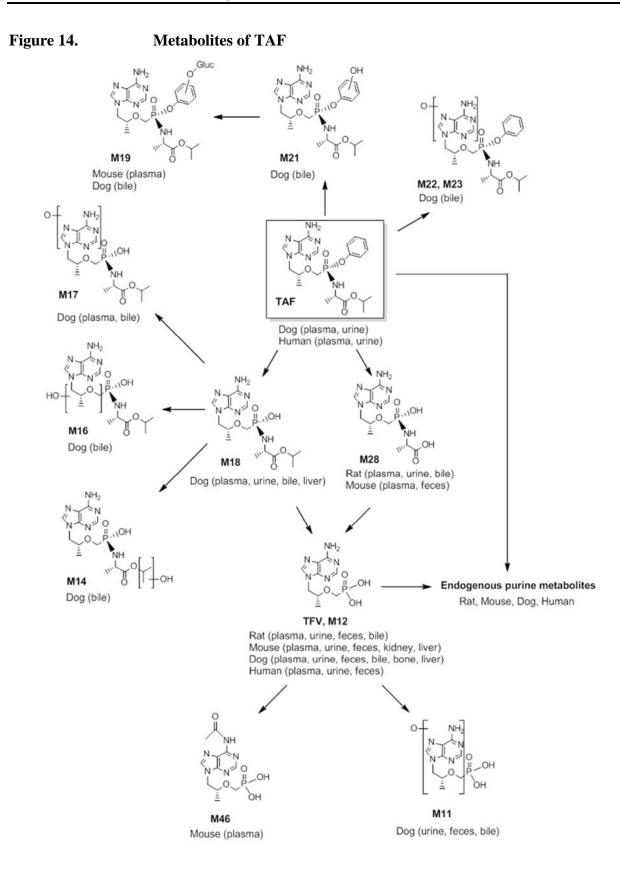
5.2.1. BIC

Figure 12.Proposed Identities of BIC Metabolites Identified In Vitro



5.2.2. FTC

Emtricitabine demonstrates high metabolic stability in vitro and in vivo and is the major analyte found in all samples. The metabolites of FTC detected in vitro and in vivo are illustrated in Figure 13.


Figure 13.Pathways for Metabolism of FTC Identified In Vitro and In Vivo

M1 and M2 are diastereomeric sulfoxide metabolites and M3 is a glucuronide conjugate

5.2.3. TAF

The metabolic profiles of TAF were determined in plasma, urine, feces, kidney, liver, and nasal turbinate from mice (m2.6.5, Section 8.3.1, AD-120-2012), in plasma, urine, bile, and feces from rats (m2.6.5, Section 8.3.2, AD-120-2021), and in plasma, urine, bile, feces, bone, and liver from dogs (m2.6.5, Section 8.3.3, AD-120-2008). The metabolite profiles were also determined in human plasma, urine, and feces following administration of a single oral dose of [¹⁴C]TAF (GS-US-120-0109). Based on the results from mouse, rat, dog, and human, a proposed biotransformation pathway is summarized (Figure 14). Tenofovir alafenamide is also subject to intracellular metabolism to TFV, which is further phosphorylated to the anabolites, tenofovir-monophosphate (TFV-MP) and TFV-DP (see Table 3) with TFV-DP being the pharmacologically active form.

5.3. Metabolism In Vivo

5.3.1. BIC

Bictegravir metabolism was determined following a single oral administration of [¹⁴C]BIC to mouse, rat, monkey, and human. Pooled plasma, urine, bile, and fecal samples obtained following in vivo oral administration of [¹⁴C]BIC were profiled and a comprehensive listing of the identified metabolites are provided in m2.6.5 in transgenic mice (m2.6.5, Section 8.1.1, AD-141-2304), intact and BDC Wistar-Han rats (m2.6.5, Section 8.1.3, AD-141-2277), intact and BDC monkeys (m2.6.5, Section 8.1.5, AD-141-2299), and healthy human subjects (GS-US-141-1481). The combined results demonstrate that BIC is mainly eliminated by hepatic metabolism followed by excretion into feces and urine. Metabolic pathways included hydroxylation, oxidative defluorination, direct glucuronidation, and oxidation followed by phase II conjugation. In the monkey, BIC was metabolized through the oxidative pathways to a greater extent compared to rat and human.

5.3.1.1. Plasma

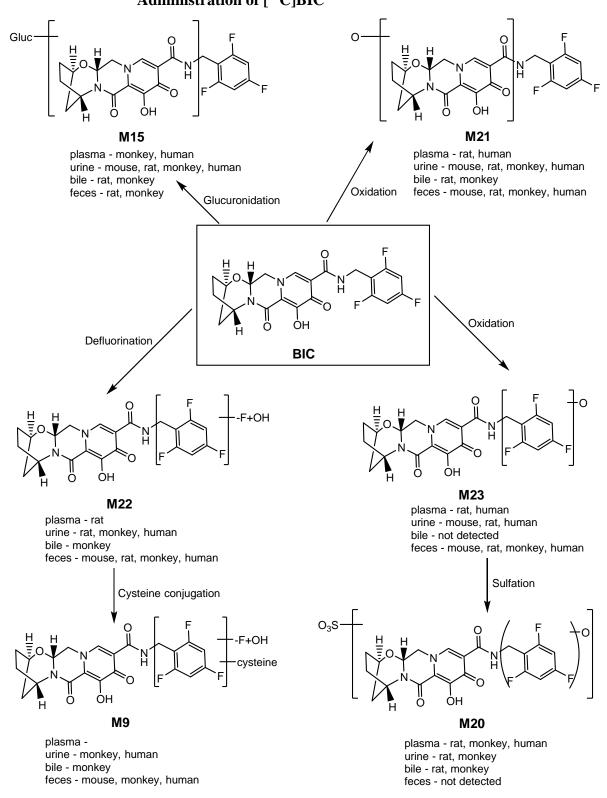
The radiolabeled components observed in AUC pooled plasma are summarized in Table 25 and a scheme of the metabolite profile in plasma of different species is shown in Figure 15. Unchanged BIC was the most abundant circulating component in all species and as a % of total radioactivity accounted for approximately 96% in transgenic mice, 77% in rats, 80% in monkeys, and 68% in human subjects. Metabolite M20 (Figure 15), a sulfate conjugate of the hydroxylated BIC, was the most abundant metabolite in human (20.1%). M20 was also the most abundant circulating metabolite in rat and was present in monkey but at much lower abundance. Metabolite M15, a glucuronide conjugate of BIC, was the next most abundant in human (8.6%) and was also observed in monkeys. The major circulating metabolite in monkey was M42, a hydroxylated BIC (isomer of M21), unique to monkey and was not present in mouse, rat or human plasma.

M20, the sulfate conjugate of hydroxylated BIC, was the only metabolite in human plasma greater than 10% of drug related material. Since this secondary metabolite of BIC was a polar conjugate no further assessment was required per the International Council for Harmonisation (ICH) guideline and the 2016 Food and Drug Administration (FDA) Guidance {U.S. Department of Health and Human Services Food and Drug Administration 2016}.

	c	% of Total Radioactivity in AUC Pooled Plasma ^a							
Component	Transgenic Mouse	Wistar Han Rat	Cynomolgus Monkey	Human					
BIC	95.5	76.5	80.2	67.9					
M12	1.86	2.18	ND	ND					
M15	ND	ND	0.55	8.6					
M20	ND	11.3	0.77	20.1					
M21/M22	ND	1.18	ND	2.0					
M23	ND	2.36	ND	0.2 ^c					
M42	ND	ND	12.2	ND					
Other ^b	0.64	2.36	3.44	0.6					
Total	98.0	95.9	97.2	99.4					

Table 25.Plasma Profile Following Oral Administration of [14C]BIC

ND = not detected


a AUC pool plasma = area under the plasma ¹⁴C concentration-time curve from time zero to 48 hours post dose in transgenic mice, from time zero to 168 hours post dose in rats, from time zero to 72 hours post dose in monkeys, and from time zero to 72 hours post dose in human subjects

b Other = sum of other metabolites; each component < 1% in mouse; < 1.5% in rat, monkey, and human

c Co-eluted with M51

Source: AD-141-2304, AD-141-2077, AD-141-2299, and GS-US-141-1481

5.3.2. FTC

5.3.2.1. Mice

The metabolism and elimination of orally administered [³H]FTC was studied in male CD-1 mice (m2.6.5, Section 8.2.1, TEIN/93/0015). Urine and feces were assayed by LSC and HPLC. Urinary recovery of radioactivity was $67\% \pm 7\%$ of the dose. In the feces, $18\% \pm 3\%$ of the dose was recovered, all as unchanged FTC. Total recovery of radioactivity excreted in urine and feces was $85\% \pm 4\%$ of dose. In the urine, $64\% \pm 7\%$ of the radioactivity was recovered as unchanged FTC in the 0- to 24-hour sample. Three metabolites of FTC were measurable in the urine. These metabolites were tentatively identified as: M1 and M2 (2 isomeric, 3'-sulfoxides of FTC, $1.7\% \pm 0.3\%$ and $2.0\% \pm 0.4\%$ of dose recovered, respectively); and 5-fluorocytosine ($1.4\% \pm 0.1\%$ of dose recovered). Traces of 5 other metabolites and a peak tentatively identified as tritiated water were also observed at levels of less than 1% of dose. 5-Fluorouracil was not observed (< 0.1\% of dose).

5.3.2.2. Rats

The urine collected from male Sprague-Dawley rats following IV or oral administration of 10 mg/kg [³H]FTC was subject to radiochromatographic profiling {Frick 1993}. Metabolite profiles were independent of the route of administration and revealed that FTC accounted for the majority of the radioactivity, with the sulfoxides (M1 and M2) being the most abundant metabolites. Small amounts were accounted for by the glucuronide (M3), 5-fluorocytosine, and tritiated water. 5-Fluorouracil was not detected (< 0.1% of the dose).

5.3.2.3. Monkeys

An exploratory study was performed with [³H]FTC administered orally to female cynomolgus monkeys (m2.6.5, Section 8.2.3, TEIN/93/0016). By 72 hours postdose, 41% of radioactivity was recovered in urine, 33% in feces, and 10% in cage washings. Radiochromatographic analysis revealed that parent FTC accounted for the majority of the radioactivity in all samples (64% of urinary radioactivity and 98% of fecal radioactivity). A sulfoxide metabolite (M1 or M2) represented the majority of nonFTC radioactivity in urine and totaled 11% of the dose.

A further in vivo metabolism study was performed in cynomolgus monkeys after oral administration of $[^{14}C]FTC$ (m2.6.5, Section 8.2.2, TOX063). Results were very similar to the previous study. Parent FTC accounted for the majority of the radioactivity in urine (74%) and feces (97%). The majority of the nonFTC radiolabel in urine was accounted for by metabolites M1, M2, and M3. Another potential urinary metabolite, 5-fluorouracil, was not detectable (< 0.02% of dose).

5.3.3. TAF and TFV

Based on the studies from mouse, rat, dog, and human (m2.6.5, Section 8.3, AD-120-2008, AD-120-2012, AD-120-2021; and GS-US-120-0109), relative quantification of TAF metabolites in plasma as percent total AUC and in urine, feces, and bile as percent total dose recovered in different species is summarized in Table 26. Endogenous purine metabolites including hypoxanthine, xanthine, allantoin, and uric acid were observed in all species. Tenofovir

accounted for a majority of drug related material in plasma, urine, and feces from all species except for human plasma, in which uric acid was the predominant metabolite accounting for 73.9% of the total AUC over 96 hours. M18 was the major metabolite in rat bile accounting for 63% of total radioactivity recovered in bile. M18 and its oxidized metabolite, M16 were the major metabolites in dog bile and accounted for 29 and 38% of total radioactivity recovered in bile, respectively. Various oxidative metabolites were found in dog bile. No metabolites unique to human were observed.

Tenofovir alafenamide-related metabolites were also monitored in kidney, liver, and nasal turbinate from mice (m2.6.5, Section 8.3.1, AD-120-2012). Most of the radioactivity was associated with TFV in kidney and liver, and xanthine (M7) was the major identified metabolite in nasal turbinates. In dog, TAF-related metabolites were monitored in bone and liver and most of the radioactivity in these tissues was associated with TFV (m2.6.5, Section 8.3.3, AD-120-2008).

M18 (isopropylalaninyl TFV) and M28 (alaninyl TFV) are considered to be intermediate metabolites during intracellular conversion of TAF to TFV. In the metabolite profiling study in dog, M28 was not detected in this study although it has been qualitatively detected previously in dog plasma at 15 minutes post dose {Babusis 2013}. It is possible that M28 may be formed transiently at low levels. M18 was detected as a minor metabolite in plasma, urine, and liver. Relatively high levels of M18 were observed in bile. Low levels of M28 were observed in rat and mouse plasma with relatively high levels in rat bile.

			% Tot	al Dose	
		Plasma ^a	Urine	Feces	Bile
	TFV (M12)	54.8	18.1	30.7	NA ^b
Maura	M28	1.02	0	0.7	NA
	Allantoin (M27A)	12.2	2.6	0.4	NA
Mouse	Uric acid (M27B)	19.4	0	0	NA
1	Unknown metabolites	12.3	3.2	0	NA
	Total	100	23.9	31.8	NA
	TFV (M12)	66.7	17.1	63.6	NA
	M28	5.8	0	0	NA
Rat	Allantoin (M27A)	23.2	0.1	0	NA
	Unknown metabolites	4.3	1.6	0	NA
	Total	100	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NA	
	TFV (M12)	NA	17.1	61.7	0.66
	M28	NA	0.4	0	1.17
Rat (BDC ^c)	Allantoin (M27A)	NA	0.2	0	0
	Uric acid (M27B)	NA	0	0	0.02
	Unknown metabolites	NA	1.7	0	0
	Total	NA	19.4	61.7	1.85

Table 26.Relative quantification of TAF Metabolites in Plasma, Urine, Feces,
and Bile as % Total Dose Quantified

			% Total Dose			
		Plasma ^a	Urine	Feces	Bile	
	TAF	1.3	1.3	0	NA	
	TFV (M12)	68.3	24.2	20.8	NA	
	M11	0	0.4	0.4	NA	
Dee	M17	0.44	0	0	NA	
Dog	M18	17.6	0.2	0	NA	
	M20	0.2	0	0	NA	
	Unknown metabolites	12.2	3.0	0.2	NA	
	Total	100	29.1	21.4	NA	
Dog (BDC)	TAF	NA	1.3	0	0.2	
	TFV (M12)	NA	16.8	26.4	1.0	
	M11	NA	0.4	0.7	0.1	
	M14	NA	0	0	0.2	
	M16	NA	0	0	4.4	
	M17	NA	0	0	0.5	
	M18	NA	0	0	3.4	
	M19	NA	0	0	0.1	
	M21	NA	0	0	0.4	
	M22	NA	0	0	0.2	
	M23	NA	0.2	0	0.2	
	Unknown metabolites	NA	2.9	0	0.9	
	Total	NA	21.6	27.1	11.6	
	TAF	1.8	1.41	0	NA	
	TFV (M12)	1.5	22.2	31.4	NA	
	Uric acid (M27B)	73.9	1.93	0	NA	
Human	Adenine/xanthine/hypoxantine (M33, M7.M8)	0.2	0.26	0	NA	
	Unknown metabolites	0	0	0.29	NA	
	Total	77.4 ^d	25.8	31.7	NA	

a Plasma data represent % of total AUC.

b NA = not applicable

c BDC = bile duct cannulated

d Not 100% due to loss of radioactivity during sample preparations.

5.3.3.1. TFV: Monkeys

The kinetics of intracellular TFV anabolism in PBMCs, red blood cells (RBCs), and lymph nodes were studied in monkeys that received a single dose of either 15, 30, or 60 mg/kg of [¹⁴C]TFV subcutaneously (m2.6.5, Section 8.3.4, P2001025). Tenofovir was efficiently taken up by PBMCs and anabolized to TFV-DP, with intracellular concentrations of the active antiviral anabolite reaching 1.6 μ M (60 mg/kg dose group). The half-life of TFV-DP in this experiment was > 50 hours. Similar concentrations of TFV anabolites were observed in RBCs. Significant intracellular concentrations of TFV and its anabolites were observed in axillary, inguinal, and mesenteric lymph nodes. This long intracellular half-life of the active diphosphate form observed both in vitro and in vivo supports the proposed once daily clinical dosing regimen.

5.4. **B/F/TAF**

No nonclinical studies have been completed assessing the metabolism of the 3-drug combination of BIC, FTC, and TAF because each agent has distinct metabolic and excretion pathways. BIC is metabolized by CYP3A mediated oxidation and conjugation by UGT enzymes, FTC is cleared by renal excretion and TAF is metabolized to TFV by hydrolysis.

6. **EXCRETION**

6.1. BIC

6.1.1. Studies in Intact Mice, Rats and Monkeys and Bile Duct-Cannulated Rats and Monkeys

The excretion of radioactivity was determined following a single oral administration of [¹⁴C]BIC to the male mouse, rat, and monkey. A comprehensive listing of the extent, routes, and rates of excretion are provided in m2.6.5 — transgenic mice (m2.6.5, Section 12.1.1, AD-141-2303); intact and BDC Wistar Han rats (m2.6.5, Sections 12.1.2 and 13.1.2, AD-141-2276); and intact and BDC cynomolgus monkeys (m2.6.5, Sections 12.1.3 and 13.1.3, AD-141-2298). The cumulative excretion over a 1-week collection period is summarized in Table 27. The average cumulative overall recovery of dosed radioactivity was > 80% in all species studied. The excretion routes in intact animals were consistent across species, with the majority of the excreted dose in feces (> 40% of dose) and with minor amounts in urine (< 21% of dose). The excretion into bile in BDC rat and monkey was approximately 34% to 40% of dose, respectively. In combination with metabolite profiling, these results demonstrate that BIC was mainly eliminated through metabolism by the liver followed by excretion into feces and urine.

	Collection Cumulative Recovery of Radioactivity (% Dose)					
Species	Time (h)	Urine	Feces	Bile	Carcass (residual)	Total Excreta ^a
	0-24	3.21	89.9	NA	NA	NA
Mice	0-48	3.48	96.6	NA	NA	NA
	0-168	3.55	98.5	NA	0.0799	102
Intact WH Rats	0-24	1.95 ± 0.39	22.9 ± 1.1	NA	NA	NA
	0-48	3.16 ± 0.70	41.8 ± 4.5	NA	NA	NA
	0-168	5.01 ± 0.84	76.3 ± 3.5	NA	13.7 ± 4.2	95.9 ± 0.4
BDC WH Rats	0-24	3.15 ± 0.60	9.97 ± 1.64	13.0 ± 5.4	NA	NA
	0-48	4.65 ± 0.91	21.0 ± 2.2	19.6 ± 6.1	NA	NA
	0-168	7.48 ± 1.19	42.4 ± 4.7	34.1 ± 5.1	13.7 ± 5.5	99.1 ± 1.0
Intact	0-24	17.8 ± 2.6	10.7 ± 5.2	NA	NA	NA
Cynomolgus Monkeys	0-48	19.7 ± 3.1	21.7 ± 11.6	NA	NA	NA
	0-168	20.8 ± 3.3	40.9 ± 3.7	NA	NA	80.4 ± 7.8
BDC Cynomolgus Monkeys	0-24	13.5 ± 5.1	5.09 ± 2.14	38.2 ± 7.3	NA	NA
	0-48	14.6 ± 5.0	16.7 ± 6.1	39.4 ± 7.6	NA	NA
	0-168	15.2 ± 5.0	20.3 ± 6.5	39.7 ± 7.7	NA	86.0 ± 1.7

Table 27.Cumulative Dose Recovery Following a Single Oral Administration of
[14C]BIC to Male Transgenic Mice at 2 mg/kg (300 μCi/kg, n=4),
Intact and BDC Wistar Han Rats at 2 mg/kg (100 μCi/kg, n=3), and
Intact and BDC Cynomolgus Monkeys at 1 mg/kg (25 μCi/kg, n=3)

BDC = bile duct cannulated; NA = not applicable; WH = Wistar Han

a Total recovery includes radioactivity in excreta carcass, cage rinses, cage wash, cage wipe, cage debris, bile cannula rinse, and jacket rinse.

Source: AD-141-2303, AD-141-2276, and AD-141-2298

6.2. FTC

6.2.1. Excretion of Radioactivity after Administration of [³H]FTC to Mice

Male CD-1 mice were dosed orally with 120 mg/kg [3 H]FTC (m2.6.5, Section 8.2.1, TEIN/93/0015). Recovery of radioactivity up to 72 hours postdose totaled 85.0% ± 4.2% of the dose, with 66.8% ± 7.0% in urine and 18.1% ± 3.1% in feces. The majority of the radioactivity was excreted during the first collection period (0–24 hours postdose), with 62.3% ± 7.6% of the dose in urine and 15.9% ± 3.0% of the dose in feces.

6.2.2. Excretion of Radioactivity after Administration of [³H]FTC to Rats

Male Sprague-Dawley rats were dosed intravenously or orally with 10 mg/kg [³H]FTC and urine and feces collected for 6 days {Frick 1993}. After IV administration, recovery of radiolabel in excreta was 96% \pm 3.7%, with 91% \pm 3.4% in urine and 5.0% \pm 1.6% in feces. Results were similar following oral dosing, with total recovery of 99% \pm 3.2% and 74% \pm 2.8% in urine and 25% \pm 1.6% in feces.

6.2.3. Excretion of Radioactivity after Administration of FTC to Monkeys

Following oral administration of 80 mg/kg [3 H]FTC to female cynomolgus monkeys, an average of 83.8% ± 3.8% of dosed radioactivity was recovered by 72 hours postdose, with 41.2% ± 6.4% of the dose in urine, 33.1% ± 10.0% in feces, and 9.6% ± 6.7% in cage washings (m2.6.5, Section 8.2.3, TEIN/93/0016). The majority of the radioactivity was recovered in the first collection phase (32.9% ± 8.6% in the 0–8 hour urine sample and 23.6% ± 15.9% in the 0–24 hour feces sample).

In a second study, an oral dose of 200 mg/kg [¹⁴C]FTC was given to male cynomolgus monkeys and urine and feces were collected up to 120 hours postdose (m2.6.5, Section 8.2.2, TOX063). The excretion pattern was similar to the previous study: total recovery of radioactivity averaged $76.2\% \pm 4.1\%$ of the dose, with $40.8\% \pm 8.5\%$ of the dose in urine and $35.4\% \pm 8.6\%$ in feces. However, excretion of radiolabel took longer than the previous study, with cumulative recovery of radiolabel in urine of $15.1\% \pm 5.1\%$ by 12 hours postdose and $24.8\% \pm 7.3\%$ by 24 hours postdose.

6.3. TAF/TFV

6.3.1. Excretion of Radioactivity after Administration of [¹⁴C]TAF to Mice

After oral administration of 100 mg/kg [¹⁴C]TAF to CD-1 mice, most of the radioactivity was eliminated by 48 hours postdose (m2.6.5, Section 5.3.1, AD-120-2011). An average of approximately 61% of the radioactive dose was recovered in urine and feces from CD-1 mice through 48 hours postdose. A large amount of radioactivity (average of 6.65% of the dose) was recovered in the cage rinse. An average of 41.3 and 27.7% of the administered radioactivity were excreted in feces and urine, respectively, by 168 hours postdose. An average overall recovery of radioactivity after oral dosing to CD-1 mice was 83.2%.

6.3.2. Excretion of Radioactivity after Administration of [¹⁴C]TAF or [¹⁴C]TFV to Rats

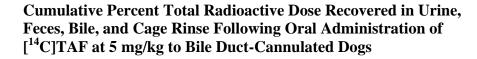
The excretion of $[^{14}C]$ TAF was determined after administration of a single 5-mg/kg oral dose of $[^{14}C]$ TAF to bile duct-intact and BDC male Sprague-Dawley rats (m2.6.5, Section 5.3.2, AD-120-2020). The results from BDC rats are discussed in Section 6.3.4. Most of radioactivity derived from $[^{14}C]$ TAF was rapidly excreted within 24 hours after oral dosing. The mean values of 71.9 and 22.2% of the administered radioactivity were excreted in feces and urine, respectively, by 168 hours postdose. The mean overall recovery of radioactivity was 96.7%.

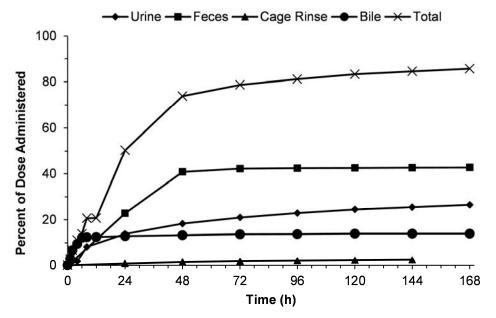
The effect of dose on excretion of [¹⁴C]TFV was evaluated in Sprague-Dawley rats following IV administration at doses of 10 or 50 mg/kg (400 μ Ci/kg) (m2.6.5, Section 12.3.1, 96-DDM-1278-001). Following dosing at 10 mg/kg, the mean cumulative recovery in the urine/cage wash was 85.2% ± 7.63 % by 24 hours and 92.7% ± 6.77 % by 7 days postdose. The mean terminal elimination half-life calculated from urine data was 15.82 ± 1.79 hours. The mean recovery of the administered dose in the feces was 3.18% ± 1.85% by 24 hours, and 4.48% ± 1.89% by 7 days postdose. Similar results were seen following dosing at 50 mg/kg. Tenofovir was the only species present in the urine and feces; no metabolites were detected. These results indicate that TFV is primarily excreted by renal clearance of the unchanged drug.

6.3.3. Excretion of Radioactivity after Administration of [¹⁴C]TAF or [¹⁴C]TFV to Dogs

The excretion of $[^{14}C]$ TAF was determined after administration of a single 15-mg/kg oral dose of $[^{14}C]$ TAF to bile duct-intact and BDC male dogs (m2.6.5, Section 13.2.1, AD-120-2007). The results from BDC dogs are discussed in Section 6.3.4. Radioactivity derived from $[^{14}C]$ TAF was readily excreted mostly within 48 hours after oral dosing. The mean values of 37.4% and 35.9% of the administered radioactivity were excreted in feces and urine, respectively, by 168 hours postdose. Overall mean recovery of radioactivity was 80.4%.

Tenofovir excretion was also evaluated following IV administration of $[^{14}C]TFV$ (m2.6.5, Section 13.2.2, 96-DDM-1278-002). The primary route of elimination was via the kidneys, as 70.03% of the total radioactive dose was recovered in the urine during the first 48 hours following dosing. Total fecal recovery of radioactivity was 0.42% of the total dose.


6.3.4. Excretion into Rat and Dog Bile


The excretion of $[^{14}C]$ TAF was determined after administration of a single 5-mg/kg oral dose of $[^{14}C]$ TAF to BDC male Sprague-Dawley rats (m2.6.5, Section 5.3.2, AD-120-2020). Mean values of 72.6%, 23.2%, and 2.11% of the administered radioactivity were excreted in feces, urine, and bile, respectively, by 168 hours postdose. Recoveries of radioactivity in bile and urine from BDC rats indicated that at least 25% of the dose was absorbed. The mean overall recovery of radioactivity after oral dosing to BDC rats was 99.9%.

The excretion of $[^{14}C]$ TAF was determined following oral administration of a single 15-mg/kg dose of $[^{14}C]$ TAF to male BDC dogs (m2.6.5, Section 13.2.1, AD-120-2007). Mean values of 42.7%, 26.5%, and 14.0% of the administered radioactivity were excreted in feces, urine, and

bile, respectively, through 168 hours postdose (Figure 16). Based on the radioactivity excreted in urine and bile, a minimum of approximately 41% of the orally administered dose was absorbed. The elimination of a large amount of radioactivity in bile of BDC dogs indicates that biliary excretion is a major route of elimination of [14 C]TAF-derived radioactivity in dogs. The overall recovery of radioactivity in BDC dogs was 86.2%. Radioactivity was measurable in urine and feces at 168 hours postdose, indicating low recoveries were probably due to radioactivity retained in the carcasses.

Figure 16.

The extent of biliary excretion of radioactivity following a single IV administration of 10 mg/kg [¹⁴C]TFV to a beagle dog was evaluated (m2.6.5, Section 13.2.2, 96-DDM-1278-002). Total biliary recovery of radioactivity through 48 hours postdose was 0.26% of the total dose.

6.3.5. Excretion into Milk

Milk was obtained from 2 lactating adult female rhesus monkeys following a single 30 mg/kg subcutaneous dose of TFV (m2.6.5, Section 7.3.2.2, P2000116). Both milk and serum samples were collected over time up to 24 hours postdose. Concentrations of TFV in milk reached an apparent maximum at 4 hours for 1 animal and at 1 hour in the second. Tenofovir C_{max} in milk was 4.04% and 2.02% of the observed C_{max} in plasma for the 2 animals, respectively, and declined with apparent half-lives of 10.3 and 10.9 hours. The TFV AUC in milk was 18.6% and 21.5% of the observed AUC in plasma for the 2 animals, respectively.

6.4. B/F/TAF

No nonclinical excretion studies have been done with the combination of BIC, FTC, and TAF. BIC is metabolized by CYP3A mediated oxidation and conjugation by UGT enzymes and then eliminated into bile and then into feces. FTC is eliminated primarily intact by renal excretion. TAF is metabolized by hydrolysis to TFV and is then eliminated by renal excretion. Since BIC, FTC, and TAF have distinct metabolic and excretion pathways for elimination, the coadministration of BIC, FTC, and TAF is not anticipated to change the excretion of the individual compounds.

7. PHARMACOKINETIC DRUG INTERACTIONS

Discussions of drug interaction liability are made by reference to current industry and United States and European regulatory guidelines {Bjornsson 2003, European Medicines Agency 2012, Giacomini 2010, U.S Department of Health and Human Services (DHHS) 2012}.

7.1. BIC

7.1.1. Cytochrome P450 and UGT1A1 Inhibition

The potential for BIC to reversibly inhibit major human drug metabolizing CYP enzymes was determined in human hepatic microsomal fractions with known substrates of individual enzymes (m2.6.5, Section 11.1.1, AD-141-2293). Bictegravir at 100 μ M had little or no inhibitory effect on the activities of any of the CYP isoforms; the IC₅₀ was > 100 μ M for all CYPs. Thus BIC is unlikely to cause significant drug interactions in vivo through inhibition of human CYP enzymes based on the calculated AUC ratio (AUCR) values (< 1.2; m2.6.5, Section 14.1.7, AD-141-2313) using the FDA net effect model as well as the calculated [I]/K_{i,u} (< 0.02; m2.6.5, Section 14.1.7, AD-141-2313) based on the European Medicines Agency (EMA) guidance.

Enzyme	Activity	% inhibition at 100 µM BIC	BIC IC ₅₀ (µM)
CYP1A2	Phenacetin O-deethylase	-0.987	>100
CYP2B6	Bupropion 4-hydroxylase	13.3	>100
CYP2C8	Paclitaxel 6α-hydroxylase	23.5	>100
CYP2C9	Tolbutamide 4-hydroxylase	40.4	>100
CYP2C19	S-Mephenytoin 4'-hydroxylase	42.0	>100
CYP2D6	Dextromethorphan O-demethylase	0.737	>100
СҮРЗА	Midazolam 1'-hydroxylase	34.3	>100
СҮРЗА	Testosterone 6β-hydroxylase	33.8	>100

	Table 28.	Assessment of CYP Inhibition Potential of BIC
--	-----------	---

CYP = cytochrome P450; IC_{50} = concentration resulting in 50% inhibition Values are the mean of triplicate determinations

Source: AD-141-2293

The potential for BIC to be a mechanism-based inhibitor of the human CYP enzymes, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A, was assessed at a BIC concentration of 100 μ M (m2.6.5, Section 11.1.3, AD-141-2308). No time-dependent inhibition was observed for BIC against CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19 or CYP2D6; the maximum change in activity observed was 12.1% with CYP2D6 relative to control. Bictegravir exhibited substrate-dependent inhibition of CYP3A, with an effect on midazolam 1'-hydroxylase activity (39.8% relative to control) but no meaningful effect (< 8% relative to control) on testosterone 6 -hydroxylase activity. The effect on CYP3A activity was confirmed using the IC₅₀ shift protocol, wherein a shift of 3.1 fold, from >200 μ M to 64.3 μ M was

observed. Collectively these data suggest that BIC is a weak ($K_I > 100 \mu M$) mechanism-based inhibitor of human CYP3A, but not of any of the other enzymes tested. Further determination of kinetic parameters was not possible due to solubility limitations and weak activity. Therefore, BIC is unlikely to be a clinically relevant mechanism-based inhibitor of CYP3A.

The potential for BIC to inhibit UGT1A1 was determined in human hepatic microsomal fractions containing alamethicin and UDP-glucuronic acid (m2.6.5, Section 11.1.2, AD-141-2294). Bictegravir was a very weak inhibitor of human UGT1A1 with a calculated IC₅₀ of 176 μ M.

7.1.2. Enzymology of Metabolism

The human CYP450 isoforms responsible for CYP-mediated metabolism of [³H]BIC (2 μ M) were identified using 8 individual recombinant expressed CYP450 enzyme preparations co-expressed with human NADPH CYP reductase (m2.6.5, Section 9.1.2, AD-141-2290). CYPs 3A4 and 3A5 were the only two isoforms that metabolized BIC; no turnover was observed with other isoforms (Table 29). The human UGT enzymes responsible for formation of the direct glucuronide (M15 in Figure 15) was identified using 12 individual recombinant expressed human UGT enzyme preparations and the rates of glucuronidation of BIC (5 μ M) were determined (m2.6.5, Section 9.1.3, AD-141-2291). The recombinant human UGT1A1 formed the largest quantity of BIC-glucuronide (M15) under the conditions tested; lesser quantities of the same glucuronide were also generated by UGT1A3, 1A8 and 1A9 (Table 30). These in vitro findings were consistent with the results from a clinical DDI study in healthy subjects — administration of rifampin (a strong CYP3A4 and UGT1A1 inducer) reduced BIC plasma AUC by 75% and administration of atazanavir (an UGT1A1and CYP3A4 inhibitor) increased BIC plasma AUC by 315%; and administration of voriconazole (a strong CYP3A4 inhibitor) increased BIC plasma AUC by 61% (GS-US-141-1485).

	[³ H]BIC	Metabolism		
	% Formed at 45 min ^b			
Enzyme	Met-1 ^a	Met-2 ^a		
CYP1A2	ND	ND		
CYP2B6	ND	ND		
CYP2C8	ND	ND		
CYP2C9	ND	ND		
CYP2C19	ND	ND		
CYP2D6	ND	ND		
CYP3A4	39	1.9		
CYP3A5	55	7.0		

Table 29.Rates of Generation of BIC Metabolites by Human CYP Enzy

CYP = cytochrome P450; ND = not detected

a Met-1 and Met-2 = metabolites observed in the radiochromatogram; structures were unassigned

b % Metabolite formation = 100% × Metabolite peak area at 45 min/Sum of all peak areas at 45 min

Source: AD-141-2290

Enzyme	BIC Glucuronide (M15) Formation (PAR × 10 ⁻³ at 60 min)
UGT1A1	12.0
UGT1A3	1.0
UGT1A4	ND
UGT1A6	ND
UGT1A7	ND
UGT1A8	1.0
UGT1A9	3.0
UGT1A10	ND
UGT2B4	ND
UGT2B7	ND
UGT2B15	ND
UGT2B17	ND

Table 30.Rates of Formation of BIC Glucuronide by Major Human UGT
Enzymes

ND = not detected; PAR = Peak area ratio of M15 to internal standard; UGT = uridine diphosphate glucuronosyl transferase Source: AD-141-2291

7.1.3. Assessment of Induction Liability

The potential for BIC to induce human drug metabolizing enzymes through the activation of AhR and PXR was assessed in vitro in reporter cell lines (m2.6.5, Section 11.1.4, AD-141-2292). Bictegravir (50 μ M) showed little activation (< 5% of maximal effect of -naphthoflavone) of AhR and modest activation of PXR (40% of maximal effect of rifampicin) in the respective reporter cell assays.

The potential for BIC to induce CYP enzymes, UGT1A1, and P-gp was assessed in cultured human hepatocytes from 3 different donors (m2.6.5, Section 11.1.5, AD-141-2305) and the results are summarized in Table 31 and Table 32. Bictegravir (1 – 60 μ M) treatment led to no significant increases (< 2-fold) in mRNA of CYPs 2C8 and 2C9 or mRNA and activity of CYP1A2. Bictegravir was a very weak inducer of CYP2B6 as concentration dependent mRNA increases were observed with a 4.74 fold increase at 60 μ M BIC; however no increase in CYP2B6 activity was observed in any of the donors.

Bictegravir was a weak inducer of CYP3A4 – concentration dependent mRNA increases of up to 16.7 fold at 60 μ M BIC were observed, whereas, only small increases (up to 2.6-fold) in CYP3A activity were observed. As the calculated AUCR values for CYP3A4 crossed the threshold of AUCR < 0.8 (m2.6.5, Section 14.1.7, AD-141-2313), a clinical study was conducted. The plasma PK of the CYP3A4 sensitive substrate midazolam and partial substrates velpatasvir and voxilaprevir were unaffected by coadministration with B/F/TAF FDC in clinical DDI studies (GS-US-380-4270 and GS-US-380-1999). Repeat dose administration of BIC resulted in no

change in the plasma elimination phase half-life of BIC, suggesting a lack of autoinduction (GS-US-141-1218). Further, repeat dose administration of BIC did not affect norgestimate and ethinyl estradiol PK (GS-US-311-1790). The cumulative data indicate that BIC following oral dosing is unlikely to be a clinically relevant inducer of CYP3A.

P-glycoprotein mRNA increased 5.76-fold at a 60 μ M BIC concentration with no increase observed at lower BIC concentrations. However, repeat dosing of BIC in humans did not reduce the plasma exposure of a P-gp sensitive substrate TAF (GS-US-141-1218). In contrast, repeat dose administration of known P-gp inducers had a discernible effect on TAF plasma PK; carbamazepine (a strong P-gp inducer) decreased TAF plasma AUC and C_{max} by approximately 55% (GS-US-311-1387); and efavirenz (a moderate P-gp inducer) decreased TAF plasma AUC and C_{max} by 14% and 22%, respectively (GS-US-311-0101).

	Mean Fold Increase of CYP Activity over Vehicle Control (%positive control)						
Treatment	CYP1A2	CYP2B6	СҮРЗА4				
BIC (1 µM)	1.00 (0.00%)	0.95 (-0.45%)	1.19 (2.24%)				
BIC (3 µM)	1.01 (0.068%)	1.09 (0.82%)	1.36 (4.24%)				
BIC (10 µM)	0.86 (-0.96%)	1.15 (1.36%)	2.50 (17.7%)				
BIC (30 µM)	0.63 (-2.53%)	0.76 (-2.18%)	2.57 (18.5%)				
BIC (60 μM)	0.42 (-3.97%)	0.73 (-2.45%)	1.73 (8.60%)				
Omeprazole (50 µM)	15.6	NA	NA				
Phenobarbital (1000 µM)	NA	12.0	NA				
Rifampin (10 µM)	NA	NA	9.49				

Table 31.Effect of BIC Treatment on CYP Activity in Cultured Human
Hepatocytes

CYP = cytochrome P450; NA= not applicable

Probe substrates were phenacetin, bupropion, and testosterone for CYP1A2, 2B6, and 3A, respectively.

Data represent the mean from 3 donors

Source: AD-141-2305

Mean mRNA Fold Increase over Vehicle Control (%pe				positive cont	rol)		
Treatment	CYP1A2	CYP2B6	CYP3A4	CYP2C8	CYP2C9	UGT1A1	P-gp
BIC (1 μM)	1.10 (0.61%)	1.19 (1.81%)	1.71 (3.13%)	1.62 (67.4%)	1.07 (36.8%)	1.18 (1.80%)	1.02 (2.27%)
BIC (3 μM)	1.11 (0.67%)	1.63 (6.00%)	2.50 (6.61%)	1.67 (72.8%)	1.18 (94.7%)	1.22 (2.20%)	0.87 (-14.8%)
BIC (10 µM)	1.22 (1.35%)	2.41 (13.4%)	7.20 (27.3%)	1.98 (107%)	1.26 (137%)	1.89 (8.90%)	1.00 (0.00%)
BIC (30 µM)	1.18 (1.10%)	3.93 (27.9%)	16.4 (67.8%)	1.78 (84.8%)	1.20 (105%)	3.55 (25.5%)	1.38 (43.2%)
BIC (60 µM)	0.74 (-1.60%)	4.74 (35.6%)	16.7 (69.2%)	1.10 (10.9%)	1.37 (195%)	3.51 (25.1%)	5.76 (541%)
$EC_{50}^{a}(\mu M)$	NA	103	19.1	NA	NA	143	NA
Omeprazole (50 µM)	17.3	NA	NA	NA	NA	11.0	NA
Phenobarbital (1000 µM)	NA	11.5	NA	NA	NA	NA	NA
Rifampin (10 µM)	NA	NA	23.7	1.92	1.19	NA	1.88

Table 32.Effect of BIC Treatment on mRNA Levels in Cultured Human
Hepatocytes

CYP = cytochrome P450; NA = not applicable; P-gp = P-glycoprotein; UGT = uridine diphosphate glucuronosyl transferase a Values were extrapolated by curve fitting (constrained to E_{max} of 100%)

Data are the mean from 3 donors

Source: AD-141-2305

7.1.4. Interactions with Transporters

The potential for BIC to be a substrate of human efflux and uptake transporters was determined in transfected cellular systems (m2.6.5, Section 14.1.1, AD-141-2278, and Section 14.1.2, AD-141-2275) and the results are summarized in Table 33. Bictegravir was a substrate for human P-gp and BCRP transporters. These results are consistent with efflux transport observed in Caco-2 cells (Section 3.1.1). Bictegravir (1 μ M) was not a substrate of OATP1B1 or OATP1B3 uptake transporters.

Table 33.Permeability of BIC (10 μM) in Wild Type, Pgp- or
BCRP-Overexpressing MDCKII Cells

P_{app} (× 10 ⁻⁶ cm/sec)	Wild Type	P-gp-overexpre	essing MDCKII	BCRP-overexpressing MDCKII		
of BIC	MDCKII	- inhibitor	+ inhibitor ^a	- inhibitor	+ inhibitor ^a	
Forward (A to B)	18.6	6.3	12.5	8.1	19.0	
Reverse (B to A)	23.3	47.6	30.3	52.3	38.7	
Efflux Ratio	1.3	7.5	2.4	6.5	2.0	

BCRP = breast cancer resistance protein; BIC = bictegravir (GS-9883); MDCKII = Madine-Darby canine kidney cell line; P-gp = P-glycoprotein; P_{app} = apparent permeability coefficient

a Control inhibitor: P-gp, cyclosporin A (10 μ M); BCRP, Ko134 (10 μ M) Source: AD 141 2278 The potential for BIC to inhibit human drug transporters was determined in cell lines transfected with individual transporters or using membrane vesicle preparations (m2.6.5, Section 14.1.3, AD-141-2273, Section 14.1.4, AD-141-2274, Section 14.1.5, AD-141-2285, and Section 14.1.6, AD-141-2310) and the results are summarized in Table 34. Bictegravir did not inhibit OATP1B1, OATP1B3, or OAT1 mediated transport. Bictegravir, at the highest concentration tested (80 or 100 μ M), weakly inhibited P-gp (20%), BCRP (6%), BSEP (46%), OCT1 (13%), and OAT3 (64%). Bictegravir showed dose-dependent inhibition of MATE1with an IC₅₀ value of 8.0 μ M. Bictegravir was an inhibitor of the renal uptake transporter OCT2 in vitro, with an IC₅₀ value of 0.42 μ M. A clinical PK and PD DDI study (GS-US-380-3908) was conducted with B/F/TAF and metformin (an OCT2 and MATE1 substrate). Metformin plasma exposure was increased approximately 39% following coadministration with B/F/TAF, relative to placebo; however, the PD characteristics of metformin, such as glucose metabolism, and active GLP-1 and lactate levels after OGTT, were unaffected by coadministration with B/F/TAF.

I ubic 54	c 34. Initional i otential of Transporters b		
Maximum Inhibition at Highest Concentration TestTransporter(Concentration)		IC ₅₀ (µM)	Report
P-gp	20% (80 µM)	>80	AD-141-2273
BCRP	6% (80 μM)	>80	AD-141-2273
BSEP	46% (100 μM)	>100	AD-141-2310
OATP1B1	No inhibition (80 µM)	>80	AD-141-2274
OATP1B3	No inhibition (80 µM)	>80	AD-141-2274
OCT1	13% (100 μM)	>100	AD-141-2310
OCT2	94% (10 μM)	0.42	AD-141-2285
OAT1	No inhibition (100 µM)	>100	AD-141-2310
OAT3	64% (100 μM)	55	AD-141-2310
MATE1	79% (80 μM)	8.0	AD-141-2285

Table 34.	Inhibition Potential of Transporters by BIC
-----------	---

BCRP = breast cancer resistance protein; BSEP = bile salt export pump; $IC_{50} = concentration$ resulting in 50% inhibition; MATE = multidrug and toxin extrusion protein; OAT = organic anion transporter; OATP = organic anion-transporting polypeptide; OCT = organic cation transporter; P-gp = P-glycoprotein

7.2. FTC

In all species examined, FTC shows high oral bioavailability, low plasma binding, and is eliminated, largely unchanged, by renal excretion. Metabolism by CYP3A (and possibly FMO) enzymes plays a minor role in FTC clearance. It is thus unlikely that FTC will be a victim of drug interactions, due to inhibition or induction of drug metabolizing enzymes or drug transporters at the intestine or liver. It is also unlikely that FTC would affect the metabolism of coadministered medications through inhibition or induction and clinical experience with FTC to date supports this conclusion. Consistent with the low induction potential, FTC did not activate human AhR or human PXR up to 50 μ M in vitro (m2.6.5, Section 11.2.2, AD-162-2005). FTC was a substrate of human OAT3 and was not a substrate of human OAT1 (m2.6.5, Section 14.4.2, AD-236-2010).

7.3. TAF and TFV

The PK profiles of TAF and TFV following oral administration of TAF are described in Table 35. The unbound C_{max} of TAF was calculated based on the percent unbound value of 20% obtained from multiple human ex vivo studies; this should be more clinically relevant than the value determined in vitro, which had somewhat higher percent unbound TAF.

	TAF	TFV
Dose (mg)	25	-
Total C _{max} (µM)	0.37	0.060
Unbound $C_{max} (\mu M)^{a}$	0.075	0.060
Intestinal (µM) ^b	210	-
C _{hep, inlet} ^c	0.72	-

Table 35.	Steady State Pharmacokinetic Parameters for TAF and TFV
-----------	---

a Calculated based on percent unbound values of 20% for TAF (GS-US-120-0108 and GS-US-120-0114) and 99.3% for TFV (Section 4.1.3)

b Estimated based on TAF 25 mg dose.

c Estimated total hepatic inlet (portal vein) concentration calculated based on TAF 25 mg dose according to Obach et al. {Obach 2006} Absorption rate constant of 0.01 min⁻¹ and human hepatic blood flow of 1500 mL/min were used for estimation.

The potential of TAF to be a victim or perpetrator of DDIs was assessed in various in vitro systems. The potential of TAF or its metabolites to inhibit CYP enzymes and UGT1A1 or induce CYP enzymes, UGT1A1, or P-gp and serve as substrates or inhibitors of xenobiotic transporters was assessed. The effect of other drugs, including other antiviral agents that may be coadministered with TAF, on intestinal stability and the absorption potential was also determined.

7.3.1. Cytochrome P450 and UGT1A1 Inhibition

The potential for TAF and TFV to inhibit human CYP-mediated drug metabolism was examined in vitro using hepatic microsomal fractions and enzyme-selective activities (m2.6.5, Section 11.3.1, AD-120-2003 and Section 11.3.2, V990172-104). The inhibitory activity of TAF with human liver microsomal CYP isozymes, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A were assessed at concentrations up to 25 μ M. The inhibition constant (IC₅₀) values calculated for CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, and CYP2D6 were greater than 25 μ M. Tenofovir alafenamide weakly inhibited CYP3A-mediated oxidation of midazolam or testosterone with IC₅₀ of 7.6 or 7.4 μ M, respectively. However, the weak inhibition of CYP3A is not clinically relevant as TAF did not affect the exposure to CYP3A substrates, midazolam or RPV in clinical DDI studies (GS-US-120-1538 and GS-US-120-1554). Tenofovir at 100 μ M did not inhibit CYP1A2, CYP2C9, CYP2D6, CYP2E1, and CYP3A.

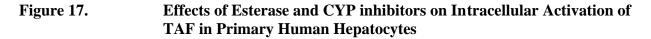
The potential for TAF to be a mechanism-based inhibitor of the human CYP enzymes, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A was assessed at a TAF concentration of 50 μ M (m2.6.5, Section 11.3.3, AD-120-2040). There was no evidence for time- or cofactor-dependent inhibition of any enzyme by TAF and the maximum change in activity observed for any CYP was 17.4% with CYP2C8 relative to control.

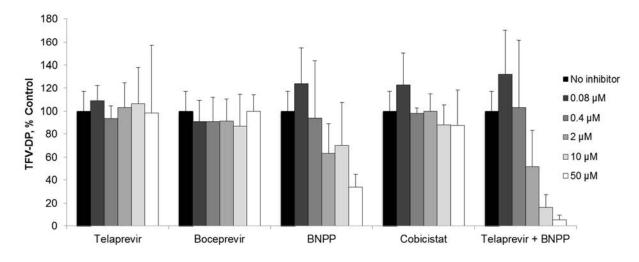
Tenofovir alafenamide was assessed for inhibition of estradiol 3-glucuronide formation in insect cell microsomal fractions containing baculovirus-expressed human UGT1A1 (m2.6.5, Section 11.3.6, AD-120-2006). Tenofovir alafenamide did not inhibit UGT1A1 up to 50 μ M (IC₅₀ > 50 μ M).

7.3.2. Enzymology of Metabolism

Orally administered TAF undergoes intestinal absorption. During intestinal absorption, TAF may be metabolized by intestinal esterases and/or CYP enzymes. The effects of HIV-1 PIs and CYP inhibitors on the stability of TAF in intestinal subcellular fractions were determined (m2.6.5, Section 9.3.7, AD-120-2027). Incubation of TAF with the HIV-1 PIs atazanavir or darunavir, or the CYP inhibitors, ritonavir or COBI did not markedly affect the stability of TAF in intestinal subcellular fractions up to 100 μ M (Table 36).

Inhibitor	Concentration (µM)	Intestinal S9 Stability ^a t _{1/2} (min)
Vehicle control	0	24.5 ± 4.1
Atazanavir	25	28.9 ± 5.2
Atazanavir	100	38.9 ± 5.3
Darunavir	25	32.2 ± 5.1
Darunavir	100	30.8 ± 5.0
Ritonavir	25	19.0 ± 2.8
KIIOIIAVII	100	18.9 ± 1.5
Calificated	25	30.1 ± 5.1
Cobicistat	100	32.9 ± 4.8
Dichlorvos	500	> 789 ^b


Table 36.Stability of TAF in Human Intestinal Subcellular Fraction in the
Absence and Presence of Test Compounds


a Data are mean \pm SD, n = 2 (6 data points per replicate)

b Less than 10% loss of substrate in 120 minutes

To understand the enzymes involved in activation of TAF in primary human hepatocytes, cells were incubated with TAF together with known CatA inhibitors (approved hepatitis C virus nonstructural protein 3 (NS3) inhibitors, telaprevir and boceprevir), CES1 inhibitor (bis-p-nitrophenyl phosphate [BNPP]), CYP3A4 and P-gp inhibitor (COBI), or telaprevir and BNPP together (m2.6.5, Section 9.3.8, AD-120-2031). As shown in Figure 17, the metabolism of TAF was inhibited by BNPP in a dose-dependent manner. Little or no effect on TFV-DP formation was observed with telaprevir, boceprevir, or COBI. When telaprevir and BNPP were combined a greater inhibition was seen at higher concentrations of the 2 compounds. These results indicated that TAF is primarily hydrolyzed by CES1 in primary human hepatocytes with CatA also making a contribution. Several CES1 genetic variants that are associated with the enzyme activity have been identified at very low frequency; G143E (heterozygous: 2%-4% and homozygous: 0.05%) and D260fs (very rare) {Tarkiainen 2012, Zhu 2008}. In a study of HBV-infected subjects, a total of 42/51 (82.4%) patients were genotyped for the rs71647871 (G143E) variant of CES1. All patients were found to carry the reference homozygous genotype, ie, there

were no carriers of the minor allele of this variant genotype. In addition, since TAF can be activated by both CES1 and CatA in liver, the genetic polymorphisms causing a marked effect on TAF activation should be extremely rare.

7.3.3. Assessment of Induction Liability

The potential for TAF to induce human drug metabolizing enzymes and drug transporters through the activation of human AhR or human PXR was evaluated in cell-based systems (m2.6.5, Section 11.3.4, AD-120-2005). For PXR activation, at 50 μ M TAF the extent of activation of PXR was only 23% of the maximal effect of rifampicin and 15 μ M TAF demonstrated activation of < 5% of the maximal induction elicited by rifampicin. Tenofovir alafenamide did not activate AhR up to 50 μ M, the highest concentration tested. Therefore, TAF is unlikely to activate either of these human xenobiotic receptors.

The induction of CYP, P-gp, and UGT1A1 mRNA and CYP activity by TAF was assessed in cultured human hepatocytes from 3 separate donors treated with 1, 10, and 100 μ M TAF added once daily for 3 consecutive days (m2.6.5, Section 11.3.5, AD-120-2032). CYP induction data as mean fold increase in mRNA levels and activity upon treatment with TAF and corresponding positive controls are summarized in Table 37. Due to cytotoxicity, the cell viability was significantly affected at 100 μ M TAF and mixed responses to TAF with increased mRNA levels and reduced CYP activities were observed. At noncytotoxic concentrations of TAF (1 and 10 μ M), no significant increases in the mRNA levels and the CYP activities were observed. After treatment with 10 μ M TAF, the mRNA levels of CYP1A2 and CYP3A4 increased by 3.0- and 8.3-fold which correspond to 3% and 6% of the induction levels observed with the respective positive controls. Therefore, TAF showed little or no potential for CYP induction at clinically relevant concentration (1 μ M). No significant induction of P-gp and UGT1A1 mRNA was observed (less than 2-fold). Furthermore, TAF is unlikely to be a clinically relevant inducer as it did not affect the exposure to midazolam or RPV (GS-US-120-1538 and GS-US-120-1554).

Cultured Human Hepatocytes (mean, n = 5 donois)								
	Mean Fold Increase (% Positive Control)							
		mRNA Activity ^c						
Concentration	CYP1A2	CYP2B6	СҮРЗА	CYP1A2	CYP2B6	СҮРЗА		
1 μM TAF	1.2 (<1%)	0.95 (<1%)	0.92 (<1%)	1.0 (<1%)	1.1 (<1%)	0.97 (<1%)		
10 µM TAF	3.0 (3%)	1.6 (4%)	8.3 (6%)	1.4 (1%)	0.85 (<1%)	0.99 (<1%)		
$100 \mu M TAF^a$	6.9 (8%)	2.5 (10%)	44 (36%)	0.84 (<1%)	0.42 (<1%)	0.37 (<1%)		
Positive control ^b	72	16	120	28	13	29		

Table 37.Effect of TAF Treatment on CYP mRNA Levels and Activity in
Cultured Human Hepatocytes (mean, n = 3 donors)

a The viability of the hepatocytes was affected at this concentration of TAF and therefore caution should be taken when interpreting the corresponding induction data.

b Positive controls 50 μM omeprazole, 1000 μM phenobarbital, and 10 μM rifampin for CYP1A2, CYP2B6, and CYP3A, respectively.

c Phenacetin, bupropion, and testosterone were used as probe substrates for CYP1A2, 2B6, and 3A, respectively.

7.3.4. Potential for Transporter-Mediated Drug Interactions with TAF and TFV

The potential for TAF and TFV to inhibit or to act as substrates for drug transporters has been assessed in vitro. Inhibition constants and substrate assessments for tested transporters are summarized Table 38. Tenofovir alafenamide showed little or no inhibition of the transport of model substrates by P-gp, BCRP, OAT1, OAT3, and OCT2 (m2.6.5, Section 14.3.2, AD-120-2019 and Section 14.3.6, AD-120-2036). Weak inhibition of OATP1B1, OATP1B3, BSEP, OCT1, and MATE1 was observed but none of these transporters were inhibited by 50% at 100 μ M TAF, which is approximately 200-fold over the total maximal plasma concentrations. Therefore, TAF is unlikely to be a perpetrator of transporter-mediated drug interactions.

The route of elimination of TFV is renal excretion by a combination of glomerular filtration and tubular secretion. In order to understand the role of transporters in the renal secretion of TFV and to explore potential drug interactions based on these transport systems, the interactions of TFV with a variety of both uptake and efflux transporters were studied in vitro.

Results of in vitro transport studies indicate that the active tubular secretion of TFV is mediated by human OAT1 (basolateral uptake) and MRP4 (apical efflux) transporters acting in series in proximal tubules (m2.6.5, Section 14.3, PC-103-2001, AD-104-2001, AD-104-2002) {Cihlar 2004, Cihlar 2001, Ray 2005}. Human OAT3 may play a secondary role in the tubular uptake of TFV. Neither P-gp nor MRP2 appear to be involved in the tubular efflux of TFV. As the primary transporter handling the tubular uptake of TFV, OAT1 has been assessed for its potential role in drug interactions between TFV and other therapeutics including antibiotics, anti-inflammatory agents, and other antivirals (including PIs). Under physiologically relevant conditions, none of the tested drugs affected OAT1-mediated transport of TFV, indicating a low potential for renal interactions with TFV due to inhibition of this pathway (m2.6.5, Section 14.3.9, PC-104-2010 and Section 14.3.10, PC-104-2011) {Cihlar 2001}. Unlike TFV, TAF was not a substrate for renal transporters, OAT1 and OAT3.

The results from in vitro studies investigating the contribution from MRP1 in tubular reabsorption of TFV (m2.6.5, Section 14.3.11, PC-104-2014) indicated that MRP1 is not involved in the reabsorption of TFV at the basolateral membrane of proximal tubule cells.

Tenofovir did not inhibit the activity of human OCT2 or MATE1 (IC₅₀ > 300 μ M) so TFV is unlikely to cause drug interactions through inhibition of these transporters (m2.6.5, Section 14.3.12, AD-104-2012).

	Substrate Po	otential (y/n)	Inhibition Pote	ential, IC ₅₀ (µM)	m2.6.5
Transporter	TAF	TFV	TAF	TFV	Section, Report
P-gp	у	n	>100	>1000	Section 14.3.1, AD-120-2018 Section 14.3.16, AD-236-2004 Section 14.3.2, AD-120-2019 Section 14.3.15, AD-236-2003
BCRP	у	n	>100	>100	Section 14.3.1, AD-120-2018 Section 14.3.17, AD-236-2005 Section 14.3.2, AD-120-2019 Section 14.3.15, AD-236-2003
BSEP	ND	ND	>100	>100	Section 14.3.20, AD-236-2008 Section 14.3.6, AD-120-2036
OATP1B1	у	ND	>100	>100	Section 14.3.4, AD-120-2022 Section 14.3.2, AD-120-2019 Section 14.3.18, AD-236-2006
OATP1B3	у	ND	>100	>100	Section 14.3.4, AD-120-2022 Section 14.3.2, AD-120-2019 Section 14.3.18, AD-236-2006
MATE1	ND	ND	>100	>300	Section 14.3.6, AD-120-2036 Section 14.3.12, AD-104-2012
OAT1	n	у	>100	33.8ª	m2.6.3, Section 1.6, PC-120-2018 Section 14.3.9, PC-104-2010 Section 14.3.6, AD-120-2036 Section 14.3.19, AD-236-2007
OAT3	n	у	>100	>1000	m2.6.3, Section 1.6, PC-120-2018 Section 14.3.10, PC-104-2011 Section 14.3.6, AD-120-2036 Section 14.3.19, AD-236-2007 Section 14.3.13, PC-103-2001
OCT1	n	n	>100	>100	Section 14.3.6, AD-120-2036 Section 14.3.13, PC-103-2001 Section 14.3.20, AD-236-2008
OCT2	ND	n	>100	>300	Section 14.3.21, AD-236-2011 Section 14.3.6, AD-120-2036 Section 14.3.13, PC-103-2001
MRP1	ND	n	ND	>500	Section 14.3.11, PC-104-2014
MRP2	ND	n	ND	>100	Section 14.3.7, AD-104-2001
MRP4	ND	у	ND	>1000 ^b	Section 14.3.7, AD-104-2001 Section 14.3.19, AD-236-2007

BCRP = breast cancer resistance protein; BSEP = bile salt excretory pump; MATE = multidrug and toxin extrusion protein; MRP1 2, 3, or 4 = multidrug resistance associated protein 1, 2, or 4; ND = not determined; OAT1 or 3 = organic anion transporter 1 or 3; OATP1B1 or B3 = organic anion transporting polypeptide 1B1 or B3; OCT1 or 2 = organic cation transporter 1

a Binding constant for uptake into CHO cells reported by Cihlar et al, 2009 {Cihlar 2001}.

b Imaoka et al 2007 {Imaoka 2007}

Tenofovir alafenamide is a substrate for intestinal efflux transporters, P-gp and BCRP. An increase in TAF absorption was observed in the presence of efflux transport inhibitors, CsA or COBI in vitro (m2.6.5, Section 3.3.1, AD-120-2037 and m2.6.5, Section 14.3.3, AD-120-2013). Cobicistat is a weak inhibitor of intestinal efflux transporters, but high concentrations of COBI in the intestinal lumen, achievable briefly during absorption, may inhibit P-gp and result in increase in TAF exposure. As shown in Table 39, in the presence of 90 µM COBI in the Caco-2 bidirectional permeability assay, TAF forward permeability increased 4.6-fold and the efflux ratio significantly decreased, suggesting an efflux transporter mediated drug interaction (m2.6.5, Section 14.3.3, AD-120-2013). The effect of CsA on TAF oral bioavailability was also assessed in vivo in dogs (m2.6.5, Section 14.3.14, AD-120-2035). As described in Table 40, plasma PK parameters were determined in dogs following oral administration of TAF at 2 mg/kg to untreated or pretreated animals with 75 mg CsA. The CsA pretreatment increased the plasma exposure to TAF and oral bioavailability by approximately 10-fold, while the PK profile of TFV was slightly increased by CsA. Consistent with the increased TAF plasma exposure, the exposure to TFV-DP in PBMCs isolated from the CsA pretreated dogs was approximately 2-fold higher than that in cells from untreated animals. These results suggest that coadministration of efflux inhibitors increases TAF absorption.

Table 39	•	Effect of COBI on the Bidired Cells	ctional Permea	abili	ity of TAF in	i Caco-2
T., 1, 21, 24,	D '		\mathbf{D}_{1}	n	(10-6	E69 D - 4

Inhibitor	Direction	TAF Initial Concentration (µM)	Recovery (%)	$P_{app} (\times 10^{-6} \text{ cm/s})$	Efflux Ratio
None	Cell-Free	9.61	119	30.8	_
	Forward	9.92	64	0.74	20
	Reverse	8.71	102	15.1	20
COBI (90 µM)	Forward	11.0	101	3.4	16
	Reverse	11.4	115	4.9	1.6

Table 40.Mean Plasma Pharmacokinetic Parameters for TAF and TFV
Following Oral Administration of TAF to Male Beagle Dogs

	No CsA Pretreatment Pretreatment with 75 mg		vith 75 mg CsA	
Parameter	TAF	TFV	TAF	TFV
$AUC_{0-t} (nM \bullet h)$	31.4	1140	312	1330
T _{max} (h)	0.14	0.667	0.24	1.0
C _{max} (nM)	109	342	813	187
t _{1/2} (h)	0.21	>24	0.15	>24
%F	1.67	NA	16.6	NA

NA = Not applicable

T 11 **3**0

Tenofovir alafenamide was efficiently taken up and metabolized in primary human hepatocytes. As shown in Figure 18, TAF was taken up by untransfected CHO cells at a rate of 9.0 $pmol/min/10^6$ cells indicating that TAF has high passive permeability. Uptake was higher with the cells expressing hepatic uptake transporter, OATP1B1 or OATP1B3 with rates of $12.0 \text{ or } 24.1 \text{ pmol/min/}10^6 \text{ cells, respectively and rifampin inhibited the transporter dependent}$ uptake. Atorvastatin and antipyrine were used as positive and passive permeability controls, respectively. These results demonstrated that TAF is a substrate for hepatic uptake transporters, OATP1B1 and OATP1B3 (m2.6.5, Section 14.3.4, AD-120-2022). Effect of an OATP inhibitor, rifampicin on uptake of TAF into primary human hepatocytes was assessed in vitro. As shown in Figure 19, the results from four different hepatocyte donors suggested that OATP-mediated transport makes a small contribution to TAF uptake (m2.6.5, Section 14.3.5, AD-120-2042). Taken together, it is likely that the major route of TAF uptake into hepatocytes is passive permeability. Therefore, while exposure to TAF may be affected slightly by inhibitors of these transporters or genetic polymorphisms that affect the transport activities, the effects of differences in OATP1B1 and OATP1B3 activity are, not expected to be clinically relevant given the high passive permeability of TAF.

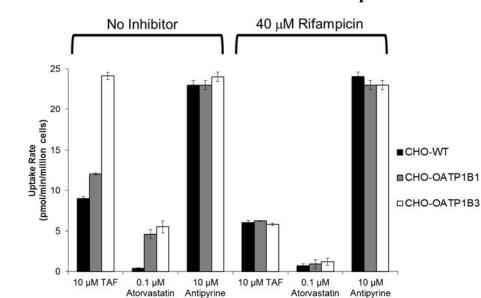


Figure 18. OATP1B1- and OATP1B3-Mediated Uptake of TAF

Figure 19.Effect of Rifampicin on Uptake of TAF into Primary Human
Hepatocytes

7.4. B/F/TAF

No nonclinical DDI studies have been done with the combination of BIC, FTC, and TAF.

8. OTHER PHARMACOKINETIC STUDIES

There are no additional studies to report.

9. DISCUSSION AND CONCLUSIONS

Comprehensive nonclinical studies have been carried out on BIC, FTC, and TAF as individual agents to assess their absorption, distribution, metabolism, elimination and drug interaction potentials. Results from these nonclinical studies are discussed below.

9.1. BIC

Absorption, distribution, metabolism, and excretion studies support the selection of rat, rabbit, and monkey as nonclinical species for the toxicology assessment of BIC. The metabolism and elimination profiles of BIC in nonclinical species were consistent with those observed in humans during clinical studies. Following oral administration of BIC in all species studied, unchanged parent drug was the predominant circulating component in plasma. All human metabolites were also found in nonclinical species. Biliary or renal excretion of parent drug is a minor route of elimination of BIC.

High permeability and efflux transport were observed in vitro and evidence for moderate to high fractional absorption was observed in rat, dog, and monkey. The oral bioavailability of BIC ranged from 42% to 74% in nonclinical species. Bictegravir was highly protein bound (> 98%) with a volume of distribution of lower than total body water in rat, dog, and monkey. Bictegravir showed minimal partition into erythrocytes with a blood to plasma ratio close to 0.6 in all species. Bictegravir was a substrate for efflux transporters and poorly crossed the blood-brain barrier in rats.

Bictegravir was a substrate of CYP3A and UGT1A1. Oxidation, direct glucuronidation, and oxidation followed by phase II conjugation were the major metabolic pathways for BIC in rats, monkeys, and humans. Unchanged BIC was the major circulating species observed in mice, rats, monkeys, and humans. Bictegravir was mainly eliminated by hepatic metabolism followed by excretion into feces and urine. Since CYP3A and UGT1A1 play a major role in the elimination of BIC, the systemic exposure of BIC may be altered by inducers or inhibitors of these enzymes.

Bictegravir, at concentrations up to 100 μ M, did not reversibly inhibit the metabolic functions of CYP enzymes, including CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, or 3A4, or UGT1A1 in human hepatic microsomal fractions. Bictegravir was a weak mechanism based inhibitor of CYP3A. A weak induction by BIC of drug metabolizing enzymes or transporters regulated by PXR and constitutive androstane receptor (CAR) was observed in primary human hepatocytes. Bictegravir is highly bound to plasma proteins (human > 99%) and is therefore unlikely to be a perpetrator of drug interactions through induction or inhibition of UGT1A1 or CYP enzymes. The low potential for clinically meaningful DDIs was confirmed in dedicated clinical studies; the plasma PK of midazolam, a sensitive CYP3A4 substrate, was unaffected by coadministration with B/F/TAF FDC.

Bictegravir was a substrate for intestinal efflux transporters P-gp and BCRP and its intestinal absorption may be decreased by inducers or increased by coadministered inhibitors of P-gp and BCRP. Bictegravir was not an inhibitor of the hepatic transporters OATP1B1, OATP1B3, OCT1, or BSEP, or the renal transporters OAT1 and OAT3 at clinically relevant concentrations. Although BIC was an inhibitor of renal transporters OCT2 and MATE1, clinical studies with B/F/TAF FDC showed a lack of clinically relevant change in the plasma AUC of metformin with no change in the PD characteristics of metformin.

9.2. FTC

Emtricitabine is rapidly and extensively absorbed after oral administration in mice, rats, and cynomolgus monkeys, with oral bioavailability ranging from 58% to 97%. Exposure is roughly dose-proportional over most of the range explored. Therefore absorption of FTC is likely rapid and complete in humans over the clinical dose range. Emtricitabine is not extensively metabolized; therefore its bioavailability is likely to be governed only by absorption, with little or no first-pass metabolism in the intestinal wall or liver.

Studies of FTC in mouse, rabbit, monkey, and human plasma show that FTC has little or no measurable binding (3.6%). The observed volume of distribution for FTC (~ 0.9 L/kg) is dose-independent and close to that of total body water and suggests free distribution of FTC between tissue (intracellular and extracellular) and plasma. The low level of protein binding for FTC also suggests that drug interactions due to altered protein binding will not occur for this drug. Since FTC is largely excreted unchanged and does not bind significantly to plasma proteins, the renal clearance of FTC should be similar to its total body clearance. Emtricitabine clearance values generally exceeded the glomerular filtration rate and approach renal plasma flow, suggesting that the kidneys not only filter FTC passively, but also actively secrete it in urine, a phenomenon observed with other pyrimidine nucleosides {Frick 1993}.

Emtricitabine is widely distributed in the body. After oral administration, the highest concentrations are found in the intestine and kidneys, consistent with its absorption and elimination via these tissues. Levels in CNS tissues reach ~ 2% to 9% of those in plasma.

In radiolabel studies in mice, rats, and cynomolgus monkeys, metabolism accounts for only a minor percentage of FTC elimination. Only trace levels of metabolites were found in feces. Over 90% of the radioactivity in mouse and rat urine, and 64% of the radioactivity in monkey urine was unchanged drug. The principal metabolite was a 3'-sulfoxide (M1 or M2), accounting for approximately 2% of the dose in mice, 2.6% in rats, and 6% to 11% in monkeys. Other metabolites were detected in the urine of rats and cynomolgus monkeys, but none accounted for more than 2% of the dose. These minor metabolites may include 5-fluorocytosine, the other diastereomeric 3'-sulfoxide, and a glucuronide conjugate (M3). No 5-fluorouracil was detected in any samples. Thus, in contrast to other nucleoside analogues, FTC is not extensively metabolized and is eliminated primarily as unchanged drug by renal excretion. Based on these observations, it is unlikely that FTC will be subject to significant first-pass metabolism, or to changes in clearance due to hepatic disease or metabolic drug interactions.

The biotransformation of FTC in humans is similar to that in monkeys, yielding the same 3 putative metabolites (oxidation of the thiol moiety to form M1 and M2 and conjugation with glucuronic acid to form M3). These metabolites were only quantifiable at low levels in urine samples. Metabolite M2 was the most predominant, with its urinary recovery accounting for 8.7% of the dose administered. M2 was sporadically quantifiable in plasma samples of 2 out of 5 subjects and when measurable, plasma M2 concentrations were 30- to 50-fold lower than plasma FTC concentrations at corresponding time points. Urinary recoveries of metabolites M1 and M3 accounted for only 0.3% and 4% of the dose administered, respectively. These 3 metabolites along with unchanged FTC in urine accounted for essentially the entire dose recovered in urine (~86%). Emtricitabine does not inhibit human CYP and demonstrates no liability to be an inducer.

9.3. TAF

Oral administration of TAF generates sufficient exposure to TAF and/or TFV in nonclinical species chosen for assessment of toxicology. Consistent with dose-dependent permeability observed in vitro, the oral bioavailability of TAF increased with increasing dose in dogs and the observed oral bioavailability was 14.3% at the 10-mg/kg dose {Babusis 2013}. Following a 15-mg/kg oral dose of [¹⁴C]TAF to BDC dog, the fraction absorbed was at least 41% based on excretion in urine and bile. Therefore, hepatic extraction was calculated to be approximately 65%, which was consistent with that estimated from the in vitro stability study in dog hepatic S9 fractions (60.5%). High levels of pharmacologically active TFV-DP were observed in dog liver following oral administration of TAF and persisted with an apparent half-life of > 20 hours. In vitro, high levels of intracellular TFV-DP were observed following incubation of primary human hepatocytes with TAF with 5- and 120-fold higher levels compared to incubation with TDF and TFV, respectively. Consistent with the long half-life of TFV-DP in dog liver, the half-life of intracellular TFV-DP was estimated to be greater than 24 hours {Murakami 2015}.

Following oral administration of [¹⁴C]TAF to mouse, rat, and dog, [¹⁴C]TAF-derived radioactivity was widely distributed to most of the tissues in all species. Consistent with high hepatic extraction, high levels of radioactivity were observed in the liver; high levels of radioactivity were also measured in the kidney. Low levels of radioactivity were observed in brain and testis in mouse. Distribution trends in the pigmented uveal tract of the eye and pigmented skin suggested that [¹⁴C]TAF-related radioactivity was not selectively associated with melanin-containing tissues in the pigmented mouse. No melanin binding was observed in rats. TAF poorly penetrates into CSF following oral administration in monkeys.

The biotransformation of TAF was studied in mice, rats, and dogs and compared with that in humans. Endogenous purine metabolites including hypoxanthine, xanthine, allantoin, and uric acid were observed in all species including humans. Tenofovir accounted for a majority of drug related material in plasma, urine, and feces from all species except for human plasma in which uric acid was the predominant metabolite accounting for 73.9% of the total AUC over 96 hours. No metabolites unique to human were observed. In addition, none of the intermediate metabolites formed during intracellular conversion of TAF to TFV (eg, M18 [isopropylalaninyl TFV] and M28 [alaninyl TFV]), were observed in humans. The major enzymes involved in intracellular conversion of TAF to TFV in primary human hepatocytes and PBMCs are CES1 and CatA, respectively. Tenofovir is further phosphorylated to pharmacologically active TFV-DP by cellular nucleotide kinases. These steps are usually high capacity and low affinity and are not readily inhibited by other xenobiotics.

Following oral dosing of mice, rats, and dogs with [¹⁴C]TAF, the majority of radiolabel is recovered in the feces or urine in all species. The elimination of a large amount of radioactivity in bile of BDC dogs indicates that biliary excretion is a major route of elimination of [¹⁴C]TAF-derived radioactivity in dogs. Total recovery of radiolabel is high for all species.

Tenofovir alafenamide is not an inhibitor of UGT1A1 and CYP enzymes except for weak inhibition observed for CYP3A in vitro. While TAF is a weak inhibitor of CYP3A in vitro, it is not a clinically meaningful inhibitor of CYP3A as TAF did not affect the exposure to CYP3A

substrates, midazolam or RPV in clinical DDI studies. Tenofovir alafenamide is not a clinically relevant inducer of CYP enzymes, UGT1A1, or P-gp. Tenofovir alafenamide is unlikely to be a perpetrator of transporter-mediated drug interactions. Since TAF is a substrate for intestinal efflux transporters P-gp and BCRP, TAF exposure may be affected by inhibitors and/or inducers of the intestinal efflux transporters. While TAF is also a substrate for hepatic uptake transporters, OATP1B1 and OATP1B3, these transporters make small contributions to TAF uptake into hepatocytes and the effects of changes in the transporter activities are not expected to be clinically relevant given the high passive permeability of TAF. Tenofovir alafenamide was not a substrate for renal transporters OAT1 and OAT3 suggesting that TAF is not contributing to renal tubular cell loading of TFV; as a result, intracellular TFV concentrations in renal cells are likely to correlate with plasma TFV levels, which are 90% lower following the administration of TAF than of TDF. Overall, TAF has high hepatic extraction and is efficiently metabolized into pharmacologically active TFV-DP in the liver cells.

9.4. B/F/TAF

BIC, FTC and TAF have distinct metabolic and excretion pathways for elimination. BIC is metabolized by CYP3A mediated oxidation and conjugation by UGT enzymes and then eliminated into feces and urine. FTC is eliminated primarily intact by renal excretion. TAF is predominantly hydrolyzed intracellularly to TFV and is then eliminated by renal excretion. Based on the nonoverlapping routes of clearance and elimination, the coadministration of BIC, FTC, and TAF is not anticipated to result in a clinically relevant DDI. This was confirmed in a clinical DDI study wherein concomitant administration of BIC and F/TAF showed no significant PK DDI and no dose adjustment was necessary when BIC is administered or coformulated together with F/TAF.

10. **REFERENCES**

- Babusis D, Phan TK, Lee WA, Watkins WJ, Ray AS. Mechanism for Effective Lymphoid Cell and Tissue Loading Following Oral Administration of Nucleotide Prodrug GS-7340. Mol Pharm 2013;10 (2):459-66.
- Birkus G, Kutty N, He G-X, Mulato A, Lee W, McDermott M, et al. Activation of GS-7340 and Other Tenofovir Phosphonoamidate Prodrugs by Human Proteases. Antiviral Res 2007a;74:A57.
- Birkus G, Kutty N, He GX, Mulato A, Lee W, McDermott M, et al. Activation of 9-[(R)-2-[[(S)-[[(S)-1-(Isopropoxycarbonyl)ethyl]amino] phenoxyphosphinyl]methoxy]propyl]adenine (GS-7340) and other tenofovir phosphonoamidate prodrugs by human proteases. Mol Pharmacol 2008;74 (1):92-100.
- Birkus G, Wang R, Liu XH, Kutty N, MacArthur H, Cihlar T, et al. Cathepsin A is the major hydrolase catalyzing the intracellular hydrolysis of the antiretroviral nucleotide phosphonoamidate prodrugs GS-7340 and GS-9131. Antimicrob Agents Chemother 2007b;51 (2):543-50.
- Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V, Gan L, Grimm S, et al. The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 2003;31 (7):815-32.
- Cherrington JM, Allen SJW, Bischofberger N, Chen MS. Kinetic interaction of the diphosphates of 9-(2-phosphonylmethoxyethyl)adenine and other anti-HIV active purine congeners with HIV reverse transcriptase and human DNA polymerases α, β, and γ. Antivir Chem Chemother 1995;6 (4):217-21.
- Cihlar T, Bleasby K, Roy A, Pritchard J. Antiviral acyclic nucleotide analogs tenofovir and adefovir are substrates for human kidney organic anion, but not cation transporters: implications for potential renal drug interactions [poster A-443].
 44th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2004 October 30-November 2; Washington, DC, USA.
- Cihlar T, Ho ES, Lin DC, Mulato AS. Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs. Nucleosides Nucleotides Nucleic Acids 2001;20 (4-7):641-8.
- European Medicines Agency, Committee for Human Medicinal Products (CHMP). Guideline on the Investigation of Drug Interactions (CPMP/EWP/560/95/Rev. 1 Corr. 2**). London, United Kingdom. June, 2012.

Flint WC. Challenges facing family practice and primary care. JAMA 2003;289 (3):297.

- Frick LW, Lambe CU, St. John L, Taylor LC, Nelson DJ. Pharmacokinetics, oral bioavailability, and metabolism in mice and cynomolgus monkeys of (2'R,5'S-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl] cytosine, an agent active against human immunodeficiency virus and human hepatitis B virus. Antimicrob Agents Chemother 1994;38 (12):2722-9.
- Frick LW, St. John L, Taylor LC, Painter GR, Furman PA, Liotta DC, et al. Pharmacokinetics, oral bioavailability, and metabolic disposition in rats of (-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl] cytosine, a nucleoside analog active against human immunodeficiency virus and hepatitis B virus. Antimicrob Agents Chemother 1993;37 (11):2285-92.
- Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov 2010;9 (3):215-36.
- Imaoka T, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y. Functional involvement of multidrug resistance associated protein 4 (MRP4/ABCC4) in the renal elimination of the anti-viral drugs, adefovir and tenofovir. Mol Pharmacol 2007;71 (2):619-27.
- Lee WA, He G-X, Eisenberg E, Cihlar T, Swaminathan S, Mulato A, et al. Selective intracellular activation of a novel prodrug of the human immunodeficiency virus reverse transcriptase inhibitor tenofovir leads to preferential distribution and accumulation in lymphatic tissue. Antimicrob Agents Chemother 2005;49 (5):1898-906.
- Markowitz M, Zolopa A, Ruane P, Squires K, Zhong L, Kearney BP, et al. GS-7340
 Demonstrates Greater Declines in HIV-1 RNA than Tenofovir Disoproxil
 Fumarate During 14 Days of Monotherapy in HIV-1 Infected Subjects [Oral
 Presentaton / Paper 152LB]. 18th Conference on Retroviruses and Opportunistic
 Infections (CROI); 2011 February 27 March 2; Boston, MA.
- Murakami E, Wang T, Park Y, Hao J, Lepist EI, Babusis D, et al. Implications of Efficient Hepatic Delivery by Tenofovir Alafenamide (GS-7340) for Hepatitis B Virus Therapy [Accepted Manuscript]. Antimicrob Agents Chemother 2015;59 (6):3563-9.
- Obach RS, Walsky RL, Venkatakrishnan K, Gaman EA, Houston JB, Tremaine LM. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions. J Pharmacol Exp Ther 2006;316 (1):336-48.
- Ray AS, Vela JE, Robinson KL, Cihlar T, Rhodes GR. Efflux of Tenofovir by the Multidrug Resistance-Associated Protein 4 (MRP4) is not Affected by HIV Protease Inhibitors [poster]. 7th International Workshop on Adverse Drug Reactions and Lipodystrophy in HIV; 2005 November 13-16; Dublin, Ireland. Poster Number 91.

- Tarkiainen EK, Backman JT, Neuvonen M, Neuvonen PJ, Schwab M, Niemi M. Carboxylesterase 1 polymorphism impairs oseltamivir bioactivation in humans. Clin Pharmacol Ther 2012;92 (1):68-71.
- U.S Department of Health and Human Services (DHHS), Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for Industry: Drug Interaction Studies-Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations. DRAFT GUIDANCE. Rockville, MD. February, 2012.
- U.S. Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Safety Testing of Drug Metabolites Guidance for Industry. Revision 1. November. 2016.
- Yokota T, Konno K, Shigeta S, Holý A, Balzarini J, De Clercq E. Inhibitory effects of acyclic nucleoside phosphonate analogues of hepatitis B virus DNA synthesis in HB611 cells. Antivir Chem Chemother 1994;5 (2):57-63.
- Zhu HJ, Patrick KS, Yuan HJ, Wang JS, Donovan JL, DeVane CL, et al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. American journal of human genetics 2008;82 (6):1241-8.

SECTION 2.6.5—PHARMACOKINETICS TABULATED SUMMARY

BICTEGRAVIR/EMTRICITABINE/TENOFOVIR ALAFENAMIDE FIXED-DOSE COMBINATION (B/F/TAF FDC)

Gilead Sciences

CONFIDENTIAL AND PROPRIETARY INFORMATION

TABLE OF CONTENTS

SEC	TION 2	2.6.5—PHA	ARMACOKINETICS TABULATED SUMMARY	1					
TAB	LE OF	CONTEN	ГЅ	2					
NOT	TE TO I	REVIEWEI	R	8					
1.	PHAR	MACOKI	NETICS: OVERVIEW	9					
2.	PHARMACOKINETICS: ANALYTICAL METHODS AND VALIDATION REPORTS								
	2.1.	BIC							
	2.2.								
	2.3.	TAF							
	2.4.	TFV		27					
3.	PHAR		NETICS: ABSORPTION AFTER A SINGLE DOSE						
	3.1.	BIC							
		3.1.1.	AD-141-2295: Membrane Permeability of BIC (In Vitro)						
		3.1.2.	AD-141-2307: Pharmacokinetics of BIC in Mice						
		3.1.3.	AD-141-2279: Pharmacokinetics of BIC in Rats						
		3.1.4.	AD-141-2286: Pharmacokinetics of BIC in Rats						
		3.1.5.	AD-141-2296: Pharmacokinetics of BIC in Rats						
		3.1.6.	AD-141-2306: Pharmacokinetics of BIC in Rats						
		3.1.7.	AD-141-2300: Pharmacokinetics of BIC in Rabbits						
		3.1.8.	AD-141-2280: Pharmacokinetics of BIC in Dogs						
		3.1.9.	AD-141-2281: Pharmacokinetics of BIC in Cynomolgus Monkeys						
		3.1.10.	AD-141-2284: Pharmacokinetics of BIC in Cynomolgus Monkeys						
		3.1.11.	AD-141-2297: Pharmacokinetics of BIC in Cynomolgus Monkeys						
	2.2	3.1.12.	AD-141-2282: Pharmacokinetics of BIC in Rhesus Monkeys						
	3.2.	FTC							
		3.2.1. 3.2.2.	TEIN/93/0003: Pharmacokinetics of FTC in Mice (10 mg/kg)						
		3.2.2. 3.2.3.	TEIN/93/0004: Pharmacokinetics of FTC in Mice (100 mg/kg) IUW00101: Pharmacokinetics of FTC in Mice (600 mg/kg)						
		3.2.3. 3.2.4.	TEZZ/93/0019: Pharmacokinetics of FTC in Fasted Cynomolgus						
		5.2.4.	Monkeys	43					
		3.2.5.	IUW00301: Pharmacokinetics of FTC in Nonfasted Cynomolgus						
		0.2.01	Monkeys						
	3.3.	TAF	,						
		3.3.1.	AD-120-2037: Caco-2 Permeability of TAF (In Vitro)	45					
		3.3.2.	AD-120-2014: Pharmacokinetics of TAF in Mice						
		3.3.3.	AD-120-2016: Pharmacokinetics of TAF in Mice						
		3.3.4.	AD-120-2015: Pharmacokinetics of TAF in Rats						
		3.3.5.	R990130: Pharmacokinetics of TAF in Rats						
		3.3.6.	R2000065: Pharmacokinetics of TAF in Rats						
		3.3.7.	99-DDM-1278-001-PK: Pharmacokinetics of TAF in Dogs						
		3.3.8.	AD-120-2034: Pharmacokinetics of TAF in Dogs						
		3.3.9.	P2000087: Pharmacokinetics of TAF in Rhesus Monkeys						
		3.3.10.	P2000031: Pharmacokinetics of TDF in Rhesus Monkeys						
4.	PHAR	MACOKI	NETICS: ABSORPTION AFTER REPEATED DOSES						
	4.1.								
	4.2.								
		4.2.1.	TOX-109: Oncogenicity study of FTC in Mice – Toxicokinetics						
		4.2.2.	TOX-108: Oncogenicity Study of FTC in Rats – Toxicokinetics						
	4.3.	TAF		59					

		4.3.1.	AD-120-2033: 7-Day Repeated Dose Study of TAF in Dogs – Pharmacokinetics	59					
		4.3.2. 4.3.3.	D990175-PK: 28-Day Toxicity Study of TAF in Dogs – Toxicokinetics P2000114-PK: 28-Day Toxicity Study of TAF in Monkeys – Toxicokinetics						
5.	PHARMACOKINETICS: IN VITRO AND IN VIVO DISTRIBUTION								
5.									
	5.1.	BIC 5.1.1.	AD-141-2312: In Vitro Assessment of Blood Distribution of BIC						
		5.1.2.	AD-141-2276: Distribution in Wistar Han Rats Following a Single Oral	00					
		5.1.2.	Dose of $[^{14}C]BIC$	67					
		5.1.3.	AD-141-2276: Distribution in Long Evans Rats Following a Single Oral						
			Dose of [¹⁴ C]BIC						
	5.2.	FTC							
	5.3.	5.2.1. TAF	TOX092: Tissue Distribution and Excretion Study of [¹⁴ C]FTC in Rats						
	5.5.	5.3.1.	AD-120-2011: Pharmacokinetics, Absorption, Distribution, and Excretion	13					
		5.5.1.	of [¹⁴ C]TAF in Mouse Following Oral Administration	75					
		5.3.2.	AD-120-2020: Pharmacokinetics, Absorption, Distribution, and Excretion						
			of [¹⁴ C]TAF in Rat Following Oral Administration	86					
		5.3.3.	AD-120-2009: Distribution of [¹⁴ C]TAF in Dog Following Oral						
		5.2.4	Administration	97					
		5.3.4.	D990173-BP: Distribution of [¹⁴ C]TAF in Dog Following Oral Administration	102					
		5.3.5.	Administration AD-120-2044: TAF Penetration into Cerebrospinal Fluid						
6.			INETICS: PLASMA PROTEIN BINDING						
0.									
	6.1.			106					
		6.1.1.	AD-141-2287: Plasma Protein Binding of BIC in Rats, Dogs, Monkeys, and Humans	106					
		6.1.2.	AD-141-2311: Microsomal Binding of BIC						
	6.2.	FTC							
		6.2.1.	TBZZ/93/0025: Protein Binding of FTC in Mouse, Rabbit, Monkey and						
			Human Plasma						
	6.3.		d TFV						
		6.3.1. 6.3.2.	AD-120-2026: Plasma Protein Binding of TAF In Vitro P0504-00039.1: Protein Binding of TFV						
			-						
7.	PHAF	RMACOK	INETICS: STUDY IN PREGNANT OR NURSING ANIMALS	112					
	7.1.	BIC		112					
		7.1.1.	Rats (m2.6.7, Section 14.1, TX-141-2045)						
		7.1.2.	Rabbits (m2.6.7, Section 11.1, TX-141-2038)						
	7.2.	FTC		113					
		7.2.1.	TOX103: Toxicokinetic Study to Determine Fetal Exposure of FTC in	112					
		7.2.2.	Mice	115					
		1.2.2.	Toxicokinetics						
	7.3.	TAF and	d TFV						
		7.3.1.	TAF	115					
		7.3.2.	TFV	116					
8.	PHAF	RMACOK	INETICS: METABOLISM IN VIVO	118					
	8.1.	BIC		118					
	0.1.	8.1.1.	AD-141-2304: Metabolite Profiling of Samples from Mice after						
			Administration of [¹⁴ C]BIC	118					

		8.1.2.	AD-141-2304: Proposed Biotransformation Pathways of [¹⁴ C]BIC in Mice	
		8.1.3.	AD-141-2277: Metabolite Profiling of Samples from Rats after Administration of [¹⁴ C]BIC	
		8.1.4.	AD-141-2277: Proposed Biotransformation Pathways of [¹⁴ C]BIC in Rats	
		8.1.5.	AD-141-2299: Metabolite Profiling of Samples from Monkeys after Administration of [¹⁴ C]BIC	
		8.1.6.	AD-141-2299: Proposed Biotransformation Pathways of [¹⁴ C]BIC in Monkeys	
	8.2.	FTC		
		8.2.1.	TEIN/93/0015: Disposition Study of [³ H]FTC in Mice	
		8.2.2.	TOX063: Metabolism and Excretion of [¹⁴ C]FTC in Cynomolgus Monkeys	131
		8.2.3.	TEIN/93/0016: Metabolism and Excretion of [³ H]FTC in Cynomolgus Monkeys	
	8.3.			
		8.3.1.	AD-120-2012: Metabolism of TAF in Mouse	
		8.3.2.	AD-120-2021: Metabolism of TAF in Rat	
		8.3.3.	AD-120-2008: Metabolism of TAF in Dog	
		8.3.4.	P2001025: Intracellular Anabolism of TFV in Rhesus Monkeys	148
9.	PHAR	MACOKI	NETICS: METABOLISM IN VITRO	150
	9.1.	BIC		150
		9.1.1.	AD-141-2289: In Vitro Metabolic Stability of BIC in Hepatic Microsomal Fractions	150
		9.1.2.	AD-141-2290: Cytochrome P450 Reaction Phenotyping of BIC	151
		9.1.3.	AD-141-2291: UDP-Glucuronosyl Transferase Reaction Phenotyping of BIC	152
		9.1.4.	AD-141-2288: Metabolites of BIC Detected in Cryopreserved Hepatocytes	153
		9.1.5.	AD-141-2288: Proposed Biotransformation Pathways of [¹⁴ C]BIC in	
			Cryopreserved Hepatocytes from Rats, Dogs, Monkeys and Humans	
	9.2.	FTC		155
		9.2.1.	15396v1: Human Cytochrome P450 Reaction Phenotyping and Glucuronidation Potential of FTC	
	9.3.			
		9.3.1.	AD-120-2025: Metabolism of TAF In Vitro (Plasma Stability)	
		9.3.2.	AD-120-2023: Metabolism of TAF In Vitro in Hepatic S9	
		9.3.3.	AD-120-2024: Metabolism of TAF In Vitro in Intestine S9	158
		9.3.4.	AD-120-2004: Human Cytochrome P450 Metabolic Reaction Phenotyping of TAF	159
		9.3.5.	AD-120-2017: Metabolism of TAF In Vitro in Primary Human Hepatocytes	160
		9.3.6.	96-DDM-1278-003: Metabolism of TFV in Dog Plasma, Hepatic S9 and Intestinal S9, and Rat Hepatic Microsomal Fraction	161
		9.3.7.	AD-120-2027: Effects of HIV Protease Inhibitors and Pharmacokinetic Enhancers on TAF Metabolism In Vitro	162
		9.3.8.	AD-120-2031: Effect of Inhibitors of CatA, CES1, and CYP3A4 on TAF Metabolism In Vitro	163
10.	PHAR	MACOKI	NETICS: POSSIBLE METABOLIC PATHWAYS	164
	10.1.	BIC		164
		10.1.1.	Metabolites Identified in Mouse, Rat, Monkey and Human Following a Single Dose of [¹⁴ C]BIC	
	10.2.	FTC		

	10.3.	TAF		166			
11.	PHARMACOKINETICS: INDUCTION/INHIBITION OF DRUG METABOLIZING ENZYMES						
	11.1.	BIC		167			
	11.1.	11.1.1.	AD-141-2293: CYP Inhibition Potential of BIC				
		11.1.2.	AD-141-2294: UGT1A1 Inhibition Potential of BIC				
		11.1.2.	AD-141-2308: CYP Mechanism-Based Inhibition Potential of BIC				
		11.1.3.	AD-141-2290: C 11 Mechanism-Dased minoritori Folential of Die AD-141-2292: In Vitro Assessment of the Effect of BIC on AhR and	107			
		11.1.4.	PXR	170			
		11.1.5.	AD-141-2305: Induction Potential of BIC in Cultured Human Hepatocytes	171			
	11.2.	FTC	Tiepatocytes				
	11.2.	11.2.1.	15247: Evaluation of FTC as an Inhibitor of Human Cytochromes P450	1/3			
		11.2.1.		172			
		11.0.0	and Uridine Diphosphate Glucuronosyl Transferase Activity	1/3			
		11.2.2.	AD-162-2005: In Vitro Assessment of Induction Potential in	174			
	11.0		Metabolizing Enzymes				
	11.3.		1 TFV				
		11.3.1.	AD-120-2003: Human Cytochrome P450 Inhibition Potential of TAF				
		11.3.2.	V990172-104: Human Cytochrome P450 Inhibition Potential of TFV				
		11.3.3.	AD-120-2040: Human CYP Mechanism-Based Inhibition of TAF	177			
		11.3.4.	AD-120-2005: Induction of Metabolizing Enzymes by TAF In Vitro	178			
		11.3.5.	AD-120-2032: Assessment of Induction Potential of TAF in Human				
			Hepatocyte In Vitro				
		11.3.6.	AD-120-2006: In Vitro Assessment of Human UGT1A1 Inhibition				
			Potential of TAF				
12.	PHARMACOKINETICS: EXCRETION						
	12.1.						
		12.1.1.	AD-141-2303: Excretion in Mice Following Oral Administration of [¹⁴ C]BIC				
		12.1.2.	AD-141-2276: Excretion in Bile Duct-Intact Rats Following Oral				
			Administration of [¹⁴ C]BIC				
		12.1.3.	AD-141-2298: Excretion in Bile Duct-Intact Monkeys Following Oral				
			Administration of [¹⁴ C]BIC				
	12.2.	FTC					
	12.3.		I TFV				
	12.5.	12.3.1.	96-DDM-1278-001: Effect of Dose on the Recovery of Radioactivity	100			
		12.3.1.	Following Administration of $[^{14}C]TFV$ to Rats	197			
13.	PHAR	MACOKI	NETICS: EXCRETION INTO BILE				
	13.1.						
		13.1.1.	AD-141-2283: Excretion in Bile Duct-Cannulated Rats Following IV	100			
			Administration of BIC				
		13.1.2.	AD-141-2276: Excretion in Bile Duct-Cannulated Rats Following Oral				
			Administration of [¹⁴ C]BIC	189			
		13.1.3.	AD-141-2298: Excretion in Bile Duct-Cannulated Monkeys Following				
			Oral Administration of [¹⁴ C]BIC	191			
	13.2.	TAF and	1 TFV				
		13.2.1.	AD-120-2007: Excretion of [¹⁴ C]TAF Following Single Oral				
			Administration in Dog.				
		13.2.2.	96-DDM-1278-002: A Study of Biliary Excretion of [¹⁴ C]TFV in the Dog	196			
14.	PHARMACOKINETICS: DRUG-DRUG INTERACTIONS1						
	14.1.	BIC		107			
	14.1.	ыс	AD-141-2278: In Vitro Assessment of BIC as a P-gp or BCRP Substrate				
		14.1.1.	AD-1+1-2270. III VITO Assessment of DIC as a r-gp of DCKr Substitute				

	14.1.2.	AD-141-2275: In Vitro Assessment of BIC as a Substrate for OATP1B1	
		and OATP1B3	
	14.1.3.	AD-141-2273: In Vitro Inhibition of Human P-gp and BCRP by BIC	
	14.1.4.	AD-141-2274: In Vitro Inhibition of Human OATP Transporters by BIC	
	14.1.5.	AD-141-2285: In Vitro Inhibition of Human OCT2 and MATE1	
		Transporters by BIC	
	14.1.6.	AD-141-2310: In Vitro Inhibition of Human OAT1, OAT3, OCT1 and	
		BSEP Transporters by BIC	
	14.1.7.	AD-141-2313: Drug-Drug Interaction Liability Assessment for BIC	
14.2.			
14.3.		TFV	
	14.3.1.	AD-120-2018: Bidirectional Permeability of TAF Through Monolayers	
		of P-glycoprotein and BCRP Overexpressing Cells	
	14.3.2.	AD-120-2019: In Vitro Assessment of TAF Inhibition of Human	
		OATP1B1, OATP1B3, P-gp, and BCRP	
	14.3.3.	AD-120-2013: Effect of GS-9350 on the Bidirectional Permeability of	
		TAF Through Caco-2 Cells	
	14.3.4.	AD-120-2022: In Vitro Assessment of TAF as a Substrate for Human	
		OATP1B1 and OATP1B3	
	14.3.5.	AD-120-2042: Effect of an OATP Inhibitor on Uptake of TAF into	
		Primary Human Hepatocytes	
	14.3.6.	AD-120-2036: In Vitro Assessment of TAF as an Inhibitor of OAT1,	-10
		OAT3, OCT1, OCT2, MATE1, and BSEP or as a Substrate for OCT1	
	14.3.7.	AD-104-2001: In Vitro Study of the Potential of TFV to be a Substrate of	
		MRP2 and MRP4 and the Effect of the HIV Protease Inhibitors	
		Atazanavir and Ritonavir	
	14.3.8.	AD-104-2002: In Vitro Study of the Potential of TFV to be a Substrate of	
		P-gp and the Effect of other Drugs	
	14.3.9.	PC-104-2010: Potential for TFV to be an OAT1 Substrate and the Effect	
		of the Other Drugs	
	14.3.10.	PC-104-2011: Potential for TFV to be an OAT3 Substrate and the Effect	
		of HIV-PIs	
	14.3.11.	PC-104-2014: Effect of TFV on the Activity of Human Multidrug	
		Resistance Related Protein MRP1	
	14.3.12.	AD-104-2012: Effects of TFV on Transport by Human OCT2 and	
		MATE1	
	14.3.13.	PC-103-2001: Interactions of TFV with Human OAT3, OCT1, and OCT2	
	14.3.14.	AD-120-2035: Effect of Cyclosporin A Pretreatment on	
		Pharmacokinetics of TAF in Dogs	231
	14.3.15.	AD-236-2003: Assessment of Inhibition of Human P-gp and BCRP by	
		EVG, FTC, and TFV In Vitro	234
	14.3.16.	AD-236-2004: Bidirectional Permeability of EVG, FTC, TFV, and COBI	
		through Monolayer of P-gp (MDR1)-Overexpressing Cells	235
	14.3.17.	AD-236-2005: Bidirectional Permeability of EVG, FTC, TFV, and COBI	
		through Monolayers of BCRP-Overexpressing Cells	236
	14.3.18.	AD-236-2006: Assessment of Inhibition of Human OATP1B1 and	
		OATP1B3 by FTC and TFV	237
	14.3.19.	AD-236-2007: Assessment of Inhibition of EVG, FTC, TFV, and COBI	
		with Human OAT1, OAT3 and MRP4 Transporters	238
	14.3.20.	AD-236-2008: Assessment of Inhibition of EVG, COBI, FTC, and TFV	
		with Human OCT1 and BSEP Transporters	239
	14.3.21.	AD-236-2011: Interaction of FTC and TFV with Human OCT2 Uptake	
		Transporters	
14.4.	EVG/COBI/FTC/TFV		

	14.4.1.	AD-236-2001: Inhibition Potential of EVG, FTC, TFV, and COBI with	241	
	14.4.2	Human OCT2 and MATE1 Transporters		
	14.4.2.	AD-236-2010: Interaction of FTC with Human OAT1 and OAT3		
		Transporters		
	14.4.3.	AD-236-2012: Assessment of Interaction of EVG and FTC with Human		
		MRP2 Transporters		
	14.4.4.	AD-236-2013: Interaction of FTC with Human MRP2 Transporters		
15.	PHARMACOKINETICS: OTHER			

NOTE TO REVIEWER

This application is being submitted in support of a fixed dose combination (FDC) that contains the integrase strand-transfer inhibitor (INSTI) bictegravir (BIC, B), nucleoside reverse transcriptase inhibitor (NRTI) emtricitabine (FTC, F, Emtriva®) and the nucleotide reverse transcriptase inhibitor (NtRTI) tenofovir alafenamide (TAF, GS-7340) fumarate (GS-7340-03): the B/F/TAF FDC (50/200/25 mg) tablet.

All nonclinical studies to support the B/F/TAF FDC application are included with no crossreferencing to data previously submitted. This comprises all nonclinical tests utilizing BIC, FTC, or tenofovir disoproxil fumarate (TDF)/TAF, including relevant combination studies, eg FTC/TDF; and other studies necessary to support the proposed product labeling. Links to all study reports included in the dossier are highlighted in blue text.

Comprehensive programs of nonclinical studies have been conducted with BIC, FTC, and TDF/TAF as single agents. Information from all nonclinical studies with BIC, FTC, or TDF/TAF should be considered in the context of the substantial clinical experience with FTC and TDF/TAF within antiretroviral combination therapy for the treatment of human immunodeficiency virus-1 (HIV-1) infection, and experience in the Phase 2 and 3 studies in combination with BIC as BIC/FTC/TAF FDC.

The following conversions are provided to aid the reviewer:

- BIC (GS-9883) 1 μ M = 0.449 μ g/mL
- FTC (GS-9019) 1 μ M = 0.247 μ g/mL
- TAF (GS-7340) 1 μ M = 0.477 μ g/mL
- TFV (GS-1278; tenofovir) 1 μ M = 0.287 μ g/mL

1. **PHARMACOKINETICS: OVERVIEW**

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Analytical Methods and Validation	(BIC)				
Mouse plasma	No	NA	In Vitro		BA-141-2008 (8316723)
Rat plasma	No	NA	In Vitro		BA-141-2001 (8292929)
Rat plasma	No	NA	In Vitro		BA-141-2007 (8305404)
Rabbit plasma	No	NA	In Vitro		BA-141-2006 (8305405)
Monkey plasma	No	NA	In Vitro		BA-141-2002 (8292930)
Analytical Methods and Validation	(FTC)				
Mouse, monkey, human plasma, and human urine	No	NA	In Vitro	, USA	97/001.01
Mouse, rabbit, monkey plasma	No	NA	In Vitro	, USA	6159v1
Mouse, rat, human plasma	No	NA	In Vitro	, USA	6447v5
Monkey, human urine	No	NA	In Vitro	, USA	7582v1

Test Article: BIC, FTC, TAF, TFV, and/or TDF

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Analytical Methods and Validation	n (TAF)				
Mouse plasma	No	NA	In Vitro	, USA	BA-120-2004
Rat plasma	No	NA	In Vitro	, USA	BA-120-2003
Rabbit plasma	No	NA	In Vitro	, USA	BA-120-2005
Dog PBMC	No	NA	In Vitro	, Canada	993680 MYS (D990175)
Dog, monkey, human plasma	No	NA	In Vitro	, Canada	TOX-120-002 Appendix 32
Monkey plasma	No	NA	In Vitro	, Canada	BA-120-2010
Monkey plasma	No	NA	In Vitro	, Canada	BA-120-2011
Monkey PBMC	No	NA	In Vitro	, Canada	BA-120-2012
Monkey PBMC	No	NA	In Vitro	, Canada	BA-120-2013
Monkey plasma	No	NA	In Vitro	, Canada	010520/PDW
Monkey plasma	No	NA	In Vitro	, Canada	010521/PHZ
Monkey PBMC	No	NA	In Vitro	, Canada	AA01240-RQZ (P2000114)

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Analytical Methods and Validation	(TFV)	-			•
Mouse plasma	No	NA	In Vitro	, USA	P4331-00008 (97-TOX-4331-08, OLI-RE748-9807- DNS-1)
Rat, monkey plasma	No	NA	In Vitro	, USA	P1278-00001 (OLI-VRA144.1)
Rat milk	No	NA	In Vitro	, Canada	P1278-00034 (003105/OUI)
Rat plasma	No	NA	In Vitro	, Canada /	P1278-00028 (001097/NDK)
Rat plasma	No	NA	In Vitro	, Canada	001092/NGE
Dog plasma	No	NA	In Vitro	, USA	P1278-00017 (OLI-VRA144.2)
Dog plasma	No	NA	In Vitro	, Canada	P4331-0037 (003296/OTN)
Monkey plasma	No	NA	In Vitro	, Canada	P1278-00029 (002092/OFH)
Absorption After a Single Dose (BIC	C)				
Permeability across Caco-2 cell monolayers	No	Caco-2 Cells	In Vitro	Gilead Sciences, Inc. Foster City, CA	AD-141-2295
Absorption	No	Mouse	Oral		AD-141-2307 (8311189 & 8316059)

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Absorption	No	Rat	IV, Oral		AD-141-2279 (BG-0401-DA-RE)
Absorption	No	Rat	Oral		AD-141-2286 (BG-0463-DA-RE & BG-0505-DA-RE)
Absorption	No	Rat	Oral		AD-141-2296 (8295133)
Absorption	No	Rat	Oral		AD-141-2306 (BG-0463-DA-RE)
Absorption	No	Rabbit	Oral		AD-141-2300 (8266635)
Absorption	No	Dog	IV, Oral		AD-141-2280 (814-1436 & BG-0431-DA-DE)
Absorption	No	Cynomolgus Monkey	IV, Oral		AD-141-2281 (814-1445 & 814-1463)
Absorption	No	Cynomolgus Monkey	Oral		AD-141-2284 (8287-516 & 8287530)
Absorption	No	Cynomolgus Monkey	Oral		AD-141-2297 (8298452)
Absorption	No	Rhesus Monkey	IV		AD-141-2282 (8279078)
Absorption After a Single Dose (F	FTC)	· · · · · ·			·
Absorption, Bioavailability	Yes	Mouse	IV, Oral	, USA	TEIN/93/0003
Absorption, Bioavailability	Yes	Mouse	IV, Oral		TEIN/93/0004

, USA

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Absorption, Bioavailability	Yes	Mouse	IV, Oral	, Scotland	IUW00101
Absorption, Bioavailability	Yes	Cynomolgus Monkey	IV, Oral	, USA	TEZZ/93/0019
Absorption, Bioavailability	No	Cynomolgus Monkey	IV, Oral	, Scotland	IUW00301
Absorption After a Single Dose (TA	(F)				
Permeability across Caco-2 cell monolayers	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2037
Absorption	Yes	Mouse	Oral	, USA	AD-120-2014
Absorption	No	Mouse	Oral	, USA	AD-120-2016
Absorption	Yes	Rat	Oral	, USA	AD-120-2015
Absorption	No	Rat	Oral	Gilead Sciences, Inc., Boulder, CO, USA (In-life phase); Gilead Sciences, Inc., Foster City, CA, USA (Analysis)	R990130
Formulation comparison	No	Rat	Oral	Gilead Sciences, Inc., Boulder, CO, USA (in-life phase); , Canada (Analysis)	R2000065
Absorption, Bioavailability	No	Dog	IV, Oral	, USA (In-life phase), Gilead Sciences, Inc., Foster City, CA, USA (Analysis)	99-DDM-1278-001- PK

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Absorption	No	Dog	Oral	, USA (In-life phase), Gilead Sciences, Inc., Foster City, CA, USA (Analysis)	AD-120-2034
Absorption, Bioavailability	No	Rhesus Monkey	Oral	, USA, (In-life phase), Canada (Analysis)	P2000087
Absorption, Bioavailability (TFV)	No	Rhesus Monkey	IV, Oral	USA, (In-life phase), Canada (Analysis)	P2000031 (P4331-00033)
Absorption After Repeated Dose (F1	C)				
Toxicokinetics	Yes	Mouse	Oral	, USA Gilead Sciences Inc., Foster City, CA, USA	TOX-109
Toxicokinetics	No	Mouse	Oral	, Scotland	IUW00701
Toxicokinetics	No	Mouse	Oral	, USA	TOX 599
Toxicokinetics	No	Mouse	Oral	, Scotland	TOX 022
Toxicokinetics	No	Mouse	Oral	, USA	TOX 628
Toxicokinetics	Yes	Rat	Oral	Gilead Sciences Inc., Foster City, CA, USA	TOX 108

Т

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Toxicokinetics	No	Rat	Oral	Gilead Sciences Inc., Foster City, CA, USA	TOX 097
Toxicokinetics	No	Cynomolgus Monkey	Oral	, USA	TOX 600
Toxicokinetics	No	Cynomolgus Monkey	Oral	, USA	TOX 627
Toxicokinetics	No	Cynomolgus Monkey	Oral	, USA	TOX 032
Absorption After Repeated Dose (T	AF)				
Repeated dose pharmacokinetics	No	Dog	Oral	, USA (In-life phase) Gilead Sciences, Inc., Foster City, CA, USA (Analysis)	AD-120-2033
Toxicokinetics	Yes	Dog	Oral	Canada (In-life phase); , USA (Analysis); , USA (Analysis); , Canada (Analysis)	D990175-PK
Toxicokinetics	Yes	Monkey	Oral	(In-life phase); Canada (Analysis)	P2000114-PK

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Distribution (BIC)					
Plasma protein binding	No	Plasma (Rat, Dog, Monkey and Human)	In Vitro	and Gilead Sciences, Inc., Foster City, CA	AD-141-2287 (60D-1333)
Microsomal binding	No	Human Liver Microsomes	In Vitro	, UK	AD-141-2311 (174-R361)
Blood plasma ratio	No	Whole Blood (Rat, Dog, Monkey and Human)	In Vitro	, UK	AD-141-2312 (174-R283 & 174-R284)
Tissue distribution of radioactivity	No	Rat (Wistar Han and Long Evans)	Oral		AD-141-2276 (8292819)
Distribution (FTC)					
Plasma protein binding	No	In Vitro	In Vitro	, USA	TBZZ/93/0025
Tissue distribution, Excretion	No	Rat	Oral	, USA	TOX092
Distribution (TAF)					
Plasma protein binding in vitro	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2026
Plasma protein binding in vitro of TFV	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	P0504-00039.1
Tissue distribution of radioactivity	No	Mouse	Oral	, USA	AD-120-2011
Tissue distribution of radioactivity	No	Rat	Oral	, USA	AD-120-2020

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Absorption	No	Dog	Oral	, USA	AD-120-2009
Single dose tissue distribution	Yes	Dog	Oral	, USA	D990173-BP
Distribution into cerebrospinal fluid	No	Monkey	Oral	, USA	AD-120-2044 (8337908)
Studies in pregnant or nursing anima	ls (FTC and	d TAF)		· ·	•
Repeat-dose tissue distribution	No	Pregnant Mouse and Fetus	Oral	, USA	TOX103 Report Addendum
Repeat-dose tissue toxicokinetics on embryo/fetus	No	Rabbit	Oral	, USA	TOX038 Report Addendum
Single/repeat dose tissue distribution to evaluate placental transfer of TFV	No	Pregnant Rhesus Monkey and Fetus	Subcutaneous	, USA (In-life phase); Gilead Sciences, Foster City, CA, USA (Analysis)	96-DDM-1278-005
Single dose tissue distribution of TFV	No	Lactating Rhesus Monkey	Subcutaneous	, USA; Canada (Analysis)	P2000116
Metabolism (BIC)					
Liver microsome stability	No	Liver Microsomes (Rat, Dog, Cynomolgus Monkey, Rhesus Monkey and Human)	In Vitro	Gilead Sciences, Inc. Foster City, CA	AD-141-2289

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Metabolite identification	No	Cryopreserved Hepatocytes (Rat, Dog, Cynomolgus Monkey and Human)	In Vitro		AD-141-2288
Cytochrome P450 phenotyping	No	Human Liver Microsomes	In Vitro	Gilead Sciences, Inc. Foster City, CA	AD-141-2290
UDP-glucuronosyl transferase phenotyping	No	cDNA expressed human UGT enzyme preparations	In Vitro	Gilead Sciences, Inc. Foster City, CA	AD-141-2291
Metabolite identification and profiling of radioactivity	No	Mouse	Oral		AD-141-2304 (8316891)
Metabolite identification and profiling of radioactivity	No	Rat	Oral		AD-141-2277 (8292820)
Metabolite identification and profiling of radioactivity	No	Cynomolgus Monkey	Oral		AD-141-2299 (8303909)
Metabolism (FTC)					
Metabolic reaction phenotyping	No	In Vitro	In Vitro	, Canada	15396V1 (48170, PDM-007)
Metabolism, excretion	Yes	Mouse	Oral	, USA	TEIN/93/0015
Metabolism, excretion	Yes	Cynomolgus Monkey	Oral	, USA	TEIN/93/0016
Metabolism, excretion	No	Cynomolgus Monkey	Oral	, USA	TOX063

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Metabolism (TAF, TFV)	1				
In vitro metabolism, plasma stability	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2025
In vitro metabolism, hepatic S9 stability	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2023
In vitro metabolism, intestinal S9 stability	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2024
In Vitro cytochrome P450 phenotyping	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2004
Metabolism in vitro	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2017
Metabolism in vitro of TFV	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	96-DDM-1278-003
Metabolite identification, mouse	No	Mouse	Oral	, USA	AD-120-2012
Metabolite identification, rat	No	Rat	Oral	, USA	AD-120-2021
Metabolite identification, dog	No	Dog	Oral	, USA	AD-120-2008
In vivo metabolism	No	Rhesus Monkey	Subcutaneous		P2001025
Excretion (BIC)		11			1
Excretion of radioactivity	No	Mouse	Oral		AD-141-2303 (8316890)
Biliary excretion	No	BDC Rat	IV		AD-141-2283

Test Article: BIC, FTC, TAF, TFV, and/or TDF

(BG-0446-DA-RE)

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Excretion of radioactivity	No	Intact and BDC Monkeys	Oral		AD-141-2298 (8303908)
Excretion (TAF)					
Absorption and excretion	No	Dog	Oral	, USA	AD-120-2007
Absorption and excretion of TFV	No	Rat	IV	Gilead Sciences, Inc., Foster City, CA, USA	96-DDM-1278-001
Absorption and excretion of TFV	No	Dog	IV	, USA	96-DDM-1278-002
Pharmacokinetic Drug Interactions (BIC)				
Inhibition of human P-gp and BCRP	No	Transfected MDCKII Cells	In Vitro	Gilead Sciences, Inc. Foster City, CA	AD-141-2273
OATP1B1 and OATP1B3 inhibition potential	No	Transfected CHO cells	In Vitro	Gilead Sciences, Inc. Foster City, CA	AD-141-2274
OATP1B1 and OATP1B3 substrate	No	Transfected CHO cells	In Vitro	Gilead Sciences, Inc. Foster City, CA	AD-141-2275
P-gp and BCRP substrate	No	Transfected MDCKII cells	In Vitro	Gilead Sciences, Inc. Foster City, CA	AD-141-2278
Inhibition of OCT2 and MATE1	No	Transfected MDCKII Cells	In Vitro	Gilead Sciences, Inc., Foster City, CA, and , Hungary	AD-141-2285 (General-Gilead-64- 05Sept2013)
Induction of metabolism enzymes	No	Reporter Cell-lines	In Vitro		AD-141-2292 (GIL-201212-132 and GIL-201213-141)
Cytochrome P450 inhibition potential	No	Human Liver Microsomes	In Vitro	, UK	AD-141-2293 (174-R276)

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
UGT1A1 inhibition potential	No	Human Liver Microsomes	In Vitro	Gilead Sciences, Inc. Foster City, CA	AD-141-2294
Induction potential in human hepatocytes	No	Human Hepatocytes	In Vitro		AD-141-2305 (60N-1510)
Cytochrome P450 mechanism-based inhibition	No	Human Liver Microsomes	In Vitro	, UK	AD-141-2308 (174-R321)
Inhibition of OAT1, OAT3, OCT1 and BSEP	No	Transfected CHO, Flp-In 293 Cells or Sf9 Cell Membrane Vesicles	In Vitro	, Hungary	AD-141-2310 (General-97- 05Jun2015)
Drug-drug interaction liability assessment	No	NA	NA	NA	AD-141-2313
Pharmacokinetic Drug Interactions (FTC)				
Cytochrome P450 and UDP glucuronosyl transferase inhibition potential	No	In Vitro	In Vitro	, Canada	15247 (48171, PDM-006)
Induction potential of metabolizing enzymes	No	In Vitro	In Vitro	, USA	AD-162-2005
Pharmacokinetic Drug Interactions (TAF)			•	
In vitro cytochrome P450 inhibition	No	In Vitro	In Vitro	, UK	AD-120-2003
In vitro cytochrome P450 inhibition of TFV	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	V990172-104
In vitro cytochrome P450 mechanism-based inhibition	No	In Vitro	In Vitro	, UK	AD-120-2040
In Vitro cytochrome P450 induction	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2005

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Human UGT1A1 inhibition potential	No	In Vitro	In Vitro	, UK	AD-120-2006
Permeability in P-gp and BCRP overexpressing cells	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2018
Inhibition of human OATP1B1, OATP1B3, P-gp, and BCRP	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2019
Permeability across Caco-2 cell monolayers	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2013
Effect on uptake in human OATP1B1 and OATP1B3	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2022
Effect of pharmacoenhancer on intestinal stability	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2027
Inhibition of human OAT1, OAT3, OCT1, OCT2, MATE1, and BSEP	No	In Vitro	In Vitro	, Hungary	AD-120-2036
Effect of cathepsin A, carboxylesterase 1, CYP3A4 on primary human hepatocytes	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2031
Human hepatocyte induction potential	No	In Vitro	In Vitro	, USA	AD-120-2032
Effect of TFV on human OAT3, OCT1, and OCT2	No	In Vitro	In Vitro	, USA; Gilead Sciences, Inc., Foster City, CA, USA	PC-103-2001
Transport of TFV by MRP2 and MRP4	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-104-2001
Assessment of interaction potential between TFV and human P-gp	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-104-2002
Drug interaction with human OAT1 transport of TFV	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	PC-104-2010

-	
-Fir	าลโ
1 11	iui

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Drug interaction with human OAT3 transport of TFV	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	PC-104-2011
Assessment of interaction potential between TFV and human MRP1	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	PC-104-2014
Effects of TFV on human OCT2 and MATE1	No	In Vitro	In Vitro	, USA; SOLVO Biotechnology, Budaörs, Hungary	AD-104-2012
Effect of CsA pretreatment on pharmacokinetics	No	Dog	IV, Oral	Gilead Sciences, Inc., Foster City, CA, USA	AD-120-2035
Pharmacokinetic Drug Interactions ()	EVG/COBI	[/FTC/TFV)			
Human OCT2 and MATE1 inhibition potential	No	In Vitro	In Vitro	, Hungary	AD-236-2001
Human P-gp and BCRP inhibition potential	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-236-2003
Permeability in P-gp overexpressing cells	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-236-2004
Permeability in BCRP overexpressing cells	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-236-2005
Inhibition of human OATP1B1 and OATP1B3	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-236-2006
Inhibition of human OAT1, OAT3, and MRP4 transporters	No	In Vitro	In Vitro	, Hungary	AD-236-2007
Inhibition of human OCT1 and BSEP transporters	No	In Vitro	In Vitro	, Hungary	AD-236-2008
Interaction of emtricitabine with human OAT1 and OAT3	No	In Vitro	In Vitro	, Hungary	AD-236-2010
Interaction of emtricitabine and tenofovir with human OCT1	No	In Vitro	In Vitro	, Hungary	AD-236-2011

Type of Study/Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Inhibition of elvitegravir and emtricitabine with human MRP2	No	In Vitro	In Vitro	, Hungary	AD-236-2012
Interaction of emtricitabine with human MRP2	No	In Vitro	In Vitro	, Hungary	AD-236-2013

Other Pharmacokinetic Studies: None

BCRP = breast cancer resistance protein; BDC = bile duct-cannulated; BIC = bictegravir (GS-9883); BSEP = bile salt export pump; Caco-2 = human colon carcinoma cell line; CHO = Chinese hamster ovary; CRO = contract research organization; CsA = cyclosporine A; CYP = cytochrome P 450 enzyme; Flp-In 293 = Parental cells transfected with pFRT/lacZeo and selected for stable ZeocinTM resistant clones; FTC = emtricitabine; Gilead = Gilead Sciences; GLP = Good Laboratory Practice; IV = intravenous; MATE = multidrug and toxin extrusion protein; MDCKII = Madin-Darby canine kidney cell line; MRP = multidrug resistance-associated protein; NA = not applicable; OAT = organic anion transporter; OATP = organic anion-transporting polypeptide; OCT = organic cation transporter; PBMC = peripheral blood mononuclear cell; P-gp = P-glycoprotein; Sf9 = Spodoptera frugiperda ovarian cells; TAF = tenofovir alafenamide; TDF = tenofovir disoproxil fumarate; TFV = tenofovir; UDP = uridine diphosphate; UGT = UDP glucuronosyl transferase

a An entry of "Yes" indicates that the study includes a GLP compliance statement.

2. PHARMACOKINETICS: ANALYTICAL METHODS AND VALIDATION REPORTS

2.1. BIC

Test Article: BIC

Type of Study:	Analytical Method Validation						
Study No.	Matrix	Analyte	Analytical Method				
BA-141-2008 ^a	Mouse Plasma	BIC	LC-MS/MS				
BA-141-2001 ^a	Rat Plasma	BIC	LC-MS/MS				
BA-141-2007 ^b	Rat Plasma	BIC	LC-MS/MS				
BA-141-2006 ^b	Rabbit Plasma	BIC	LC-MS/MS				
BA-141-2002 ^a	Monkey Plasma	BIC	LC-MS/MS				

BIC = bictegravir (GS-9883); LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry

a Method validation

b Partial method validation

2.2. FTC

Test Article: FTC

Type of Study:		Analytical Method Validation					
Study No.	Matrices	Analyte	Analytical Method				
97/001.01	Mouse, Monkey, Human Plasma and Human Urine	FTC	LC/MS (SIM)				
6159v1	Mouse, Rabbit, Monkey Plasma	FTC	LC-MS/MS				
6447v5	Mouse, Rat, Human Plasma	FTC	LC-MS/MS				
7582v1	Monkey, Human Urine	FTC	LC-MS/MS				

FTC = emtricitabine; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry

2.3. TAF

Test Articles: TAF, TFV

Type of Study:	Analytical Method Validation						
Study No.	Matrices	Analyte	Analytical Method LC-MS/MS				
001092/NGE	Rat Plasma	TFV					
R-BA-Tox-120-001	Rat Plasma	TFV	LC-MS/MS				
BA-120-2004	Mouse Plasma	TAF, TFV	LC-MS/MS				
BA-120-2003	Rat Plasma	TAF, TFV	LC-MS/MS				
BA-120-2005	Rabbit Plasma	TAF, TFV	LC-MS/MS				
993680 MYS	Dog PBMC	TFV	LC-MS/MS				
TOX-120-002, Appendix 32	Dog, Monkey, Human Plasma	TAF, TFV	LC-MS/MS				
BA-120-2010	Monkey Plasma TAF		LC-MS/MS				
BA-120-2011	Monkey Plasma TFV		LC-MS/MS				
BA-120-2012	Monkey PBMC TFV		LC-MS/MS				
BA-120-2013	Monkey PBMC TFV		LC-MS/MS				
010520/PDW	Monkey Plasma	TFV	LC-MS/MS				
010521/PHZ	Monkey Plasma	TAF	LC-MS/MS				
AA01240-RQZ	Monkey PBMC	TFV	LC-MS/MS				

LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; PBMC = peripheral blood mononuclear cell; TAF = tenofovir alafenamide; TFV = tenofovir

2.4. TFV

Test Article: TFV

Type of Study:	Analytical Method Validation					
Study No.	Matrices	Analyte	Analytical Method			
P4331-00008	Mouse Plasma	TFV	LC/Fluorescence			
P1278-00001	Rat, Monkey Plasma	TFV	LC/Fluorescence			
P1278-00028	Rat Plasma	TFV	LC-MS/MS			
P1278-00034	Rat Milk	TFV	LC-MS/MS			
P4331-035-3	Rabbit Plasma	TFV	LC/Fluorescence			
P1278-00017	Dog Plasma	TFV	LC/Fluorescence			
P4331-0037	Dog Plasma	TFV	LC-MS/MS			
P1278-00029	Monkey Plasma	TFV	LC-MS/MS			

LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; TFV = tenofovir

3. PHARMACOKINETICS: ABSORPTION AFTER A SINGLE DOSE

3.1. BIC

3.1.1. AD-141-2295: Membrane Permeability of BIC (In Vitro)

Report Title	Study Type		Test Article		Report Number	
Bi-directional Permeability of GS-9883 through Caco-2 Cell Monolayers		Absorption Study (i	n vitro)	BIC		AD-141-2295
Study System	Caco-2 cell monolayers	Caco-2 cell monolayers				
Method	The bi-directional permeability of BIC through monolayers of Caco-2 cells in 24-well transwell plates was determined at 10 μ M and 88 μ M of BIC.					
	P_{app} (× 10 ⁻⁶ cm/sec)					
Incubation Concentration (µM)	Forward (A B) Direction Reverse (B A) Direction				Efflux Ratio	
10	6.2		27.2			4.4
88	14.8		2	22.6		1.5

A = apical; B = basolateral; BIC = bictegravir (GS-9883); Caco-2 = human colon carcinoma cell line; P_{app} = apparent permeability coefficient Experiment done with duplicate wells and values reported were the mean of two wells. Assay control compounds: atenolol ($P_{app} < 1 \times 10^{-6}$ cm/s), propranolol ($P_{app} > 8 \times 10^{-6}$ cm/s), and vinblastine (efflux ratio > 20)

Final

3.1.2. AD-141-2307: Pharmacokinetics of BIC in Mice

Report Title Pharmacokinetics of GS-9883 Following Single Ascending Oral Doses of GS-9883 to Male and Female Transgenic Mice			tudy Type se Pharmacok	tinetics			: Article BIC		Report Nu AD-141-2	
Species/Strain		М	ouse/Transger	nic rasH2 her	nizygous, Mo	odel 1178-tg/v	vt [CByB6F1-	Tg(HRAS)2J	[ic]	
Vehicle/Formulation				0.5% HPMC	CK100LV an	d 0.1% Twee	n 20 in water			
Method of Administration					Oral	gavage				
Sample					Pla	isma				
Assay		LC/UV								
Analyte		BIC								
Salt Form					Sodiu	ım Salt				
Feeding Condition					Non-	Fasted				
Sex/ No. of Animals	M/12	F/12	M/12	F/12	M/12	F/12	M/12	F/12	M/12	F/12
Dose (mg/kg)	30	30	100	100	300	300	1000	1000	1500	1500
PK Parameters										
T _{max} (h)	0.5	2.0	1.0	8.0	4.0	8.0	0.5	2.0	4.0	2.0
C _{max} (µg/mL)	59.3 ± 22.2	71.8 ± 7.3	97.9 ± 16.9	108 ± 16	116 ± 10	127 ± 15	135 ± 7	163 ± 13	123 ± 6	164 ± 2
$AUC_{0.24h} (\mu g \cdot h/mL)$	660 ± 34	745 ± 37	1257 ± 53	$\begin{array}{c} 1509 \pm \\ 141 \end{array}$	2106 ± 107	2173 ± 232	$\begin{array}{c} 2568 \pm \\ 100 \end{array}$	3197 ± 301	2155 ± 110	2366 ± 143
C _{24h} (µg/mL)	5.88 ± 0.90	5.66 ± 1.48	8.98 ± 1.89	11.1 ± 3.8	24.2 ± 6.2	20.2 ± 2.4	43.3 ± 19.8	57.9 ± 15.7	45.3 ± 28.3	37.4 ± 36.6

 $AUC_{0.24h}$ = area under the plasma concentration-time curve from zero to 24 h; BIC = bictegravir (GS-9883); C_{max} = maximum plasma concentration; C_{24h} = measured concentration at 24 h post dose; F = female; HPMC = hydroxypropyl methylcellulose; LC/UV = high performance liquid chromatography coupled with UV detection; M = male; Non-Fasted = animals had access to Certified Rodent Diet *ad libitum*; PK = pharmacokinetic; T_{max} = time to reach the maximum plasma concentration.

3.1.3. AD-141-2279: Pharmacokinetics of BIC in Rats

Report Title	Study Type	Test Article	Report Number	
Single Dose Pharmacokinetic Study of	Single-Dose Pharmacokinetics	BIC	AD-141-2279	
GS-9883 in Male Sprague-Dawley Rats				
Species/Strain	Rat/	/Sprague-Dawley		
Sex/ No. of Animals per group		Male / 3		
Feeding Condition		Fasted		
Vehicle/Formulation	5% ethanol, 55	5% PEG 300 and 40% water		
Sample		Plasma		
Dose (mg/kg)		0.5		
Analyte	BIC			
Salt Form	Free Acid			
Assay		LC-MS/MS		
Method of Administration	30 minute Intravenous Infusion	Oral gav	vage	
PK Parameters				
T _{max} (h)	0.58 ± 0.00	4.00 ± 2	2.00	
C_{max} (nM)	16100 ± 2350	3480 ±	773	
MRT (h)	45.7 ± 1.7	ND		
$AUC_{0-72h}(nM \cdot h)$	$188000 \pm 31700 \qquad \qquad 107000 \pm 38300$			
AUC _{inf} (nM•h)	246000 ± 39400 125000 ± 43000			
t _{1/2} (h)	32.4 ± 1.2 25.7 ± 1.9			
CL (L/h/kg)	0.0049 ± 0.0007	NA		
V _{ss} (L/kg)	0.22 ± 0.04	NA		
Bioavailability (%)	NA	49.8 ± 1	16.8	

AUC_{0-72h} = area under the plasma concentration-time curve from zero to 72 h; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; BIC = bictegravir (GS-9883); CL = plasma clearance; C_{max} = maximum plasma concentration; Fasted = animals were fasted overnight prior to dose administration and up to 4 hours after dosing; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; MRT = mean residence time; NA = not applicable; ND = not determined; PEG = polyethylene glycol; PK = pharmacokinetic; $t_{1/2}$ = estimated plasma elimination half-life; T_{max} = time to reach the maximum plasma concentration; V_{ss} = volume of distribution at steady state

BIC: 1 nM = 0.000449 μ g/mL

3.1.4. AD-141-2286: Pharmacokinetics of BIC in Rats

Report Title	Stu	ıdy Type		Test Article		Report Number
Pharmacokinetics of GS-9883 Following Single Ascending Oral Doses in Male Wistar Han Rats	Single-Dose	Pharmacokinetics		BIC		AD-141-2286
Species/Strain			Rat/Wist	ar Han		
Sex/ No. of Animals per group			Male	/ 3		
Feeding Condition			Non-Fa	asted		
Vehicle/Formulation		0.5% HPMC	K100LV and	0.1% Tween 20 in	water	
Method of Administration		Oral gavage				
Sample			Plas	na		
Analyte			BIG	2		
Salt Form			Free A	Acid		
Assay			LC/U	JV		
Dose (mg/kg)	10	30	10	00	300	1000 ^a
PK Parameters						
T _{max} (h)	2.7 ± 1.2	2.3 ± 1.5	4.8 ±	= 3.9	10.7 ± 11.7	1.7 ± 0.6
C _{max} (µg/mL)	31.1 ± 6.0	54.3 ± 5.8	104	± 30	120 ± 23	115 ± 14
AUC _{0-24h} (µg•h/mL)	471 ± 142	849 ± 66	1625	± 826	2205 ± 248	1931 ± 109
C _{24h} (µg/mL)	14.5 ± 4.2	21.7 ± 3.2	46.2 ±	28.3	88.5 ± 18.4	41.8 ± 13.4

 $AUC_{0.24h}$ = area under the plasma concentration-time curve from zero to 24 h; BIC = bictegravir (GS-9883); C_{max} = maximum plasma concentration; C_{24h} = measured concentration at 24 h post dose; HPMC = hydroxypropyl methylcellulose; LC/UV = high performance liquid chromatography coupled with UV detection; Non-Fasted = animals had access to Certified Rodent Diet *ad libitum*; PK = pharmacokinetic; T_{max} = time to reach the maximum plasma concentration

a Formulation contained 0.5% HPMC K100LV, 0.1% Tween 20 and 0.9% benzyl alcohol in water.

3.1.5. AD-141-2296: Pharmacokinetics of BIC in Rats

Report Title	Study Type	Test Article	Report Number
Pharmacokinetics of GS-9883 (Sodium Salt) Following Single Ascending Oral Doses in Male Wistar Han Rats	Single-Dose Pharmacokinetics	BIC	AD-141-2296
Species/Strain		Rat/Wistar Han	
Sex/ No. of Animals per group		Male / 3	
Feeding Condition		Non-Fasted	
Vehicle/Formulation	0.5% HP	MC and 0.1% Tween 20 in water	
Method of Administration	Oral gavage		
Sample		Plasma	
Analyte		BIC	
Salt Form		Sodium Salt	
Assay		LC/UV	
Dose (mg/kg)	30	100	300
PK Parameters			
T _{max} (h)	3.67 ± 3.79	5.00 ± 3.61	6.00 ± 2.00
C _{max} (µg/mL)	55.3 ± 6.0	102 ± 17	129 ± 9
AUC _{0-24h} (μg•h/mL)	926 ± 209	1896 ± 331	2436 ± 481
C _{24h} (µg/mL)	27.3 ± 5.4	71.0 ± 26.4	71.5 ± 31.0

 $AUC_{0.24h}$ = area under the plasma concentration-time curve from zero to 24 h; BIC = bictegravir (GS-9883); C_{max} = maximum plasma concentration; C_{24h} = measured concentration at 24 h post dose; HPMC = hydroxypropyl methylcellulose; LC/UV = high performance liquid chromatography coupled with UV detection; Non-Fasted = animals had access to Certified Rodent Diet *ad libitum*; PK = pharmacokinetic; T_{max} = time to reach the maximum plasma concentration.

3.1.6. AD-141-2306: Pharmacokinetics of BIC in Rats

Report Title Pharmacokinetics of GS-9883 Following Single Ascending Oral Doses of GS-9883 in solution to Male Wistar Han Rats	Study Type Single-Dose Pharmac		est Article BIC	Report Number AD-141-2306
Species/Strain		Rat/Wi	star Han	
Sex/ No. of Animals per group		Mal	le / 3	
Feeding Condition		Non-	Fasted	
Vehicle/Formulation	10% ethanol, 10% propylene glycol, 40% Labrasol and 40% Solutol® HS 15			
Method of Administration	Oral gavage			
Sample		Pla	sma	
Analyte		В	IC	
Salt Form		Free	Acid	
Assay		LC	/UV	
Dose (mg/kg)	10	30	100	300
PK Parameters				
T _{max} (h)	6.0 ± 2.0	2.7 ± 1.2	2.3 ± 1.5	13.3 ± 10.1
C _{max} (µg/mL)	61.5 ± 2.1	114 ± 5	148 ± 7	105 ± 26
AUC _{0-24h} (μg•h/mL)	929 ± 97	1904 ± 249	2847 ± 229	2137 ± 570
C _{24h} (µg/mL)	23.8 ± 4.0	49.8 ± 9.6	84.4 ± 14.1	79.5 ± 8.9

 AUC_{0-24h} = area under the plasma concentration-time curve from zero to 24 h; BIC = bictegravir (GS-9883); C_{max} = maximum plasma concentration; C_{24h} = measured concentration at 24 h post dose; LC/UV = high performance liquid chromatography coupled with UV detection; Non-Fasted = animals had access to Certified Rodent Diet *ad libitum*; PK = pharmacokinetic; T_{max} = time to reach the maximum plasma concentration.

3.1.7. AD-141-2300: Pharmacokinetics of BIC in Rabbits

Report Title	Study Type	Test Article	Report Number
Pharmacokinetics of GS-9883 Following Single Ascending Oral Doses of GS-9883 to Female New Zealand White Rabbits	Single-Dose Pharmacokinet	ics BIC	AD-141-2300
Species/Strain		Rabbit/New Zealand White	
Sex/ No. of Animals per group		Female / 3	
Feeding Condition		Non-Fasted	
Vehicle/Formulation	0.5%	HPMC K100LV and 0.5% Tween 20 in	water
Method of Administration	Oral gavage		
Sample		Plasma	
Analyte		BIC	
Salt Form		Sodium Salt	
Assay		LC-MS/MS	
Dose (mg/kg)	100	300	1000
PK Parameters			
T _{max} (h)	1.67 ± 0.58	2.00 ± 0.00	16.7 ± 12.7
C_{max} (µg/mL)	4.38 ± 0.21	6.41 ± 1.73	9.76 ± 3.49
AUC _{0-24h} (μg•h/mL)	23.3 ± 1.9	69.7 ± 6.9	171 ± 64
C _{24h} (µg/mL)	0.32 ± 0.12	1.82 ± 0.37	9.29 ± 4.30

 AUC_{0-24h} = area under the plasma concentration-time curve from zero to 24 h; BIC = bictegravir (GS-9883); C_{max} = maximum plasma concentration; C_{24h} = measured concentration at 24 h post dose; HPMC = hydroxypropyl methylcellulose; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; PK = pharmacokinetic; T_{max} = time to reach the maximum plasma concentration.

3.1.8. AD-141-2280: Pharmacokinetics of BIC in Dogs

Report TitleSingle Dose PharmacokineticStudy of GS-9883 in Male BeagleDogs	Study Type Single-Dose Pharmacokinetics	Test Article BIC	Report Number AD-141-2280	
Species/Strain	Do	g /Beagle		
Sex/ No. of Animals per group	Ν	Male / 3		
Feeding Condition		Fasted		
Sample	l	Plasma		
Analyte		BIC		
Salt Form	Fi	ree Acid		
Assay	LC	C-MS/MS		
Vehicle/Formulation	5% ethanol, 55% PEG 300, and 40% water	30% Captisol and 70% water		
Method of Administration	30 minute Intravenous Infusion	Oral ga	vage	
Dose (mg/kg)	0.5	1.0		
PK Parameters	· · · · · · · · · · · · · · · · · · ·			
T _{max} (h)	0.55 ± 0.06	0.83 ±	0.29	
C _{max} (nM)	8600 ± 327	9720 ±	0 ± 1130	
MRT (h)	7.10 ± 1.32	NE)	
$AUC_{0-24h}(nM\bullet h)$	55900 ± 16100	54800 ±	17600	
$AUC_{inf} (nM \cdot h)$	58700 ± 17700	55900 ±	18500	
t _{1/2} (h)	5.34 ± 0.18 4.26 ± 0.40		0.40	
CL (L/hr/kg)	0.022 ± 0.006	NA		
V _{ss} (L/kg)	0.15 ± 0.02	NA		
Bioavailability (%)	NA	$41.8 \pm$	13.9	

AUC_{0-24h} = area under the plasma concentration-time curve from zero to 24 h; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; BIC = bictegravir (GS-9883); CL = plasma clearance; C_{max} = maximum plasma concentration; Fasted = animals were fasted overnight prior to dose administration and up to 4 hours after dosing; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; MRT = mean residence time; NA = not applicable; ND = not determined; PEG = polyethylene glycol; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; V_{ss} = volume of distribution at steady state

BIC: 1 nM = 0.000449 μ g/mL

3.1.9. AD-141-2281: Pharmacokinetics of BIC in Cynomolgus Monkeys

Report Title	Study Type	Test Article	Report Number		
Single Dose Pharmacokinetic	Single-Dose Pharmacokinetics	BIC	AD-141-2281		
Study of GS-9883 in Male Cynomolgus Monkeys					
Species/Strain	Monkey	/Cynomolgus			
Sex/ No. of Animals per group	•	lale / 3			
Feeding Condition	F	Fasted			
Sample	Р	lasma			
Analyte		BIC			
Salt Form	Fre	ee Acid			
Assay	LC-	LC-MS/MS			
Vehicle/Formulation	5% ethanol, 55% PEG 300, and 40% water	30% Captisol and 70% water			
Method of Administration	30 minute Intravenous Infusion	Oral ga	avage		
Dose (mg/kg)	0.5	1.0)		
PK Parameters					
T _{max} (h)	0.55 ± 0.06	0.83 ±	0.29		
C _{max} (nM)	11500 ± 173	16600 =	= 4540		
MRT (h)	4.16 ± 0.93	NI)		
$AUC_{0-24h}(nM\bullet h)$	49000 ± 12200	72100 ± 39300			
$AUC_{inf} (nM \cdot h)$	49400 ± 12400	72500 ± 39500			
t _{1/2} (h)	3.58 ± 0.23 3.26 ± 0.50		0.50		
CL (L/h/kg)	0.024 ± 0.007 NA		4		
V _{ss} (L/kg)	0.095 ± 0.010	NA			
Bioavailability (%)	NA	73.8 ± 40.3			

 $AUC_{0.24h}$ = area under the plasma concentration-time curve from zero to 24 h; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; BIC = bictegravir (GS-9883); CL = plasma clearance; C_{max} = maximum plasma concentration; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; MRT = mean residence time; NA = not applicable; ND = not determined; PEG = polyethylene glycol; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; V_{ss} = volume of distribution at steady state

Fasted = animals were fasted overnight prior to dose administration and up to 4 hours after dosing.

BIC: 1 nM = 0.000449 μ g/mL

3.1.10. AD-141-2284: Pharmacokinetics of BIC in Cynomolgus Monkeys

Report Title	Stu	ıdy Type	Test	Article	Report Number
Pharmacokinetics of GS-9883 Following Single Ascending Oral Doses in Male Cynomolgus Monkeys	Single-Dose	Pharmacokinetics	E	BIC	AD-141-2284
Species/Strain		Cynomolgus Monkeys			
Sex/ No. of Animals per group			Male / 3		
Feeding Condition			Non-Fasted		
Vehicle/Formulation	0	0.5% HPMC K100LV, 0.1% Tween 20, and 0.9% benzyl alcohol in water			
Method of Administration	Oral gavage				
Sample			Plasma		
Analyte			BIC		
Salt Form			Free Acid		
Assay			LC/UV		
Dose (mg/kg)	10	30	100	300	1000
PK Parameters					
T _{max} (h)	3.33 ± 1.15	4.00 ± 0.00	5.33 ± 1.15	4.67 ± 1.15	6.67 ± 2.31
C_{max} (µg/mL)	10.3 ± 2.0	18.9 ± 1.3	47.1 ± 10.8	63.8 ± 6.7	82.6 ± 9.9
AUC_{0-24h} (µg•h/mL)	95.6 ± 25.6	197 ± 14	584 ± 133	804 ± 220	1078 ± 166
C _{24h} (µg/mL)	0.88 ± 0.46	2.08 ± 0.87	5.39 ± 2.95	14.0 ± 11.1	16.7 ± 8.8

 AUC_{0-24h} = area under the plasma concentration-time curve from zero to 24 h; BIC = bictegravir (GS-9883); C_{max} = maximum plasma concentration; C_{24h} = measured concentration at 24 h post dose; HPMC = hydroxypropyl methylcellulose; LC/UV = high performance liquid chromatography coupled with UV detection; PK = pharmacokinetic;

 T_{max} = time to reach the maximum plasma concentration

Non-Fasted = animals had access to Certified Primate Diet #2055C (Harlan)

3.1.11. AD-141-2297: Pharmacokinetics of BIC in Cynomolgus Monkeys

Report Title	Study Type	Test Article	Report Number	
Pharmacokinetics of GS-9883 (Sodium Salt) Following Single Ascending Oral Doses in Male Cynomolgus Monkeys	Single-Dose Pharmacokinetics	BIC	AD-141-2297	
Species/Strain		Cynomolgus Monkeys		
Sex/ No. of Animals per group		Male / 3		
Feeding Condition		Non-Fasted		
Vehicle/Formulation	0.5% H	IPMC and 0.1% Tween 20 in water		
Method of Administration	Oral gavage			
Sample		Plasma		
Analyte		BIC		
Salt Form		Sodium Salt		
Assay		LC/UV		
Dose (mg/kg)	30	100	1000	
PK Parameters				
T _{max} (h)	2.67 ± 1.15	2.67 ± 1.15	5.33 ± 1.15	
C_{max} (µg/mL)	18.7 ± 4.0	42.1 ± 10.3	80.9 ± 25.6	
AUC _{0-24h} (µg•h/mL)	171 ± 73	348 ± 51	1056 ± 339	
C _{24h} (µg/mL)	2.32 ± 1.93	3.42 ± 1.21	13.4 ± 3.6	

 $AUC_{0.24h}$ = area under the plasma concentration-time curve from zero to 24 h; BIC = bictegravir (GS-9883); C_{max} = maximum plasma concentration; C_{24h} = measured concentration at 24 h post dose; HPMC = hydroxypropyl methylcellulose; LC/UV = high performance liquid chromatography coupled with UV detection; PK = pharmacokinetic; T = time to reach the maximum plasma concentration

 T_{max} = time to reach the maximum plasma concentration Non-Fasted = animals had access to Certified Primate Diet #2055C (Harlan)

3.1.12. AD-141-2282: Pharmacokinetics of BIC in Rhesus Monkeys

Report Title Single Dose Pharmacokinetic Study of GS-9883 in Male Rhesus Monkeys	Study Type Single-Dose Pharmacokinetics	Test Article BIC	Report Number AD-141-2282
Species/Strain		Monkey/Rhesus	
Sex/ No. of Animals		Male / 3	
Feeding Condition		Fasted	
Vehicle/Formulation	5% ethanol	, 55% PEG 300, and 40%	water
Method of Administration	30 mi	inute Intravenous Infusion	
Sample		Plasma	
Dose (mg/kg)		0.5	
Analyte		BIC	
Salt Form		Free Acid	
Assay		LC-MS/MS	
PK Parameters			
T _{max} (h)		0.58 ± 0.00	
C _{max} (nM)		9450 ± 906	
MRT (h)		4.36 ± 1.30	
$AUC_{0-24h}(nM\bullet h)$	42500 ± 4610		
$AUC_{inf} (nM \bullet h)$	43000 ± 5050		
$t_{1/2}$ (h)	3.76 ± 0.76		
CL (L/h/kg)		0.026 ± 0.003	
V _{ss} (L/kg)		0.11 ± 0.02	

AUC_{0-24h} = area under the plasma concentration-time curve from zero to 24 h; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity;

BIC = bictegravir (GS-9883); CL = plasma clearance; C_{max} = maximum plasma concentration; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; MRT = mean residence time; PEG = polyethylene glycol; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; V_{ss} = volume of distribution at steady state

Fasted = animals were fasted overnight prior to dose administration and up to 4 hours after dosing BIC: 1 nM = $0.000449 \ \mu g/mL$

3.2. FTC

3.2.1. TEIN/93/0003: Pharmacokinetics of FTC in Mice (10 mg/kg)

Report Title	Study Type	Test Article	Report Number
Pharmacokinetics of 524W91 in Male CD-1 Mice Following Oral and Intravenous Administration	Absorption, bioavailability	FTC	TEIN/93/0003
Species	Mouse / CD-1		
Feeding Condition	Not fasted		
Vehicle/Formulation	Solution in 0.9% sodium	chloride	
Method of Administration	Oral and intravenous bolu	15	
Sample	Plasma		
Analyte	FTC		
Assay	Validated HPLC with UV	detection	
Dose (mg/kg)	10 oral/ 10 IV		
Sex (M/F)/Number of Animals	120 M / dose		

PK Parameters	Oral	<u>IV</u>
T _{max} (min)	25.4	-
C _{max} (µM)	9.8	-
$AUC_{inf} (\mu M \bullet h)$	16.7	17.4
CL (L/h/kg)	-	2.33
$t_{1/2}\beta$ (min)	-	23
V _{ss} (L/kg)	-	0.89
Additional Information: Absolute bioavailability = 96%		

 AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; CL = plasma clearance; C_{max} = maximum plasma concentration; FTC = emtricitabine; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; V_{ss} = volume of distribution at steady state

3.2.2. TEIN/93/0004: Pharmacokinetics of FTC in Mice (100 mg/kg)

Report Title	Study Type	Test Article	Report Number
Pharmacokinetics of 100 mg/kg or Oral and Intravenous 524W91 in Male CD-1 Mice	Absorption, bioavailability	FTC	TEIN/93/0004
Species	Mouse / CD-1		
Feeding Condition	Not fasted		
Vehicle/Formulation	Solution in 0.9% sodium chloride		
Method of Administration	Oral and intravenous bolus		
Sample	Plasma		
Analyte	FTC		
Assay	Validated HPLC with UV detection		
Dose (mg/kg)	100 oral/ 100 IV		
Sex (M/F)/Number of Animals	120 M / dose		

PK Parameters	Oral	<u>IV</u>
T _{max} (min)	24.5	-
$C_{max}(\mu M))$	89	-
$AUC_{inf}(\mu M \bullet h)$	143	181
CL (L/h/kg)	-	2.23
$t_{1/2} \beta$ (min)	-	15.5
$t_{1/2} \gamma$ (min)	-	82
V _{ss} (L/kg)	-	0.94
Additional Information: Absolute bioavailability = 79%	· · ·	

 AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; CL = plasma clearance; C_{max} = maximum plasma concentration; FTC = emtricitabine; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; V_{ss} = volume of distribution at steady state

3.2.3. IUW00101: Pharmacokinetics of FTC in Mice (600 mg/kg)

Report Title		Study Type	Test Article	Report Number
Pharmacokinetic Study in Male Mice Following Single Oral and Intravenous Administration of L-(-)-2',3'-Dideoxy-5-Fluoro-3'-Thiacytidine		Absorption, bioavailability	FTC	IUW00101
Species	Mouse / CD-1			
Sex (M/F)/Number of Animals	Oral – 36 (numbered 4-39, 1-3 were bled predose) (male); IV – 36 (numbered 43-78, 40-42 were bled predose) (male)			
Feeding Condition	Not fasted			
Vehicle/Formulation	Oral – 60 mg/mL suspension with 0.5% hydroxypropylmethyl cellulose; IV – 60 mg/mL in phosphate buffered saline using distilled water, pH 7.2			
Method of Administration	Oral and IV bolus			
Dose (mg/kg)	600			
Sample	Plasma			
Analyte	FTC			
Assay	Validated HPLC with UV detection			

PK Parameters	<u>Oral</u>	<u>IV</u>
T _{max} (h)	0.667	0
C _{max} (µg/mL)	139	1560
AUC _{0-last} (µg●h/mL)	270	465
AUC _{inf} (µg•h/mL)	296	473
CL (L/h/kg)	-	1.28
t _{1/2} lambda (h)	3.17	4.14
$\lambda_{z}(\mathbf{h}^{-1})$	0.219 (apparent terminal rate constant)	0.167 (apparent terminal rate constant)
V _{ss} (L/kg)	-	1.10
MAT (h)	2.04 (calculated as $MRT_{po}-MRT_{IV}$)	-
MRT (h)	2.90 (calculated from AUMC/ AUC _{inf})	0.860 (calculated from AUMC/ AUC _{inf})
F	62.7%	-

 λ_z = terminal elimination rate constant; AUC_{0-last} = area under the plasma concentration-time curve from zero to last measured time-point; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; CL = plasma clearance; C_{max} = maximum plasma concentration; F = bioavailability; FTC = emtricitabine; IV = intravenous; MAT = mean absorption time; MRT = mean residence time; PK = pharmacokinetic; t_{1/2} = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; V_{ss} = volume of distribution at steady state

3.2.4. TEZZ/93/0019: Pharmacokinetics of FTC in Fasted Cynomolgus Monkeys

Report Title		Study Type	Test Article	Report Number
A Pharmacokinetic Study of 524W91 i Intravenous Administration	n Cynomolgus Monkeys Following Oral and	Absorption, bioavailability	FTC	TEZZ/93/0019
Species	Monkey / Cynomolgus			
Sex (M/F)/Number of Animals	4 M / dose			
Feeding Condition	Fasted			
Vehicle/Formulation	Solution in 0.9% sodium chloride			
Method of Administration	Oral and intravenous (crossover)			
Dose (mg/kg)	10 and 80			
Sample	Plasma			
Analyte	FTC			
Assay	Validated HPLC with UV detection			
PK Parameters				
Oral	10 mg/kg		80 mg/	kg
C_{max} (μM)	14.1 ± 2.00	111 ± 34.0		34.0
T _{max} (h)	1.3 ± 0.50	2.30 ± 0.29		0.29
AUC _{inf} (µM•h)	37.4 ± 6.5	285 ± 82.6		82.6
CL/F (L/h/kg)	1.1 ± 0.19		1.2 ± 0).31
Intravenous	10 mg/kg		80 mg	/kg
$AUC_{inf} (\mu M \bullet h)$	59.9 ± 11.4		493 ±	65.4
CL (L/h/kg)	0.70 ± 0.14		$0.70 \pm$	0.08
V _{ss} (L/kg)	0.80 ± 0.02		$0.80 \pm$	0.09
t _{1/2} (h)	1.00 ± 0.19		1.02 ±	0.13
Additional Information: Absolute bio	pavailability 44 to 69%.			

 AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; CL = plasma clearance; C_{max} = maximum plasma concentration; F = bioavailability; FTC = emtricitabine; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; V_{ss} = volume of distribution at steady state

3.2.5. IUW00301: Pharmacokinetics of FTC in Nonfasted Cynomolgus Monkeys

Report Title		Study Type		Test Article	Report Number
	e cynomolgus Monkeys Following Single Oral and L-(-)-2',3'-Dideoxy-5-Fluoro-3'-Thiacytidine	Absorption, bioavailab	ility	FTC	IUW00301
Species	Monkey / Cynomolgus				
Sex (M/F)/Number of Animals	4 M / dose				
Feeding Condition	Nonfasted				
Vehicle/Formulation	Oral: 32.0 mg/mL aqueous solution, Intravenous: 81.8 mg/mL in phosphate buffered s	saline, pH 7.2			
Method of Administration	Oral and intravenous (crossover)				
Dose (mg/kg)	80				
Sample	Plasma				
Analyte	FTC				
Assay	Validated HPLC with UV detection				
	Oral		Int	ravenous	
Plasma	Mean ± Standard Deviation	Plasma		Mean ± Standard	Deviation
C_{max} (µg/mL)	39.4 ± 4.87	C _{max} (µg/mL)		238 ± 46.0 (end of	of infusion)
T _{max} (h)	0.884 (median)	T _{max} (h)		Not applic	able
AUC _{0-last} (µg•h/mL)	83.0 ± 11.1	AUC _{0-last} (µg●h/mL)		85.5 ± 17	7.3
AUC _{inf} (µg●h/mL)	83.6±11.2	AUC _{inf} (µg•h/mL)		86.1 ± 17	7.3
CL/F (L/h/kg)	Not calculated	CL/F (L/h/kg)		$0.970 \pm 0.$	158
$t_{1/2}$ lambda (h)	0.936 ± 0.0909	t _{1/2} lambda (h)		0.775 ± 0.0)586
$\lambda_{z} (h^{-1})$	0.746 ± 0.0793	$\lambda_{z} (h^{-1})$		0.898 ± 0.0)640
MAT (h)	0.953 ± 0.154 (calculated as MRT _{po} - MRT _{iv})	MRT (h)	0.802 =	± 0.0793 (calculated	from AUMC/AUC _{inf})
MRT (h)	1.75 ± 0.156 (calculated from AUMC/AUC _{inf})	V _{ss} (L/kg)		0.769 ± 0.0)743
F (%)	97.4 ± 6.98				

 λ_z = terminal elimination rate constant; AUC_{0-last} = area under the plasma concentration-time curve from zero to last measured time-point; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; CL = plasma clearance; C_{max} = maximum plasma concentration; F = bioavailability; FTC = emtricitabine; MAT = mean absorption time; MRT = mean residence time; t_{1/2} = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration

3.3. TAF

3.3.1. AD-120-2037: Caco-2 Permeability of TAF (In Vitro)

Report Title:				Study Type	Test Article	Report Number
Concentration Monolayers	Dependent Permeabil	ity of Tenofovir Alafenamide throug	h Caco-2 Cell	Absorption (in vitro)	TAF	AD-120-2037
		Bidirectional Permea	ability of TAF Throug	n Caco-2 Cells		
Inhibitor	Direction	Target Concentration (µM)	Initial Conc. (µM)	Recovery (%)	P _{app} (10 ⁻⁶ cm/s) Average	Efflux Ratio
	Cell-Free		11.3	106	42.9	
_	Forward	10	10.9	42.7	0.34	20.2
	Reverse		10.0	85.3	6.98	
	Cell-Free		104	112	53.2	
_	Forward	100	92.0	40.4	0.63	13.6
	Reverse		98.1	85.2	8.47	
	Cell-Free		969	109	46.1	
_	Forward	1000	933	77.4	1.08	6.28
	Reverse		1038	88.8	5.86	
	Cell-Free		9.85	113	43.5	
CsA	Forward	10	10.4	42.2	1.51	1.00
	Reverse		10.8	70.5	1.34	

 $Caco-2 = human \ colonic \ adenocarcinoma \ cell \ line; \ TAF = tenofovir \ alafenamide; \ P_{app} = apparent \ permeability; \ CsA = cyclosporine \ A = cyclospor$

3.3.2. AD-120-2014: Pharmacokinetics of TAF in Mice

Report Title:							<u>Study</u>	Туре	Test A	rticle	Report	<u>Number</u>	
Collection of Samples for Dete GS-7340-03 After a Single Ora			nacokinetic	es of GS-73	40-02 and		Absor	ption	TA	AF	AD-12	0-2014	
Species:	CD-1 mic	ce											
Feeding Condition:	Not faste	sted											
Vehicle/Formulation:	0.1% (v/v	1% (v/v) tween 20 and 0.1% (w/v) hydroxypropylmethylce					lose (HPM	C) K100LV	/ prepared i	n reverse o	smosis wat	er	
Method of Administration:	Oral gava	al gavage											
Sample:	Plasma	sma											
Assay:	LC-MS/N	ЛS											
Test Article			GS-7.	340-02					GS-7.	340-03			
Sex (M/F) / N of Animals			Μ	/36					Μ	/36			
Dose (mg/kg)	1	.0	3	30	1	00	1	.0	3	30	1	100	
Analyte	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	
PK Parameters		•			•	•		•					
T _{max} (h)	0.08	0.50	NA	0.25	0.08	0.75	NA	0.50	4.00	0.50	0.25	1.50	
C _{max} (ng/mL)	5.53	106	NA	440	37.1	1827	NA	85.4	10.3	383	34.7	2152	
t _{1/2} (h)	NA	NA	NA	NA	NA	NA	NA	5.16	NA	10.1	NA	NA	
AUC _{0-t} (ng•h/mL)	NA	455	NA	2005	26.0	10643	NA	493	NA	2477	11.3	10866	
T _{last} (h)	NA	12.0	NA	24.0	1.50	24.0	NA	12.0	NA	24.0	0.50	24.0	
C _{last} (ng/mL)	NA	21.6	NA	35.9	12.8	157	NA	20.5	NA	34.4	24.9	205	

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; C_{last} = last observed quantifiable concentration of the drug in plasma; C_{max} = maximum plasma concentration; F = female; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; NA = not applicable; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{last} = time (observed time point) of C_{last} ; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir

3.3.3. AD-120-2016: Pharmacokinetics of TAF in Mice

Report Title:							<u>Study</u>	Туре	Test A	rticle	Report	<u>Number</u>
Collection of Samples for Dete Single Oral Gavage Dose to M					40-03 Afte	r a	Absor	ption	TA	AF	AD-12	0-2016
Species:	Model 00	001178-W [Wild, CByB6F1-Tg(HRAS)2Jic] mice										
Feeding Condition:	Not faste	sted										
Vehicle/Formulation:	0.1:0.1:9	:99.8 (w/w/w) hydroxypropyl methylcellulose K100LV (HPMC)/polysorbate (tween) 20/reverse osmosis water										
Method of Administration:	Oral gava	al gavage										
Sample:	Plasma											
Assay:	LC-MS/N	ИS										
Test Article						GS-7	340-03					
Sex (M/F) / N of Animals	M	/44	F/	44	M	/44	F/	'44	М	/44	F/	44
Dose (mg/kg)		1	0				30 100					
Analyte	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV
PK Parameters		•	•	•	•	•	•	•	-		•	
T _{max} (h)	NA	0.25	NA	0.50	0.08	0.25	0.50	0.25	0.25	0.50	0.50	0.50
C _{max} (ng/mL)	NA	175	NA	100	8.80	615	117	421	648	1988	280	1733
$t_{1/2}(h)$	NA	9.78	NA	8.20	NA	9.51	NA	10.9	NA	8.04	NA	11.0
AUC _{0-t} (ng•h/mL)	NA	735	NA	354	NA	2639	NA	2053	194	10026	104	7131
T _{last} (h)	NA	24.0	NA	12.0	0.25	24.0	NA	24.0	0.50	24.0	0.50	24.0
C _{last} (ng/mL)	NA	13.5	NA	16.5	5.40	31.1	NA	36.3	61.4	99.9	280	113

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; C_{last} = last observed quantifiable concentration of the drug in plasma; C_{max} = maximum plasma concentration; F = female; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; NA = not applicable; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{last} = time (observed time point) of C_{last} ; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir

3.3.4. AD-120-2015: Pharmacokinetics of TAF in Rats

Report Title:							<u>Study</u>	Туре	Test A	Article	Report	<u>Number</u>
Collection of Samples for Dete GS-7340-03 After a Single Ora			nacokinetic	s of GS-73	40-02 and		Absor	ption	TA	AF	AD-12	0-2015
Species:	SD rats											
Feeding Condition:	Not faste	fasted										
Vehicle/Formulation:	0.1% (v/v	% (v/v) tween 20 and 0.1% (w/v) hydroxypropylmethylce					lose (HPM	C) K100LV	⁷ prepared i	n reverse c	smosis wat	er
Method of Administration:	Oral gava	al gavage										
Sample:	Plasma											
Assay:	LC-MS/N	AS										
Test Article			GS-73	840-02					GS-7.	340-03		
Sex (M/F) / N of Animals			Μ	[/3					Μ	[/3		
Dose (mg/kg)		5	2	5	1	00		5	2	25	1	00
Analyte	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV
PK Parameters					•	•	•	•		•	•	
T _{max} (h)	NA	0.67	NA	0.58	NA	0.83	NA	0.58	NA	0.83	NA	0.67
C _{max} (ng/mL)	NA	32.5	NA	199	NA	1240	NA	39.3	NA	364	NA	1670
t _{1/2} (h)	NA	NA	NA	11.2	NA	10.3	NA	NA	NA	7.89	NA	7.85
AUC _{0-t} (ng•h/mL)	NA	122	NA	1395	NA	7771	NA	88.5	NA	1810	NA	9759
T _{last} (h)	NA	8.00	NA	24.0	NA	24.0	NA	4.67	NA	24.0	NA	24.0
C _{last} (ng/mL)	NA	10.5	NA	25.1	NA	156	NA	12.6	NA	19.4	NA	113

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; C_{last} = last observed quantifiable concentration of the drug in plasma; C_{max} = maximum plasma concentration; F = female; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; NA = not applicable; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{last} = time (observed time point) of C_{last} ; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir

3.3.5. R990130: Pharmacokinetics of TAF in Rats

Report Title:			<u>Study Type</u>	Test Article	Report Number
Tenofovir (GS-1278) Plasma F in the Male Albino Rat	Pharmacokinetics Following a Sing	gle Oral Dose of GS-7340-02	Absorption	TAF	R990130
Species:	Sprague-Dawley rats				
Feeding Condition:	Fasted				
Vehicle/Formulation:	50 mM citric acid				
Method of Administration:	Oral gavage				
Sample:	Plasma				
Assay:	LC/Fluorescence				
Test Article		GS-7	340-02		
Sex (M/F) / N of Animals		Ν	/[/4		
Dose (mg/kg)	6.25	25	100		400
Analyte		Т	FV		
PK Parameters					
T _{max} (h)	0.26	0.50	0.50		0.25
C _{max} (ng/mL)	104	1220	3870		15800
t _{1/2} (h)	NA	14.5	16.2		17.3
AUC _{0-t} (ng•h/mL)	160	3270	12200		48300
T _{last} (h)	4.00	20.0	20.0		24.0
$MRT_{0-\infty}$ (h)	NA	20.8	18.9		20.6

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; C_{max} = maximum plasma concentration; F = female; M = male; MRT = mean residence time; NA = not applicable; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{last} = time (observed time point) of C_{last} ; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir

3.3.6. R2000065: Pharmacokinetics of TAF in Rats

Report Title:			Study Type	Test Article	Report Number
	cokinetics in Rats of Tenofovir F F as Either a suspension in CMC		Absorption	TAF	R2000065
Species:	Sprague-Dawley rats				
Feeding Condition:	Fasted				
Dose (mg/kg):	400				
Method of Administration:	Oral gavage				
Sample:	Plasma				
Assay:	LC-MS/MS				
Test Article	GS-73	340-02		TDF	
Sex (M/F) / N of Animals		Ν	M/3		
Vehicle/Formulation	CMC Suspension	50 mM Citric Acid	CMC Suspens	sion 50	mM Citric Acid
Analyte		Т	FV		
PK Parameters					
T _{max} (h)	0.50	0.25	0.25		0.50
C _{max} (ng/mL)	14229	8418	8101		2699
t _{1/2} (h)	11.3	11.4	7.21		8.31
AUC _{0-t} (ng•h/mL)	36288	33067	15774		11403
AUC _{inf} (ng•h/mL)	36795	33638	15848		11581
T _{last} (h)	55.0	55.0	55.0		48.0

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; C_{max} = maximum plasma concentration; CMC = carboxymethylcellulose; F = female; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{last} = time (observed time point) of C_{last} ; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir

3.3.7. 99-DDM-1278-001-PK: Pharmacokinetics of TAF in Dogs

Report Title:		Study Type	Test Article	Report Number
Analysis of Data from Bio	pavailability Study M059-98 of GS-7340 in Dogs	Absorption, Bioavailability	TAF and its Diastereoisomers Mixture	99-DDM-1278-001-PK
Species:	Beagle dogs			
Feeding Condition:	Fasted			
Vehicle/Formulation:	Sterile Saline			
Method of Administration:	IV bolus			
Assay:	LC/Fluorescence			
Test Article		GS-7340-	2	
Sex (M/F) / N of Animals		M/5		
Dose (mg/kg)		6.20		
Sample	Plasma			РВМС
Analyte	TAF	TFV		TFV
PK Parameters	· ·			
T _{max} (h)	0.00*	0.04		7.6
C_{max} (µg/mL)	8.88*	2.09		26.2
$t_{\nu_2}(h)$	0.13	13.7		> 24
AUC _{0-t} (µg•h/mL)	1.46	2.01		448
$AUC_{inf} (\mu g \cdot h/mL)$	1.52	2.69		NC
V _z (L/kg)	0.82	NA		NA
CL (L/h/kg)	4.48	NA		NA

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; C_{max} = maximum plasma concentration; CL = plasma clearance; F = female; IV = intravenous; M = male; NA = not applicable; NC = not calculated; PBMC = peripheral blood mononuclear cells; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir; TFV-MP = tenofovir monophosphate; TFV-DP = tenofovir diphosphate; V_z = apparent volume of distribution during the terminal phase * Extrapolated to time zero

3.3.8. AD-120-2034: Pharmacokinetics of TAF in Dogs

Report Title:		Study Type	<u>Test Article</u>	Report Number						
Plasma and Liver Pharmacokin Following Single Oral Admini	netics of Tenofovir Alafenamide (TAF) stration in Male Beagle Dogs	Absorption	TAF	AD-120-2034						
Species:	Beagle dogs									
Feeding Condition:	Fasted	sted								
Vehicle/Formulation:	0.1% (w/w) hydroxypropylmethylcellu	% (w/w) hydroxypropylmethylcellulose K100LV (HPMC) K100LV, 0.1% polysorbate 20 in water								
Method of Administration:	Oral gavage ^a	ll gavage ^a								
Dose:	10 mg/kg									
Assay:	LC-MS/MS									
Test Article		GS-7340-02	2							
Sex (M/F) / N of Animals		M/6								
Sample	Plasma		Liver							
Analyte	TAF TF	V TFV	TFV-MP	TFV-DP						
PK Parameters										
T _{max} (h)	0.08 1.0	0 1.00	4.00	4.00						
C _{max} (µg/mL)	3.49 0.6	4 12.7	12.6	56.4						
t _{1/2} (h)	0.24 > 2	4 15.9	> 24	22.3						
$AUC_{0-t} (\mu g \cdot h/mL)$	1.38 2.7	2 86.8	258	1017						

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; C_{max} = maximum plasma concentration; F = female; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir; TFV-MP = tenofovir monophosphate; TFV-DP = tenofovir diphosphate

a Animals were pretreated with pentagastrin 20 minutes prior to the dose administration.

3.3.9. P2000087: Pharmacokinetics of TAF in Rhesus Monkeys

Report Title:					Stuc	ly Type		Test A	rticle	R	leport Nun	<u>nber</u>
A Single Dose Pharmacokineti GS-7340-02 in Rhesus Monkey		Bioavailabi	lity Study	of	Absorption,	, Bioavailat	oility	ТА	F		P200008	7
Species:	Rhesus m	nonkeys										
Feeding Condition:	Fasted											
Vehicle/Formulation:	50 mM c	itric acid										
Method of Administration:	Nasogast	asogastric gavage										
Sample:	Plasma											
Assay:	LC-MS/N	мs										
Test Article						GS-73	340-02					
Dose (mg/kg)		0	.5			-	5			5	60	
Sex (M/F) / N of Animals	M	I/3	F	/3	М	[/3]	7/3	M/3		F/3	
Analyte	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV
PK Parameters												
T _{max} (h)	0.40	1.00	0.33	1.00	0.80	1.33	0.80	1.30	0.40	1.00	0.70	1.00
C _{max} (ng/mL)	3.92	8.50	1.65	6.94	161	169	88.6	152	5388	1576	2897	1076
t _{1/2} (h)	NC	4.24	0.61	7.18	0.27	10.0	0.19	12.6	0.22	23.9	0.57	14.8
AUC _{0-t} (ng•h/mL)	1.85	34.0	0.60	45.9	131	1151	59.5	924	5038	13119	2583	6749
AUC _{inf} (ng•h/mL)	NC	43.5	2.47	62.0	77.3	1186	82.0	951	5109	13585	2584	6914
MRT (h)	0.43	6.72	0.59	11.0	0.98	11.8	0.88	11.8	0.77	20.0	0.90	15.9

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; C_{max} = maximum plasma concentration; F = female; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; MRT = mean residence time; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir

Report Title:			<u>Study Type</u>	Test A	rticle	<u>Report Number</u>
A Single Dose Oral Bioavailab	ility Study of TDF in I	Rhesus Monkeys	Absorption, Bioavailab	ility TD	F	P2000031
Species:	Monkey					
Feeding Condition:	Fed & Fasted (oral)					
Vehicle/Formulation:	TDF (Citric acid)					
Method of Administration:	TDF (oral)					
Sample:	Plasma					
Analyte:	TFV					
Assay:	LC-MS/MS					
Dose (mg/kg) (TDF)	5 (0	oral)	50 (0	Dral)		250 (Oral)
Sex (M/F) No. of Animals	6 (3M,	3F) Fed	6 (3M, 3	BF) Fed	12 (6M,	6F) Fed + Fasted
PK Parameters (Oral) Mean	(SD)				•	
C_{max} (µg/mL)	0.113	(0.042)	1.15	(0.676)	1.68	(1.05)
T _{max} (h)	0.83	(0.408)	1.00	(0.548)	1.08	(0.56)
AUC _{inf} (μ g•h/mL)	0.725	(0.125)	6.38	(1.74)	14.8	(7.81)
AUC % Extrapolated	2.82	(0.768)	2.26	(1.00)	2.19	(0.710)
t _{1/2} (h)	8.23	(1.06)	8.54	(1.14)	8.41	(1.20)
CL/F (mL/h/kg)	3202	(566)	3807	(1191)	6569	(2996)
C _{last} (µg/mL)	0.00169	(0.00027)	0.0118	(0.00615)	0.0366	(0.0102)
T _{last} (h)	44.0	(6.20)	48.0	(0.0)	48.0	(0.0)
V _z /F (mL/kg)	38000	(8538)	47250	(18111)	82600	(50113)
F (%)	32.4	(7.90)	23.7	(7.82)	17.0	(5.66)

3.3.10. P2000031: Pharmacokinetics of TDF in Rhesus Monkeys

AUC = area under the plasma concentration-time; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; C_{last} = last observed quantifiable concentration of the drug in plasma; C_{max} = maximum plasma concentration; CL = plasma clearance; F = female; F (%) = bioavailability; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; PK = pharmacokinetic; SD = standard deviation; $t_{1/2} = estimated$ elimination half-life; $T_{last} = time$ (observed time point) of C_{last} ; T_{max} = time to reach the maximum plasma concentration; TDF = tenofovir disoproxil fumarate; TFV = tenofovir; V_z = apparent volume of distribution during the terminal phase

Report Title:		<u>Study Type</u>	<u>Test Article</u>	<u>Report Number</u>
A Single Dose Oral Bioavailab	ility Study of TDF in Rhesus Monkeys	Absorption, Bioavailability	TDF	P2000031
Species:	Monkey			
Feeding Condition:	Fed			
Vehicle/Formulation:	TFV (physiological buffered solution	n)		
Method of Administration:	TFV (IV)			
Sample:	Plasma			
Analyte:	TFV			
Assay:	LC-MS/MS			
Dose (mg/kg) (TFV)	5 (IV)		30 (IV	/)
Sex (M/F) No. of Animals	6 (3M/3F))	6 (3M/.	3F)
Tabulated PK for IV Dose R	esults Mean (SD)			
C _{max} (µg/mL)	13.8	(3.08)	79.0	(12.6)
AUC _{inf} (µg•h/mL)	5.12	(1.15)	38.4	(16.2)
AUC % Extrapolated	0.520	(0.394)	0.199	(0.0841)
t _{1/2} (h)	5.37	(1.35)	8.79	(2.79)
CL (mL/h/kg)	1031	(301)	888	(315)
C _{last} (µg/mL)	0.00419	(0.00455)	0.00620	(0.00317)
T _{last} (h)	24.0	(7.59)	38.0	(11.8)
V _{ss} (mL/kg)	1188	(312)	930	(146)

AUC = area under the plasma concentration-time; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; C_{last} = last observed quantifiable concentration of the drug in plasma; C_{max} = maximum plasma concentration; CL = plasma clearance; F = female; IV = intravenous; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; PK = pharmacokinetic; SD = standard deviation; $t_{1/2}$ = estimated elimination half-life; T_{last} = time (observed time point) of C_{last} ; TDF = tenofovir disoproxil fumarate; TFV = tenofovir; V_{ss} = volume of distribution at steady state

Additional information: No statistically significant differences were observed between male and female animals in any treatment group and none were observed between fed and fasted states in the 250 mg/kg TDF dose group. Oral bioavailabilities for the 5, 50 & 250 mg/kg groups were 32.4, 23.7 & 17.0%, respectively.

4. PHARMACOKINETICS: ABSORPTION AFTER REPEATED DOSES

4.1. BIC

The toxicokinetic profiles of BIC were examined following repeat oral administration as part of toxicology studies. Comprehensive tabulated summaries of the study results are presented in m2.6.7, Section 3.1.

4.2. FTC

4.2.1. TOX-109: Oncogenicity study of FTC in Mice – Toxicokinetics

Report Title				Study Type	Test Article	Report Number			
Two-year Oral (Oncogenicity Stu	dy in CD-1 Mice		Absorption	FTC	TOX-109			
Species		Mouse							
Feeding Condit	tion	Fed							
Vehicle/Formu	lation	0.5% aqueous meth	ylcellulose						
Method of Adn	ninistration	Oral gavage							
Sample		Plasma							
Analyte		FTC							
Assay		LC-MS/MS							
Dose (mg/kg/da	ay)	0, 80, 250, 750							
Sex (M/F) No.	of Animals	3/sex/group on Wee	ek 2 & Week 26						
				26 Daily Dose					
Parameters	Week		80 mg/kg	250 mg/kg		750 mg/kg			
AUC ₀₋₂₄	Week 2	Female	27.59	64.97		209.16			
(µg∙h/mL)		Male	25.52	91.05		234.58			
		Mean	26.56	78.01		221.87			
	Week 26	Female	23.74	91.71		322.65			
		Male	27.48	90.94		287.3			
		Mean	25.61	91.33		304.98			
C _{max}	Week 2	Female	10.446	33.373		109.690			
(µg/mL)		Male	16.200	46.609		88.693			
		Mean	13.323	39.991		99.192			
	Week 26	Female	20.487	49.058		176.950			
		Male	16.265	57.682		143.229			
		Mean	18.372	53.370		160.090			

 $AUC_{0.24}$ = area under the plasma concentration-time curve from zero to 24 h; C_{max} = maximum plasma concentration; F = female; FTC = emtricitabine; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male

Report Title				Study Type	Test Article	Report Numbe				
Two-year Oral	l Oncogenicity S	Study of FT	C in the Rat	Absorption	FTC	TOX-108				
Species			Rat							
Feeding Cond	lition		Fed							
Vehicle/Form	ulation		0.5% aqueous methylcellulose							
Method of Ad	dministration		Oral gavage							
Sample			Plasma							
Analyte			FTC							
Assay			LC-MS/MS							
Dose (mg/kg/o	day)		0, 60, 200, 600							
Sex (M/F) No	o. of Animals		3/sex/group on Week 2 & Week 26							
				Daily Dose						
Parameters	Week		60 mg/kg	200 mg/l	ĸg	600 mg/kg				
AUC ₀₋₂₄	Week 2	Female	30.91	155.99		260.02				
(µg∙h/mL)		Male	29.91	97.26		279.68				
		Mean	30.41	126.62		269.85				
	Week 26	Female	52.53	170.68		404.07				
		Male	42.87	137.42		326.77				
		Mean	47.70	154.05		365.42				
C _{max}	Week 2	Female	11.044	30.991		63.813				
(µg/mL)		Male	12.380	27.565		59.610				
		Mean	11.712	29.278		61.712				
-	Week 26	Female	15.569	52.168		88.993				
	1	Mala	13.996	32.339		73.053				
		Male	13.390	52.557		15.055				

4.2.2. TOX-108: Oncogenicity Study of FTC in Rats – Toxicokinetics

 $AUC_{0.24}$ = area under the plasma concentration-time curve from zero to 24 h; C_{max} = maximum plasma concentration; F = female; FTC = emtricitabine; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male

4.3. TAF

4.3.1. AD-120-2033: 7-Day Repeated Dose Study of TAF in Dogs – Pharmacokinetics

Report Title:				Study Typ	<u>be</u> <u>1</u>	est Article	<u>Report Number</u>					
Plasma and Liver Pharmacokin 7-Day Oral Administration in 1		Alafenamide (GS-	7340) Following	Absorptio	n	TAF	AD-120-2033					
Species:	Beagle dogs	dogs										
Feeding Condition:	Not fasted											
Vehicle/Formulation:	0.1% (w/w) hydr	(w/w) hydroxypropylmethylcellulose K100LV (HPMC) K100LV, 0.1% polysorbate 20 in water										
Method of Administration:	Oral Gavage	łavage										
Dose:	8.29 mg/kg/Day											
Assay:	LC-MS/MS											
Test Article				GS-7340-02								
Sex (M/F) / N of Animals				M/4								
Sample		Pla	Isma			Liver						
Sample Collection Time	Da	ay 1	Day	7		Day 7						
Analyte	TAF	TFV	TAF	TFV	TFV	TFV-MP	TFV-DP					
PK Parameters												
T _{max} (h)	0.17	0.75	0.17	0.75	4.00	4.00	4.00					
C _{max} (µg/mL)	2.15	0.42	1.12	0.61	4.34	27.3	108					
t _{1/2} (h)	0.30	15.7	0.28	19.2	NA	NA	NA					
AUC_{0-t} (µg•h/mL)	0.88	1.96	0.37	3.39	NA	NA	NA					

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; C_{max} = maximum plasma concentration; F = female; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; NA = not applicable; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir; TFV-DP = tenofovir diphosphate; TFV-MP = tenofovir monophosphate

4.3.2. D990175-PK: 28-Day Toxicity Study of TAF in Dogs – Toxicokinetics

Report Title:							Study Ty	pe	Test Art	ticle	Report N	Number_
Toxicokinetics of a 28-Day Ora	al Gavage 🛛	Foxicity Stu	dy of GS-7	7340-02 in 1	the Beagle	Dog	Absorptio	on	TAF		D9901′	75-PK
Species:	Beagle de	ogs										
Feeding Condition:	Not faste	d										
Vehicle/Formulation:	50 mM c	itric acid										
Method of Administration:	Oral Gav	age										
Sample:	Plasma											
Analyte:	TAF											
Assay:	LC-MS/N	MS										
Test Article						GS-7.	340-02					
Dose (mg/kg/day)		1.	0			3	.0			10).0	
Sex (M/F) / N of Animals	N	1/4	F	/4	Μ	[/4	F/4		M/4		F /4	
Sample Collection Time	Day 1	Day 28	Day 1	Day 28	Day 1	Day 28	Day 1	Day 28	Day 1	Day 28	Day 1	Day 28
PK Parameters												
T _{max} (h)	0.33	0.42	0.25	0.33	0.31	0.31	0.50	0.50	0.44	0.44	0.38	0.38
C_{max} (µg/mL)	0.02	0.03	0.02	0.05	0.05	0.11	0.06	0.10	0.86	2.07	0.75	1.01
t _{1/2} (h)	NA	NA	NA	NA	NA	NA	NA	NA	0.31	0.65	0.33	0.56
AUC _{0-t} (µg•h/mL)	NA	NA	NA	NA	NA	NA	NA	NA	0.60	NA	0.41	NA
$AUC_{0-\tau}$ (µg•h/mL)	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.30	NA	0.86
T _{last} (h)	NA	NA	NA	NA	NA	NA	NA	NA	1.50	3.00	1.00	3.00
C _{last} (ng/mL)	NA	NA	NA	NA	NA	NA	NA	NA	0.08	0.07	0.18	0.05

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; $AUC_{0-\tau}$ = area under the plasma concentration-time curve for a dosing interval; C_{last} = last observed quantifiable concentration of the drug in plasma; C_{max} = maximum plasma concentration; F = female; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; NA = not applicable; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{last} = time (observed time point) of C_{last} ; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir

Report Title:							Study Ty	pe	Test Art	ticle	Report 1	Number	
Toxicokinetics of a 28-Day Or	al Gavage	Foxicity Stu	dy of GS-	7340-02 in	the Beagle	Dog	Absorptio		TAF		D990175-PK		
Species:	Beagle d	ogs											
Feeding Condition:	Not faste	d											
Vehicle/Formulation:	50 mM c	itric acid											
Method of Administration:	Oral Gav	vage											
Sample:	Plasma												
Analyte:	TFV												
Assay:	LC-MS/I	MS											
Test Article						GS-7 .	340-02						
Dose (mg/kg/Day)		1	.0			3	5.0			10).0		
Sex (M/F) / N of Animals	Ν	1/4	F	7/4	Μ	[/4	F	7/4	N	1/4	F	F/4	
Sample Collection Time	Day 1	Day 28	Day 1	Day 28	Day 1	Day 28	Day 1	Day 28	Day 1	Day 28	Day 1	Day 28	
PK Parameters						•			•				
T _{max} (h)	NA	3.50	NA	4.75	1.13	1.25	1.75	0.88	1.25	0.81	0.75	0.63	
C_{max} (µg/mL)	NA	0.06	NA	0.07	0.12	0.09	0.15	0.13	0.38	0.55	0.40	0.43	
$t_{1/2}(h)$	NA	NA	NA	NA	NA	NA	NA	NA	16.3	>24	16.6	>24	
AUC _{0-t} (µg•h/mL)	NA	NA	NA	NA	NA	NA	NA	NA	1.85	NA	1.78	NA	
$AUC_{0-\tau}$ (µg•h/mL)	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.45	NA	5.13	
T _{last} (h)	NA	NA	NA	NA	NA	NA	NA	NA	21.0	24.0	18.0	24.0	
C _{last} (ng/mL)	NA	NA	NA	NA	NA	NA	NA	NA	0.03	0.15	0.05	0.16	

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; $AUC_{0-\tau}$ = area under the plasma concentration-time curve for a dosing interval; C_{last} = last observed quantifiable concentration of the drug in plasma; C_{max} = maximum plasma concentration; F = female; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; NA = not applicable; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{last} = time (observed time point) of C_{last} ; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir

Report Title:				<u>Study Type</u>	Test Article	Report Number
Toxicokinetics of a 28-Day Or	al Gavage Toxicity Stu	dy of GS-7340-02 in	the Beagle Dog	Absorption	TAF	D990175-PK
Species:	Beagle dogs					
Feeding Condition:	Not fasted					
Vehicle/Formulation:	50 mM citric acid					
Method of Administration:	Oral Gavage					
Sample:	РВМС					
Analyte:	TFV					
Assay:	LC-MS/MS					
Test Article			G	S-7340-02		
Dose (mg/kg/Day)	1	.0		3.0		10.0
Sex (M/F) / N of Animals	M/4	F/4	M/4	F /4	M/4	F/4
Intracellular Concentration						
$C_{\text{Day 1}} (\mu g/mL)$	NA	NA	NA	NA	NA	NA
C _{Day 8} (µg/mL)	NA	NA	NA	1.80	6.92	7.85
C _{Day 22} (µg/mL)	NA	NA	1.70	NA	10.6	10.2
C _{Day 28} (µg/mL)	NA	NA	2.44	3.81	19.4	17.5

F = female; M = male; NA = not applicable; PBMC = peripheral blood mononuclear cells; TAF = tenofovir alafenamide; TFV = tenofovir

4.3.3. P2000114-PK: 28-Day Toxicity Study of TAF in Monkeys – Toxicokinetics

Report Title:									Study 7	Гуре	r	Fest Art	icle	Rep	oort Nui	nber
Toxicokinetics from a 28 Day Administered Orally to Rhesus			f GS-734	40-02 an	d Tenofo	ovir (GS	-1278)		Absorption TAF			P2000114-PK				
Species:	Rhesus	s monke	ys													
Feeding Condition:	Fasted															
Vehicle/Formulation:	50 mM	A citric acid														
Method of Administration:	Nasog	astric gavage														
Sample:	Plasma	a														
Assay:	LC-MS	S/MS														
Test Article		GS-7340-02														
Dose (mg/kg/Day)					3							3	0			
Sex (M/F) / N of Animals		Μ	[/3			F	/3			Μ	[/3			F	/3	
Sample Collection Time	Da	y 1	Day	y 28	Da	y 1	Day	y 28	Day 1		Day 1 Day 28		Day 1		Day 28	
Analyte	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV	TAF	TFV
PK Parameters																
T _{max} (h)	1.00	1.00	1.00	2.30	1.00	1.00	0.83	1.00	1.00	1.00	0.50	0.75	1.00	1.00	0.50	0.67
C_{max} (µg/mL)	0.003	0.09	0.01	0.05	0.005	0.09	0.02	0.05	0.49	0.96	2.21	1.24	2.29	0.85	0.82	0.78
$t_{1/2}(h)$	NA	7.77	NA	12.9	NA	8.41	NA	14.2	NA	14.8	0.18	15.6	NA	10.3	0.43	16.4
AUC _{inf} (µg•h/mL)	NA	0.45	NA	NA	NA	0.49	NA	NA	NA	8.70	NA	NA	NA	4.63	NA	NA
$AUC_{0-\tau} (\mu g \bullet h/mL)$	NA	NA	NA	0.32	NA	NA	NA	0.38	NA	NA	1.53	7.36	NA	NA	0.70	3.89
$MRT_{0-\infty}(h)$	NA	9.38	NA	16.6	NA	10.8	NA	17.4	NA	19.9	0.71	17.7	NA	12.9	2.61	20.2

 $AUC_{0-\tau}$ = area under the plasma concentration-time curve for a dosing interval; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; C_{max} = maximum plasma concentration; F = female; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; MRT = mean residence time; NA = not applicable; PBMC = peripheral blood mononuclear cells; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir

Report Title:			Study Type	Test Article	Report Number
Toxicokinetics from a 28 Day Administered Orally to Rhesus	Toxicity Study of GS-7340-02 and Monkeys	l Tenofovir (GS-1278)	Absorption	TAF	P2000114-PK
Species:	Rhesus monkeys				
Feeding Condition:	Fasted				
Vehicle/Formulation:	50 mM citric acid				
Method of Administration:	Nasogastric gavage				
Sample:	Plasma				
Analyte:	TFV				
Assay:	LC-MS/MS				
Test Article			TFV		
Dose (mg/kg/Day)			15		
Sex (M/F) / N of Animals	M	/3		F/3	
Sample Collection Time	Day 1	Day 28	Day	1	Day 28
PK Parameters					
T _{max} (h)	1.00	1.5	2.00		2.17
C _{max} (µg/mL)	0.16	0.15	0.12	,	0.18
t _{1/2} (h)	6.79	17.6	11.2		12.6
$AUC_{inf} (\mu g \cdot h/mL)$	1.01	NA	1.01		NA
$AUC_{0-\tau}$ (µg•h/mL)	NA	1.19	NA		1.46
$MRT_{0-\infty}$ (h)	8.83	21.8	16.0		16.8

 $AUC_{0-\tau}$ = area under the plasma concentration-time curve for a dosing interval; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; C_{max} = maximum plasma concentration; F = female; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; MRT = mean residence time; NA = not applicable; PBMC = peripheral blood mononuclear cells; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir

Report Title:				Study Type	Test Article	Report Number
Toxicokinetics from a 28 Day Administered Orally to Rhesus		7340-02 and Tenofovi	r (GS-1278)	Absorption	TAF	P2000114-PK
Species:	Beagle dogs					
Feeding Condition:	Fasted					
Vehicle/Formulation:	50 mM citric acid					
Method of Administration:	Nasogastric gavage					
Sample:	РВМС					
Analyte:	TFV					
Assay:	LC-MS/MS					
Test Article		GS-7.	340-02			ГFV
Dose (mg/kg/Day)	3	3		30		15
Sex (M/F) / N of Animals	M/3	F/3	M/3	F/3	M/3	F/3
Intracellular Concentrations						
C_{Day14} (µg/mL)	NA	NA	70.9	73.6	NA	NA
C _{Day28} (µg/mL)	NA	NA	31.1	24.6	NA	NA

F = female; M = male; NA = not applicable; PBMC = peripheral blood mononuclear cells; TAF = tenofovir alafenamide; TFV = tenofovir

5. PHARMACOKINETICS: IN VITRO AND IN VIVO DISTRIBUTION

5.1. BIC

5.1.1. AD-141-2312: In Vitro Assessment of Blood Distribution of BIC

Report Title	Study Type	Test Arti	cle	Report Number						
In Vitro Assessment of Blood Distribution of Bictegravir	Distribution	BIC		AD-141-2312						
Study System	Heparinized blood samples	from Sprague-Dawley rat, b	eagle dog, cynomolgu	as monkey, rhesus monkey, and human						
Method	plasma or reference cell frac	IC and control compounds was incubated in triplicate, at an initial concentration of 0.5 μ M, with blood or reference lasma or reference cell fraction for 60 minutes at 37°C and then chilled on ice. Blood samples were then centrifuged at °C to separate the cellular and plasma fractions. Test article concentration in each fraction was determined by C-MS/MS.								
	BI	C ^a		Control Compound ^a						
Species	CPR	B/P ratio	Compour	nd B/P ratio						
Sprague-Dawley Rat	0.05 ± 0.02	0.58 ± 0.01	Chlorthalid	one 35.0 ± 6.1						
Beagle Dog	0.17 ± 0.06	0.60 ± 0.03	Chloroqui	ne 4.3 ± 0.7						
Cynomolgus Monkey	0.14 ± 0.02	0.65 ± 0.01 Methazolamide 60.7 ± 13.7								
Rhesus Monkey	0.11 ± 0.05	0.62 ± 0.02	Methazolan	nide 107.9 ± 30.0						
Human	0.19 ± 0.07	0.64 ± 0.03	Methazolan	nide 9.0 ± 8.0						

BIC = bictegravir (GS-9883); B/P ratio = Whole Blood to Plasma Concentration Ratios; CPR = Cell/Plasma Concentration Ratios; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry

a Values are the Mean \pm standard deviation (n = 3 determinations using pooled blood samples from each species)

5.1.2. AD-141-2276: Distribution in Wistar Han Rats Following a Single Oral Dose of [¹⁴C]BIC

Report Title					Study	Туре	Test Article	Repor	t Number			
Pharmacokinetics, Absorption, Dis Single Oral Administration to Rate		d Excretion of	¹⁴ C-GS-9883 Fo	llowing a	Distrit	oution	[¹⁴ C]BIC	AD-1	41-2276			
Species	Wistar Har	n (non-pigmente	ed) Rat									
Gender /No. of Animals	Male / 9 (1	per time point										
Feeding Condition	Fasted	xd										
Vehicle/Formulation	5% ethano	thanol, 55% polyethylene glycol 300, and 40% water										
Method of Administration	Oral Gavag	Gavage										
Dose	2 mg/kg (1	00 µCi/kg)										
Radionuclide	Carbon-14											
Specific Activity	55.9 mCi/r	nmol										
Specific Activity of Formulation	52.5 µCi/m	5 μCi/mg										
Sampling Time	0.25, 1, 4,	8, 12, 24, 48, 90	5 and 168 h post	-dose								
Analyte/Assay	Carbon-14	Quantitative W	hole Body Auto	oradiography								
Tissues/Organs				ation of Radioa								
Time-point	0.25 h	1 h	4 h	8 h	12 h	24 h	48 h	96 h	168 h			
Adrenal gland(s)	ND ^a	4170	2890 ^b	1360	1250	1240 ^b	719	96.7 ^b	246			
Bile	1340	8310	6350	4160	4480	4770	1400	ND	ND			
Blood	1360	18700	10000	10500	7530	6360	3640	473	709			
Bone	BLQ	282	190	146	87.2	69.0	70.0	BLQ	BLQ			
Bone marrow	198	3820	2250	1410	1520	1170	576	66.4	103			
Brain cerebellum	BLQ	183	116	117	81.7	81.2	39.5	ND	ND			
Brain cerebrum	BLQ	168	138	101	106	79.9	50.5	ND	ND			
Brain medulla	BLQ	150	121	82.7	86.9	63.8	37.5	ND	ND			

Report Title					Stuc	ły Type	Test Article	Repor	Report Number	
Pharmacokinetics, Absorption, Di Single Oral Administration to Rat		d Excretion of	¹⁴ C-GS-9883 F	Following a	Dist	ribution	[¹⁴ C]BIC	AD-3	141-2276	
Tissues/Organs		Γ	Sissue Concent		oactivity (ng l	Equivalents [¹⁴	C]BIC/g tissue)		
Time-point	0.25 h	1 h	4 h	8 h	12 h	24 h	48 h	96 h	168 h	
Brain olfactory lobe	BLQ	193	141	149	113	62.5	54.6	ND	ND	
Cecum	40.4	1060	3180	1660	1480	1170	724 ^b	108	159	
Diaphragm	31.3	630	1160	926	776	772	431	54.4	98.3	
Epididymis	27.5 ^b	905 ^b	1230 ^b	2000 ^b	1680 ^b	800 ^b	811 ^b	67.8 ^b	87.7 ^b	
Esophagus	ND ^a	1030	1970	2310	2160	1980	956	92.3	200	
Exorbital lacrimal gland	49.2	838	1480	1460	1180	1090	457	74.2	166	
Eye lens	ND	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	ND	ND	
Eye uveal tract	66.4	914	1570	2740	1130	1450	655	128	170	
Eye(s)	BLQ	341	614	371	288	445	229	32.7	69.5	
Fat (abdominal)	29.8	404	370	285	343	140	104	BLQ	28.1	
Fat (brown)	255	2810	1990	1220	923	599	483	135	131	
Harderian gland	23.3	1230	1750	775	1020	627	353	59.6	78.5	
Intra-orbital lacrimal gland	34.0	577	1420	1270	1420	964	629	62.0	210	
Kidney cortex	199	2840	2760	1720	1720	1340	817	107	202	
Kidney medulla	388	5760	4460	2620	1510	1800	1260	123	308	
Kidney(s)	151	3210	2940	1940	1850	1470	872	109	213	
Large intestine	ND	668	2210	2700	2780	1270	716	145	200	
Liver	218	3290	2860	1430	1110	817	869	498	270	
Lung(s)	523	10000	5810	5150	4410	3150	1920	249	396	
Muscle	ND	351	623	758	399	433	252	33.2	55.3	

Report Title Pharmacokinetics, Absorption, Di	stuibution on	d Exerction of	¹⁴ C CS 0882 T			ly Type ribution	Test Article [¹⁴ C]BIC	-	t Number			
Single Oral Administration to Rat			C-03-9003 F	onowing a	2150	lioution	[C]DIC		111 2270			
Tissues/Organs		Tissue Concentration of Radioactivity (ng Equivalents [¹⁴ C]BIC/g tissue)										
Time-point	0.25 h	1 h	4 h	8 h	12 h	24 h	48 h	96 h	168 h			
Myocardium	266	5020	3760	2350	2520	1810	1150	113	239			
Nasal turbinates	123	1350	1000	1470	873	561	415	86.7	109			
Pancreas	71.3	1540	1600	1100	969	875b	390	59.4	107			
Pituitary gland	170	2880	2160	2390	1660	1010	859	123	168			
Preputial gland	ND	771 ^b	1520 ^b	2000 ^b	718 ^b	573 ^b	327 ^b	79.3 ^b	73.9 ^b			
Prostate gland	47.4	648	1430	1790	896	1070	549	73.8	97.9			
Salivary gland(s)	67.8	1630	2280	1400	1580	1140	604	88.1	141			
Seminal vesicle(s)	ND	59.6	349	89.8	209	130	66.9 ^b	BLQ	BLQ			
Skin (nonpigmented)	39.1	243	1400	1670	1650	1790	958	195	266			
Small intestine	129	8050	2800	908	1120	561	436	89.8	98.4			
Spinal cord	BLQ	249	196	112	95.7	73.5	26.8	ND	ND			
Spleen	128	1810	1290	948	767	605	390	46.2	73.4			
Stomach	ND ^a	1030	1280	1590	2360	1250	888	96.2	136			
Testis(es)	24.6	943	2600	1820	1300	1060	699	74.4	136			
Thymus	BLQ	249	796	994	593	607	360	40.6	57.1			
Thyroid	213	3730	3440	1850	1920	1460	751	137	184			
Urinary bladder	61.3	905	2340	3570	3720	4480	2520	305	ND			
Urine	64.3	238	281	1890	446	1450	236	95.5	ND			

BIC = bictegravir (GS-9883); BLQ = below the limit of quantitation (<18.7 ng equivalents ¹⁴C-GS-9883/g); h = hours; ND = not detectable (sample shape not discernible from background or surrounding tissue)

Fasted = animals were fasted overnight prior to dose administration and up to 4 hours after dosing

a Tissue not detected due to flare of gastrointestinal contents

b Tissue appeared to be fat soaked

5.1.3. AD-141-2276: Distribution in Long Evans Rats Following a Single Oral Dose of [¹⁴C]BIC

Report Title					Study	Туре	Test Article	Repor	t Number			
Pharmacokinetics, Absorption Single Oral Administration to		d Excretion of ¹	¹⁴ C-GS-9883 Fo	llowing a	Distrit	oution	[¹⁴ C]BIC	AD-1	41-2276			
Species	Long Evans (p	igmented) Rat										
Gender (M/F)/No. of Animals	Male / 9 (1 per	time point)										
Feeding Condition	Fasted											
Vehicle/Formulation	5% ethanol, 55	ethanol, 55% polyethylene glycol 300, and 40% water										
Method of Administration	Oral Gavage	l Gavage										
Dose	2 mg/kg (100	mg/kg (100 μCi/kg)										
Radionuclide	Carbon-14											
Specific Activity	55.9 mCi/mm	ol										
Specific Activity of Formulation	52.5 µCi/mg											
Analyte/Assay	Carbon-14/Qu	antitative Whol	e Body Autorad	liography								
Tissues/Organs		Tiss	sue Concentrat	ion of Radioac	tivity (ng Equi	ivalents [¹⁴ C]	BIC/g tissue)					
Time-point	0.25 h	1 h	4 h	8 h	12 h	24 h	48 h	96 h	168 h			
Adrenal gland(s)	983	2820	2750	1440	979	874 ^a	978	349 ^a	310 ^a			
Bile	5630	7430	5120	4630	2670	938	4190	ND	ND			
Blood	6610	11500	12500	10300	7790	4260	4430	1860	1320			
Bone	56.0	169	211	257	108	120	76.7	22.8	BLQ			
Bone marrow	1140	2350	2700	1370	1320	990	683	252	161			

Report Title					Stu	dy Type	Test Article	Repor	t Number
Pharmacokinetics, Absorption, Single Oral Administration to I		nd Excretion of	¹⁴ C-GS-9883 F	ollowing a	Dist	ribution	[¹⁴ C]BIC	BIC AD-141-2	
Tissues/Organs			ssue Concentra		activity (ng Eq	uivalents [¹⁴ C]]BIC/g tissue)		
Time-point	0.25 h	1 h	4 h	8 h	12 h	24 h	48 h	96 h	168 h
Brain cerebellum	105	181	161	165	129	65.6	67.5	26.9	18.9
Brain cerebrum	108	197	160	160	128	65.5	80.9	29.8	BLQ
Brain medulla	85.6	134	143	91.7	83.9	51.2	60.9	20.2	BLQ
Brain olfactory lobe	101	182	101	82.9	68.0	71.2	38.2	52.3	BLQ
Cecum	219	1760	1540	1490	1390	798	1010	494	251
Diaphragm	220	998	1060	1130	765	536	544	235	148
Epididymis	113 ^a	918 ^a	2000 ^a	1820	2260	663 ^a	NR	385	284 ^a
Esophagus	ND^{b}	1150	2700	2240	2020 ^a	1750	1060	510	329
Exorbital lacrimal gland	142	1260	1800	1240	1320	729	831	435	217
Eye lens	BLQ	BLQ	26.4	23.3	BLQ	21.7	BLQ	ND	ND
Eye uveal tract	267	2120	3830	3650	2780	1750	1960	687	383
Eye(s)	72.8	224	552	671	372	331	271	99.1	60.5
Fat (abdominal)	78.5	376	226	184	160	176	94.6	43.8	22.7
Fat (brown)	680	1490	2320	1230	879	1230	798	240	204
Harderian gland	126	655	1850	1160	1070	648	459	252	152
Intra-orbital lacrimal gland	NR	1140	1750	1950	1370	804	816	347	174
Kidney cortex	1090	2790	2900	1930	1670	1020	1020	475	275

Report Title Pharmacokinetics, Absorption, Single Oral Administration to I		nd Excretion of ¹	¹⁴ C-GS-9883 Fo	llowing a		y Type ibution	Test Article [¹⁴ C]BIC	1					
Tissues/Organs		Tissue Concentration of Radioactivity (ng Equivalents [¹⁴ C]BIC/g tissue)											
Time-point	0.25 h	1 h	4 h	8 h	12 h	24 h	48 h	96 h	168 h				
Kidney medulla	2990	5080	4720	2390	1420	1640	1710	797	448				
Kidney(s)	1420	2950	3460	1900	1570	1050	1130	551	313				
Large intestine	239	1580	2360	2100	2650	1300	1280	560	269				
Liver	2930	4110	3690	1450	1100	775	567	491	314				
Lung(s)	3500	7220	8920	5690	5080	2050	2860	1030	660				
Muscle	73.6	525	514	588	416	323	348	153	101				
Myocardium	1470	3500	4220	3090	2110	1190	1170	532	386				
Nasal turbinates	691	1580	1300	1270	712	613	467	245	161				
Pancreas	299	1400	1630	1040	895	531	643	251	157				
Pituitary gland	925	2490	3010	1800	1240	1060	831	406	236				
Preputial gland	101 ^a	740 ^a	583 ^a	708	706 ^a	515 ^a	862	212 ^a	115 ^a				
Prostate gland	268	973	1030	1400	1340	716	539	237	167				
Salivary gland(s)	391	2760	3070	1960	1390	835	997	337	232				
Seminal vesicle(s)	25.7	142	96.6	106	216	131	59.8	21.0	32.8				
Skin (nonpigmented)	96.6	458	670	891	1210	1290	1340	655	350				
Skin (pigmented)	186	468	948	1380	1540	1320	1300	747	385				
Small intestine	375	5590	2610	1300	1280	717	527	366	212				

Report Title					Stud	у Туре	Test Article	Repor	t Number		
Pharmacokinetics, Absorption, Single Oral Administration to 1		nd Excretion of ¹	⁴ C-GS-9883 Fo	llowing a	Distr	ibution	[¹⁴ C]BIC	AD-	AD-141-2276		
Tissues/Organs		Tiss	sue Concentrat	ion of Radioa	lioactivity (ng Equivalents [¹⁴ C]BIC/g tissue)						
Time-point	0.25 h	1 h	4 h	8 h	12 h	24 h	48 h	96 h	168 h		
Spinal cord	127	249	129	153	73.5	69.1	49.5	25.1	BLQ		
Spleen	671	1490	1500	1190	860	510	437	195	130		
Stomach	362	1560	1500	1970	1370	941	796	255	161		
Testis(es)	80.6	669	2030	1560	1110	751	1020	319	203		
Thymus	116	634	875	840	855	398	566	167	110		
Thyroid	949	2340	3660	2170	1740	953	1100	431	296		
Urinary bladder	78.4	ND	1270	1370	1240	4100	2460	1220	582		
Urine	304	ND	155	1030	151	671	104	82.4	BLQ		

BIC = bictegravir (GS-9883); BLQ = below the limit of quantitation (<18.7 ng equivalents 14 C-GS-9883/g); h = hours; ND = not detectable (sample shape not discernible from background or surrounding tissue); NR = not represented (tissue not present in section)

Fasted = animals were fasted overnight prior to dose administration and up to 4 hours after dosing

a Tissue appeared to be fat soaked

b Tissue not detectable due to flare of gastrointestinal contents

5.2. FTC

5.2.1. TOX092: Tissue Distribution and Excretion Study of [¹⁴C]FTC in Rats

Report Title [¹⁴ C]TP-0006: A Tissue Distribut	tion and Excret	tion Study	in Rats			Study Tyj stribution	pe , Excretion	-	[est Article [¹⁴ C]FTC	e	Report N	
Species	Rat						•					
Sex (M/F) No. of Animals	20 M Spi	rague-Daw	ley group	1, 6 M Loi	ng-Evans g	roup 2						
Feeding Condition	Fasted ov	vernight ur	ntil 4 hours	postdose								
Vehicle/Formulation	Sterile w	ater										
Method of Administration	Oral											
Dose (mg/kg)	200, sing	gle dose										
Radionuclide	^{14}C	С										
Specific Activity	42.1 mC	42.1 mCi/mmol										
Sampling Time	1, 4, 8, 2	4, 72 and 1	44 hours									
	Mean Tissue:Plasma Concentration Ratios Post Dosing											
	1 h	1 hour		4 hours		8 hours 24		ours	72 h	ours	144 h	ours
Tissues/Organs	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Blood	0.762	0.057	0.829	0.041	NA	NA	NA	NA	NA	NA	NA	NA
Large Intestine Content	0.742	0.037	1.01	0.273	15.0	7.00	NA	NA	NA	NA	NA	NA
Kidney	2.45	0.388	2.10	0.431	2.62	NA	NA	NA	NA	NA	NA	NA
Liver	1.17	0.055	1.09	0.079	NA	NA	NA	NA	NA	NA	NA	NA
Renal Cortex	2.21	0.393	2.05	0.410	2.52	NA	NA	NA	NA	NA	NA	NA
Small Intestine Content	1.27	0.359	1.31	0.596	NA	NA	NA	NA	NA	NA	NA	NA
Cerebellum	0.068	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cerebrum	0.066	0.001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Additional Information	Data for	SD rats on	1.7	1								

F = female; M = male; NA = not available or not sampled.

5.3. TAF

5.3.1. AD-120-2011: Pharmacokinetics, Absorption, Distribution, and Excretion of [¹⁴C]TAF in Mouse Following Oral Administration

Report Title:		Study Type	Test Article	Report Number			
Pharmacokinetics, Absorption, Oral Administration to Mice	Distribution, and Excretion of [¹⁴ C]GS-7340 Following	Distribution	[¹⁴ C]TAF AD-120-201				
Species:	CD-1 Mice						
Sex (M/F) / No. of Animals:	M/30						
Method of Administration:	Oral gavage						
Dose (mg/kg/day):	100						
Feeding Condition:	Not fasted						
Specific Activity:	57.1 mCi/mmol						
Radionuclide:	Carbon-14						
Vehicle/Formulation:	water:hydroxypropyl methyl cellulose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)					
Sample:	Plasma/Blood						
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation Counter						
Sample Type	Plasma		Blood				
Tabulated PK Results (Mean)						
T _{max} (h)	0.25		0.50				
C_{max} (ng eq/g)	24500		23100				
$t_{\nu_2}(h)$	15.8		45.0				
AUC_{0-t} (ng eq•h/g)	108675		514848				
AUC_{inf} (ng eq•h/g)	111574		NA				

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; C_{max} = maximum plasma concentration; F = female; M = male; NA = not applicable; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide

Report Title:			Study Type	Test Article	<u>Report Number</u>				
Pharmacokinetics, Absorption Oral Administration to Mice	, Distribution, and Excretio	n of [¹⁴ C]GS-7340 Followin	g Distribution	[¹⁴ C]TAF	AD-120-2011				
Species:	CD-1 Mice								
Sex (M/F) / No. of Animals:	M/30								
Method of Administration:	Oral gavage								
Dose (mg/kg):	100								
Feeding Condition:	Not fasted								
Radionuclide:	Carbon-14								
Specific Activity:	57.1 mCi/mmol								
Vehicle/Formulation:	water:hydroxypropyl me	thyl cellulose (HPMC):twee	en 80 (99.8:0.1:0.1, v:v:v)					
Analyte/Assay:	[14C]TAF / Liquid Scinti	llation Counter							
		Mean Concentration	ns Postdosing (ng Equiv	valents [¹⁴ C]TAF/g)					
	D .			Liver					
Time Point	Brain	Heart	Kidney	LIVEI	Nasal Turbinates				
	604	Heart 7660	Kidney 106000	519000	Nasal Turbinates 5680				
1 h 4 h			•						
1 h	604	7660	106000	519000	5680				

F = female; M = male; TAF = tenofovir alafenamide

159

88.9

48 h

72 h

13400

5820

83600

55700

3550

1460

1170

546

Report Title:					<u>Study</u>	Туре	Test Article	<u>Repo</u>	rt Number			
Pharmacokinetics, Absorption, Oral Administration to Mice	Distribution, a	nd Excretion o	f [¹⁴ C]GS-734	0 Following	Distrit	oution	[¹⁴ C]TAF	AD	-120-2011			
Species:	CD-1 Mice											
Sex (M/F) / No. of Animals:	M/9											
Method of Administration:	Oral gavage											
Dose (mg/kg):	100											
Feeding Condition:	Not fasted											
Radionuclide:	Carbon-14	rbon-14										
Specific Activity:	57.1 mCi/mm	.1 mCi/mmol										
Vehicle/Formulation:	water:hydrox	vater:hydroxypropyl methyl cellulose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)										
Sampling Time:	0.5, 1, 3, 8, 1	0.5, 1, 3, 8, 12, 24, 48, 96, and 168 hours postdose										
Analyte/Assay:	[¹⁴ C]TAF / Q	uantitative wh	ole body autor	adiography								
			Concentr	ation of Radio	oactivity (ng E	2quivalents [¹⁴	C]TAF/g)					
				Animal N	umber (Sacri	fice Time)						
Tissue	A18225 0.5h	A18226 1 h	A18227 3 h	A18228 8 h	A18229 12 h	A18230 24 h	A18231 48 h	A18232 96 h	A1823 168 h			
Blood and Tissue Radioactivi	ty											
Adrenal gland(s)	9920	27500	6450	5420	3010	3600	2550	1530	669			
Bile	60300	127000	115000	NR	65900	12900	12200	5940	NR			
Blood	14600	14500	5280	8640	4380	6100	4100	2710	1000			
Bone	1300	2420	1230	1140	1010	525	BLQ	372	ND			
Bone marrow	4730	6610	2030	1670	2040	2120	1190	1140	513			
Brain cerebellum	569	1940	395	BLQ	BLQ	BLQ	BLQ	ND	ND			

Report Title:					<u>Study</u>	Type	Test Article	Repo	rt Number	
Pharmacokinetics, Absorption, Oral Administration to Mice	Distribution, a	nd Excretion o	f [¹⁴ C]GS-7340) Following	Distrit	oution	[¹⁴ C]TAF	AD	AD-120-2011	
Blood and Tissue Radioactiv	ity (continued)									
Brain cerebrum	768	1430	BLQ	BLQ	379	BLQ	BLQ	ND	ND	
Brain medulla	420	833	BLQ	BLQ	BLQ	BLQ	BLQ	ND	ND	
Brain olfactory lobe	1120	2890	464	398	461	BLQ	BLQ	ND	ND	
Cecum	3440	6960	90500	63200	19100	8310	2290	2540	1310	
Diaphragm	40600	167000	46600	82900	26600	28300	19000	10300	3320	
Epididymis	3600	22300	1310	508	540	864	BLQ	ND	ND	
Esophagus	38400	90800	57300	114000	20100	8660	8660	5860	933	
Exorbital lacrimal gland	3600	5460	1400	1840	1250	1290	748	729	364	
Eye lens	967	2980	508	BLQ	BLQ	BLQ	BLQ	BLQ	ND	
Eye uveal tract	4180	3690	754	488	947	779	BLQ	ND	ND	
Eye(s)	1880	2660	539	312	418	363	BLQ	BLQ	ND	
Fat (abdominal)	1250	1170	968	757	512	787	BLQ	ND	ND	
Fat (brown)	3070	5590	2530	3790	2060	3030	1920	1060	BLQ	
Gall bladder	335000	216000	108000	NR	68100	37100	20900	29200	NR	
Harderian gland	4240	6500	1530	2050	2170	1390	764	1210	487	
Intra-orbital lacrimal gland	7630	3580	1900	1190	2280	1500	NR	ND	442	
Kidney cortex	82300	89000	74000	37400	30000	23100	10500	7300	2830	
Kidney medulla	65000	70000	54800	29600	18100	12800	7070	4430	1670	

Report Title:					<u>Study</u>	Туре	<u>Test Article</u>	<u>Repo</u>	rt Number
Pharmacokinetics, Absorp Oral Administration to Mi		and Excretion of	of [¹⁴ C]GS-734	0 Following	Distrib	oution	[¹⁴ C]TAF	AD	-120-2011
Blood and Tissue Radioa	activity (continued))							
Kidney(s)	84800	86100	68900	3370	25900	19900	9090	6080	2300
Large intestine	6680	8090	7730	96100	22500	6770	3100	2200	607
Liver	282000	447000	290000	295000	197000	164000	77000	44600	19000
Lung(s)	13200	23900	4000	8900	10000	11500	6890	5220	1820
Lymph node(s)	2190	7750	1680	1690	1760	2280	1470	2090	468
Muscle	1680	2100	466	522	768	579	363	366	BLQ
Myocardium	7570	11700	2380	4100	4600	4620	3430	3500	905
Nasal turbinates	2720	6440	1290	1170	983	1190	519	709	370
Pancreas	6130	14500	2950	2970	3540	2880	1760	1970	917
Pituitary gland	2910	7440	1280	1390	2510	1300	663	718	BLQ
Preputial gland	1900	2580	635	390	708	503	BLQ	ND	ND
Prostate gland	5500	2880	2150	16500	3060	2590	427	440	ND
Salivary gland(s)	5390	11500	1880	2210	2420	2160	1130	907	511
Seminal vesicle(s)	1790	3410	957	27000	852	620	462	BLQ	ND
Skin (pigmented)	8520	5580	1510	939	674	715	368	BLQ	ND
Small intestine	8770	74500	88100	54900	14100	4040	3400	3520	1610
Spinal cord	757	1210	BLQ	437	BLQ	BLQ	BLQ	ND	ND
Spleen	6100	12900	3850	4700	5460	6270	4020	3040	1430

Report Title:					<u>Study</u>	Туре	Test Article	Repo	ort Number	
Pharmacokinetics, Absorption Oral Administration to Mice	, Distribution, a	nd Excretion o	f [¹⁴ C]GS-734	0 Following	Distrib	oution	[¹⁴ C]TAF	AD	AD-120-2011	
Blood and Tissue Radioactiv	vity (continued)									
Stomach	77600	39300	26600	49700	5460	5940	5870	1760	571	
Stomach mucosa	96900	46900	19800	44000	5280	3660	5910	2550	638	
Stomach wall	48600	24500	26600	24700	7690	22700	4230	3940	378	
Testis(es)	1160	1490	774	BLQ	BLQ	319	ND	ND	ND	
Thymus	2510	6140	914	1300	903	1190	808	789	BLQ	
Thyroid	7120	12100	2830	2290	1200	4600	3200	3500	1530	
Urinary bladder	ND	174000	85600	ND	5800	10300	9240	2800	924	
Urine	1790000	413000	200000	351000	36800	24700	14600	327	BLQ	

BLQ = below the limit of quantitation (< 311 ng equivalents [¹⁴C]GS-7340/g); F = female; M = male; ND = not detectable; NR = not represented; TAF = tenofovir alafenamide

Report Title:					Study	Type	Test Article	Repo	rt Number				
Pharmacokinetics, Absorption, Oral Administration to Mice	Distribution, a	nd Excretion o	f [¹⁴ C]GS-7340) Following	Distrit	oution	[¹⁴ C]TAF	AD	-120-2011				
Species:	C57 Black M	ice											
Sex (M/F) / No. of Animals:	M/9												
Method of Administration:	Oral gavage												
Dose (mg/kg):	100												
Feeding Condition:	Not fasted	ot fasted											
Radionuclide:	Carbon-14	arbon-14											
Specific Activity:	57.1 mCi/mm	7.1 mCi/mmol											
Vehicle/Formulation:	water:hydrox	water:hydroxypropyl methyl cellulose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)											
Sampling Time:	0.5, 1, 3, 12, 2	0.5, 1, 3, 12, 24, 96, 168, 240, and 336 hours postdose											
Analyte/Assay:	[¹⁴ C]TAF / Quantitative whole body autoradiography												
	Concentration of Radioactivity (ng Equivalents [¹⁴ C]TAF/g) Animal Number (Sacrifice Time)												
Tissue	A19068 0.5h	A19069 1 h	A19070 3 h	A19071 12 h	A19072 24 h	A19073 96 h	A19074 168 h	A19075 240 h	A1907 336 h				
Blood and Tissue Radioactiv	ity								•				
Adrenal gland(s)	34000	26400	20400	7750	10400	2710	2310	1610	1430				
				i		2620	1020	2360					
Bile	198000	136000	150000	40300	26600	3620	1020	2300	2160				
	198000 16700	136000 9270	150000 7910	40300 4170	26600 3780	1100	788	675	2160 BLQ				
Blood													
Bile Blood Bone Bone marrow	16700	9270	7910	4170	3780	1100	788	675	BLQ				

			Concentr	ation of Radio Animal N	oactivity (ng E umber (Sacri		C]TAF/g)		
Tissue	A19068 0.5h	A19069 1 h	A19070 3 h	A19071 12 h	A19072 24 h	A19073 96 h	A19074 168 h	A19075 240 h	A19076 336 h
Blood and Tissue Radioactivi	ity (continued)								
Brain cerebrum	1240	661	BLQ	ND	ND	ND	ND	ND	ND
Brain medulla	886	BLQ	BLQ	ND	ND	ND	ND	ND	ND
Brain olfactory lobe	3790	1730	1640	688	707	ND	ND	ND	ND
Cecum	25400	95400	ND	50500	10500	BLQ	ND	ND	ND
Diaphragm	60300	103000	114000	27500	25900	2340	2360	1830	1410
Epididymis	10800	4190	4990	2120	2150	ND	ND	ND	ND
Esophagus	76100	81300	48900	27900	8540	1540	1660	723	ND
Exorbital lacrimal gland	18100	12000	11800	4910	3530	1050	1010	940	ND
Eye lens	4310	1870	1110	527	BLQ	ND	ND	ND	ND
Eye uveal tract	13400	12200	11600	4740	6140	ND	ND	ND	ND
Eye(s)	5000	2920	2440	1040	1060	ND	ND	ND	ND
Fat (abdominal)	5460	6820	2140	4180	1700	6410	BLQ	ND	ND
Fat (brown)	19200	18700	14500	10800	8660	2420	1190	812	569
Gall bladder	163000	379000	275000	94000	39800	6580	4130	ND	ND
Harderian gland	18500	14600	13600	6200	4580	861	ND	ND	ND
Intra-orbital lacrimal gland	NR	NR	NR	NR	3760	ND	ND	ND	ND
Kidney cortex	137000	125000	104000	58000	34500	5660	5350	4300	2530
Kidney medulla	125000	94700	80000	40200	19400	3640	2980	2620	1820

			Concentr	ation of Radio Animal N	oactivity (ng E umber (Sacri		C]TAF/g)		
Tissue	A19068 0.5h	A19069 1 h	A19070 3 h	A19071 12 h	A19072 24 h	A19073 96 h	A19074 168 h	A19075 240 h	A19076 336 h
Blood and Tissue Radioa	activity (continued))	•	•	•	•	•		•
Kidney(s)	132000	107000	89600	47500	29500	4820	4540	3550	2240
Large intestine	25700	17300	32300	74200	35000	2930	1530	785	BLQ
Liver	488000	490000	385000	282000	118000	21900	14200	9840	7510
Lung(s)	32300	32500	26500	18100	13500	4440	4260	3330	2120
Lymph node(s)	17900	14600	12600	8020	10900	ND	ND	ND	ND
Muscle	8780	4140	3190	2010	3900	753	982	650	491
Myocardium	23200	13500	13600	8470	9510	2490	2170	2070	1540
Nasal turbinates	10600	2980	3550	2390	1920	799	ND	ND	ND
Pancreas	34900	26900	31500	15400	13900	1780	1940	1650	1220
Pituitary gland	17400	8440	6590	850	ND	ND	ND	ND	ND
Preputial gland	11500	6390	6130	2240	1970	ND	ND	ND	ND
Prostate gland	ND	8630	4840	8620	ND	ND	ND	ND	ND
Salivary gland(s)	36200	24200	27200	9910	12200	1150	1080	899	522
Seminal vesicle(s)	5540	3530	2470	2150	825	BLQ	ND	ND	ND
Skin (pigmented)	11600	5930	3350	1180	1340	ND	ND	ND	ND
Small intestine	26900	56100	28000	14100	11300	5030	ND	ND	ND
Spinal cord	1950	742	BLQ	BLQ	ND	ND	ND	ND	ND
Spleen	35300	29600	29100	16600	12200	2570	2560	1550	978

		Concentration of Radioactivity (ng Equivalents [¹⁴ C]TAF/g) Animal Number (Sacrifice Time)										
Tissue	A19068 0.5h	A19069 1 h	A19070 3 h	A19071 12 h	A19072 24 h	A19073 96 h	A19074 168 h	A19075 240 h	A19076 336 h			
Blood and Tissue Radioa	ctivity (continued))	•	•	•		•	•	•			
Stomach	60500	70600	29200	7900	6730	1610	1500	1230	859			
Stomach mucosa	ND	ND	ND	ND	ND	ND	ND	ND	ND			
Stomach wall	ND	ND	ND	ND	ND	ND	ND	ND	ND			
Testis(es)	2640	1760	1070	512	752	ND	ND	ND	ND			
Thymus	12400	8190	7190	3440	3410	BLQ	ND	ND	ND			
Thyroid	40700	32700	29000	NR	10900	4840	4150	3160	2620			
Urinary bladder	ND	138000	49100	12000	6290	1290	ND	ND	ND			
Urine	1170000	626000	128000	135000	18400	495	ND	ND	ND			

BLQ = below the limit of quantitation (< 490 ng equivalents [¹⁴C]GS-7340/g); F = female; M = male; ND = not detectable; NR = not represented; TAF = tenofovir alafenamide

Report Title:			Study Type	Test Article	Report Number						
Pharmacokinetics, Absorption, Oral Administration to Mice	Distribution, and Excretion of [¹⁴ C]	GS-7340 Following	Distribution	[¹⁴ C]TAF	AD-120-2011						
Species:	CD-1 Mice										
Sex (M/F) / No. of Animals:	M/4										
Method of Administration:	Oral gavage										
Dose (mg/kg):	100										
Feeding Condition:	Not fasted										
Radionuclide:	Carbon-14										
Specific Activity:	57.1 mCi/mmol										
Vehicle/Formulation:	water:hydroxypropyl methyl cellu	llose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)								
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation Co	ounter									
		Cumulative Excretion of Radioactivity (% of Dose)									
Time Point	Urine	Feces	Cage Ri	inse	Total						
0-12 h	9.75	NA	NA		9.75						
0-24 h	19.3	31.1	3.95		54.4						
0-48 h	24.6	36.1	4.91		65.6						
0-72 h	25.9	37.6	5.50		69.0						
0-96 h	26.7	39.4	6.06		72.2						
0-120 h	27.1	40.4	6.40		73.9						
0-144 h	27.4	41.0	6.65		75.1						
0-168 h	27.7	41.3	NA		69.0						

F = female; M = male; NA = not applicable; TAF = tenofovir alafenamide

5.3.2. AD-120-2020: Pharmacokinetics, Absorption, Distribution, and Excretion of [¹⁴C]TAF in Rat Following Oral Administration

Report Title:		Study Type	Test Article	Report Number			
Pharmacokinetics, Distribution Single Oral Administration to 1	a, Metabolism, and Excretion of [¹⁴ C]GS-7340 Following Rats	Distribution	[¹⁴ C]TAF	AD-120-2020			
Species:	Sprague-Dawley Rats						
Sex (M/F) / No. of Animals:	M/15						
Method of Administration:	Oral gavage						
Dose (mg/kg/day):	5						
Feeding Condition:	Fasted						
Specific Activity:	57.0 mCi/mmol						
Radionuclide:	Carbon-14						
Vehicle/Formulation:	water:hydroxypropyl methyl cellulose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)					
Sample:	Plasma/Blood						
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation Counter						
Sample Type	Plasma		Blood				
Tabulated PK Results (Mean)						
T _{max} (h)	0.25		0.25				
C _{max} (ng eq/g)	1110		603				
$t_{\nu_{2}}\left(h\right)$	14.1		21.5				
AUC _{0-t} (ng eq•h/g)	3591		2432				
AUC_{inf} (ng eq•h/g)	3870		2588				

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; C_{max} = maximum plasma concentration; F = female; M = male; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide

Report Title:					Study	Type	<u>Test Article</u>	Repo	rt Number				
Pharmacokinetics, Distribution Single Oral Administration to l		and Excretion	of [¹⁴ C]GS-734	40 Following	Distrit	oution	[¹⁴ C]TAF	AD	-120-2020				
Species:	Sprague-Dav	vley Rats											
Sex (M/F) / No. of Animals:	M/9												
Method of Administration:	Oral gavage	al gavage											
Dose (mg/kg):	5												
Feeding Condition:	Fasted	sted											
Radionuclide:	Carbon-14	rbon-14											
Specific Activity:	57.0 mCi/mr	7.0 mCi/mmol											
Vehicle/Formulation:	water:hydrox	water:hydroxypropyl methyl cellulose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)											
Sampling Time:	0.25, 1, 4, 8,	0.25, 1, 4, 8, 12, 24, 48, 96, and 168 hours postdose											
Analyte/Assay:	[¹⁴ C]TAF / Q	Quantitative wh	ole body autor	adiography									
	Concentration of Radioactivity (ng Equivalents [¹⁴ C]TAF/g) Animal Number (Sacrifice Time)												
Tissue	B35426 0.25h	B35427 1 h	B35428 4 h	B35429 8 h	B35430 12 h	B35431 24 h	B35432 48 h	B35433 96 h	B35434 168 h				
Blood and Tissue Radioactivi	ity	•			•				•				
Adrenal gland(s)	181	129	BLQ	ND	ND	ND	ND	ND	ND				
Arterial wall	817	299	118	ND	ND	ND	ND	ND	ND				
Bile	ND	ND	ND	ND	ND	ND	ND	ND	ND				
Blood	1070	334	138	76.6	83.1	ND	ND	ND	ND				
	1	ND	ND	ND	ND	ND	ND	ND					
Bone	BLQ	ND	ND	ND	ND	ПD	ПЪ	ND	ND				

			Concentr	ation of Radio Animal N	oactivity (ng E lumber (Sacri		C]TAF/g)		
Tissue	B35426 0.25h	B35427 1 h	B35428 4 h	B35429 8 h	B35430 12 h	B35431 24 h	B35432 48 h	B35433 96 h	B35434 168 h
Blood and Tissue Radioactiv	ity (continued))							
Brain cerebellum	BLQ	ND	ND	ND	ND	ND	ND	ND	ND
Brain cerebrum	BLQ	ND	ND	ND	ND	ND	ND	ND	ND
Brain medulla	BLQ	ND	ND	ND	ND	ND	ND	ND	ND
Brain olfactory lobe	45.7	BLQ	ND	ND	ND	ND	ND	ND	ND
Bulbo-urethral gland	396	177	236	BLQ	ND	ND	ND	ND	ND
Cecum	218	132	541	313	NR	323	261	ND	ND
Diaphragm	210	145	52.9	BLQ	ND	ND	ND	ND	ND
Epididymis	249	101	BLQ	BLQ	ND	ND	ND	ND	ND
Esophagus	341	222	187	79.8	58.9	ND	ND	ND	ND
Exorbital lacrimal gland	234	101	51.2	ND	ND	ND	ND	ND	ND
Eye lens	BLQ	ND	ND	ND	ND	ND	ND	ND	ND
Eye uveal tract	409	187	78.4	ND	ND	ND	ND	ND	ND
Eye vitreous humor	84.9	89.3	BLQ	ND	ND	ND	ND	ND	ND
Eye(s)	86.1	92.7	BLQ	ND	ND	ND	ND	ND	ND
Fat (abdominal)	BLQ	BLQ	ND	ND	ND	ND	ND	ND	ND
Fat (brown)	200	97.1	48.2	BLQ	55.7	ND	ND	ND	ND
Harderian gland	98.6	52.4	BLQ	ND	ND	ND	ND	ND	ND
Intra-orbital lacrimal gland	250	118	BLQ	ND	ND	ND	ND	ND	ND

			Concentr	ation of Radio Animal N	oactivity (ng H lumber (Sacri		C]TAF/g)		
Tissue	B35426 0.25h	B35427 1 h	B35428 4 h	B35429 8 h	B35430 12 h	B35431 24 h	B35432 48 h	B35433 96 h	B35434 168 h
Blood and Tissue Radioac	tivity (continued))							
Kidney cortex	10700	12400	11800	6410	8300	2010	677	70.3	ND
Kidney medulla	8240	5040	2800	1210	1010	317	161	BLQ	ND
Kidney(s)	9520	8710	8250	4720	4590	1380	511	52.0	ND
Large intestine	364	140	55.8	BLQ	ND	ND	ND	ND	ND
Liver	6730	6730	4010	2410	3570	1090	751	145	195
Lung(s)	592	211	81.1	ND	ND	ND	ND	ND	ND
Lymph node(s)	318	ND	ND	ND	ND	ND	ND	ND	ND
Muscle	101	BLQ	ND	ND	ND	ND	ND	ND	ND
Myocardium	361	136	58.6	BLQ	ND	ND	ND	ND	ND
Nasal turbinates	123	83.8	52.8	ND	ND	ND	ND	ND	ND
Pancreas	215	120	68.9	46.1	52.0	ND	ND	ND	ND
Pituitary gland	335	116	50.5	BLQ	76.2	ND	ND	ND	ND
Preputial gland	140	60.1	BLQ	ND	ND	ND	ND	ND	ND
Prostate gland	134	88.6	117	BLQ	BLQ	ND	ND	ND	ND
Salivary gland(s)	292	119	BLQ	ND	ND	ND	ND	ND	ND
Seminal vesicle(s)	62.7	ND	ND	ND	ND	ND	ND	ND	ND
Skin (nonpigmented)	393	123	BLQ	ND	ND	ND	ND	ND	ND
Small intestine	479	500	364	284	86.5	171	58.3	ND	ND

	Concentration of Radioactivity (ng Equivalents [¹⁴ C]TAF/g) Animal Number (Sacrifice Time)										
Tissue	B35426 0.25h	B35427 1 h	B35428 4 h	B35429 8 h	B35430 12 h	B35431 24 h	B35432 48 h	B35433 96 h	B35434 168 h		
Blood and Tissue Radioactiv	ity (continued)		•	•	•	•	•	•	•		
Spinal cord	BLQ	ND	ND	ND	ND	ND	ND	ND	ND		
Spleen	147	105	59.0	BLQ	62.8	BLQ	ND	ND	ND		
Stomach	475	126	66.6	ND	ND	ND	ND	ND	ND		
Testis(es)	98.2	50.9	BLQ	ND	ND	ND	ND	ND	ND		
Thymus	91.2	68.1	BLQ	ND	ND	ND	ND	ND	ND		
Thyroid	324	147	63.6	ND	ND	ND	ND	ND	ND		
Tooth pulp	646	228	84.4	ND	ND	ND	ND	ND	ND		
Urinary bladder	925	205	ND	BLQ	1050	BLQ	ND	ND	ND		
Urine	112000	34400	51100	3260	14500	988	645	88.3	ND		

BLQ = below the limit of quantitation (< 45.6 ng equivalents [¹⁴C]GS-7340/g); F = female; ND = not detectable; NR = not represented (tissue not present in section); TAF = tenofovir alafenamide

Report Title:					Study	Туре	Test Article	Repo	rt Number				
Pharmacokinetics, Distribution Single Oral Administration to 1		and Excretion	of [¹⁴ C]GS-734	40 Following	Distrib	oution	[¹⁴ C]TAF	AD	120-2020				
Species:	Long Evans	rats											
Sex (M/F) / No. of Animals:	M/9												
Method of Administration:	Oral gavage	al gavage											
Dose (mg/kg):	5												
Feeding Condition:	Fasted	sted											
Radionuclide:	Carbon-14	rbon-14											
Specific Activity:	57.0 mCi/mr	7.0 mCi/mmol											
Vehicle/Formulation:	water:hydrox	water:hydroxypropyl methyl cellulose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)											
Sampling Time:	0.25, 1, 4, 8,	0.25, 1, 4, 8, 12, 24, 48, 96, and 168 hours postdose											
Analyte/Assay:	[¹⁴ C]TAF / C	[¹⁴ C]TAF / Quantitative whole body autoradiography											
			Concent	ity (ng Equivalents [¹⁴ C]TAF/g) er (Sacrifice Time)									
Tissue	B35435 0.25h	B35436 1 h	B35437 4 h	B35438 8 h	B35439 12 h	B35440 24 h	B35441 48 h	B35442 96 h	B35443 168 h				
Blood and Tissue Radioactiv	ity												
Adrenal gland(s)	353	115	48.5	ND	ND	ND	ND	ND	ND				
Arterial wall	1350	270	90.4	93.8	ND	ND	ND	ND	ND				
Bile	ND	ND	ND	ND	ND	ND	ND	ND	ND				
Blood	1260	221	116	125	117	ND	ND	ND	ND				
Bone	50.4	BLQ	ND	ND	ND	ND	ND	ND	ND				
20110													

		Concentration of Radioactivity (ng Equivalents [¹⁴ C]TAF/g) Animal Number (Sacrifice Time)									
Tissue	B35435 0.25h	B35436 1 h	B35437 4 h	B35438 8 h	B35439 12 h	B35440 24 h	B35441 48 h	B35442 96 h	B35443 168 h		
Blood and Tissue Radioactiv	ity (continued))									
Brain cerebellum	BLQ	ND	ND	ND	ND	ND	ND	ND	ND		
Brain cerebrum	BLQ	ND	ND	ND	ND	ND	ND	ND	ND		
Brain medulla	BLQ	ND	ND	ND	ND	ND	ND	ND	ND		
Brain olfactory lobe	57.2	51.0	ND	ND	ND	ND	ND	ND	ND		
Bulbo-urethral gland	831	209	ND	ND	ND	ND	ND	ND	ND		
Cecum	603	118	889	462	362	494	101	BLQ	ND		
Diaphragm	353	124	55.8	BLQ	ND	ND	ND	ND	ND		
Epididymis	516	79.3	BLQ	58.4	ND	ND	ND	ND	ND		
Esophagus	923	218	186	637	65.8	ND	ND	ND	ND		
Exorbital lacrimal gland	353	56.1	BLQ	BLQ	ND	ND	ND	ND	ND		
Eye lens	BLQ	BLQ	ND	ND	ND	ND	ND	ND	ND		
Eye uveal tract	555	89.5	59.4	BLQ	ND	ND	ND	ND	ND		
Eye vitreous humor	139	BLQ	BLQ	ND	ND	ND	ND	ND	ND		
Eye(s)	150	BLQ	BLQ	BLQ	ND	ND	ND	ND	ND		
Fat (abdominal)	70.0	BLQ	ND	ND	ND	ND	ND	ND	ND		
Fat (brown)	232	BLQ	ND	ND	ND	ND	ND	ND	ND		
Harderian gland	209	BLQ	ND	ND	ND	ND	ND	ND	ND		
Intra-orbital lacrimal gland	402	53.4	49.1	ND	ND	ND	ND	ND	ND		

		Concentration of Radioactivity (ng Equivalents [¹⁴ C]TAF/g) Animal Number (Sacrifice Time)									
Tissue	B35435 0.25h	B35436 1 h	B35437 4 h	B35438 8 h	B35439 12 h	B35440 24 h	B35441 48 h	B35442 96 h	B35443 168 h		
Blood and Tissue Radioac	tivity (continued))									
Kidney cortex	8000	8890	6980	7360	5150	2440	570	65.6	ND		
Kidney medulla	6900	3670	655	1920	757	367	117	BLQ	ND		
Kidney(s)	7750	7570	5160	5260	3000	1310	390	48.1	ND		
Large intestine	548	91.5	474	97.5	133	132	575	166	ND		
Liver	10300	7800	7710	6670	5610	1380	671	221	139		
Lung(s)	854	145	67.2	76.5	66.3	BLQ	ND	ND	ND		
Lymph node(s)	422	94.9	ND	ND	ND	ND	ND	ND	ND		
Muscle	115	BLQ	ND	ND	ND	ND	ND	ND	ND		
Myocardium	512	46.6	BLQ	72.7	BLQ	ND	ND	ND	ND		
Nasal turbinates	201	71.9	BLQ	ND	ND	ND	ND	ND	ND		
Pancreas	274	82.1	53.5	71.0	ND	ND	ND	ND	ND		
Pituitary gland	434	53.1	ND	ND	ND	ND	ND	ND	ND		
Preputial gland	247	67.9	ND	ND	ND	ND	ND	ND	ND		
Prostate gland	247	BLQ	49.9	ND	ND	ND	ND	ND	ND		
Salivary gland(s)	368	85.3	BLQ	BLQ	BLQ	ND	ND	ND	ND		
Seminal vesicle(s)	67.7	BLQ	ND	ND	ND	ND	ND	ND	ND		
Skin (nonpigmented)	526	71.8	BLQ	ND	ND	ND	ND	ND	ND		
Skin (pigmented)	623	78.9	BLQ	ND	ND	ND	ND	ND	ND		

Tissue		Concentration of Radioactivity (ng Equivalents [¹⁴ C]TAF/g) Animal Number (Sacrifice Time)									
	B35435 0.25h	B35436 1 h	B35437 4 h	B35438 8 h	B35439 12 h	B35440 24 h	B35441 48 h	B35442 96 h	B35443 168 h		
Blood and Tissue Radio	pactivity (continued))	•		•	•	•		•		
Small intestine	530	379	122	278	220	98.6	BLQ	ND	ND		
Spinal cord	BLQ	BLQ	ND	ND	ND	ND	ND	ND	ND		
Spleen	231	83.1	58.3	75.8	60.7	BLQ	BLQ	ND	ND		
Stomach	682	113	71.4	69.9	159	BLQ	BLQ	ND	ND		
Testis(es)	157	BLQ	BLQ	BLQ	BLQ	ND	ND	ND	ND		
Thymus	181	BLQ	BLQ	BLQ	ND	ND	ND	ND	ND		
Thyroid	412	59.1	ND	ND	ND	ND	ND	ND	ND		
Tooth pulp	793	194	78.7	89.3	57.0	NR	ND	ND	ND		
Urinary bladder	352	155	125	89.1	45.9	48.3	BLQ	ND	ND		
Urine	50200	61000	2280	6540	1140	1500	109	BLQ	ND		

 $BLQ = below the limit of quantitation (< 45.6 ng equivalents [^{14}C]GS-7340/g); F = female; ND = not detectable; NR = not represented (tissue not present in section); TAF = tenofovir alafenamide$

Report Title:			Study Type	Test Article	Report Number
Pharmacokinetics, Distribution Single Oral Administration to 1	n, Metabolism, and Excretion of [Rats	¹⁴ C]GS-7340 Following	Distribution	[¹⁴ C]TAF	AD-120-2020
Species:	Sprague-Dawley rats				
Sex (M/F) / No. of Animals:	M/3				
Method of Administration:	Oral gavage				
Dose (mg/kg):	5				
Feeding Condition:	Fasted				
Radionuclide:	Carbon-14				
Specific Activity:	57.0 mCi/mmol				
Vehicle/Formulation:	water:hydroxypropyl methyl c	ellulose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)		
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation	n Counter			
		Cumulative Excretion	on of Radioactivity (%	of Dose)	
Time Point	Urine	Feces	Cage R	inse	Total
0-8 h	14.6 ± 3.78	NA	NA		14.6 ± 3.78
0-24 h	19.8 ± 4.96	66.8 ± 6.14	1.22 ± 0).16	87.9 ± 1.06
0-48 h	21.5 ± 5.45	71.1 ± 4.73	1.46 ± ().08	94.1 ± 0.71
0-72 h	21.8 ± 5.45	71.6 ± 4.50	1.56 ± 0).15	95.0 ± 1.01
0-96 h	22.0 ± 5.48	71.8 ± 4.52	1.67 ± 0).26	95.4 ± 0.97
0-120 h	22.1 ± 5.47	71.8 ± 4.51	1.70 ± 0).28	95.6 ± 0.90
0-144 h	22.1 ± 5.47	71.9 ± 4.51	1.71 ± 0).28	95.7 ± 0.95
0-168 h	22.2 ± 5.42	71.9 ± 4.49	NA		94.1 ± 0.93

F = female; M = male; NA = not applicable; TAF = tenofovir alafenamide

Report Title: Pharmacokinetics, Distribution Single Oral Administration to D		on of [¹⁴ C]GS-7340 Follow	ving	<u>Study Type</u> Distribution	Test Artic [¹⁴ C]TAF				
Species:	Bile Duct-Cannulated SI	D rats							
Sex (M/F) / No. of Animals:	M/5								
Method of Administration:	Oral gavage								
Dose (mg/kg):	5								
Feeding Condition:	Fasted								
Radionuclide:	Carbon-14								
Specific Activity:	57.0 mCi/mmol								
Vehicle/Formulation:	water:hydroxypropyl me	thyl cellulose (HPMC):twe	een 80 (9	9.8:0.1:0.1, v:v:v)					
Analyte/Assay:	[14C]TAF / Liquid Scinti	llation Counter							
		Cumulative Excretion of Radioactivity (% of Dose)							
Time Point	Urine	Feces		Bile	Cage Rinse	Total			
0-2 h	NA	NA	1	.81 ± 0.76	NA	1.81 ± 0.76			
0-4 h	NA	NA	1	.93 ± 0.76	NA	1.93 ± 0.76			
0-6 h	NA	NA	1	.97 ± 0.77	NA	1.97 ± 0.77			
0-8 h	15.3 ± 1.82	NA	2	2.00 ± 0.78	NA	17.3 ± 2.18			
0-12 h	NA	NA	2	2.04 ± 0.79	NA	2.04 ± 0.80			
0-24 h	21.1 ± 3.42	56.7 ± 15.3	2	2.09 ± 0.81	0.91 ± 0.17	80.7 ± 11.4			
0-48 h	22.7 ± 3.95	70.9 ± 7.10	2	2.11 ± 0.82	1.14 ± 0.21	96.8 ± 2.58			
0-72 h	23.0 ± 4.06	72.3 ± 6.02	2	2.11 ± 0.82	1.28 ± 0.27	98.6 ± 1.49			
0-96 h	23.1 ± 4.11	72.4 ± 5.95	2	2.11 ± 0.82	1.33 ± 0.29	99.0 ± 1.40			
0-120 h	23.2 ± 4.12	72.5 ± 5.96	2	2.11 ± 0.82	1.35 ± 0.29	99.1 ± 1.40			
0-144 h	23.2 ± 4.13	72.5 ± 5.96	2	2.11 ± 0.82	1.37 ± 0.30	99.2 ± 1.49			
0-168 h	23.2 ± 4.15	72.6 ± 5.96	2	2.11 ± 0.82	NA	97.9 ± 1.35			

F = female; M = male; NA = not applicable; TAF = tenofovir alafenamide

5.3.3. AD-120-2009: Distribution of [¹⁴C]TAF in Dog Following Oral Administration

Report Title:		Study Type	Test Article	Report Number
Absorption and Distribution of to Dogs	^{[14} C]GS-7340 Following Single and Multiple Oral Doses	Distribution	[¹⁴ C]TAF	AD-120-2009
Species:	Beagle dogs			
Sex (M/F) / No. of Animals:	M/10			
Method of Administration:	Oral gavage			
Dose Administration:	Nonradiolabeled test article was dosed for 4 days followed	by a single dose of radio	plabeled test article on l	Day 5
Dose (mg/kg/day):	15			
Feeding Condition:	Fasted			
Radionuclide:	Carbon-14			
Specific Activity:	57.1 mCi/mmol			
Vehicle/Formulation:	water:hydroxypropyl methyl cellulose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)		
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation Counter			
	Mean Concentration	(ng Equivalents [¹⁴ C]G	S-7340/g)	
Time Point	Blood		Plasma	
1 h	2220		3180	
2 h	1290		1750	
6 h	811		783	
12 h	449		363	
24 h	340		277	

F = female; M = male; NA = not applicable; TAF = tenofovir alafenamide Note: Mean concentrations were calculated from 2 animals/timepoint.

Report Title:		<u>Study Type</u>	Test Article	Report Number
Absorption and Distribution of to Dogs	^F [¹⁴ C]GS-7340 Following Single and Multiple Oral Doses	Distribution	[¹⁴ C]TAF	AD-120-2009
Species:	Beagle dogs			
Sex (M/F) / No. of Animals:	M/10			
Method of Administration:	Oral gavage			
Dose (mg/kg):	15			
Feeding Condition:	Fasted			
Radionuclide:	Carbon-14			
Specific Activity:	57.1 mCi/mmol			
Vehicle/Formulation:	water:hydroxypropyl methyl cellulose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)		
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation Counter			
	Mean Concentration	(ng Equivalents [¹⁴ C]G	S-7340/g)	
Time Point	Blood		Plasma	
1 h	485		778	
2 h	1280		1890	
6 h	401		355	
12 h	295		262	
24 h	201		172	

F = female; M = male; NA = not applicable; TAF = tenofovir alafenamide Note: Mean concentrations were calculated from 2 animals/timepoint.

Report Title:				Study Type	Test Article	Report Number				
Absorption and Distribution of to Dogs	f [¹⁴ C]GS-7340 Followi	ing Single and Multip	le Oral Doses	Distribution	[¹⁴ C]TAF	AD-120-2009				
Species:	Beagle dogs									
Sex (M/F) / No. of Animals:	M/10									
Method of Administration:	Oral gavage	Oral gavage								
Dose Administration:	Nonradiolabeled test	Nonradiolabeled test article was dosed for 4 days followed by a single dose of radiolabeled test article on Day 5								
Dose (mg/kg/day):	15									
Feeding Condition:	Fasted	sted								
Radionuclide:	Carbon-14	rbon-14								
Specific Activity:	57.1 mCi/mmol	57.1 mCi/mmol								
Vehicle/Formulation	water:hydroxypropy	l methyl cellulose (HF	PMC):tween 80 (99	9.8:0.1:0.1, v:v:v)						
Analyte/Assay:	[¹⁴ C]TAF / Liquid So	cintillation Counter								
		Cor	ncentrations (ng]	Equivalents [¹⁴ C]GS-7	7340/g)					
Time Point	Bone	Heart	Kidney(s)	Liver	Lung	Thyroid				
1 h	2390	3450	45500	74900	8660	15200				
2 h	4410	4420	89300	105000	13000	26500				
6 h	5600	5310	162000	109000	15000	30500				
12 h	4350	4330	144000	84600	9640	21600				
24 h	2990	3970	107000	78100	8610	16800				

Report Title:				Study Type	Test Article	Report Numbe
Absorption and Distribution of to Dogs	[¹⁴ C]GS-7340 Followi	ng Single and Multip	le Oral Doses	Distribution	[¹⁴ C]TAF	AD-120-2009
Species:	Beagle dogs					
Sex (M/F) / No. of Animals:	M/10					
Method of Administration:	Oral gavage					
Dose (mg/kg):	15					
Feeding Condition:	Fasted					
Radionuclide:	Carbon-14					
Specific Activity:	57.1 mCi/mmol					
Vehicle/Formulation:	water:hydroxypropy	l methyl cellulose (HF	PMC):tween 80 (99.8	:0.1:0.1, v:v:v)		
Analyte/Assay:	[¹⁴ C]TAF / Liquid So	cintillation Counter				
		Co	ncentrations (ng Eq	uivalents [¹⁴ C]GS-7.	340/g)	
Time Point	Bone	Heart	Kidney(s)	Liver	Lung	Thyroid
1 h	476	776	17000	47900	2480	2960
2 h	2440	2750	82500	97600	10200	12700
6 h	2600	3070	99700	97000	8870	15600
12 h	2220	2820	91800	78300	6970	16800
24 h	1100	1990	88500	64100	5260	4900

Report Title:				Study T	ype <u>Te</u>	est Article	Report Number				
Absorption and Distribution of to Dogs	f [¹⁴ C]GS-7340 Foll	owing Single and	Multiple Oral Doses	Distribu	tion [¹⁴ C]TAF	AD-120-2009				
Species:	Beagle dogs										
Sex (M/F) / No. of Animals:	M /10										
Method of Administration:	Oral gavage										
Dose Administration:	Nonradiolabeled	test article was do	sed for 4 days follow	ved by a single do	se of radiolabeled	test article on I	Day 5				
Dose (mg/kg/day):	15										
Feeding Condition:	Fasted										
Radionuclide:	Carbon-14	rbon-14									
Specific Activity:	57.1 mCi/mmol										
Vehicle/Formulation:	water:hydroxypro	opyl methyl cellulo	ose (HPMC):tween 8	0 (99.8:0.1:0.1, v	:v:v)						
Analyte/Assay:	[¹⁴ C]TAF / Liqui	d Scintillation Cou	inter								
			Percent of R	adioactive Dose	(% of Dose)						
Time Point	Blood	Bone	Heart	Kidney(s)	Liver	Lung	Thyroid				
1 h	0.64	1.48	0.19	1.39	15.4	0.50	0.013				
2 h	0.37	2.70	0.24	2.78	23.1	0.75	0.019				
6 h	0.23	3.45	0.26	4.17	19.4	0.87	0.020				
12 h	0.13	2.69	0.24	3.93	18.3	0.60	0.011				
24 h	0.10	1.85	0.22	2.76	15.0	0.50	0.008				

Report Title:				<u>Study T</u>	ype <u>Tes</u>	st Article	Report Number
Absorption and Distribution of to Dogs	F [¹⁴ C]GS-7340 Foll	owing Single and N	Multiple Oral Dose	s Distribu	tion [¹	⁴ C]TAF	AD-120-2009
Species:	Beagle dogs						
Sex (M/F) / No. of Animals:	M /10						
Method of Administration:	Oral gavage						
Dose (mg/kg):	15						
Feeding Condition:	Fasted						
Radionuclide:	Carbon-14						
Specific Activity:	57.1 mCi/mmol						
Vehicle/Formulation:	water:hydroxypro	opyl methyl cellulo	se (HPMC):tween	80 (99.8:0.1:0.1, v	:v:v)		
Analyte/Assay:	[¹⁴ C]TAF / Liqui	d Scintillation Cou	nter				
			Percent of 1	Radioactive Dose	(% of Dose)		
Time Point	Blood	Bone	Heart	Kidney(s)	Liver	Lung	Thyroid
1 h	0.14	0.30	0.05	0.60	8.78	0.19	0.002
2 h	0.37	1.51	0.17	2.84	19.6	0.62	0.009
6 h	0.12	1.61	0.17	3.46	18.6	0.50	0.009
12 h	0.08	1.37	0.15	3.02	18.2	0.44	0.012
24 h	0.06	0.67	0.10	2.79	13.9	0.34	0.003

5.3.4. D990173-BP: Distribution of [¹⁴C]TAF in Dog Following Oral Administration

Report Title:			<u>Study Type</u>	Test Article	<u>Report Number</u>
Analysis of Data from East I in Beagle Dogs Following Ora	Biosafety Study G545 "Tissue Distribution of Administration"	of [¹⁴ C]GS-7340	Distribution	[¹⁴ C]TAF	D990173-BP
Species:	Beagle dogs				
Sex (M/F) / No. of Animals:	M/2				
Method of Administration:	Oral gavage				
Dose (mg/kg):	18.1				
Feeding Condition:	Fasted				
Radionuclide:	Carbon-14				
Specific Activity:	53 mCi/mmol				
Vehicle/Formulation:	50 mM citric acid				
Sampling Time:	24 hours postdose				
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation Counter				
		Distribut	ion of Radioactivity		
Tissue/Fluid	Percent of Total Dose (%)	Percent of	Recovered Dose ^a (%)	Concentratio	on (µg eq TFV/g)
Liver	16.5		26.0		52.9
Kidney	3.78		5.98		80.2
Mesenteric Lymph Nodes	0.04		0.06		6.88
Spleen	0.17		0.27		8.13
	0.00		0.00		0.00
Femoral Bone	0.00		0.00		0.28
Femoral Bone Bone Marrow	0.00		0.00		2.05
Bone Marrow					
	0.00		0.00		2.05

		Distribution of Radioactivity				
Tissue/Fluid	Percent of Total Dose (%)	Percent of Recovered Dose ^a (%)	Concentration (µg eq TFV/g)			
Ileum	0.16	0.26	4.61			
Large Intestine	2.66	4.28	47.2			
Bile	0.23	0.35	40.5			
Feces	0.19	0.15	480			
Stomach Content	0.04	0.06	0.91			
Small Intestine Content	1.25	2.00	11.3			
Large Intestine Content	20.4	32.4	155			
Urine	14.7	23.1	25.2			
Plasma	0.00	0.00	0.20			
PBMCs	0.09	0.14	63.2 ^b			

F = female; M = male; TAF = tenofovir alafenamide; TFV = tenofovir

a Selected tissues reported

b Estimated based on the mean reported single cell volume of 0.2 picoliters

5.3.5. AD-120-2044: TAF Penetration into Cerebrospinal Fluid

Report Title:			<u>Study Type</u>	Test Article	<u>Report Number</u>	
Tenofovir Alafenamide Penetr a Single Oral Dose of TAF Ale Cynomolgus Monkeys			Distribution	TAF/COBI	AD-120-2044	
Species:	Cynomolgus monkeys	Cynomolgus monkeys				
Feeding Condition:	Fasted					
Vehicle/Formulation:	0.1% (w/w) hydroxypropyl	methylcellulo	ose K100LV (HPMC) K100L	V, 0.1% polysorbate 20 in wat	er	
Method of Administration:	Oral gavage ^a					
Assay:	LC-MS/MS					
Test Article	TAF & TAF+COBI					
Sex (M/F) / N of Animals			M/6			
Dose	5 mg/kg TAF			2 mg/kg TAF + 30 mg/kg	g COBI	
Analyte	TAF	TFV	TAF	TFV	COBI	
PK Parameters						
C _{max} (µM)	0.36 ± 0.14	0.47 ± 0	$0.24 0.32 \pm 0.26$	0.33 ± 0.10	8.75 ± 1.18	
T _{max} (h)	0.33 ± 0.14	0.83 ± 0	$0.29 0.33 \pm 0.14$	0.83 ± 0.29	4.00 ± 0.00	
$AUC_{0-t} (\mu M \cdot h)$	0.18 ± 0.13	2.37 ± 0	$0.46 0.23 \pm 0.08$	3 2.75 ± 0.69	71.9 ± 12.1	
t _{1/2} (h)	0.17 ± 0.09	8.78 ± 1	$.07$ 0.56 ± 0.42	2. 9.33 ± 1.49	1.95 ± 0.12	
CSF Concontration (µM)	BLQ ^a	BLQ	BLQ	BLQ	-	

 AUC_{0-t} = area under the plasma concentration-time curve from zero to last measured time-point; C_{max} = maximum plasma concentration; COBI = cobicistat; CSF = cerebrospinal fluid; F = female; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; M = male; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir

a Below lower limit of quantification. Lower limit of quantification for TAF and TFV was 7 nM.

6. PHARMACOKINETICS: PLASMA PROTEIN BINDING

6.1. BIC

6.1.1. AD-141-2287: Plasma Protein Binding of BIC in Rats, Dogs, Monkeys, and Humans

Report Title	Study Type	Test Article		Report Number	
In Vitro Protein Binding Determination of GS-9883 by Equilibrium Dialysis	Distribution	BIC		AD-141-2287	
Study System	Plasma from Sprague-Dawley rat, bea	agle dog, cynomolgus monk	ey, rhesus r	nonkey and human	
Method	Plasma (1 mL) containing BIC (2 μ M) and compound-free phosphate buffer (1 mL) were placed into opposite side assembled dialysis cells separated by a semipermeable membrane. The dialysis was carried out at 37°C for 3 hour concentrations in each cell was determined by LC-MS/MS.				
Species	BIC Bound (%) ^a		%) ^a BIC Unbound (%) ^a		
Sprague-Dawley Rat	99.99 ± 0.00		0.01 ± 0.00		
Beagle Dog	98.76 ± 0.06		1.24 ± 0.06		
Cynomolgus Monkey	99.69 ± 0.01			0.31 ± 0.01	
Rhesus Monkey	99.68 ± 0.02		0.32 ± 0.02		
Human	99.75 ± 0.01		0.25 ± 0.01		
Study System:	Human plasma and CCM				
Method:	CCM and human plasma (1 mL) containing BIC (2 µM) were placed in opposite sides of the assembled dialysis cells separated by a semipermeable membrane. The dialysis was carried out at 37°C for 24 hours. BIC concentration in each was determined by LC-MS/MS.				
Human Plasma to CCM Ratio ^a		43.6 ± 7.7			

BIC = bictegravir (GS-9883); CCM = cell culture medium (RPMI media1640) containing 10% fetal bovine serum; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry

a Values are the mean \pm standard deviation (n = 3)

Final

6.1.2. AD-141-2311: Microsomal Binding of BIC

Report Title	Study Type	Test Article		Report Number		
Human Hepatic Microsomal Binding of Bictegravir	Distribution	BIC AD-141-23		AD-141-2311		
Method	Pooled human hepatic microsomal fraction (0.5 mg protein/mL) containing BIC (3 μM) or positive control (amitriptyline 3 μM) was dialyzed in duplicate against buffer at 37°C for overnight. Test compound concentrations in the buffer and microsomal fraction were determined by LC-MS/MS.					
Test Compound	Fraction U	nbound (%) ^a		Recovery (%) ^a		
BIC	80	5.3		80.9		
Amitriptyline	2:	5.0		71.9		

BIC = bictegravir (GS-9883); LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry

a Mean (n = 2)

6.2. FTC

6.2.1. TBZZ/93/0025: Protein Binding of FTC in Mouse, Rabbit, Monkey and Human Plasma

Report Title	Study Type	Test Article	Report Number
Protein Binding of 524W91 in Human, Monkey, Mouse, and Rabbit Plasma	Plasma Protein Binding	FTC	TBZZ/93/0025

Study system: In vitro

Target Entity, Test System, and Methods: Plasma, Equilibrium dialysis

	FTC concent	tration	
Species	μg/mL	μM	<u>% Bound</u>
Human	0.020	0.08	3.3
	0.101	0.41	0.8
	0.501	2.03	2.7
	2.51	10.2	2.2
	10.0	40.4	3.4
	49.9	202	2.0
	200	808	0.0
Monkey	0.020	0.08	0.0
	0.101	0.41	0.0
	0.501	2.03	0.0
	2.51	10.2	0.0
	10.0	40.4	0.0
	49.9	202	2.0
	200	808	0.0
Mouse	0.020	0.08	0.7
	0.101	0.41	3.6

Report Title	Study Type	Test Article	Report Number
Protein Binding of 524W91 in Human, Monkey, Mouse, and Rabbit Plasma	Plasma Protein Binding	FTC	TBZZ/93/0025

Study system: In vitro

Target Entity, Test System, and Methods: Plasma, Equilibrium dialysis

	FTC concent	ration	
<u>Species</u>	μg/mL	μM	<u>% Bound</u>
	0.501	2.03	0.0
	2.51	10.2	2.3
	10.0	40.4	0.0
	49.9	202	3.0
	200	808	3.4
Rabbit	0.020	0.08	2.3
	0.101	0.41	0.0
	0.501	2.03	1.3
	2.51	10.2	0.0
	10.0	40.4	0.0
	49.9	202	0.0
	200	808	0.4

524W91 = emtricitabine

6.3. TAF and TFV

6.3.1. AD-120-2026: Plasma Protein Binding of TAF In Vitro

Report Title:		<u>Study Type</u>	Test Article	<u>Report Number</u>
Plasma Protein Binding of GS-7340		Plasma Protein Binding, In Vitro	TAF	AD-120-2026
Study System:	Plasma from Dog and Human			
Target Entry, Test System, & Methods:	Equilibrium dialysis for 3 hours at 37°C against 0.133 M phosphate buffer, pH 7.4. Analysis by LC-MS/MS.			y LC-MS/MS.
Matrix	Fraction Unbound (%)			
Dog plasma	48.0 ± 6.2			
Human plasma		46.8 ± 2.3		

TAF = tenofovir alafenamide

Note: Incubation concentration of TAF was 2 μM

6.3.2. P0504-00039.1: Protein Binding of TFV

Report Title:		<u>Study Type</u>	Test Article	<u>Report Number</u>	
Protein Binding of Cidofovir, Cyclic HPMF Plasma and Serum	PC, PMEA, and PMPA in Human	Plasma Protein Binding, In Vi	tro TFV	P0504-00039.1	
Study System:	In vitro				
Target Entity, Test System, & Method:	Plasma/serum, ultrafiltration				
Matrix	TFV Concent	% Unbou	nd		
	0.01 µg/m	ıL	96.9		
	2.01 µg/mL		99.9		
	5.01 µg/mL		101.0		
Human Plasma	10.01 µg/mL		95.0		
	25.01 µg/mL		103.5		
			99.3 (3.3) Mean (SD)		
	0.01 µg/mL		90.6		
	2.01 µg/mL		92.4		
Harrison Commen	5.01 µg/mL		97.7		
Human Serum	10.01 µg/mL		88.5		
	25.01 µg/mL		94.7		
			92.8 (3.6) Mea	n (SD)	

7. PHARMACOKINETICS: STUDY IN PREGNANT OR NURSING ANIMALS

7.1. BIC

7.1.1. Rats (m2.6.7, Section 14.1, TX-141-2045)

BIC plasma exposure (C_{max} and AUC) increased with the increase in maternal dose level from 2 to 300 mg/kg/day for maternal rats and pups. Sex-based differences were less than 2-fold in BIC C_{max} and AUC₀₋₂₄ values for pups. No accumulation of BIC was observed after repeat dosing in maternal rats. BIC plasma exposure in maternal rats was roughly similar to pups at the 2 mg/kg/day dose level, slightly higher (approximately 1.5-fold) in maternal rats than in pups at the 10 mg/kg/day dose level, and greater than 2-fold higher (approximately 2.8-fold) in maternal rats than in pups at the 300 mg/kg/day dose level.

7.1.2. Rabbits (m2.6.7, Section 11.1, TX-141-2038)

The BIC plasma exposure (C_{max} and AUC) increased with the increase in dose level from 100 to 1000 mg/kg/day in rabbits on Day of Gestation 7 & 19. In general, no accumulation of BIC (< 2.3-fold) was observed after repeat dosing in rabbits.

7.2. FTC

7.2.1. TOX103: Toxicokinetic Study to Determine Fetal Exposure of FTC in Mice

Report Title		Study Type	Test Article	Report Number
Toxicokinetic Study to Determine Fetal Exposures in CD-1 Mice Given TP-0006 Orally		Repeat-Dose Tissue Distribution	FTC	TOX103 Report Addendum
Methods:				
Species	Mouse / CD-1			
Gestation Day	Gestation days 6-15			
Vehicle/Formulation	0.5% aqueous methylcellulose			
Method of Administration	Oral gavage			
Dose (mg/kg)	1000 (plus 500 only on GD 15)			
Analyte	FTC			
Assay	LC-MS (SIM)			
Plasma:				
The mean \pm standard deviat	ion for plasma concentrations:			
Pregnant mice	$137.1 \pm 28.0 \ \mu\text{g/mL}$			
Pooled fetal homogenate	$57.7\pm10.4~\mu\text{g/mL}$			
The mean fetal/maternal con	ncentration ratio was $0.41 \pm 0.04 \ \mu g/mL$			
Additional Information: On	e female in the low dose group was not pregnant and w	vas not included in the mean values.		

7.2.2. TOX038: Effects of FTC on Embryo/Fetal Development in Rabbits – Toxicokinetics

Report Title		Study Type	Test Article	Report Number
A Study of the Effects of TP-0006 on Embryo/Fetal Development in Rabbits		Repeat-Dose Tissue Toxicokinetics in Embryo/Fetus	FTC	TOX038 Report Addendum
Methods:				
Species	Rabbit / New Zealand White			
Gestation Day/Number of Animals	Treated on gestation day 7-19	/ 20 females per group		
Vehicle/Formulation	0.5% aqueous methylcellulose			
Method of Administration	Oral			
Dose (mg/kg)	0, 100, 300, 1000			
Analyte	FTC			
Assay	LC-MS/MS			

Toxicokinetics

Emtricitabine was rapidly absorbed with C_{max} occurring generally within 1 hour postdose. AUC and C_{max} increased linearly with dose. Plasma elimination t¹/₂ was 3–4 hours at all dose levels. Fetal/maternal exposure ratios were around 0.4–0.5 one hour after dosing (at t_{max}) for all dose levels. Emtricitabine is readily transferred across the placenta.

Dose (mg/kg/day)	C_{max} (µg/mL)	T _{max} (h)	AUC ₀₋₁₂ (µg●h/mL)	AUC ₀₋₂₄ (µg●h/mL)	Fetal/Maternal Ratio
100	16.0	1.0	43.6	87.3	0.42
300	44.2	1.4	157.6	315.2	0.51
1000	143.3	1.7	628.9	1257.8	0.41

Additional Information: A NOEL of 100 mg/kg/day was established for maternal toxicity.

 AUC_{0-12} = area under the plasma concentration-time curve from zero to 12 hr; AUC_{0-24} = area under the plasma concentration-time curve from zero to 24 hr; C_{max} = maximum plasma concentration; FTC = emtricitabine; LC-MS/MS = liquid chromatography-tandem mass spectrometry; T_{max} = time to reach the maximum plasma concentration

7.3. TAF and TFV

7.3.1. TAF

Studies of TAF in pregnant animals are presented in m2.6.7, Sections 11.3 and 12.4.

7.3.2. TFV

7.3.2.1. 96-DDM-1278-005: Placental Transfer and Pharmacokinetics of TFV in Infant Rhesus Monkeys

Report Title:			<u>Study Ty</u>	<u>vpe</u>	<u> Test Article</u>	<u>Report Number</u>			
Placental Transfer and Pharmacokinetics Rhesus Monkeys	Placental Tr	ansfer	TFV	96-DDM-1278-005					
Species	Monkey								
Gestation Day / Number of Animals	Daily dosing beg	Daily dosing beginning at gestational day 111, one animal							
Vehicle/Formulation	Aqueous suspens	Aqueous suspension							
Method of Administration	SC	SC							
Dose (mg/kg)/ day	30	30							
Analyte	TFV								
Assay	HPLC								
		Serum Con	centration TFV (ug/mL) 30 mins A	fter Administrati	on			
Time (gestational day)	115	127	134	140	151	Mean (SD) [CV%]			
Fetal	7.9	9.1	10.1	15	5.9	9.6 (3.4) [35.4]			
Maternal	45.6	61.2	69.4	53.7	56.3	57.2 (8.84) [15.4]			
Fetal/Maternal Ratio	0.17	0.15	0.15	0.28	0.11	0.17 (0.07) [38.6]			

Additional Information: Based upon the data above it was concluded that placental transfer of TFV appeared to be significant.

7.3.2.2. P2000116: Pharmacokinetics of TFV in Lactating Rhesus Monkeys

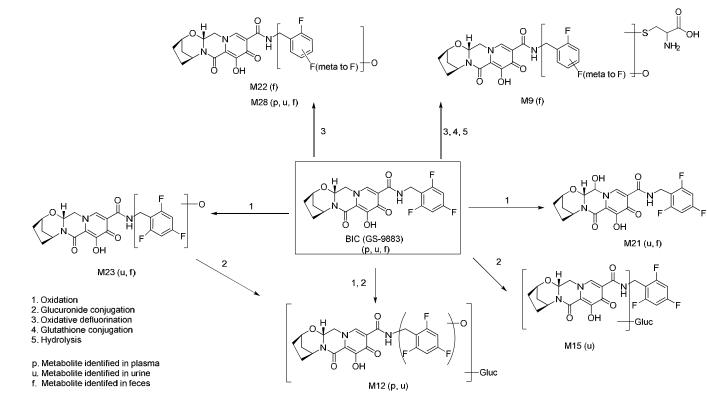
Report Title:		Study Type	Test Article	<u>Report Number</u>				
Pharmacokinetics of Tenofovir in Health Rhesus Monkeys Following a Single 30 n		Lactating Animals	TFV	P2000116				
Species:	Monkey							
Gestation Day / Number of Animals:	Healthy adult female lactating animal	Healthy adult female lactating animals						
Method of Administration:	SC							
Dose (mg/kg/day):	30 single dose							
Analyte:	TFV							
Assay:	LC-MS/MS							
	Animal 1		Animal	2				
PK Parameters (n = 2)	Milk	Serum	Milk	Serum				
C _{max} (µg/mL)	0.808	18.3	0.610	30.2				
T _{max} (h)	4	0.5	1	0.5				
$AUC_{inf} (\mu g \cdot h/mL)$	12.8	68.9	12.1	56.2				
AUC Extrapolated (%)	21.7	0.219	23.3	0.193				
C_{last} (µg/mL)	0.188	0.0264	0.179	0.0264				
T _{last} (h)	24	24	24	24				
CL/F (mL/h/kg)	2338	435	2482	534				
$MRT_{0-\infty}(h)$	16.1	2.79	17.0	3.14				
$t_{1/2}(h)$	10.3	3.97	10.9	2.85				
V _z /F (mL/kg)	34740	2489	39133	2191				

AUC_{inf} = area under the plasma concentration-time curve extrapolated to time infinity; CL = plasma clearance; C_{last} = last observed quantifiable concentration of the drug in plasma; C_{max} = maximum plasma concentration; F = bioavailability; LC-MS/MS = liquid chromatography-tandem mass spectrometry; MRT = mean residence time; PK = pharmacokinetic; $t_{1/2}$ = estimated elimination half-life; T_{last} = time (observed time point) of C_{last} ; T_{max} = time to reach the maximum plasma concentration; TFV = tenofovir; V_Z = apparent volume of distribution during the terminal phase

8. PHARMACOKINETICS: METABOLISM IN VIVO

8.1. BIC

8.1.1. AD-141-2304: Metabolite Profiling of Samples from Mice after Administration of [¹⁴C]BIC


Report Title Profiling and Identification of Metabolites i Transgenic Mice after Oral Administration	Study Type Metabolism	Test Article [¹⁴ C]BIC	Report Number AD-141-2304		
Study System	Metabolite profiling of [¹⁴ C]BIC in plasma, up 2Jic] following a 2 mg/kg oral dose	rine, and feces from R	Ras H2 mouse [CB]	YB6Fl-Tg (HRAS)	
	Plasma	a Profile (0-48 h poo	l)		
Component ^a	AUC _{0-48h} (ng eq·h/g)		% ¹⁴ C in Plasma A	AUC pool	
M12	1957		1.86		
BIC	100424	95.5			
M28	670	0.64			
Total in Plasma	105211		100		
	Urine	Profile (0-24 h pool))		
Component ^a	% Ad	lministered ¹⁴ C Dose			
BIC		0.089			
M15		0.88			
M21		0.50			
Other	15 compon	15 components detected, each < 0.5%			
Total Radioactive Dose in Urine		3.21			

Report Title Profiling and Identification of Metabolites in Selected Transgenic Mice after Oral Administration of ¹⁴ C-GS	Study Type Metabolism	Test Article [¹⁴ C]BIC	Report Number AD-141-2304		
	Feces Profile (0-48 h pool) % Administered ¹⁴ C Dose				
Component ^a					
M9	2.38				
M21/M22		4.21			
M23		3.33			
BIC		64.4			
M28	4.20				
Other	Each component < LOQ				
Total Radioactive Dose in Feces	96.7				

BIC = bictegravir (GS-9883); LOQ = limit of quantitation (1% of run and 10 cpm peak height); M9 = desfluoro-hydroxy-BIC-cysteine conjugate-2; M12 = hydroxy-BIC-glucuronide; M15 = BIC-glucuronide; M21 = hydroxy-BIC-2; M22 = desfluoro-hydroxy-BIC-2; M23 = hydroxy-BIC-3; M28 = desfluoro-hydroxy-BIC-4; other metabolites were not identifiable due to low concentration

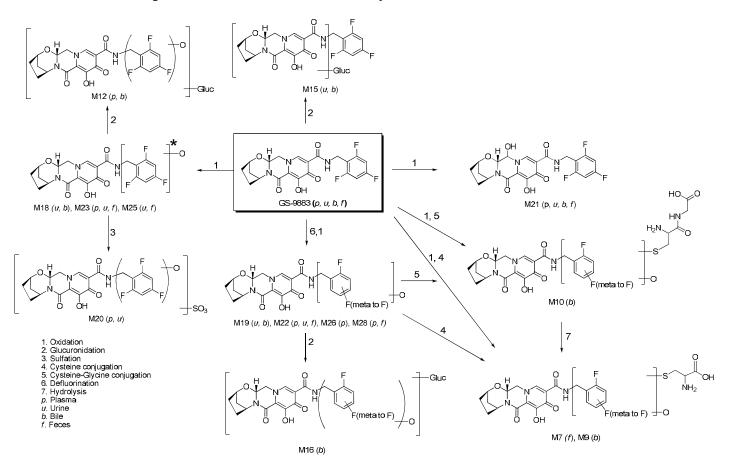
a Proposed structures are shown in Section 8.1.2.

8.1.2. AD-141-2304: Proposed Biotransformation Pathways of [¹⁴C]BIC in Mice

8.1.3. AD-141-2277: Metabolite Profiling of Samples from Rats after Administration of [¹⁴C]BIC

Report Title Profiling and Identification of Metabolites i	n Selected Plasma, Urine, Bile, and Feces Samples from	Study Type Metabolism	Test Article [¹⁴ C]BIC	Report Number AD-141-2277		
Rats after Oral Administration of ¹⁴ C-GS-9	883					
Study System		Metabolite profiling of [¹⁴ C]BIC in plasma, urine, bile, and feces from bile duct-intact and bile duct-cannulated male Wistar Han rats following a 2 mg/kg oral dose				
	Plasma P	Profile (0-168 h poo	ol)			
Component ^a	AUC _{0-168h} (ng eq·h/g)		% ¹⁴ C in Plasma A	AUC pool		
M12	19432		2.18			
M20	100279		11.3			
M21/M22	10518		1.18			
M23	21036		2.36			
M26	12657		1.42			
BIC	682164		76.5			
M28	8379		0.94			
Total in Plasma	854465		95.9			
	Urine Profile from Bile Duct-Intact Rats (0-48 h pool)	s Urine Pro	ofile from Bile Duc (0-48 h poc	et-Cannulated Rats		
Component ^a	% Administered ¹⁴ C Dose		% Administered	¹⁴ C Dose		
M21	1.01		1.10			
M23	0.25		0.81			
BIC	0.10		0.068			
Other	11 components detected, each < 0.5%	11 c	omponents detected	l, each < 0.5%		
Total Radioactive Dose in Urine	3.16		4.64			

B/F/TAF FDC Section 2.6.5. Pharmacokinetics Tabulated Summary


Report Title Profiling and Identification of Metabolites in Selected Plas Rats after Oral Administration of ¹⁴ C-GS-9883	Study Type Metabolism	Test Article [¹⁴ C]BIC	Report Number AD-141-2277	
	Bile Pro	ofile (0-168 h pool)		
Component ^a	% Adm	ninistered ¹⁴ C Dose		
M1		0.63		
M6		0.58		
M9		1.16		
M10		4.40		
M11		0.83		
M12		0.55		
M13		0.81		
M14		0.81		
M15		12.7		
M16		1.47		
M18/M19		3.55		
M20		0.54		
M21		0.77		
BIC		0.58		
Other	6 components detected, each < 0.5%			
Total Radioactive Dose in Bile		34.1		

Report Title Profiling and Identification of Metabolites in Selected Rats after Oral Administration of ¹⁴ C-GS-9883	Plasma, Urine, Bile, and Feces Samples from		y Type Ibolism	Test Article [¹⁴ C]BIC	Report Number AD-141-2277	
	Feces Profile from Bile Duct-Intact Rate (0-168 h pool)	8	Feces Pro	ct-Cannulated Rats		
Component ^a	% Administered Dose			% Administer	ed Dose	
M2	0.72			0.41		
M7	1.48		0.068			
M15	0.74			ND		
M16	0.64			0.19		
M21/M22	8.07			1.32		
M23	3.94			0.81		
M25	0.78			0.18		
BIC	23.9	13.4				
M28	2.08		0.36			
Other	5 components detected, each $< 0.5\%$		5 components detected, each < 0.5%			
Total Radioactive Dose in Feces	76.4			42.4		

BIC = bictegravir (GS-9883); M7 = desfluoro-hydroxy-BIC-cysteine conjugate-1; M9 = desfluoro-hydroxy-BIC-cysteine conjugate-2; M10 = desfluoro-hydroxy-BIC-cysteineglycine conjugate; M12 = hydroxy-BIC-glucuronide; M15 = BIC-glucuronide; M16 = desfluoro-hydroxy-BIC-glucuronide; M18 = hydroxy-BIC-1; M19 = desfluoro-hydroxy-BIC-1; M20 = hydroxy-BIC-sulfate; M21 = hydroxy-BIC-2; M22 = desfluoro-hydroxy-BIC-2; M23 = hydroxy-BIC-3; M25 = hydroxy-BIC-4; M26 = desfluoro-hydroxy-BIC-3; M28 = desfluoro-hydroxy-BIC-4; other metabolites were not identifiable due to low concentration; ND = peak not detected or below the established limit of quantitation (1% of run and 10 cpm peak height)

a Proposed structures are shown in Section 8.1.4.

8.1.4. AD-141-2277: Proposed Biotransformation Pathways of [¹⁴C]BIC in Rats

* Only two structural isomers are possible. However, because we observed three peaks (M18, M23, and M25) with similar mass and fragmentation pattern, we believe the other structure involves a 1,2 shift of the fluorine atom during oxidation (Koerts, et. al., 1998).

8.1.5. AD-141-2299: Metabolite Profiling of Samples from Monkeys after Administration of [¹⁴C]BIC

Report Title Profiling and Identification of Metabolites i Monkeys after Oral Administration of ¹⁴ C-O	n Selected Plasma, Urine, Bile, and Feces Samples from	Study Type Metabolism	Test Article [¹⁴ C]BIC	Report Number AD-141-2299	
Study System	Metabolite profiling of [¹⁴ C]BIC in plasma, urir duct-cannulated male cynomolgus monkeys foll	com bile duct-intac ral dose	t and bile		
	Plasma I	Profile (0-72 h poo	l)		
Component ^a	AUC _{0-72h} (ng eq·h/g)		% ¹⁴ C in Plasma A	AUC pool	
M15	196		0.55		
M20	277		0.77		
M26	312		0.87		
M35	468		1.31		
M38	450		1.26		
M42	4360		12.2		
BIC	28700		80.2		
Total in Plasma	35800		100		
	Urine Profile from Bile Duct-Intact Monke (0-48 h pool)	eys Urine I	Urine Profile from Bile Duct-Cannulated Monkeys (0-48 h pool)		
Component ^a	% Administered Dose		% Administere	d Dose	
M35	3.40		1.45		
M15	3.84		3.94		
M20/M21/M22	1.90		2.22		
M42	6.15		2.61		
Other	8 components detected, each < 0.5%	8 cc	omponents detected	, each < 0.5%	
Total Radioactive Dose in Urine	19.7		14.6		

Report Title Profiling and Identification of Metabolites in Selected Plasma, Urine, Bile, and Feces Samples from Monkeys after Oral Administration of ¹⁴ C-GS-9883		Study Type Metabolism	Test Article [¹⁴ C]BIC	Report Number AD-141-2299	
		ofile (0-48 h pool)		·	
Component ^a	% Ad	Iministered Dose			
M30		1.18			
M32		2.35			
M9	10.9				
M35	0.94				
M37/M38		1.63			
M39		2.45			
M15		6.14			
M20/M21/M22		8.09			
M42		1.16			
BIC	0.46				
Other	2 components detected, each < 0.5%				
Total Radioactive Dose in in Bile	39.4				

Report Title Profiling and Identification of Metabolites in Sele Monkeys after Oral Administration of ¹⁴ C-GS-98	cted Plasma, Urine, Bile, and Feces Samples from	Study T Metabol	• •	Test Article [¹⁴ C]BIC	Report Number AD-141-2299		
	Feces Profile from Bile Duct-Intact Monkeys Feces Profile (0-96 h pool)				Profile from Bile Duct-Cannulated Monkeys (0-72 h pool)		
Component ^a	% Administered Dose			% Administer	ed Dose		
M15	0.54		ND				
M40	0.93		ND				
M21/M22	9.05		3.02				
M23/M42	10.5			2.47			
BIC	10.7			10.7			
Other	2 components detected, each < 0.5%		2 components detected, each $< 0.5\%$		d, each < 0.5%		
Total Radioactive Dose in Feces	40.0			19.5			

BIC = bictegravir (GS-9883); M9 = desfluoro-hydroxy-BIC-cysteine conjugate-2; M15 = BIC-glucuronide; M20 = hydroxy-BIC-sulfate; M21 = hydroxy-BIC-2; M22 = desfluoro-hydroxy-BIC-2; M23 = hydroxy-BIC-3; M26 = desfluoro-hydroxy-BIC-3; M28 = desfluoro-hydroxy-BIC-4; M30 = desfluoro-dihydroxy-BIC-cysteine conjugate; M32 = desfluoro-hydroxy-BIC-cysteine-glycine conjugate-2; M35 = hydroxy-BIC-glucuronide-2; M37 = desfluoro-hydroxy-BIC-cysteine conjugate-3; M38 = dihydroxy-BIC; M39 = BIC-glucoside; M42 = hydroxy-BIC-5; other metabolites were not identifiable due to low concentration; ND = peak below the limit of quantitation

a Proposed structures are shown in Section 8.1.6.

-0 ò ° ÓН ----Gluc ö ÓН F -C Ô ÓН 0 M39 (u, b) M15 (p, u, b) Ċн 0 -Gluc M38 (p, b) M35 (p, u, b) з, 1, 1 1, 2 2 0 OH -0 1 1 E ò ö óн ö ÓН HO__O ÓН GS-9883 (p, b, f) M23 (f) M21 (u, b, f), M42 (p, u, b, f) HN 4 HoN 1, 5 C -0 6, 7 F(meta to F) +0 ò ÓН 0 ò -0 'n F(meta to F)M32 (b) óн _so³ \cap ĊН M20 (p, u, b) M22 (u, b, f), M26 (p), M28 (f) 7 1. Oxidation 2. Glucuronidation 3. Glucosidation 0 Glucosidation Sulfation Defluorination Defluorination Glutathione conjugation Hydrolysis Metabolite identified in plasma Metabolite identified in urine Metabolite identified in bile Metabolite identified in feces -S `OH NH2 н $\dot{N}H_2$ 1 ò $F(meta to F) \pm 0$ 0 ÓН Ô Ö ĊН M9 (u, b, f), M37 (b)M30 (b)

8.1.6. AD-141-2299: Proposed Biotransformation Pathways of [¹⁴C]BIC in Monkeys

BIC = bictegravir

`OH

8.2. FTC

8.2.1. TEIN/93/0015: Disposition Study of [³H]FTC in Mice

Report Title	Study Type	Test Article	Report Number	
Metabolic Disposition and Balance Studies in Male CD-1 Mice Following Oral Administration of 120 mg/kg [6- ³ H]524W91		Metabolism, Excretion	FTC	TEIN/93/0015
Species	Mouse, CD-1			
Sex (M/F)/Number of Animals	15 M,			
Feeding Condition	Not fasted			
Vehicle/Formulation	Solution in Water			
Method of Administration	Oral			
Dose (mg/kg)	120 (single dose)			
Radionucleotide	³ H			
Specific Activity	0.65 mCi/mmol			
<u>Metabolic Data:</u> Cumulative (0–72 hour posto orally.	dose) recovery of emtricitabine ar	d its tentatively identified metabol	ites from the urine of ma	ale CD1 mice dosed

	Sampling Time		% of Compound in Sample (Mean ± SD)					
<u>Sample</u>	or Period	5-Fluorocytosine	<u>M1/M2^a</u>	<u>M1/M2^a</u>	<u>FTC</u>	<u>M3</u>	Unidentified	
Urine	0–72 hours	1.4 ± 0.2	1.7 ± 0.3	2.0 ± 0.4	64 ± 7.1	0.5 ± 0.4	0.8 ± 0.2	

a Absolute configuration of sulfoxide diastereomers not determined

Final

Report Title		Study Type	Test Article	Report Number		
Metabolic Disposition and Bala Oral Administration of 120 mg	ance Studies in Male CD-1 Mice Following /kg [6- ³ H]524W91	Metabolism, Excretion	FTC	TEIN/93/0015		
Excretion Data: The recovery	of radioactivity in the urine and feces of male CI	D1 mice dosed orally.				
			Mean ± SD			
Sample Sampling period (hou		Percent of dose in sample	e Total reco	Total recovery (%; 0-72 hours)		
Urine	0–24	62.3 ± 7.6				
	24-48	3.4 ± 2.1		66.8 ± 7.0		
	48–72	1.5 ± 0.4				
Feces	0–24	15.9 ± 3.0				
	24-48	0.7 ± 0.4		18.1 ± 3.1		
	48–72	1.5 ± 0.6				
Feces and Urine	0–72			85.0 ± 4.2		

Additional Information:

Analytical method: Liquid scintillation counting, HPLC radiochromatogram.

Mean \pm SD fraction of dose excreted in urine (0–72 hours) as parent drug = $64 \pm 7\%$

8.2.2. TOX063: Metabolism and Excretion of [¹⁴C]FTC in Cynomolgus Monkeys

Report Title			Study Type	Test Article	Report Number
Metabolism and excretion of [¹⁴ C]TP- monkeys	0006 following oral adn	ninistration to male Cynomolgus	Metabolism, Excretion	FTC	TOX063
Species	Monkey, Cynomo	lgus			
Sex (M/F)/Number of Animals	4 M				
Feeding Condition	Fasted				
Vehicle/Formulation	Sterile water				
Method of Administration	Oral				
Dose (mg/kg)	200 (single dose)				
Radionucleotide	¹⁴ C				
Specific Activity	46 mCi/mmol				
<u>Metabolic Data:</u>					
Plasma		FTC		<u>M1/M2</u>	
C _{max} (µg/mL)		46.7		15.9	
T _{max} (h)		1		2	
AUC _{0-last} (µg●h/mL)		129		56.6	
AUC _{inf} (μg•h/mL)		133		86.6	
CL/F (L/h/kg)		1.57		-	

Excretion Data: 40.8% of the administered radioactivity was recovered in the urine, 35.3% in the feces, and 8.3% in cage washes/wipes. Unchanged parent drug represented the great majority of radioactivity present in urine (approximately 74%) and feces (97%). The recovery of large amounts of radioactivity in the gut contents following a second dose of radioactivity indicates that much of the fecal recovery represented unabsorbed rather than excreted drug.

Distribution Data: 22 tissues obtained 1 hour postdose. Highest levels: kidneys (596 equivalents µg/g); liver (121 µg/ equivalents /g.); CSF/blood ratio 0.031.

8.2.3. TEIN/93/0016: Metabolism and Excretion of [³H]FTC in Cynomolgus Monkeys

Report Title Metabolic Disposition of 80 mg/kg O	rally Administered [6-3H]524W91 in Cynomolgus Monkeys	Study Type Metabolism, Excretion	Test Article FTC	Report Number TEIN/93/0016
Species	Monkey, cynomolgus			
Sex (M/F)/Number of Animals	4 F			
Feeding Condition	Fasted overnight and to 2 hours postdose			
Vehicle/Formulation	Solution in Water			
Method of Administration	Oral			
Dose (mg/kg)	80 (single dose)			
Radionucleotide	^{3}H			
Specific Activity	1.8 µCi/mg			
Metabolic Data: Cumulative (0-72 h	nour postdose) urinary and fecal recovery of FTC (% dose).and its	tentatively identified metaboli	ites	

	Percent of Dose (Mean ± Standard Deviation)									
Sample	M200	5-Fluorocytosine	M1/M2	M1/M2	M1100	M3	FTC	M1940	Deaminated FTC	
Urine	0.2 ± 0.1	0.3 ± 0.04	11 ± 4	1.2 ± 0.2	0.3 ± 0.2	1.6 ± 1.9	28.3 ± 4.1	0.1 ± 0.1	1.1 ± 0.3	
Feces	0.2 ± 0.1	0.1 ± 0.1	0.1 ± 0.1	0.03 ± 0.1			34.5 ± 10.7		0.5 ± 0.1	

Excretion Data: Examined (pool) samples - the recovery of radioactivity in the urine, feces, and cage washes

		Mean ± Stand	ard Deviation
	Sampling period (hours)	Percent of dose in sample	Total recovery (% ; 0–72 hours)
Urine	0–8	32.9 ± 8.6	
	8–24	5.5 ± 1.1	41.2 ± 6.4
	24–48	2.2 ± 1.7	41.2 ± 0.4
	48–72	0.6 ± 0.9	
Feces	0–24	23.6 ± 15.9	
	24-48	4.7 ± 5.7	33.1 ± 10.0
	48–72	4.8 ± 9.1	
Cage Wash	0-8	3.0 ± 1.9	
	8–24	5.0 ± 4.0	
	24-48	0.8 ± 0.6	9.6 ± 6.7
	48–72	0.8 ± 0.7	
Overall Recovery	0–72		83.8±3.8

8.3. TAF

8.3.1. AD-120-2012: Metabolism of TAF in Mouse

Report Title:					Study Type	Test Article	Report Number				
Nasal Turbinate Samples from M	rofiling and Identification of Metabolites in Selected Plasma, Urine, Feces, Kidney, Liver, and asal Turbinate Samples from Mice after Oral Administration of [¹⁴ C]GS-7340 and Stability of ⁴ C]GS-7340 in vitro using CD-1 Mouse Hepatic Microsomes and Plasma					[¹⁴ C]TAF	AD-120-2012				
Species:	CD-1 mice				•						
Sex (M/F) / No. of Animals:	Male/30	le/30									
Method of Administration:	Oral gavage										
Dose (mg/kg):	100										
Feeding Condition:	Not fasted										
Vehicle/Formulation:	water:hydroxy	propyl methyl ce	ellulose (HPMC	c):tween 80 (99.8:	0.1:0.1, v:v:v)						
Sample:	Plasma										
Analyte/Assay:	[¹⁴ C]TAF / Liq	uid Scintillation	Counter								
	C	concentrations ((ng Equivalents	s [¹⁴ C]GS-7340/g)	AUC _{0-24h}	% AUC of				
Final Metabolite Designation	0.25 h	1 h	2 h	12 h	24 h	$(ng eq \cdot h/g)$	Total Radioactivity				
M27A (Allantoin)	549	420	1820	143	121	10530	12.2				
M27B (Uric acid)	259	1150	1420	390	371	16670	19.4				
M5	1050	239	277	73.4	ND	2411	2.80				
M6	280	86.4	160	ND	ND	NA	NA				
M28	1690	425	169	ND	ND	878	1.02				
M12	13600	4740	5030	1340	385	47167	54.8				
M45	2260	667	354	ND	ND	3177	3.69				
M46	2740	688	326	ND	ND	2738	3.18				
M18	ND	ND	201	ND	ND	NA	NA				
M47	ND	ND	166	ND	ND	NA	NA				
M19	332	20.9	765	ND	ND	1533	1.78				
M23	ND	ND	125	ND	ND	NA	NA				

NA = not applicable; ND = peak was not detected or below the established limit of quantitation; TAF = tenofovir alafenamide

Report Title:					<u>Study Ty</u>	vpe <u>Tes</u>	t Article	<u>Report Number</u>	
Nasal Turbinate Samples from M	rofiling and Identification of Metabolites in Selected Plasma, Urine, Feces, Kidney, Liver, and asal Turbinate Samples from Mice after Oral Administration of [¹⁴ C]GS-7340 and Stability of ⁴ C]GS-7340 in vitro using CD-1 Mouse Hepatic Microsomes and Plasma				Metaboli	sm [¹⁴	C]TAF	AD-120-2012	
Species:	CD-1 mice								
Sex (M/F) / No. of Animals:	Male/30								
Method of Administration:	Oral gavage								
Dose (mg/kg):	100								
Feeding Condition:	Not fasted	t fasted							
Vehicle/Formulation:	water:hydroxy	propyl methyl c	ellulose (HPMC	c):tween 80 (99.8	:0.1:0.1, v:v:v)				
Analyte/Assay:	[¹⁴ C]TAF / Lio	quid Scintillatior	n Counter						
		Urine (% Rad	lioactive Dose)			Feces (% Ra	dioactive D	ose)	
	Col	lection Interval	l (h)		Col	llection Interv	al (h)		
Final Metabolite Designation	0-24	24-48	48-72	Total	0-24	24-48	48-72	Total	
M27A (Allantoin)	1.56	0.70	0.32	2.57	0.42	ND	0.02	0.43	
M5	1.91	0.23	0.02	2.16	NA	NA	NA	NA	
M12	13.0	4.12	0.99	18.1	25.3	4.14	1.26	30.7	
M28	NA	NA	NA	NA	0.67	ND	ND	0.67	
M32	0.36	ND	ND	0.36	NA	NA	NA	NA	
M35	0.66	ND	ND	0.66	NA	NA	NA	NA	

NA = not applicable; ND = peak was not detected or below the established limit of quantitation; TAF = tenofovir alafenamide

Report Title:				Study Type	Test Article	Report Numbe			
Nasal Turbinate Samples from Mi	rofiling and Identification of Metabolites in Selected Plasma, Urine, Feces, Kidney, Liver, and asal Turbinate Samples from Mice after Oral Administration of [¹⁴ C]GS-7340 and Stability of ⁴ C]GS-7340 in vitro using CD-1 Mouse Hepatic Microsomes and Plasma				[¹⁴ C]TAF	AD-120-2012			
Species:	CD-1 mice	-1 mice							
Sex (M/F) / No. of Animals:	Male/30								
Method of Administration:	Oral gavage								
Dose (mg/kg):	100								
Feeding Condition:	Not fasted	Not fasted							
Vehicle/Formulation:	water:hydroxyprop	yl methyl cellulose (H	IPMC):tween 80 (99.8	:0.1:0.1, v:v:v)					
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation Counter								
		Kidney Concentratio quivalents [¹⁴ C]GS-7		Liver Concentration (ng Equivalents [¹⁴ C]GS-7340/g)					
		Collection Time (h)			Collection Time (h))			
Final Metabolite Designation	1	24	48	1	24	48			
M27A (Allantoin)	NA	NA	NA	107000	63800	35900			
M27B (Uric acid)	4250	3050	2180	NA	NA	NA			
M7 (Xanthine)	2830	2070	2460	NA	NA	NA			
M8 (Hypoxanthine)	1010	731	1190	NA	NA	NA			
M12	90300	18000	4620	356000	93200	18500			

NA = not applicable; TAF = tenofovir alafenamide

Report Title:				Study Type	Test Article	Report Number			
Profiling and Identification of Metabolites in Selected Plasma, Urine, Feces, Kidney, Liver, and Nasal Turbinate Samples from Mice after Oral Administration of [¹⁴ C]GS-7340 and Stability of [¹⁴ C]GS-7340 in vitro using CD-1 Mouse Hepatic Microsomes and Plasma				Metabolism	[¹⁴ C]TAF	AD-120-2012			
Species:	CD-1 mice	2D-1 mice							
Sex (M/F) / No. of Animals:	Male/30								
Method of Administration:	Oral gavage								
Dose (mg/kg):	100								
Feeding Condition:	Not fasted	lot fasted							
Vehicle/Formulation:	water:hydroxypropyl me	water:hydroxypropyl methyl cellulose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)							
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scint	illation Counter							
		Concentra	ation (ng Equiva	lents [¹⁴ C]GS-7340	/g)				
			Collection 7	Time (h)					
Final Metabolite Designation	1	4	12		24	48			
M1	392	214	250		325	399			
M2	794	326	364		ND	ND			
M5	ND	ND	ND		90.6	ND			
M7 (Xanthine)	953	ND	ND		46.8	ND			
M8 (Hypoxanthine)	254	121	342		298	373			
M29	2060	737	599		254	ND			
M30	159	ND	164		213	136			
M34	ND	ND	ND		70.1	106			

ND = peak was not detected or below the established limit of quantitation; TAF = tenofovir alafenamide

Report Title:	Study Type	Test Article	Report Number
Profiling and Identification of Metabolites in Selected Plasma, Urine, Feces, Kidney, Liver, and Nasal Turbinate Samples from Mice after Oral Administration of [¹⁴ C]GS-7340 and Stability of [¹⁴ C]GS-7340 in vitro using CD-1 Mouse Hepatic Microsomes and Plasma	Metabolism	[¹⁴ C]TAF	AD-120-2012

Study Systems: $[{}^{14}C]GS-7340 (5 \mu M)$ was incubated at 37°C with either pooled plasma or hepatic microsomes (with 1 mMNADPH) from male CD-1 mice for 0 and 60 minutes. The extracted samples were analyzed by HPLC with in-line radioactivity detection to determine the metabolite profiles.

	Pla	sma	Hepatic Microsome	s (1 mg/mL Protein)
	Percent of Radioactivi	ity Injected (% of Run)	Percent of Radioactivi	ty Injected (% of Run)
Final Metabolite Designation	0 Minute	60 Minute	0 Minute	60 Minute
[¹⁴ C]M1	NA	NA	ND	0.77
[¹⁴ C]M2	ND	43.0	3.00	11.1
[¹⁴ C]M5	NA	NA	ND	ND
[¹⁴ C]M6	NA	NA	ND	ND
[¹⁴ C]M28	ND	46.0	2.24	3.98
[¹⁴ C]M29	NA	NA	ND	0.72
[¹⁴ C]M30	NA	NA	ND	0.82
[¹⁴ C]M31	NA	NA	ND	0.35
[¹⁴ C]M32	ND	5.70	NA	NA
[¹⁴ C]M33 ([¹⁴ C]Adenine)	NA	NA	ND	41.0
[¹⁴ C]M18	43.6	0.87	1.63	0.89
[¹⁴ C]M20	28.5	ND	ND	ND
[¹⁴ C]M36	NA	NA	3.35	1.38
[¹⁴ C]M37	NA	NA	ND	0.70
[¹⁴ C]M38	NA	NA	ND	3.08
[¹⁴ C]M39	NA	NA	ND	1.87
[¹⁴ C]M40	NA	NA	ND	2.96
[¹⁴ C]M41	NA	NA	ND	0.41
[¹⁴ C]M42	NA	NA	ND	0.50
[¹⁴ C]GS-7340	24.1	ND	84.1	16.3

NA = not applicable; ND = peak was not detected or below the established limit of quantitation; TAF = tenofovir alafenamide

8.3.2. AD-120-2021: Metabolism of TAF in Rat

Report Title:						Study Type	Test Article	Report Number			
	rofiling and Identification of Metabolites in Selected Plasma, Urine, Bile, and Feces Samples rom Rats after Oral Administration of [¹⁴ C]GS-7340					Metabolism	[¹⁴ C]TAF	AD-120-2021			
Species:	Sprague-Da	prague-Dawley rats									
Sex (M/F) / No. of Animals:	Male/15										
Method of Administration:	Oral gavage										
Dose (mg/kg):	5										
Feeding Condition:	Not fasted	Not fasted									
Vehicle/Formulation:	water:hydro	xypropyl met	hyl cellulose	(HPMC):twee	en 80 (99.8:0	.1:0.1, v:v:v)					
Sample:	Plasma										
Analyte/Assay:	[¹⁴ C]TAF /]	Liquid Scintil	lation Counte	r							
	Pla	ısma Concen	trations (ng	Equivalents	[¹⁴ C]GS-734	0/g)	AUC _{0-24h}	% AUC of			
Final Metabolite Designation	0.25 h	0.5 h	1 h	2 h	12 h	24 h	(ng eq•h/g)	Total Radioactivity			
M27A (Allantoin)	425	259	42.4	8.55	ND	ND	634	23.2			
M28	221	221 135 15.0 ND ND ND 159 5.80									
M12	246	264	99.7	58.8	19.4	ND	1153	66.7			

ND = peak was not detected or below the established limit of quantitation; TAF = tenofovir alafenamide

Report Title:		Study Type	Test Article	Report Number			
Profiling and Identification of Me from Rats after Oral Administration	etabolites in Selected Plasma, Urine, Bile, and Feces Samples ion of $[^{14}C]GS-7340$	Metabolism	[¹⁴ C]TAF	AD-120-2021			
Species:	Sprague-Dawley rats						
Sex (M/F) / No. of Animals:	Male/3						
Method of Administration:	Oral gavage						
Dose (mg/kg):	5						
Feeding Condition:	Not fasted						
Vehicle/Formulation:	water:hydroxypropyl methyl cellulose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)						
Sample:	Urine						
Sample: Analyte/Assay:	Urine [¹⁴ C]TAF / Liquid Scintillation Counter						
-		Feces (P	ercent of Radioacti	ve Dose)			
-	[¹⁴ C]TAF / Liquid Scintillation Counter	Feces (P Collection I		ve Dose)			
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation Counter Urine (Percent of Radioactive Dose)	,		ve Dose) Total			
-	[¹⁴ C]TAF / Liquid Scintillation Counter Urine (Percent of Radioactive Dose) Collection Interval (h)	Collection I	nterval (h)				
Analyte/Assay: Final Metabolite Designation M27A (Allantoin)	[¹⁴ C]TAF / Liquid Scintillation Counter Urine (Percent of Radioactive Dose) Collection Interval (h) 0-24	Collection I 0-24	nterval (h) 24-48	Total			
Analyte/Assay: Final Metabolite Designation M27A (Allantoin) M44	[¹⁴ C]TAF / Liquid Scintillation Counter Urine (Percent of Radioactive Dose) Collection Interval (h) 0-24 0.14	Collection I 0-24 NA	nterval (h) 24-48 NA	Total NA			
Analyte/Assay: Final Metabolite Designation	[¹⁴ C]TAF / Liquid Scintillation Counter Urine (Percent of Radioactive Dose) Collection Interval (h) 0-24 0.14 1.41	Collection I 0-24 NA NA	nterval (h) 24-48 NA NA	Total NA NA			

NA = not applicable; ND = peak was not detected or below the established limit of quantitation; TAF = tenofovir alafenamide

Report Title:		<u>S</u>	Study Type	Test Article	<u>e R</u>	eport Numbe
Profiling and Identification of M from Rats after Oral Administrat	etabolites in Selected Plasma, Urine, Bile ion of [¹⁴ C]GS-7340	, and Feces Samples	Metabolism	[¹⁴ C]TAF		AD-120-2021
Species:	Bile Duct-Cannulated Sprague-Dawle	y rats				
Sex (M/F) / No. of Animals:	Male/3					
Method of Administration:	Oral gavage					
Dose (mg/kg):	5					
Feeding Condition:	Not fasted					
Vehicle/Formulation:	water:hydroxypropyl methyl cellulose	(HPMC):tween 80 (99.8:0.1:0.1	, v:v:v)			
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation Counter	er				
	Urine (Percent of Radioactive Dose)	Bile (Percent of Radioactive D	ose)	Forcent of Ra	eces Idioactiv	ve Dose)
	Collection	Collection Interval (h)				
Final Metabolite Designation	0-24	0-4	0	-24 24	1-48	Total
M27A (Allantoin)	0.23	NA	1	NA I	NA	NA
M27B (Uric acid)	NA	0.02	1	NA I	NA	NA
M44	1.38	NA	1	NA NA	NA	NA
	0.38	1.17	1	NA NA	NA	NA
M28	0.58	1.17				
M28 M12	17.1	0.67	4	9.3 1	2.4	61.7

NA = not applicable; TAF = tenofovir alafenamide

8.3.3. AD-120-2008: Metabolism of TAF in Dog

Report Title:						Study Type		· · · · · · · · · · · · · · · · · · ·
Profiling and Identification of Me Samples from Dogs after Oral Ad				Feces, Bone,	and Liver	Metabolism	i [¹⁴ C]TAF	AD-120-2008
Species:	Beagle dogs							
Sex (M/F) / No. of Animals:	Male/10							
Method of Administration:	Oral gavage							
Dose (mg/kg):	15							
Feeding Condition:	Not fasted							
Vehicle/Formulation:	water:hydro	xypropyl met	hyl cellulose	(HPMC):twee	en 80 (99.8:0	1:0.1, v:v:v)		
Sample:	Plasma							
Analyte/Assay:	[¹⁴ C]TAF /]	Liquid Scintil	lation Counte	r				
	Pla	asma Concen	trations (ng]	Equivalents [¹⁴ C]GS-734	0/g)	AUC _{0-24h}	% AUC of
Final Metabolite Designation	0.25 h	0.5 h	2 h	4 h	12 h	24 h	(ng eq•h/g)	Total Radioactivity
M2	ND	45.7	58.5	69.1	ND	30.4	1212	7.61
M3	ND	49.0	85.2	67.3	ND	ND	265	1.67
M5	ND	ND	36.9	ND	ND	ND	36.9	0.23
M9	ND	ND	22.2	20.8	ND	ND	65.2	0.41
M10	ND	ND	23.7	ND	ND	ND	23.7	0.15
M12	2760	2070	1050	541	278	175	10874	68.3
M17	213	132	ND	ND	ND	ND	69.8	0.44
M18	4640	1840	38.4	ND	ND	ND	2799	17.6
M20	92.4	76.3	ND	ND	ND	ND	32.6	0.20
TAF	616	420	ND	ND	ND	ND	207	1.30

NA = not applicable; ND = peak was not detected or below the established limit of quantitation; TAF = tenofovir alafenamide

Report Title: Profiling and Identification of Me Samples from Dogs after Oral Ad			ne, and Liver	<u>Study Type</u> Metabolism	Test Article [¹⁴ C]TAF	Report NumberAD-120-2008
Species:	Beagle dogs					
Sex (M/F) / No. of Animals:	Male/10					
Method of Administration:	Oral gavage					
Dose (mg/kg):	15					
Feeding Condition:	Not fasted					
Vehicle/Formulation:	water:hydroxypropyl me	ethyl cellulose (HPMC):t	ween 80 (99.8:0	1:0.1, v:v:v)		
Sample:	Urine					
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scint	illation Counter				
		Urine	e (Percent of Ra	dioactive Dose)		
		Collection	Interval (h)			
Final Metabolite Designation	0-24	24-48	48-72	2	72-96	Total
M1	ND	ND	ND		ND	ND
M2	0.88	0.28	0.16		0.19	1.49
M4	0.69	0.06	0.03		0.02	0.79
M5	0.47	ND	ND		ND	0.47
M11	0.43	ND	ND		ND	0.43
M12	13.3	5.08	3.43		2.35	24.2
M15	0.22	0.02	ND		ND	0.23
M18	ND	0.12	0.07		0.04	0.23
M23	ND	ND	ND		ND	ND
TAF	1.32	ND	ND		ND	1.32

TAF = tenofovir alafenamide; ND = peak was not detected or below the established limit of quantitation

	ofiling and Identification of Metabolites in Selected Plasma, Urine, Bile, Feces, Bone, and Liver imples from Dogs after Oral Administration of [¹⁴ C]GS-7340				Test Article [¹⁴ C]TAF	Report NumberAD-120-2008
Species:	Bile Duct-Cannulated B	eagle dogs				
Sex (M/F) / No. of Animals:	Male/10					
Method of Administration:	Oral gavage					
Dose (mg/kg):	15					
Feeding Condition:	Not fasted					
Vehicle/Formulation:	water:hydroxypropyl me	ethyl cellulose (HPMC):t	ween 80 (99.8:0	.1:0.1, v:v:v)		
Sample:	Urine					
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scint	illation Counter				
		Urin	e (Percent of Ra	adioactive Dose)		
		Collection	Interval (h)			
Final Metabolite Designation	0-24	24-48	48-72	2	72-96	Total
M1	0.12	0.04	0.04		ND	0.19
M2	1.06	0.35	0.14		0.15	1.70
M4	0.36	0.06	0.05		ND	0.48
M5	0.32	0.06	0.03		0.04	0.44
M11	0.39	0.04	ND		ND	0.42
M12	8.97	3.75	2.41		1.68	16.8
M15	ND	ND	ND		ND	ND
M18	ND	ND	ND		ND	ND
M23	0.24	ND	ND		ND	0.24
TAF	1.30	ND	ND		ND	1.30

TAF = tenofovir alafenamide; ND = peak was not detected or below the established limit of quantitation

Report Title:			<u>Study Type</u>	Test Article	Report Number		
Profiling and Identification of Me Samples from Dogs after Oral Ac	etabolites in Selected Plasma, Urin Iministration of [¹⁴ C]GS-7340	e, Bile, Feces, Bone, and Liver	Metabolism	[¹⁴ C]TAF	AD-120-2008		
Species:	Bile Duct-Cannulated Beagle do	ogs					
Sex (M/F) / No. of Animals:	Male/10						
Method of Administration:	Oral gavage						
Dose (mg/kg):	15						
Feeding Condition:	Not fasted						
Vehicle/Formulation:	water:hydroxypropyl methyl cel	llulose (HPMC):tween 80 (99.8	:0.1:0.1, v:v:v)				
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation	Counter					
		Bile (Percent of F	Radioactive Dose)				
		Collection Interval (h)					
Final Metabolite Designation	0-2	2-4	4-6		Total		
M2	0.08	0.02	0.02		0.12		
M4	0.23	0.05	0.04		0.32		
M5	0.23	0.10	0.10		0.43		
M6	0.07	0.02	0.01		0.10		
M11	0.04	0.02	0.03		0.09		
M12	0.42	0.23	0.32		0.96		
M14	0.10	0.06	0.06		0.22		
M16	2.72	0.84	0.82		4.38		
M17	0.29	0.09	0.10		0.48		
M18	2.07	0.64	0.66		3.37		
M19	0.01	0.04	0.04		0.09		
M21	0.14	0.13	0.11		0.38		
M22	0.07	0.09	0.07		0.23		
M23	0.02	0.15	0.08		0.24		
TAF	0.06	0.09	0.05		0.19		

TAF = tenofovir alafenamide; ND = Peak was not detected or below the established limit of quantitation

Report Title: Profiling and Identification of Me Samples from Dogs after Oral Ad		<u>Study Type</u> Metabolism	<u>Test Article</u> [¹⁴ C]TAF	Report NumberAD-120-2008			
Species:	Beagle dogs	agle dogs					
Sex (M/F) / No. of Animals:	Male/10						
Method of Administration:	Oral gavage						
Dose (mg/kg):	15						
Feeding Condition:	Not fasted						
Vehicle/Formulation:	water:hydroxypropy	l methyl cellulose (H	HPMC):tween 80 (99.8:0).1:0.1, v:v:v)			
Sample	Feces						
Analyte/Assay:	[¹⁴ C]TAF / Liquid Se	cintillation Counter					
	Intact Dog (Fe	eces, Percent of Rad	lioactive Dose)	BDC Dog (Feces, Percent of Radioactive Dose)			
	Collection I	nterval (h)		Collection In	nterval (h)		
Final Metabolite Designation	0-24	24-48	Total	0-24	24-48	Total	
M2	0.21	0.04	0.25	ND	ND	ND	
M11	0.35	ND	0.35	0.50	0.20	0.70	
M12	18.3	2.49	20.8	16.0	10.4	26.4	

TAF = tenofovir alafenamide; ND = Peak not detected or below the established limit of quantitation; BDC = bile duct-cannulated

Report Title:			Study Type	Test Article	Report Number				
	ofiling and Identification of Metabolites in Selected Plasma, Urine, Bile, Feces, Bone, and Liver imples from Dogs after Oral Administration of [¹⁴ C]GS-7340				AD-120-2008				
Species:	Beagle dogs								
Sex (M/F) / No. of Animals:	Male/10	Iale/10							
Method of Administration:	Oral gavage								
Dose (mg/kg):	15								
Feeding Condition:	Not fasted	Not fasted							
Vehicle/Formulation:	water:hydroxypropyl methyl cellulose (HPMC):tween 80 (99.8:0.1:0.1, v:v:v)								
Sample:	Bone								
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation	Counter							
	Single	e Dose		Multiple Dose					
		Bone Concentration (ng Equ	uivalents [¹⁴ C]GS-73	640/g)					
		Collection 7	Time (h)						
Final Metabolite Designation	2	24	2		24				
M2	ND	ND	52.9		ND				
M6	ND	ND	45.1		ND				
M12	2190	1070	4000		2820				

TAF = tenofovir alafenamide; ND = peak not detected or below the established limit of quantitation

Report Title:			Study Type	Test Article	Report Number
Profiling and Identification of Me Samples from Dogs after Oral Ad		ne, Bile, Feces, Bone, and Liver	Metabolism	[¹⁴ C]TAF	AD-120-2008
Species:	Beagle dogs				
Sex (M/F) / No. of Animals:	Male/10				
Method of Administration:	Oral gavage				
Dose (mg/kg):	15				
Feeding Condition:	Not fasted				
Vehicle/Formulation:	water:hydroxypropyl methyl co	ellulose (HPMC):tween 80 (99.8:0).1:0.1, v:v:v)		
Sample:	Liver				
Analyte/Assay:	[¹⁴ C]TAF / Liquid Scintillation	n Counter			
	Single	e Dose		Multiple Dose	
		Liver Concentration (ng equ	uivalents [¹⁴ C]GS-73	340/g)	
		Collection 7	Гime (h)		
Final Metabolite Designation	2	24	2		24
M2	3120	1230	4440		2610
M7	3840	1160	ND		3260
M8	7760	2680	11700		7340
M12	58200	43300	68100		49400
M13	ND	336	723		716
M18	1570	1040	556		294

TAF = tenofovir alafenamide; ND = peak not detected or below the established limit of quantitation

8.3.4. P2001025: Intracellular Anabolism of TFV in Rhesus Monkeys

Report Title:				Study Type	Test Article	Report Number			
Intracellular Kinetics of ¹⁴ C-PM	PA in Rhesus Monkeys			Metabolism	[¹⁴ C]TFV	P2001025			
Species:	Rhesus monkeys								
Sex (M/F) / No. of Animals:	Male/6	Male/6							
Method of Administration:	Subcutaneous								
Dose (mg/kg):	15, 30 and 60								
Feeding Condition:	Non fasted								
Vehicle/Formulation:	Sterile water								
Sample:	Plasma, PBMC, RE	BC and Lymph node							
Analyte/Assay:	[¹⁴ C]TFV, [¹⁴ C]T	FV-p and [¹⁴ C]TFV-p	p / Liquid Scintil	lation Counter					
		C	concentrations in	PBMC's, 60 mg/kg	(µM)				
		Animal #M95-296		Animal #J93-310					
Time (h)	[¹⁴ C]TFV	[¹⁴ C]TFV-p	[¹⁴ C]TFV-pp	• [¹⁴ C]TFV	[¹⁴ C]TFV-p	[¹⁴ C]TFV-pp			
1	8.80	0.392	0.627	13.9	0.359	0.669			
3 7	7.71	0.911	1.76	5.51	0.659	1.21			
7	3.48	0.682	1.76	0.938	0.319	1.17			
16	1.04	0.517	1.51	1.02	0.291	1.64			
24	1.99	1.11	2.68	1.66	1.02	2.83			
36	0.486	0.597	1.19	0.301	0.228	0.458			
48	1.32	0.973	2.55	0.969	0.650	1.70			
	Concentrations in RBC's, 30 mg/kg (µM)								
			А	nimal #2					
Time (h)	[¹⁴ C	CJTFV	[14	^I C]TFV-p	[¹⁴ C]TFV-pp			
1	4	.33		0.032		0.059			
3	1	.84		0.058		0.196			
7	0	0.600		0.124		0.383			
16	0	.206		0.164		0.550			
24	0	.306		0.292		1.19			
36	0	.118	1	0.262		0.922			

Report Title: Intracellular Kinetics of ¹⁴ C-PMPA in Rhesus Monkeys				<u>Study Type</u> Metabolism	Test Article [¹⁴ C]TFV	Report Number P2001025		
48	0.	0.028			0	.372		
Animal #		#F95-250			#J93-335			
Time (h)		24			48			
Analyte	[¹⁴ C]TFV	[¹⁴ C]TFV-p	[¹⁴ C]TFV-pp	[¹⁴ C]TFV	[¹⁴ C]TFV-p	[¹⁴ C]TFV-pp		
Lpmph Node			pmol/	10 ⁶ cells				
Axial	0.212	0.465	0.088	0.074	0.052	0.054		
Inguinal	0.021	0.043	0.026	0.257	0.129	ND		
Mesenteric	0.028	0.036	0.024	1.03	0.033	0.025		

ND = near or below background detection level; PBMC's = peripheral blood mononuclear cells; PMPA = tenofovir (TFV); RBC's = red blood cells; TFV-p = tenofovir monophosphate; TFV-pp = tenofovir diphosphate

9. PHARMACOKINETICS: METABOLISM IN VITRO

9.1. BIC

9.1.1. AD-141-2289: In Vitro Metabolic Stability of BIC in Hepatic Microsomal Fractions

Report Title			Study Type	Test Article	Report Number	
In Vitro Metabolism of GS-9883 i	n Hepatic Microsomal Fractions	Metabolism		[³ H]BIC	AD-141-2289	
Study System	Hepatic microsomal fractio	n from ra	ts, dogs, monkeys, and hu	imans		
Method	$[^{3}H]BIC (1 \ \mu M)$ was incubated for up to 65 min at 37°C in the presence of an NADPH regeneratin UDPGA. The final concentration of microsomal protein in the incubations was 1.0 mg/mL.					
Species	In Vitro t _{1/2} (min)			arance Predicte	ed Hepatic Extraction (%)	
Sprague-Dawley Rat	49		1.21		29	
Beagle Dog	108		0.29		16	
Cynomolgus Monkey	63	63			27	
Rhesus Monkey	76		0.41		18	
Human	194		0.17		13	

BIC = bictegravir (GS-9883); NADPH = -nicotinamide adenine dinucleotide phosphate (reduced form); UDPGA = uridine diphosphate glucuronic acid

9.1.2. AD-141-2290: Cytochrome P450 Reaction Phenotyping of BIC

Report Title	S	tudy Type	Test Article	Report Number		
Cytochrome P450 Metab	of GS-9883 N	letabolism	[³ H]BIC	AD-141-2290		
Study System Individual cDNA expressed http://www.com/actional.com/act		expressed human CYP e	uman CYP enzyme preparations (Supersomes TM)			
Method		luctase (Supersomes TM) fe			rations co-expressed with human by each CYP enzyme were used	
	Positive Control Metabolism			В	BIC Metabolism	
Enzyme	Substrate	Rate of metabolite formation (min ⁻¹)	Loss of substra	te % M1 ^a	% M2 ^a	
CYP1A1	Phenacetin		6.8%	ND	ND	
CYP2B6	Bupropion	0.141		ND	ND	
CYP2C8	Paclitaxel	0.008		ND	ND	
CYP2C9	Diclofenac	0.004		ND	ND	
CYP2C19	S Mephenytoin	0.020		ND	ND	
CYP2D6	Dextromethorphan	0.014		ND	ND	
CYP3A4	Terfenadine	0.032		39	1.9	
CYP3A5	Terfenadine	0.032		55	7.0	

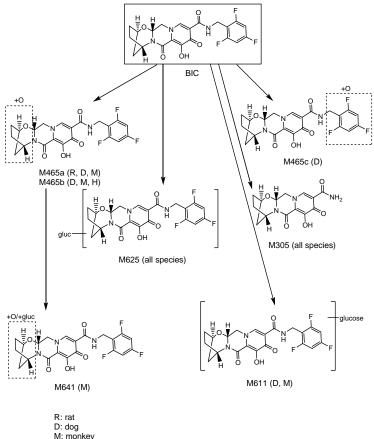
BIC = bictegravir (GS-9883); CYP = cytochrome P450 enzyme; ND = not detected; M1 = metabolite 1; M2 = metabolite 2; NADPH = -nicotinamide adenine dinucleotide phosphate (reduced form)

a M1 and M2 are oxidative metabolites formed in presence of NADPH; exact identity was not determined.

9.1.3. AD-141-2291: UDP-Glucuronosyl Transferase Reaction Phenotyping of BIC

Report Title		Study Type	Test Article	Report Number		
UDP-Glucuronosyl Transferase Phenotyping of GS-9883			Metabolism	BIC	AD-141-2291	
Study System	Ind	ividual cDNA expressed h	uman UGT enzyme preparation	ns (Supersomes TM)		
Method						
		Positive Cont		itive Control aining at 60 min)	BIC Glucuronide Formation (PAR \times 10 ⁻³ at 60 min)	
UGT1A1		Raloxifene		26	12.0	
UGT1A3	A3 Raloxifene			52	1.0	
UGT1A4	Trifluoperazine		ne	69	ND	
UGT1A6	T1A6 7-Hydr		narin	<10	ND	
UGT1A7		7-Hydroxycoum	narin	33	ND	
UGT1A8		7-Hydroxycoum	narin	74	1.0	
UGT1A9		7-Hydroxycoum	narin	<10	3.0	
UGT1A10		Raloxifene		12	ND	
UGT2B4		4-Hydroxyestra	oxyestradiol 45		ND	
UGT2B7		4-Hydroxyestra	diol	<10	ND	
UGT2B15		Scopoletin		<10	ND	
UGT2B17		4-Hydroxyestra	diol	42	ND	

BIC = bictegravir (GS-9883); ND = not detected; PAR = peak area ratio of analyte to internal standard; UDP = uridine diphosphate; UGT = UDP-glucuronosyltransferase


9.1.4. AD-141-2288: Metabolites of BIC Detected in Cryopreserved Hepatocytes

Report Title				Study Type Metabolism		Test Article	Report	Report Number AD-141-2288		
In Vitro Metabolism of [¹⁴ C]-GS-9883 in Cryopreserved Hepatocytes from Han-Wistar Rats, Beagle Dogs, Cynomolgus Monkeys and Humans			[¹⁴ C]BIC			AD-14				
Study System	Cry	opreserved hepat	ocytes from rate	s, dogs, monkeys	, and humans					
Method	[¹⁴ C]BIC (20 μM) was incubated in a 24-well plate containing cryopreserved hepatocyte suspensions (1 milli from each species at 37°C for 4 hours.					on cells/mL)				
		Percent Relative Abundance at 4 Hours ^a								
Species	M305	M465a	M465b	M465c	M611	M625	M641	BIC		
Wister Han Rat	1.7	1.2	ND	ND	ND	5.2	ND	91.5		
Beagle Dog	8.7	1.4	0.2	3.6	0.8	6.6	ND	78.7		
Cynomolgus Monkey	2.4	2.7	11.6	ND	4.4	21.7	4.1	52.4		
Human	1.2	ND	0.6	ND	ND	4.3	ND	93.9		

BIC = bictegravir (GS-9883, mass =449); M305 = N-dealkylated-BIC; M465a = Hydroxy-BIC-a; M465b = Hydroxy-BIC-b; M465c = Hydroxy-BIC-c; M611 = BIC-glucose; M625 = BIC-glucuronide; M641 = Hydroxy-BIC-glucuronide; ND = not determined

a Determined by comparison of radiochromatographic peak area.

9.1.5. AD-141-2288: Proposed Biotransformation Pathways of [¹⁴C]BIC in Cryopreserved Hepatocytes from Rats, Dogs, Monkeys and Humans

D: dog M: monkey H: human Gluc = glucuronide conjugate

BIC = bictegravir (GS-9883)

9.2. FTC

9.2.1. 15396v1: Human Cytochrome P450 Reaction Phenotyping and Glucuronidation Potential of FTC

Report Title	Study Type	Test Article	Report Number					
Responsible for the Me	incipal Human Cytochrome P450 Isoenzyme(s) and Potential Glucuronidation etabolism of Emtricitabine (FTC) using Pooled Human Liver Microsomes and g cDNA-expressed Human Cytochrome P450 (CYP) Isoenzymes	ng Pooled Human Liver Microsomes and						
Study System	Study system 1) cDNA-Expressed Human Cytochromes P450 (CYP1A2, 2A6, 2B6, 2C8, 2C9 2C19, 2D6, 2E1 and 3A4) Study system 2) Pooled Human Hepatic Microsomal Fraction and Enzyme-Selective Inhibitors							
Results	 One minor metabolite (~1%) was detected in cDNA-expressed CYP3A4 incubations No metabolites were formed by CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6 or 2E1 							
	• Microsomal incubations in the presence and absence of selective inhibitors confirmed the low rate of metabolism, and also suggested the possible involvement of flavin-containing monooxygenase enzymes (due to lack of complete inhibition by the CYP3A-selective inhibitor, ketoconazole							
	• No glucuronidation was observed pooled human liver microsomal fraction in the presence of UDPGA							
Conclusions	• Emtricitabine was relatively stable in the presence of cytochrome P450 enzymes and is not a substrate for hepatic glucuronidation							

9.3. TAF

9.3.1. AD-120-2025: Metabolism of TAF In Vitro (Plasma Stability)

Report Title:		<u>Study Type</u>	Test Article	Report Number			
In Vitro Metabolism of GS-7340 in Plasma from Dog and Human		Metabolism, In Vitro	TAF	AD-120-2025			
Study Systems:		Duplicate aliquots of $3 \mu M$ TAF were incubated with pooled plasma from beagle dog and human at $37^{\circ}C$ up to 4 hours. Rates of metabolism (in vitro half-life values) were determined. Analysis was done by LC-MS/MS.					
Species		Half-Life (min)					
Dog		69.5 ± 3.20					
Human		74.7 ± 6.40					

TAF = tenofovir alafenamide

9.3.2. AD-120-2023: Metabolism of TAF In Vitro in Hepatic S9

Report Title: In Vitro Metabolism of GS-7340 in Hepatic Subcellular Fractions from Dog and Human		<u>Study Type</u>	Test Article	<u>Report Number</u>					
		Metabolism, In Vitro	D TAF	AD-120-2023					
Study Systems:	minutes. Rates of metabolism (in vitro half-	Duplicate aliquots of 3 µM TAF were incubated with pooled hepatic S9 fractions from beagle dog and human at 37°C up to 90 minutes. Rates of metabolism (in vitro half-life values) were determined and hepatic extraction was predicted using the well-stirred liver model. Analysis was done by LC-MS/MS.							
Species	Half-Life (min)		Predicted Hepatic Extraction (%)						
Dog	31.1 ± 3.40		60.5						
Human	20.6 ± 0.70		76.2						

TAF = tenofovir alafenamide

9.3.3. AD-120-2024: Metabolism of TAF In Vitro in Intestine S9

Report Title: In Vitro Metabolism of GS-7340 in Intestinal Subcellular Fractions from Dog and Human		<u>Study Type</u>	Test Article	<u>Report Number</u>				
		Metabolism, In Vitro	TAF	AD-120-2024				
Study Systems:		Duplicate aliquots of 3 µM TAF were incubated with pooled intestinal S9 fractions from beagle dog and human at 37°C for up to 120 minutes. Rates of metabolism (in vitro half-life values) were determined. Analysis was done by LC-MS/MS.						
Species		Half-Life (min)						
Dog		47.1 ± 2.60						
Human		58.3 ± 4.40						

TAF = tenofovir alafenamide

9.3.4. AD-120-2004: Human Cytochrome P450 Metabolic Reaction Phenotyping of TAF

Report Title:	<u>Study Ty</u>	/pe	Test Article	<u>Report Number</u>		
Cytochrome P450 Metabolic Rea	Metaboli	sm	TAF	AD-120-2004		
Methods:	Rates of metabolism of TAF (5 μ M) catalyzed by cDNA expressed major human cytochrome P450 enco-expressed with NADPH CYP450 reductase					enzyme preparations
			Metabolism	Rate (min ⁻¹)		
Test Compound	CYP1A2	CYP2C8	CYP2C9	CYP2C	19 CYP2D6	CYP3A4
GS-7340 (% Positive Control)	< 0.12 (< 0.9%)	0.23 (< 0.8%)	< 0.47 (< 1.0%)	< 0.12 (< 4	40%) < 0.23 (< 0.9	9%) 1.9 (26.6%)
Ethoxycoumarin	13.2	-	-	-	-	-
Amodiaquine	-	29.3	-	-	-	-
Diclofenac	-	-	47.3	-	-	-
Diazepam	-	-	-	0.29 ^a	-	-
Dextromethorphan	-	-	-	-	25.4	-
Testosterone	-	-	-	-	-	7.2

TAF = tenofovir alafenamide; NA = not applicable a Diazepam is a selective substrate for CYP2C19 but is metabolized slowly.

9.3.5. AD-120-2017: Metabolism of TAF In Vitro in Primary Human Hepatocytes

Report Title:		Study Type	Test Article	<u>Report Number</u>				
In Vitro Activation of GS Hepatocytes	-1278, GS-4331 and GS-7340 in Primary Human	Metabolism, In Vitro	TFV, TDF, TAF	AD-120-2017				
Study Systems:		Duplicate wells of 5 μ M test compounds were incubated with primary human hepatocytes for 24 hours. Intracellular concentrations of TFV-DP were determined. Analysis was done by LC-MS/MS.						
Sampling Time:	24 hours	24 hours						
	TFV	-DP Concentration (pmol/	million cell)					
TFV		12.1						
TDF		302						
TAF		1,470						

TAF = tenofovir alafenamide; TDF = tenofovir disoproxil; TFV = tenofovir; TFV-DP = tenofovir diphosphate

9.3.6. 96-DDM-1278-003: Metabolism of TFV in Dog Plasma, Hepatic S9 and Intestinal S9, and Rat Hepatic Microsomal Fraction

Report Title: In Vitro Metabolism of [¹⁴ C]PMPA in Human and Animal Tissues			<u>Study Type</u>	<u>Test Article</u> TDF		<u>Report Number</u> 96-DDM-1278-003		
			Metabolism, In Vitro					
Study Systems:		Study system 1: rat hepatic microsomal fraction from control animals or following treatment with the general inducer Aroclor 1254 Study system 2: plasma, intestinal S9 and hepatic S9 from human and dog						
	(In Vitro Half Life (min) (% TFV Remaining Following 60 min Incubation at 37°C)						
	Liver Microsomes / S9	Aroclo	r Hepatic Microsomal Fra	ction Plas	sma	Intestinal S9		
Rat	> 60 (117%) ^a		> 60 (93%) ^a	-		-		
Rat (+ NADPH)	> 60 (111%) ^a		> 60 (99%) ^a	-	-	-		
Dog	> 60 (92%) ^b		-	> 60 (98%) ^b	> 60 (110%) ^b		
Human	> 60 (108%) ^b		_	> 60 (1	11%) ^b	> 60 (116%) ^b		

Additional Information: No metabolites were detected.

a Data from study system 1

b Data from study system 2

9.3.7. AD-120-2027: Effects of HIV Protease Inhibitors and Pharmacokinetic Enhancers on TAF Metabolism In Vitro

Report Title:	<u>Study Type</u>	Test Article	<u>Report Number</u>				
Effects of HIV Protease Inhibitors and Pharmacol In Vitro Metabolism of GS-7340 in Human Intest		Drug-drug interaction (in vitro)	TAF	AD-120-2027			
Methods: Duplicate aliquots of 2 μM TAF were incubated with HIV protease inhibitors, atazanavir and darunavir, and the pharmacokinetic enhance ritonavir and cobicistat in pooled human intestinal S9 fractions at 37°C up to 120 minutes. Rates of metabolism (in vitro half-life values) determined. Analysis was done by LC-MS/MS.							
Inhibitor or Enhancer	Conc	centration (µM)	TAF Intestinal S9 Stability, $t_{1/2}$ (mi				
Vehicle Control		0 24.5 ±		± 4.1			
Atazanavia		25		28.9 ± 5.2			
Atazanavir		100	38.9 ± 5.3				
Dominia		25	32.2 ± 5.1				
Darunavir		100	30.8 ± 5.0				
		25	19.0 ± 2.8				
Ritonavir		100	18.9 ± 1.5				
Cohigistat		25	30.1 ± 5.1				
Cobicistat		100		= 4.8			
Dichlorvos (Control)		500	> 78	39 ^a			

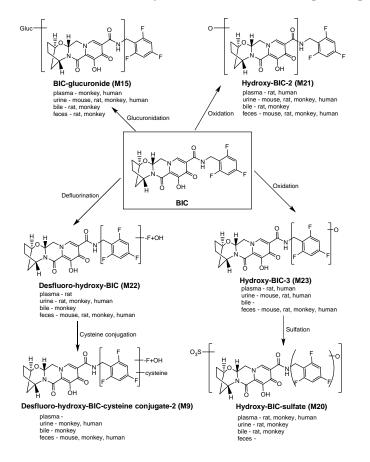
TAF = tenofovir alafenamide

a Less than 10% loss of substrate in 120 min

9.3.8. AD-120-2031: Effect of Inhibitors of CatA, CES1, and CYP3A4 on TAF Metabolism In Vitro

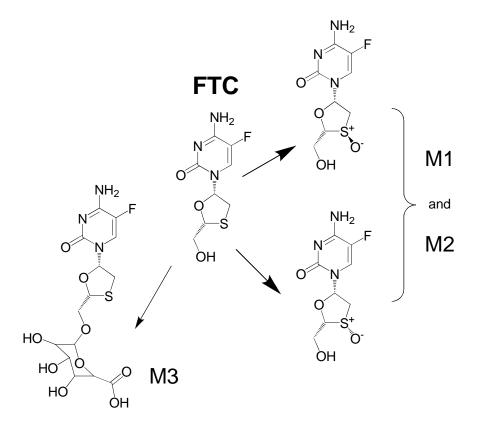
Report Title:	<u>Study Type</u>	Test Article	<u>Report Number</u>
Effect of Inhibitors of Cathepsin A, Carboxylesterase 1, and CYP3A4 on Metabolism of Tenofovir Alafenamide Fumarate (GS-7340) in Primary Human Hepatocytes	Drug-drug interaction (in vitro)	TAF	AD-120-2031

Methods The effect of inhibitors of cathepsin A (CatA), carboxylesterase 1 (CES1), and CYP3A on TAF activation to the pharmacologically active nucleotide analog diphosphate, tenofovir diphosphate (TFV-DP), was assessed in primary human hepatocytes. The duplicate wells were incubated with 0.5 μM TAF in the presence and absence of the inhibitors (concentrations at 0, 0.08, 0.4, 2, 10, and 50 μM). The amount of TFV-DP formation was analyzed by LC-MS/MS.

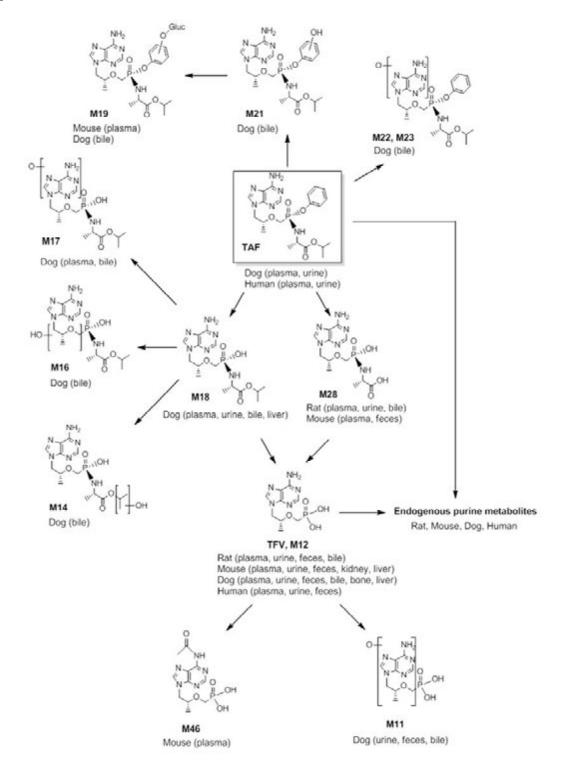

	Intracellular TFV-DP (% Control)						
Inhibitor Concentration (µM)	Telaprevir	Boceprevir	BNPP	COBI	Telaprevir + BNPP		
0	100	100	100	100	100		
0.08	109	91.2	124	123	132		
0.4	93.8	91.1	94.1	98.3	103		
2	103	91.7	63.4	100	51.9		
10	106	87.2	70.2	88.2	16.1		
50	984	100	33.6	87.9	5.30		

CatA = cathepsin A; CES1 = carboxylesterase 1; CYP = cytochrome P450 enzyme; TAF = tenofovir alafenamide

Note: Telaprevir and boceprevir are CatA inhibitors; cobicistat is a CYP3A inhibitor; bis(p-nitrophenyl) phosphate (BNPP) is a CES1 inhibitor


10. PHARMACOKINETICS: POSSIBLE METABOLIC PATHWAYS

- 10.1. BIC
- 10.1.1. Metabolites Identified in Mouse, Rat, Monkey and Human Following a Single Dose of [¹⁴C]BIC


10.2. FTC

The diagram shows the conversion of FTC to its major metabolites: 3'-sulfoxide diastereomers (M1 and M2), and 2'-O-glucuronide (M3).

10.3. TAF

The diagram shows TAF metabolites observed in rats, mice, and dogs after a single oral dose of $[^{14}C]TAF$.

11. PHARMACOKINETICS: INDUCTION/INHIBITION OF DRUG METABOLIZING ENZYMES

11.1. BIC

11.1.1. AD-141-2293: CYP Inhibition Potential of BIC

Report Title		Study Type	Test Article	Report Number
In Vitro Assessment of Inhibition Potential of (Human Liver Cytochrome P450 GS-9883	Metabolism	BIC	AD-141-2293
Study System	Human liver microsomes			
Method	BIC (0 – 100 μM) or control inhibitor for individual enzymes. All assays we The enzyme-specific probe substrate	ere conducted under conditions that	t were linear with respect to time	
		Control Inh	ibitor	BIC
CYP Enzyme	Activity	IC ₅₀ (μM	^b % inhibition at 1	100 μM IC ₅₀ (μM) ^b
CYP1A2	Phenacetin O-deethylase	0.06	-0.987	>100
CYP2B6	Bupropion 4-hydroxylase	1.70	13.3	>100
CYP2C8	Paclitaxel 6α-hydroxylase	e 1.07	23.5	>100
CYP2C9	Tolbutamide 4-hydroxylas	e 0.63	40.4	>100
CYP2C19	S-Mephenytoin 4'-hydroxyl	ase 10.4	42.0	>100
CYP2D6	Dextromethorphan O-demeth	ylase 0.05	0.737	>100
	Midazolam 1'-hydroxylas	e 0.05	34.3	>100
СҮРЗА	Testosterone 6β-hydroxyla	se 0.17	33.8	>100

BIC = bictegravir (GS-9883); CYP = cytochrome P450 enzyme

a Control Inhibitors: CYP1A2, α-Naphthoflavone (0–3 μM); CYP2B6, ticlopidine (0-10 μM); CYP2C8, Montelukast (0–3 μM); CYP2C9, Sulfaphenazole (0–10 μM); CYP2C19, Tranylcypromine (0–50 μM); CYP2D6, Quinidine (0–3 μM); CYP3A, Ketoconazole (0–3 μM).

b Values are the mean of 7 determinations.

11.1.2. AD-141-2294: UGT1A1 Inhibition Potential of BIC

Report Title In Vitro Assessment Potential of GS-9883	of Human UGT1A1 Inhibition	Study Type Metabolism	Test Article BIC	Report Number AD-141-2294				
Study System	Human microsomal fraction	n containing human UGT1A1						
Method	alamethicin (15 µg/mL), U	DP-glucuronic acid (5 mM), and the curonide, was monitored by LC-MS/N	was incubated with hepatic microsom probe substrate, β -estradiol (17 μ M). T MS and a decrease in the formation of	The UGT1A1-selective				
			Calculated IC_{50} (μM)					
Enzyme	Activit	y Atazanavir Ritonavir BIC						
UGT1A1	β-Estradiol-3-gluc	Estradiol-3-glucuronidation 0.33 3.04 176						

BIC = bictegravir (GS-9883); UGT = uridine diphosphate glucuronosyl transferase

11.1.3. AD-141-2308: CYP Mechanism-Based Inhibition Potential of BIC

Report Title			Study Type	Test Article	Report Number
In Vitro Assessme Inhibition Potentia	ent of Human Hepatic Microsomal Cytochrome P450 Mech al of GS-9883	anism-Based	Metabolism	BIC	AD-141-2308
Method	The potential for BIC (100 μ M) to act as a mechanismetabolizing enzymes, CYP1A2, CYP2B6, CYP2C incubation protocol. The first stage allowed for inact assay the remaining enzyme activity. A 10-fold diluttest compounds. The enzyme-specific metabolites w	8, CYP2C9, CY ivation of the er ion was perform	P2C19, CYP2D6, and 0 nzyme in the absence of ned between the 2 stage	CYP3A was assessed f substrate, and the set	with a two-stage cond stage was used to
			% Change (Over Vehicle Contro	l
Enzyme	Activity	Co	ntrol Inhibitor ^a		BIC
CYP1A2	Ethoxyresorufin O-deethylase		71.4 ± 2.0 62.1 ± 2.6	-	6.6 ± 5.4
CYP2B6	Bupropion 4-hydroxylase		82.8 ± 2.4		1.6 ± 8.7
CYP2C8	Paclitaxel 6α-hydroxylase		44.4 ± 3.8		6.7 ± 3.8
CYP2C9	Diclofenac 4'-hydroxylase		77.5 ± 5.0	().6 ± 15.6
CYP2C19	S-Mephenytoin 4'-hydroxylase		55.6 ± 2.2	-	1.3 ± 4.6
CYP2D6	Dextromethorphan O-demethylase		82.1 ± 0.8	1	2.1 ± 7.7
СҮРЗА	Midazolam 1'-hydroxylase		57.9 ± 2.6 78.5 ± 0.8	3	39.8 ± 3.7
CIPSA	Testosterone 6 -hydroxylase		90.4 ± 1.8 66.8 ± 2.2		7.4 ± 9.9

BIC = bictegravir (GS-9883); CYP = cytochrome P450 enzyme

a Control Inhibitors: CYP1A2, resveratrol and furafylline; CYP2B6, ticlopidine; CYP2C8, gemfibrozil glucuronide; CYP2C9, tienilic acid; CYP2C19, ticlopidine; CYP2D6, paroxetine; CYP3A, mibefradil and mifepristone

11.1.4. AD-141-2292: In Vitro Assessment of the Effect of BIC on AhR and PXR

Report Title	Study Type		Test Article	Report Number
Induction Potential of GS- 9883 Assessed In Vitro	Metabolisn	Metabolism		AD-141-2292
Study System:	AhR and the DRE of the human	n CYP1A2 gene linked	to a luciferase reporter. For PXF	rmed with an expression vector for human activation assay, DPX2 cells were stably aining the enhancer regions of CYP3A4
Method	BIC $(0.15 - 50 \ \mu\text{M})$ or positive 5'-fluoroluciferin was added an were divided by the average for	d the luminescence was	read in a luminometer. The ave	rage luminescent units for three replicates
		Fold Activa	tion Over 0.1% DMSO Contr	ol
		AhR		PXR
Concentration (µM)	BIC	-naphthofla	avone ^a BIC	C Rifampicin ^a
0.1	ND	1.09	ND	1.26
0.15	0.72	ND	0.93	3 ND
0.5	0.49	2.20	0.91	7 3.02
1.0	ND	3.22	ND	4.45
1.5	0.50	ND	1.03	3 ND
5.0	0.48	13.9	1.48	8 8.74
10	ND	23.5	ND	10.4
15	0.63	ND	2.75	5 ND
20	ND	24.5	ND	10.8
50	0.90	ND	4.22	2 ND

AhR = aryl hydrocarbon receptor; BIC = bictegravir (GS-9883); CYP = cytochrome P450 enzyme; DMSO = dimethyl sulfoxide; ND = not determined; PXR = pregnane X receptor.

a -naphthoflavone is a positive control for AhR activation; rifampicin is a positive control for PXR activation.

11.1.5. AD-141-2305: Induction Potential of BIC in Cultured Human Hepatocytes

Report Title				Study Type	Test Article	Report Number	
Induction Pote	ential of Bictegravir Ass	essed in Human Hepatocytes		Metabolism	BIC	AD-141-2305	
Method	solvent vehicle cont treatment, microson metabolites were qu	rols, in 3 preparations. The medium was nes were isolated from the harvested cell antified by LC-MS/MS. In addition, mR	bated with BIC, positive controls (omeprazole, phenobarbital, and rifamps replaced daily with fresh medium containing BIC or the controls. After ls, incubated with enzyme specific probe substrates and the probe substrates RNA levels in the harvested cells were analyzed by qRT-PCR to assess the 4, UGT1A1, and P-gp mRNA expression.				
		Fold Increase in CY	P Activity	over vehicle control (m	ean % over positive	control)	
Treatment CYP1A2				CYP2B6		CYP3A4/5	
BIC (1 μM)		$1.00 \pm 0.09 \; (0.00\%)$	(0.95 ± 0.09 (-0.45%) 1.19 ±		± 0.15 (2.24%)	
BIC (3 μM)		1.01 ± 0.11 (0.068%)		1.09 ± 0.16 (0.82%)	1.36	± 0.26 (4.24%)	
BIC (10 µM)		0.86 ± 0.07 (-0.96%)		1.15 ± 0.12 (1.36%)	± 0.51 (17.7%)		
BIC (30 µM)		0.63 ± 0.07 (-2.53%)	().76 ± 0.07 (-2.18%)	2.57	± 0.23 (18.5%)	
BIC (60 µM)		0.42 ± 0.06 (-3.97%)	(0.73 ± 0.09 (-2.45%)	1.73	± 0.23 (8.60%)	
Omeprazole $(50 \ \mu M)^{a}$ 15.6 ± 4.3				NA NA		NA	
Phenobarbital	(1000 µM) ^a	NA		12.0 ± 0.8 NA		NA	
Rifampin (10 µ	μ M) ^a	NA		NA		9.49 ± 1.00	

Report Title				S	tudy Type	Test Artic	le Repo	Report Number		
Induction Potential of Bictegravir	Assessed in Human He	epatocytes		Metabolism		BIC	AD	AD-141-2305		
		mRNA Fold Increase Over Vehicle Control (mean % over positive control)								
Treatment	CYP1A2	CYP2B6	СҮРЗА	4	CYP2C8	CYP2C9	UGT1A1	P-gp		
BIC (1 μM)	1.10 ± 0.22 (0.61%)	$\begin{array}{c} 1.19 \pm 0.41 \\ (1.81\%) \end{array}$	1.71 ± 1. (3.13%		$\begin{array}{c} 1.62 \pm 0.16 \\ (67.4\%) \end{array}$	$\begin{array}{c} 1.07 \pm 0.28 \\ (36.8\%) \end{array}$	$\begin{array}{c} 1.18 \pm 0.45 \\ (1.80\%) \end{array}$	1.02 ± 0.51 (2.27%)		
BIC (3 μM)	1.11 ± 0.30 (0.67%)	$\begin{array}{c} 1.63 \pm 0.33 \\ (6.00\%) \end{array}$	$2.50 \pm 1.$ (6.61%)		$\begin{array}{c} 1.67 \pm 0.17 \\ (72.8\%) \end{array}$	$\begin{array}{c} 1.18 \pm 0.15 \\ (94.7\%) \end{array}$	$\begin{array}{c} 1.22 \pm 0.21 \\ (2.20\%) \end{array}$	0.87 ± 0.14 (-14.8%)		
BIC (10 μM)	1.22 ± 0.23 (1.35%)	2.41 ± 0.75 (13.4%)	7.20 ± 3. (27.3%		$\begin{array}{c} 1.98 \pm 0.38 \\ (107\%) \end{array}$	$\begin{array}{c} 1.26 \pm 0.20 \\ (137\%) \end{array}$	$\begin{array}{c} 1.89 \pm 0.51 \\ (8.90\%) \end{array}$	$\begin{array}{c} 1.00 \pm 0.25 \\ (0.00\%) \end{array}$		
BIC (30 μM)	1.18 ± 0.29 (1.10%)	3.93 ± 1.14 (27.9%)	16.4 ± 12 (67.8%)		$\begin{array}{c} 1.78 \pm 0.41 \\ (84.8\%) \end{array}$	$\begin{array}{c} 1.20 \pm 0.26 \\ (105\%) \end{array}$	$\begin{array}{c} 3.55 \pm 0.95 \\ (25.5\%) \end{array}$	$\begin{array}{c} 1.38 \pm 0.67 \\ (43.2\%) \end{array}$		
BIC (60 μM)	0.74 ± 0.25 (-1.60%)	$\begin{array}{c} 4.74 \pm 1.64 \\ (35.6\%) \end{array}$	16.7 ± 9 (69.2%		$\begin{array}{c} 1.10 \pm 0.24 \\ (10.9\%) \end{array}$	$\begin{array}{c} 1.37 \pm 0.38 \\ (195\%) \end{array}$	$\begin{array}{c} 3.51 \pm 0.92 \\ (25.1\%) \end{array}$	5.76 ± 2.00 (541%)		
$EC_{50}^{b}(\mu M)$	NA	103	19.1		NA	NA	143	NA		
Omeprazole (50 µM) ^a	17.3 ± 3.5	NA	NA		NA	NA	11.0 ± 3.6	NA		
Phenobarbital (1000 µM) ^a	NA	11.5 ± 5.1	NA		NA	NA	NA	NA		
Rifampin (10 µM) ^a	NA	NA	23.7 ± 8	.4	1.92 ± 0.62	1.19 ± 0.22	NA	1.88 ± 0.65		

BIC = bictegravir; CYP = cytochrome P450 enzyme; LC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; NA = not applicable; P-gp = P-glycoprotein; UGT = UDP glucuronosyl transferase

Data are the mean \pm standard deviation from 3 donors

a Positive control inducers: CYP1A2 - omeprazole; CYP2B6 - phenobarbital; CYP3A4, CYP2C8, CYP2C9, P-gp - rifampin

b Values were extrapolated by curve fitting (constrained to E_{max} of 100%)

11.2. FTC

11.2.1. 15247: Evaluation of FTC as an Inhibitor of Human Cytochromes P450 and Uridine Diphosphate Glucuronosyl Transferase Activity

Report Title				Study Type	Test Article	Report Number
	ation of Emtricitabine (FTC) as an Inhibitor (phosphate Glucuronosyl Transferase (UGT)	of Human Cytochrome P450	Enzymes and	Metabolism	FTC	15247
Methods:	Pooled human hepatic microsomal fractic (CYP2A6), 7-benzyloxyresorufin <i>O</i> -debe dextromethorphan <i>O</i> -demethylation (CYF glucuronidation (various UGTs), in the pr	nzylation (CYP2B6), tolbut P2D6), chlorzoxazone 6-hyd	amide methyl hyd roxylation (CYP2	roxylation (CYP2C9), (S) me E1), testosterone 6β-hydroxy	ephenytoin 4'-hydroxy vlation (CYP3A) and 7	lation (CYP2C19), -hydroxycoumarin
Enzyme	Enzyme Reaction	Control Inhibitor		FTC	Contro	l Inhibitor
			$K_{i}\left(\mu M\right)$	Type of Inhibition	K	_i (μ M)
CYP1A2	7-ethoxyresorufin O-deethylation	α -naphthoflavone	-	No inhibition	Compe	titive 0.011
CYP2A6	coumarin 7-hydroxylation	tranylcypromine	-	No inhibition		lixed: /Uncompetitive 0.72
CYP2B6	7-benzyloxyresorufin <i>O</i> - debenzylation	orphenadrine	-	No inhibition	Comp	etitive 200
CYP2C9	tolbutamide methyl-hydroxylation	sulfaphenazole	-	No inhibition		lixed: /Uncompetitive 61
CYP2C19	(S) mephenytoin 4'-hydroxylation	ticlopidine	-	No inhibition	Comple	te inhibition
CYP2D6	dextromethorphan O-demethylation	quinidine	-	No inhibition	Compe	titive 0.046
CYP2E1	chlorzoxazone 6-hydroxylation	4-methylpyrazole	1788	Competitive inhibition		lixed: /Uncompetitive 7.4
CYP3A	testosterone 6β-hydroxylation	ketoconazole	-	No inhibition	Compe	titive 0.044
UGT	7-hydroxycoumarin glucuronidation	-	-	No inhibition		-
Conclusion:	FTC was not an inhibitor forFTC did not show inhibition			, 2E1 and 3A		

11.2.2. AD-162-2005: In Vitro Assessment of Induction Potential in Metabolizing Enzymes

Report Title				Study Type	Test Article	Report Number		
In Vitro Assessm	nent of In	duction Potential of GS-9019 in H	Iumans	Metabolism	FTC	AD-162-2005		
Methods: The potential for induction of human drug metabolizing enzymes and transporters through the activation of the aryl hydrocarbon receptor (AhR and the pregnane X receptor (PXR) by GS-9019 was assessed in vitro. Assessments of induction were done using Puracyp's hepatoma-derived cell lines, DRE12.6 and DPX2. DPX2 cells are stably transformed with an expression vector for human PXR and a reporter gene vector containing the enhancer regions of CYP3A4 linked to luciferase. DRE12.6 cells are transformed with an expression vector for human AhR and the Drug/Dioxin Response Element (DRE) of the human CYP1A2 gene linked to a luciferase reporter. Following 24 h of exposure to the test articles, medium was replaced with phosphate-buffered saline and MultiTox-Fluor TM Multiplex assay buffer at 1:1 ratio. The plates were incubated for a further 1 hr and fluorescence determined in a Perkin-Elmer Victor 2 fluorometer (excitation 400 nm, emission 510 nm). Triplica values were averaged and the fold induction determined by comparison with the appropriate DMSO vehicle control concentration.								
		Human PX	R Activation	Н	uman AhR Activation	n		
		Fold Induction Over	0.1% DMSO Control	Fold Induction Over 0.1% DMSO Control				
Concentration ((µM)	FTC	Rifampicin	FTC	-N:	aphthoflavone		
0.1		_	3.02	_		1.73		
0.15		0.84	-	1.00		_		
0.5		0.88	4.57	0.96		3.69		
1.0		_	6.30	_		5.54		
1.5		0.84	-	0.91		_		
5		0.83	13.21	0.88		25.04		
10		_	13.80	-		35.69		
15		1.22	-	0.91		_		
20		_	14.58	_		50.07		
50		1.44	-	1.14		_		

11.3. TAF and TFV

11.3.1. AD-120-2003: Human Cytochrome P450 Inhibition Potential of TAF

Report Title	e:			Study Type	Test Article	<u>Report Number</u>
In Vitro Assessment of Human Liver Cytochrome P450 Inhibition Potential of GS-7340 Metabolism TAF AD-120-20						
Methods: The inhibitory effect of TAF on human P450 enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) was investigated using human liver microsomes in the presence of NADPH at concentrations of TAF up to 25 μM						CYP3A4) was
				Cal	culated IC ₅₀ (µg/mL)	
Enzyme		Activity		TAF	Con	trol Inhibitor ^a
CYP1A2		Phenacetin O-deethylase	>25			0.05
CYP2B6		Bupropion 4-hydroxylase		>25		0.72
CYP2C8		Paclitaxel 6 -hydroxylase		>25		0.34
CYP2C9		Tolbutamide 4-hydroxylase		>25		0.64
CYP2C19		(S) Mephenytoin 4'-hydroxylase		>25		7.65
CYP2D6		Dextromethorphan O-demethylase		>25		0.05
CMD2 A		Midazolam 1'-hydroxylase		7.6		0.03
СҮРЗА		Testosterone 6 -hydroxylase		7.4		0.11

CYP = cytochrome P450 enzyme; TAF = tenofovir alafenamide

a Control inhibitors: CYP1A2, Naphthoflavone (0-3 μM); CYP2B6, Ticlopidine (0-10 μM); CYP2C8, Montelukast (0-3 μM); CYP2C9, Sulfaphenazole (0-10 μM); CYP2C19, Tranylcypromine (0-50 μM); CYP2D6, Quinidine (0-3 μM); CYP3A, Ketoconazole (0-3 μM)

11.3.2. V990172-104: Human Cytochrome P450 Inhibition Potential of TFV

Report Title:		<u>Study Type</u>	<u>Test Article</u>	<u>Report Number</u>	
The Effect of TFV and TDF on the Activities of the C Human Hepatic microsomes	cytochrome P-450 Isoforms in	Metabolism	TFV	V990172-104	
Method: Probe activities selective for the CYP enzymes were utilized to examine the potential inhibitory effects of TFV using human hepatic microsom fraction as the catalyst. Activities were evaluated in the presence and absence of 100 μM TFV.					
CYP Enzyme (Activity)	Control (nmol/mg/min)		TFV (nmol/mg/min)		
CYP3A (terfenadine hydroxylation)	0.018 ± 0.009		0.016 ± 0.009		
CYP2D6 (dextromethorphan O-demethylation)	0.066 ± 0.041		0.064 ± 0.043		
CYP2C9 (tolbutamide 4-hydroxylation)	0.218 ± 0.093		0.216 ± 0.096		
CYP2E1 (chlorzoxazone 6-hydroxylation)	1.48 ± 0.58		1.50 ± 0.65		
CYP1A2 (7-ethoxycoumarin O-deethylation)	0.481 ± 0.182		0.487 ± 0.19		

CYP = cytochrome P450 enzyme; TFV = tenofovir

11.3.3. AD-120-2040: Human CYP Mechanism-Based Inhibition of TAF

Report Title	e:			<u>Study Type</u>	Test Article	<u>Report Number</u>	
	essment of Human Hepatic ition Potential of GS-7340	Microsomal Cytochrome P450 Mechanis	m	Metabolism	TAF	AD-120-2040	
Methods: The potential for test compound to act as a mechanism based inhibitor of human hepatic microsomal cytochromes P450 drug metabolizing enzymes, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19 and CYP2D6, was assessed. Two-stage incubation protocol was used, with the stage allowing inactivation of the enzyme in the absence of substrate, and the second stage being used to assay remaining enzyme activity. A 10-fold dilution was performed between the 2 stages to reduce the direct inhibitory effects of the test compounds. The enzyme-specific metabolites were quantified by LC-MS/MS, except for resorufin (CYP1A2 metabolite), which was quantified fluorometrically.							
				Ca	lculated % Chang	<i>je</i>	
Test Compo	ound	Probe Activity		Control Inhibitor ^a		TAF	
CYP1A2		Ethoxyresorufin O-deethylase		71.2 ± 1.9		5(1 + 0.16)	
CIPIA2				57.9 ± 3.1		-5.61 ± 9.16	
CYP2B6		Bupropion 4-hydroxylase		85.4 ± 0.8		-5.29 ± 3.52	
CYP2C8		Paclitaxel 6 -hydroxylase		60.3 ± 4.8		17.4 ± 14.2	
CYP2C9		Diclofenac 4'-hydroxylase		79.6 ± 2.5		-7.36 ± 17.2	
CYP2C19		S-Mephenytoin 4'-hydroxylase		62.3 ± 0.9		5.30 ± 4.10	
CYP2D6		Dextromethorphan O-demethylase		80.1 ± 3.6		3.94 ± 16.1	
СҮРЗА				60.1 ± 1.8		16.4 ± 5.87	
		Midazolam 1'-hydroxylase		80.2 ± 1.2			
UIPJA		Tastastarana 6 hudrovulasa		91.3 ± 0.5		10.3 + 4.66	
		Testosterone 6 -hydroxylase		70.7 ± 1.2		10.3 ± 4.00	

CYP = cytochrome P450 enzyme; TAF = tenofovir alafenamide

a CYP1A2, furafylline and resveratrol; CYP2B6, ticlopidine; CYP2C8, gemfibrozil glucuronide; CYP2C9, tienilic acid; CYP2C19, ticlopidine; CYP2D6, paroxetine; CYP3A, mibefradril and mifepristone

11.3.4. AD-120-2005: Induction of Metabolizing Enzymes by TAF In Vitro

Report Title	e:		<u>Study Type</u>	Test Article	<u>Report Number</u>	
In Vitro Ass	essment of Induction Potential of GS-734	40 in Humans	Metabolism	TAF	AD-120-2005	
Methods:	Assessments of induction were done us vector for human PXR and a reporter g to the test articles, the luciferase substr 3 replicates were divided by the averag	gene vector containing the enhancer rate was added and the luminescence	regions of CYP3A4 link e was read in a luminome	ed to luciferase. Followi eter. The average lumine	ng 24 hours of exposure	
		Fold Induct	tion Over 0.1% DMSO	Control (PXR Activatio	on)	
Concentrat	ion	TAF		Rifamp	icin	
0.1 µM		NA		1.56		
0.15 µM		0.81		NA		
0.5 μM		0.92		4.59		
1.0 µM		NA		6.36		
1.5 μM		0.88		NA		
5 μΜ		1.03		12.5		
10 µM		NA		13.4		
15 µM		1.58		NA		
20 µM		NA		12.6		
50 µM		3.89		NA		

TAF = tenofovir alafenamide; NA = not applicable

Report Title:		<u>Study Type</u>	Test Article	Report Number	
In Vitro Assessment of Induction Potential of	f GS-7340 in Humans	Metabolism	TAF	AD-120-2005	
	Fold Induct	ion Over 0.1% DMSO	Control (AhR Activati	on)	
Concentration	TAF		-Naphtho	oflavone	
0.1 μΜ	NA	NA 2.56			
0.15 μΜ	1.09		NA	1	
0.5 μΜ	1.04		6.3	7	
1.0 μΜ	NA		11.	1	
1.5 μΜ	0.97		NA	L	
5 μΜ	0.91		47.	5	
10 μΜ	NA		40.	0	
15 μΜ	0.87		NA	1	
20 μM	NA		27.	7	
50 µM	0.90		NA	4	

TAF = tenofovir alafenamide; NA = not applicable

11.3.5. AD-120-2032: Assessment of Induction Potential of TAF in Human Hepatocyte In Vitro

Report Titl	e:	<u>Study Type</u>	Test Article	<u>Report Number</u>
Evaluation of Human Hep	of Induction Potential of GS-7340 in Cultured atocytes	Drug-drug interaction (in vitro)	TAF	AD-120-2032
Methods:	The induction potential of cytochrome P450 (CYP) isoforms, assessed in cultured human hepatocytes. GS-7340 was incuba	tted in 3 preparations of cryopreser	ved human hepatocyte cul	tures at concentrations of

1, 10, and 100 μM with vehicle control and appropriate positive controls. Following 3 days of exposure, induction was determined *in situ* by catalytic activity assays, and mRNA expression was determined using real-time PCR (RT-PCR). Additionally, the cytotoxic potential of GS-7340 was assessed using the MTT assay.

		Fold Induction								
Test Compound Concentration		mRNA Expression in Human Hepatocytes					Human Hepatocytes			
(µM)	CYP1A2	CYP2B6	CYP3A4	P-gp	UGT1A1	CYP1A2	CYP2B6	СҮРЗА		
1	1.2 ± 0.14	0.95 ± 0.17	0.92 ± 0.098	1.0 ± 0.037	0.94 ± 0.074	1.0 ± 0.20	1.1 ± 0.047	0.97 ± 0.083		
10	3.0 ± 0.47	1.6 ± 0.26	8.3 ± 1.4	1.1 ± 0.11	1.7 ± 0.15	1.4 ± 0.15	0.85 ± 0.085	0.99 ± 0.057		
100	6.9 ± 0.86	2.5 ± 0.21	44 ± 3.6	0.87 ± 0.093	3.9 ± 0.47	0.84 ± 0.065	0.42 ± 0.095	0.37 ± 0.025		

TAF = tenofovir alafenamide

Note: Positive control for CYP1A2 was omeprazole, for CYP2B6 and P-gp was phenobarbital, for CYP3A was rifampicin, and for UGT1A1 was β-naphthoflavone.

Report Title:	<u>Study Type</u>	Test Article	<u>Report Number</u>
Evaluation of Induction Potential of GS-7340 in Cultured Human Hepatocytes	Drug-drug interaction (in vitro)	TAF	AD-120-2032

Methods: The induction potential of cytochrome P450 (CYP) isoforms, P-glycoprotein (P-gp), and UDP glucuronosyl transferase (UGT) 1A1 by TAF was assessed in cultured human hepatocytes. GS-7340 was incubated in 3 preparations of cryopreserved human hepatocyte cultures at concentrations of 1, 10, and 100 μM with vehicle control and appropriate positive controls. Following 3 days of exposure, induction was determined in *situ* by catalytic activity assays, and mRNA expression was determined using real-time PCR (RT-PCR). Additionally, the cytotoxic potential of GS-7340 was assessed using the MTT assay.

Test Compound Concentration	Cell Viability (% Control Incubations) ^a						
(µM)	Hepatocyte Lot 228	Hepatocyte Lot 307	Hepatocyte Lot 321	Mean			
0	100 ± 6	100 ± 14	100 ± 7	100 ± 9			
1	104 ± 3	120 ± 10	104 ± 6	109 ± 6			
10	58 ± 2	90 ± 13	81 ± 2	76 ± 6			
100	47 ± 1	73 ± 8	54 ± 2	58 ± 4			

TAF = tenofovir alafenamide

a Values are the mean ± standard deviation of triplicate determinations and represent percentage viability relative to solvent vehicle-only treated cells

11.3.6. AD-120-2006: In Vitro Assessment of Human UGT1A1 Inhibition Potential of TAF

Report Titl	e:		<u>Study Type</u>	Test Article	<u>Report Number</u>			
In Vitro Assessment of Human UGT1A1 Inhibition Potential of GS-7340			Metabolism	TAF	AD-120-2006			
Methods:	Methods: The potential for TAF to inhibit the catalytic activity of human UGT1A1 was assessed. The rates of formation of β -estradiol-3-glucuronide from estradiol substrate by hepatic microsomal fractions were determined in the presence and absence of TAF, and, where possible, IC ₅₀ values were determined. Silybin was used as positive control.							
			Calculated IC ₅₀ (µM)					
Enzyme		Activity	TAF Silybin					
UGT1A1		β-estradiol-3-glucuronidation	>50		1.69			

TAF = tenofovir alafenamide; UGT = uridine diphosphate glucuronosyl transferase

12. PHARMACOKINETICS: EXCRETION

12.1. BIC

12.1.1. AD-141-2303: Excretion in Mice Following Oral Administration of [¹⁴C]BIC

Report Title		5	Study Type	Test Article	Report Number	
Pharmacokinetics, Absorption, and Administration to Transgenic Mic	d Excretion of ¹⁴ C-GS-9883 Following a Single e	e Oral	Excretion	[¹⁴ C]BIC	AD-141-2303	
Species	Transgenic (Ras H2 mice [CBYB6F1-Tg (HI	RAS) 2Jic] Mice				
Gender /No. of Animals	Male/4					
Feeding Condition	Non-Fasted					
Vehicle/Formulation	5% Ethanol, 55% polyethylene glycol 300 ar	nd 40% water				
Method of Administration	Oral Gavage	ral Gavage				
Dose	2 mg/kg (300 µCi/kg)	2 mg/kg (300 μCi/kg)				
Specific Activity	55.9 mCi/mmol					
Specific Activity of Formulation	124 µCi/mg					
Analyte	Carbon-14					
Assay	Liquid scintillation counting					
	Mean Cum	lative Recovery of %	% Administered	¹⁴ C Dose ^a		
Collection Period (h)	Urine	Feces		Т	'otal ^b	
0–24	3.21	89.9			93.1	
0–48	3.48	96.6			100	
0–168	3.55	98.5			102	

BIC = bictegravir (GS-9883); Non-fasted = certified rodent diet #2016C or 2016CM (Harlan) was provided ad libitum.

a Values are mean of 2 pooled samples (each from 2 animals)

b Recovery of radioactivity from cage wash, cage rinse, cage wipe and carcass (residual) totaled ~0.28% of total dose.

12.1.2. AD-141-2276: Excretion in Bile Duct-Intact Rats Following Oral Administration of [¹⁴C]BIC

Report Title			Study Type	Test Article	Report Number		
Pharmacokinetics, Absorption, Di Oral Administration to Rats	stribution, and Excretion of ¹⁴ C-GS-9883 Following	a Single	Excretion	[¹⁴ C]BIC	AD-141-2276		
Species	Wistar Han Rat (bile duct-intact)			•	•		
Gender /No. of Animals	Male/3						
Feeding Condition	Fasted						
Vehicle/Formulation	5% Ethanol, 55% polyethylene glycol 300 and 40	% water					
Method of Administration	Oral gavage						
Dose	2 mg/kg (100 µCi/kg)						
Analyte	Carbon-14						
Specific Activity	55.9 mCi/mmol						
Specific Activity of Formulation	52.5 μCi/mg						
Assay	Liquid scintillation counting						
	Mean ± SD Cumulative Recovery of % Administered ¹⁴ C Dose						
Collection Period (h)	Urine	Fe	eces	Total ^a			
0-8	0.769 ± 0.206		-	0.769	$\theta \pm 0.206$		
0–24	1.95 ± 0.39	22.9	0 ± 1.1	24.	9 ± 1.2		
0–48	3.16 ± 0.70	41.8	5 ± 4.5	45.	0 ± 4.6		
0-72	3.82 ± 0.79	56.3	± 4.8	60.	1 ± 4.9		
0–96	4.25 ± 0.84	64.3	± 5.1	68.	6 ± 5.2		
0–120	4.58 ± 0.84	69.8	5 ± 4.6	74.	4 ± 4.7		
0–144	4.83 ± 0.86	73.4	± 4.0	78.	2 ± 4.1		
0–168	5.01 ± 0.84	76.3	± 3.5	81.	3 ± 3.6		
Total Recovery (%)		95.9	0 ± 0.4	1			

BIC = bictegravir (GS-9883)

a Recovery of radioactivity from cage wash, cage rinse, and cage wipe totaled $\sim 0.89\%$ of total dose. Recovery of radioactivity from carcass (residual) was 13.7% of total dose. Fasted = animals were fasted overnight prior to dose and up to 4 hours after dosing; SD = standard deviation.

12.1.3. AD-141-2298: Excretion in Bile Duct-Intact Monkeys Following Oral Administration of [¹⁴C]BIC

Report Title	d Excretion of ¹⁴ C-GS-9883 Following Oral Admini	stration to	Study Type Excretion	Test Article [¹⁴ C]BIC	Report Number AD-141-2298	
Intact and Bile Duct-Cannulated N		stration to	Excition	[C]BIC	AD-141-2298	
Species	Intact Monkeys	U			•	
Gender No. of Animals	Male/3					
Feeding Condition	Fasted					
Vehicle/Formulation	30% Captisol in reverse osmosis water					
Method of Administration	Oral Gavage					
Dose	1 mg/kg (25 µCi/kg)					
Analyte	Carbon-14					
Specific Activity	55.9 mCi/mmol					
Specific Activity of Formulation	26.4 µCi/mg					
Assay	Liquid scintillation counting					
	Mean ± SD Cumula	Cumulative Recovery of % Administered ¹⁴ C Dose				
Collection Period (h)	Urine	Fe	eces	Т	'otal ^a	
0–4	2.49 ± 2.00		-	2.49	$\theta \pm 2.00$	
0-8	4.03 ± 2.26		-	4.03	3 ± 2.26	
0-24	17.8 ± 2.6	10.7	' ± 5.2	28.	5 ± 5.8	
0–48	19.7 ± 3.1	21.7	±11.6	41.4	1 ± 12.0	
0–72	20.4 ± 3.2	33.3	5 ± 5.3	53.	7 ± 6.2	
0–96	20.6 ± 3.3	39.9) ± 3.3	60.	5 ± 4.7	
0-120	20.7 ± 3.3	40.5	5 ± 3.7	61.	2 ± 5.0	
0-144	20.8 ± 3.3	40.7	' ± 3.7	61.	5 ± 5.0	
0–168	20.8 ± 3.3	40.9	0 ± 3.7	61	$.7\pm 5.0$	
Total Recovery (%)		80	0.4 ± 7.8	- •		

BIC = bictegravir (GS-9883)

a Recovery of radioactivity from cage debris, cage wash, cage rinse, and cage wipe totaled ~18.7% of total dose.

Fasted = animals were fasted overnight prior to dose and up to 4 hours after dosing; SD = standard deviation.

12.2. FTC

Results from FTC excretion studies are described in Sections 5.2.1, 8.2.1, 8.2.2, and 8.2.3 of this document.

12.3. TAF and TFV

Results from the TAF excretion studies are described in Sections 5.3.1, 5.3.2, and 13.2.1 of this document.

12.3.1. 96-DDM-1278-001: Effect of Dose on the Recovery of Radioactivity Following Administration of [¹⁴C]TFV to Rats

Report Title		Stu	ıdy Type	Test Article	Report	Number
Effect of Dose on Recovery of [¹⁴ Sprague-Dawley Rats	⁴ C]PMPA Following Intravenous Administration to	E	xcretion	TFV or TDF	96-DDN	[-1278-001
Species	Rat					
Sex (M/F) No. of Animals	6M (4M group 1, 2M group 2)					
Feeding Condition	Fasted					
Vehicle/Formulation	Sterile saline or phosphate buffered saline					
Method of Administration	IV single bolus					
Dose (mg/kg/day)	10 (group 1), 50 (group 2)					
Analyte (Radionuclide)	Total radioactivity, % recovery ¹⁴ C					
Specific Activity	400 µCi/kg					
Assay	Liquid scintillation counting					
		<u>10 mg/k</u>	2			
Excretion Route	Urine (+ cage wash) (% dose in sample)	(%	Feces lose in samp	ble)	% Total	recovery
<u>Time</u>					Urine	Feces
0–24 h	85.2		3.18			
24–168 h	7.6		1.30		92.7	4.48
		<u>50 mg/k</u>	7			<u> </u>
0–24 h	77.5		7.39			
24–168 h	6.5		1.07		84.0	8.46

13. PHARMACOKINETICS: EXCRETION INTO BILE

13.1. BIC

13.1.1. AD-141-2283: Excretion in Bile Duct-Cannulated Rats Following IV Administration of BIC

Report Title Pharmacokinetics of GS-9883 Following IV Infusion to Male Bile Duct Cannulated Rats	Study Type Excretion	Test Article BIC	Report Number AD-141-2283				
Species	Sprague-Dawley Rat (Bile Duct-Cannula	ted)					
Gender / No. of Animals	Male/3						
Feeding Condition	Fasted						
Vehicle / Formulation	5% ethanol, 55% polyethylene glycol 30	5% ethanol, 55% polyethylene glycol 300 and 40% water					
Method of Administration	IV Infusion						
Dose (mg/kg)	0.5						
Analyte	BIC						
Assay	LC-MS/MS						
		Mean ± SD % Administered Dos	e				
Collection Period (h)	Bile	Urine	Total				
0–12	0.03 ± 0.02	0.50 ± 0.88	_				
0–24	0.03 ± 0.02	0.60 ± 0.79	_				
0-48	0.03 ± 0.02	0.64 ± 0.85	_				
0–72	0.03 ± 0.02	0.64 ± 0.85	0.67 ± 0.85				

BIC = bictegravir (GS-9883); SD = standard deviation

Fasted = animals were fasted overnight prior to dose administration and up to 4 hours after dosing.

13.1.2. AD-141-2276: Excretion in Bile Duct-Cannulated Rats Following Oral Administration of [¹⁴C]BIC

Report Title			Study Type	Test Article	Report Number
Pharmacokinetics, Absorption Oral Administration to Rats	n, Distribution, and Excretion of 14	C-GS-9883 Following a Single	Excretion	[¹⁴ C]BIC	AD-141-2276
Species	Wistar Han Rat (bile duct-can	nulated)			
Gender /No. of Animals	Male/3				
Feeding Condition	Fasted				
Vehicle/Formulation	5% Ethanol, 55% polyethylene	e glycol 300 and 40% water			
Method of Administration	Oral Gavage				
Dose	2 mg/kg (100 µCi/kg)				
Analyte	Carbon-14				
Specific Activity	55.9 mCi/mmol				
Specific Activity of Formulation	52.5 µCi/mg				
Assay	Liquid scintillation counting				
		Mean ± SD Cumulative Recover	y of % Administered	¹⁴ C Dose	
Collection Period (h)	Bile	Urine	Feces		Total ^a
0–2	3.87 ± 1.79	-	-		3.87 ± 1.79
0-4	5.10 ± 2.43	-	-		5.10 ± 2.43
0-6	6.08 ± 2.91	-	-		6.08 ± 2.91
0-8	6.86 ± 3.24	-	-		6.86 ± 3.24
0-12	8.56 ± 3.84	1.88 ± 0.45	-		10.4 ± 3.9
0–24	13.0 ± 5.4	3.15 ± 0.60	9.97 ± 1.64		26.1 ± 5.7
0–48	19.6 ± 6.1	4.65 ± 0.91	21.0 ± 2.2		45.3 ± 6.6
0-72	24.0 ± 6.4	5.70 ± 1.05	28.5 ± 3.7		58.2 ± 7.5
0–96	28.0 ± 5.9	6.41 ± 1.11	34.2 ± 4.9		68.6 ± 7.8

Report Title Pharmacokinetics, Absorption, I Oral Administration to Rats	Distribution, and Excretion of ¹⁴	C-GS-9883 Following a Single	Study Type Excretion	Test A [¹⁴ C]		Report Number AD-141-2276
0-120	30.6 ± 5.8	6.88 ± 1.14	37.8 ± 5.0			75.3 ± 7.7
0-144	32.6 ± 5.5	7.22 ± 1.15	40.5 ± 4.8			80.3 ± 7.4
0–168	34.1 ± 5.1	7.48 ± 1.19	42.4 ± 4.7		84.0 ± 7.0	
Total Recovery (%)	99.1 ± 1.0					

BIC = bictegravir (GS-9883); SD = standard deviation

a Recovery of radioactivity from cage wash, cage rinse, and cage wipe totaled $\sim 1.37\%$ of total dose. Recovery of radioactivity from carcass (residual) was 13.7% of total dose. Fasted = animals were fasted overnight prior to dose and up to 4 hours after dosing.

13.1.3. AD-141-2298: Excretion in Bile Duct-Cannulated Monkeys Following Oral Administration of [¹⁴C]BIC

Report Title Pharmacokinetics, Absorption Intact and Bile Duct-Cannula	n, and Excretion of ¹⁴ C-GS-9883 Fe ted Monkeys	ollowing Oral Administration to	Study Type Excretion	Test Article [¹⁴ C]BIC	Report Number AD-141-2298
Species	Bile Duct-Cannulated Monkey	/S			
Gender /No. of Animals	Male/3				
Feeding Condition	Fasted				
Vehicle/Formulation	30% Captisol in reverse osmos	sis water			
Method of Administration	Oral Gavage				
Dose	1 mg/kg (25 µCi/kg)				
Specific Activity	55.9 mCi/mmol				
Specific Activity of Formulation	26.4 µCi/mg				
Analyte	Carbon-14				
Assay	Liquid scintillation counting				
		Mean ± SD Cumulative Recovery	of % Administered	¹⁴ C Dose	
Collection Period (h)	Bile	Urine	Feces		Total ^a
0-4	13.6 ± 1.6	4.13 ± 2.75	-		17.7 ± 3.2
0-8	27.5 ± 4.3	8.80 ± 5.05	-		36.3 ± 6.6
0–24	38.2 ± 7.3	13.5 ± 5.1	5.09 ± 2.14		56.8 ± 9.2
0–48	39.4 ± 7.6	14.6 ± 5.0	16.7 ± 6.1		70.7 ± 11.0
0–72	39.6 ± 7.6	14.9 ± 5.0	19.4 ± 6.4		73.9 ± 11.1
0–96	39.7 ± 7.7	15.0 ± 4.9	20.0 ± 6.4		74.7 ± 11.1
0-120	39.7 ± 7.7	15.1 ± 5.0	20.1 ± 6.4		74.9 ± 11.2
0–144	39.7 ± 7.7	15.2 ± 5.0	20.2 ± 6.4		75.1 ± 11.2
0–168	39.7 ± 7.7	15.2 ± 5.0	20.3 ± 6.5		75.2 ± 11.2

Report Title Pharmacokinetics, Absorption, a Intact and Bile Duct-Cannulated	nd Excretion of ¹⁴ C-GS-9883 Following Oral Administration to Monkeys	Study Type Excretion	Test Article [¹⁴ C]BIC	Report Number AD-141-2298
Total Recovery (%)	86.0 ± 1	.7		

BIC = bictegravir (GS-9883); SD = standard deviation

a Recovery of radioactivity from cage debris, cage wash, cage rinse, cage wipe, and jacket rinse totaled ~10.7% of total dose. Fasted = animals were fasted overnight prior to dose and up to 4 hours after dosing.

13.2. TAF and TFV

13.2.1. AD-120-2007: Excretion of [¹⁴C]TAF Following Single Oral Administration in Dog

Report Title	Study Type	Test Article	Report Number			
Pharmacokinetics, Absorption, and I Administration to Intact and Bile Du	Excretion	[¹⁴ C]TAF	AD-120-2007			
Methods:						
Species	Beagle dogs					
Sex (M/F)/No. of Animals	M/3					
Method of Administration	Oral gavage	Oral gavage				
Dose (mg/kg)	15	15				
Feeding Condition	Fasted	Fasted				
Specific Activity	57.1 mCi/mmol					
Radionuclide	Carbon-14					
Vehicle/Formulation	water:hydroxypropyl methyl cellulose (HPM	IC):tween 80 (99.8:0.1:0.1,	v:v:v)			
Analyte/Assay:	[¹⁴ C]TAF/Liquid Scintillation Counter					
Tabulated PK Results :						
Sample Type	Plasma		Blood			
T _{max} (h)	0.25 ± 0.00 0.25 ± 0.00					
C _{max} (ng eq/g)	8830 ± 774		7320 ± 895			
t½(h)	30.8 ± 4.34		107 ± 30.0			
AUC _{0-t} (ng eq•h/g)	18500 ± 2020		44600 ± 1190	00		

Report Title Pharmacokinetics, Absorption, and Excretion of [¹⁴ C]GS-7340 Following Oral Administration to Intact and Bile Duct-Cannulated Dogs			Study Type	Test Article	Report Number
			Excretion	[¹⁴ C]TAF	AD-120-2007
Methods:					
Species	Beagle dogs				
Sex (M/F) / No. of Animals	M/3				
Method of Administration:	Oral gavage				
Dose (mg/kg):	15				
Feeding Condition:	Fasted				
Radionuclide:	Carbon-14				
Specific Activity:	57.1 mCi/mmol				
Vehicle / Formulation:	water:hydroxypr	opyl methyl cellulose (HPM	C):tween 80 (99.8:0.1	:0.1, v:v:v)	
Analyte/Assay:	[¹⁴ C]TAF/ Liquid	l Scintillation Counter			
		Percent of Ra	adioactive Dose (%)		
Time Point	Urine	Feces	Cage Rin	ise	Total
0-8 h	10.2 ± 4.17	NA	NA		10.3 ± 4.17
0-24 h	18.6 ± 4.23	29.5 ± 7.03	2.46 ± 2.1	33	50.6 ± 6.40
0-48 h	24.5 ± 4.30	35.0 ± 2.58	3.69 ± 2.	72	63.2 ± 2.78
0-72 h	28.4 ± 4.41	35.9 ± 2.55	4.63 ± 3.1	29	68.9 ± 2.21
0-96 h	31.1 ± 4.46	36.4 ± 2.46	5.28 ± 3.	34	72.8 ± 2.09
0-120 h	33.1 ± 4.56	36.9 ± 2.34	5.82 ± 3.4	48	75.8 ± 1.85
0 1441	34.6 ± 4.63	37.2 ± 2.29	6.26 ± 3.4	44	78.1 ± 1.97
0-144 h					

Report Title			Study Type	Test Article	Report Number		
Pharmacokinetics, Absorption, and Excretion of [¹⁴ C]GS-7340 Following Oral Administration to Intact and Bile Duct-Cannulated Dogs			Excretion	[¹⁴ C]TAF	AD-120-2007		
<u>Methods:</u>							
Species	Bile Duct-	Cannulated Beagle dogs					
Sex (M/F) / No. of Animals	M/3						
Method of Administration:	Oral gavag	ge					
Dose (mg/kg):	15						
Feeding Condition:	Fasted						
Radionuclide:	Carbon-14	ł					
Specific Activity:	57.1 mCi/i	mmol					
Vehicle / Formulation:	water:hydr	roxypropyl methyl cellul	ose (HPMC):tween 80 (99	.8:0.1:0.1, v:v:v)			
Analyte/Assay:	[¹⁴ C]TAF/	Liquid Scintillation Cou	nter				
		Cumulative I	Excretion of Radioactivit	cretion of Radioactivity (% of dose)			
Time Point	Urine	Feces	Cage Rinse	Bile	Total		
0-1 h	NA	NA	NA	2.94 ± 2.56	2.94 ± 2.56		
0-2 h	NA	NA	NA	6.80 ± 4.14	6.80 ± 4.13		
0-4 h	1.72 ± 2.98	NA	NA	9.48 ± 2.24	11.2 ± 5.13		
0-6 h	NA	NA	NA	12.2 ± 2.45	12.2 ± 2.43		
0-8 h	8.25 ± 0.90	NA	NA	12.4 ± 2.53	20.6 ± 3.30		
0-12 h	NA	NA	NA	12.5 ± 2.58	12.5 ± 2.58		
0-12 h 0-24 h	NA 13.9 ± 1.24	NA 22.8 ± 19.6	NA 0.77 ± 0.12	12.5 ± 2.58 12.9 ± 2.70	$\frac{12.5 \pm 2.58}{50.3 \pm 22.5}$		
0-24 h	13.9 ± 1.24	22.8 ± 19.6	0.77 ± 0.12	12.9 ± 2.70	50.3 ± 22.5		
0-24 h 0-48 h		$22.8 \pm 19.6 \\ 40.8 \pm 2.91$	$\frac{0.77 \pm 0.12}{1.45 \pm 0.38}$	$\frac{12.9 \pm 2.70}{13.3 \pm 2.90}$	$50.3 \pm 22.5 \\ 73.9 \pm 0.90$		
0-24 h 0-48 h 0-72 h	$13.9 \pm 1.24 \\ 18.3 \pm 1.50 \\ 21.0 \pm 1.90$	$22.8 \pm 19.6 \\ 40.8 \pm 2.91 \\ 42.2 \pm 3.61$	$\begin{array}{c} 0.77 \pm 0.12 \\ 1.45 \pm 0.38 \\ 1.81 \pm 0.60 \end{array}$	$12.9 \pm 2.70 \\ 13.3 \pm 2.90 \\ 13.7 \pm 3.04$	$50.3 \pm 22.5 \\ 73.9 \pm 0.90 \\ 78.7 \pm 0.83$		
0-24 h 0-48 h 0-72 h 0-96 h	$\begin{array}{c} 13.9 \pm 1.24 \\ 18.3 \pm 1.50 \\ 21.0 \pm 1.90 \\ 22.9 \pm 1.84 \end{array}$	22.8 ± 19.6 40.8 ± 2.91 42.2 ± 3.61 42.4 ± 3.64	$\begin{array}{c} 0.77 \pm 0.12 \\ \hline 1.45 \pm 0.38 \\ \hline 1.81 \pm 0.60 \\ \hline 2.05 \pm 0.63 \end{array}$	$\begin{array}{c} 12.9 \pm 2.70 \\ \hline 13.3 \pm 2.90 \\ \hline 13.7 \pm 3.04 \\ \hline 13.8 \pm 3.11 \end{array}$	$50.3 \pm 22.5 \\73.9 \pm 0.90 \\78.7 \pm 0.83 \\81.2 \pm 0.49$		

Report Title			Study Type	Test Article	Report Number
A Pilot Study of Biliary Excretion	on of [¹⁴ C]PMPA in the Beagl	e Dog	Excretion	TFV or TDF	96-DDM-1278-002
Species	Dog				
Sex (M/F) No. of Animals	1M				
Feeding Condition	Fasted				
Vehicle/Formulation	aqueous solution				
Method of Administration	IV Bolus, single admini	stration			
Dose (mg/kg)	10				
Radionuclide	¹⁴ C				
Specific Activity	5 µCi/mg				
Assay	Liquid scintillation cour	nting			

13.2.2. 96-DDM-1278-002: A Study of Biliary Excretion of [¹⁴C]TFV in the Dog

Excretion Route	Urine (% dose)	Feces (% dose)	Bile (% dose)	Cage wash (% dose)	Total (% dose)
Time					
0–48 h	70.0	0.42	0.26	5.68	76.4

14. PHARMACOKINETICS: DRUG-DRUG INTERACTIONS

14.1. BIC

14.1.1. AD-141-2278: In Vitro Assessment of BIC as a P-gp or BCRP Substrate

Report Title Bi-Directional Permeability of GS-9883 Through Monolayers of P-glycoprotein and BCRP Over-expressing Cells		Study Typ	e	Test	Article	Report Number	
		Drug Transp	Drug Transport BIC AD-141-227				
Study System	Monolayers of P-gp-	or BCRP-ove	erexpressing M	DCKII Cells in 24-	well transwell plates		
Method	Bi-directional permeability of BIC (10 μ M) across monolayers of wild type P-gp- or BCRP-overexpressing MDCKII cells was determined in the present known P-gp or BCRP inhibitors. BIC concentrations in the transwells were LC-MS/MS.			e presence and absence of			
		Pgp-overexp	oressing MDC	CKII	BCRP-over	erexpressing MDCKII	
P _{app} (x 10 ⁻⁶ cm/sec) of BIC	Wild Type MDCKII	- inhibitor	+ inhi	ibitor ^a	- inhibitor	+ inhibitor ^a	
Forward (A to B)	18.6	6.3	12	2.5	8.1	19.0	
Reverse (B to A)	23.3	47.6	30	0.3	52.3	38.7	
Efflux Ratio	1.3	7.5	2	2.4	6.5	2.0	

BCRP = breast cancer resistance protein; BIC = bictegravir (GS-9883); MDCKII = Madine-Darby canine kidney cell line; P-gp = P-glycoprotein; P_{app} = apparent permeability a Control inhibitor: P-gp, cyclosporine A (10 μ M); BCRP, Ko134 (10 μ M)

14.1.2. AD-141-2275: In Vitro Assessment of BIC as a Substrate for OATP1B1 and OATP1B3

Report Title	Study Type	Test Article	Report Number					
In Vitro Assessment of GS-9883 as a Substrate for Human OATP1B1 and OATP1B3	Drug Transport	BIC	AD-141-2275					
Study System	Wild-type and human OATP1B1 and OATP11	33-transfected CHO cells						
Method	determined in the presence and absence of a ki (atorvastatin) and negative (antipyrine) control LC-MS/MS.	The uptake rate of BIC (1 μ M) in wild type (WT) CHO cells and OAP1B1- or OATP1B3-overexpressing CHO cells was letermined in the presence and absence of a known OATP inhibitor. Uptake rates were also measured with positive atorvastatin) and negative (antipyrine) control compounds. BIC and control compound concentrations were quantified by _C-MS/MS.						
Uptake Rate (pmole/minute/1.0x10 ⁶ cells)	BIC 1.0 μM	Atorvastatin 0.1 μΜ	Antipyrine 10 μΜ					
CHO-WT	48	1.2	31					
CHO-OATP1B1	43	5.1	32					
CHO-OATP1B3	41	5.3	32					
OATP1B1 / WT Ratio	0.9	4.4	1.0					

BIC = bictegravir (GS-9883); CHO = Chinese Hamster Ovary; OATP = organic anion-transporting polypeptide

14.1.3. AD-141-2273: In Vitro Inhibition of Human P-gp and BCRP by BIC

Report Title	Study Type	Test Article	Report Number						
In Vitro Inhibition Assessment of GS-9883 with Human P-gp and BCRP	Drug Transport	BIC	AD-141-2273						
Study System	Monolayers of P-gp- or BCRP-overexpressing MD	KII cells in 96-well black cell culture plates with clear bottoms.							
Method	To assess P-gp inhibition, BIC $(0.33 - 80 \mu\text{M})$ was incubated for 1 hour with P-gp-overexpressing MDCKII cells in the presence of probe substrate (calcein AM). To assess BCRP inhibition, BIC $(0.33 - 80 \mu\text{M})$ was incubated for 18 hours w BCRP-overexpressing MDCKII cells in the presence of probe substrate (pheophorbide A). Each well was analyzed for fluorescence after washing and lysing the cells. Positive control experiments were also performed in parallel with known inhibitors.								
			IC ₅₀						
Efflux Transporter	Substrate (Concentration)	BIC	Control Inhibitor ^a						
P-gp	Calcein AM (10 µM)	$> 80 \ \mu M$	Verapamil (IC ₅₀ = $1.6 \pm 0.3 \mu M$)						
BCRP	Pheophorbide A (1 µM)	$> 80 \ \mu M$	Fumitremorgin C (IC ₅₀ = $0.76 \pm 0.04 \mu$ M						

BCRP = breast cancer resistance protein; BIC = bictegravir (GS-9883); MDCKII = Madine-Darby canine kidney cell line; P-gp = P-glycoprotein

a Control inhibitor: P-gp, verapamil; BCRP, fumitremorgin C

14.1.4. AD-141-2274: In Vitro Inhibition of Human OATP Transporters by BIC

Report Title	Study Type	Test Article	Report Number						
In Vitro Assessment of GS-9883 Inhibition of Human OATP1B1 and OATP1B3	Drug Transport	BIC AD-141-227							
Study System	CHO cells transfected with the genes encoding human OATP1B1 and OATP1B3.								
Method	BIC (0.109 – 80 μM) was incubated with OATP1B1 and OATP1B3 overexpressing cells for 1 h in the presence of probe substrate (Fluo 3). Each well was analyzed for Fluo 3 fluorescence after washing and lysing the cells. Positive control experiments were also performed in parallel with a known inhibitor.								
	Uptake Tra	ansporters IC ₅₀ (µM)							
Transporters	OATP1B1	OATP1E	33						
BIC	$> 80 \mu M$	$> 80 \ \mu M$							
Rifampicin	1.6 ± 0.6	0.49 ± 0.19							

BIC = bictegravir (GS-9883); CHO = Chinese Hamster Ovary; OATP = organic anion-transporting polypeptide

14.1.5. AD-141-2285: In Vitro Inhibition of Human OCT2 and MATE1 Transporters by BIC

Report Title	Study Type	Te	est Article	Report Number				
In Vitro Assessment of GS-9883 Inhibition of Human OCT2 and MATE1	Drug Transport	AD-141-2285						
Study System:	OCT2-overexpressing MDCKII cells or MATE1-overexpressing CHO cells							
Method:	To assess OCT2 inhibition, BIC (0.014 - 10 μ M) was incubated for 10 minutes with non-transfected or OCT2- transfected cells in the presence of probe substrate ([¹⁴ C]TEA, 20 μ M). To assess MATE1 inhibition, BIC (0.1 - 80 μ M) was incubated at 37°C for 10 minutes with non-transfected or MATE1-transfected CHO cells in the presence of [¹⁴ C]TEA. The amount of [¹⁴ C]TEA inside the cells was determined by liquid scintillation counter.							
Efflux Transporter	Maximum inhibition (BIC concentra	ation)		IC ₅₀				
OCT2	94% (10 µM)	0.42 µM						
MATE1	79% (80 μM) 8.0 μM							

BIC = bictegravir (GS-9883); CHO = Chinese Hamster Ovary; MATE = multidrug and toxin extrusion transporter; MDCKII = Madine-Darby canine kidney cell line; OCT = organic cation transporter; TEA = tetraethylammonium-chloride

14.1.6. AD-141-2310: In Vitro Inhibition of Human OAT1, OAT3, OCT1 and BSEP Transporters by BIC

Report Title			Study Type	Test Article	Report Number			
In Vitro Inhib Transporters	ition Study of GS-9883 with th	Human OAT1, OAT3, OCT1 and BSEP Drug Transport BIC AD-141						
Method: To measure OAT1 and OCT1transporter inhibition, increasing concentrations of BIC (0.14 - 100 μ M) were incubated with transporter overexpressing CHO cells in the presence of probe substrates ([³ H]p-aminohippuric acid, 5 μ M) for OAT1, and [¹⁴ C]tetraethylam chloride (5 μ M) for OCT1. For OAT3 inhibition, increasing concentration of BIC (0.14 – 100 μ M) was incubated with OAT3-over Flp-In293 cell in the presence of probe substrate ([³ H]estrone-3-sulfate, 1 μ M). Transporter specific accumulation of the probe substrate (laws measured and compared to its accumulation in the absence of BIC under the same assay conditions. For BSEP inhibition – 100 μ M) was incubated with membrane vesicle preparations (total protein: 50 μ g/well) and probe substrate [³ H]taurocholate (2 absence or presence of ATP. Reaction mixtures were preincubated for 15 minutes at 37°C. Cyclosporine A (20 μ M) was used as performed in duplicate.								
		Upt	ake Transporter Inhibiti	on				
Transporter		Maximum inhibition at 100 µM BIC (% of control)	IC ₅₀ (J	μM)			
OAT1		No inhibition		>100				
OAT3		64		55				
OCT1		13		>10	0			
BSEP		46		>100				

BIC = bictegravir (GS-9883); BSEP = bile salt export pump; CHO = Chinese hamster ovary; OAT = organic anion transporter; OCT = organic cation transporter

14.1.7. AD-141-2313: Drug-Drug Interaction Liability Assessment for BIC

Report Title		Stud	у Туре	Test Article	Report Number						
Drug-Drug Interaction Liability Assessment for Bictegravir		Drug-drug interaction		BIC	AD-141-2313						
Method:	compiling the enzyme and	transporter inter	raction parameters	determined in vitro, defining	of BIC relevant for the interactions, properties of the various victim enzymes e results with the threshold values in the						
		BIC Primary Values									
Parameter	Identity			Value	Source						
MW	Molecular wei	ght		449.4 g/mol	-						
Dose	Maximum dose strength		50 n	ng (111.26 µmol)	GS-US-380-1489/1490						
k _a	Absorption rate constant			2.54 hr^{-1}	BIC population PK report						
F _a	Fraction of dose absorbed			1.0	Guidance default						
Fg	Fraction of absorbed do portal vein	se reaching		1.0	Guidance default						
C _{max}	Steady state maximum concentration	-	6.15	μg/mL (13.7 μM)	BIC population PK report						
$\mathbf{f}_{\mathbf{u}}$	Unbound fraction in hu	man plasma		0.25%	AD-141-2287						
BPR	Whole blood to plasma c ratio	oncentration		0.64	AD-141-2312						
		Calcul	ated BIC Concer	trations Used for Drug Inter	ractions						
Concentration				Value							
C_{max} or $[I]_1$ or $[I_1]$				13.7 μM							
C _{max,u}			0.034	$4 \mu M / 0.137 \mu M^a$							
$[I]_{gut}$ or $[I]_g$ or $[I]_2$ or $[I_2]$				445.0 μM							

Report Title			Study 7	Гуре	Test Article	Re	Report Number			
Drug-Drug Interaction Bictegravir	Liability Assessment	for	Drug-drug i	nteraction	BIC	A	AD-141-2313			
[I] _g				1:	5.7 μΜ					
[I] _h or [I] _{u,inlet,max}				0.046 µN	$M / 0.117 \ \mu M^{a}$					
$f_u \times [I]_{\text{in,max}}$		FDA: $0.042 \ \mu M \ / \ 0.168 \ \mu M^a$								
$f_u \times [I]_{\text{inlet}, max}$				PMDA: 0.04	$2 \mu M / 0.166 \mu M^a$					
		Calcu	ulations for Revo	ersible CYP Inhibi	tion by BIC ^b					
Enzyme	Intesti	nal	Не	patic	AUCR		EMA Metric ^a			
CYP1A2	1.0 Value	1.0 Value > 0.75 1			1.00		< 0.001 / < 0.003			
CYP2B6	1.0 Value	1.0 Value > 0.76		.00	1.00		< 0.001 / < 0.003			
CYP2C8	1.0 Value	e > 0.75	1.00		1.00		$< 0.001 \ / < 0.003$			
CYP2C9	1.0 Value	e > 0.71	1.00		1.00		< 0.001 / < 0.004			
CYP2C19	1.0 Value	e > 0.73	1.00		1.00		$< 0.001 \ / < 0.003$			
CYP2D6	1.0 Value	e > 0.73	1.00		1.0 Value <	1.06	< 0.001 / < 0.003			
СҮРЗА М	1.0 Value	e > 0.75	1	.00	1.0 Value < 1.12		< 0.001 / < 0.003			
СҮРЗА Т	1.0 Value	e > 0.73	1	.00	1.0 Value < 1.13		< 0.001 / < 0.003			
			C	Calculations for Ind	luction Liability for B	BIC				
	He	epatocyte D	ata	Basic		Net Effect				
Target	EC _{50,u} (µM)	E _{max} ^c	d	R ₃ or R	Intestinal	Hepatic	AUCR			
CYP1A2	No induction	16.3	0.90	0.9	1.0	1.0	1.0			
CYP2B6	102.8	10.5	1.04	0.45	2.39	1.00	1.0			
CYP3A4	19.1	22.7	0.40	0.21 / 0.10 ^d	5.1 / 11.2 ^d	1.02 / 1.05 ^d	0.36 / 0.16			

Report Title		Stu	dy Type		Test Arti	le		Report Number		
Drug-Drug Interactio Bictegravir	n Liability Assessment for	Drug-dru	ig interaction		BIC			AD-141-2313		
		Calculati	ons for Intestin	al Ef	flux Transporte	· Intera	ctions fo	r BIC		
Transporter	IC _{50,u} (µM)	K _{i,u} ((μΜ)]	FDA [I] ₂ /K _{i,u}	EN	IA 0.1 ×	[I] _{gut} (µM)	PMDA [I ₂]/K _{i,u}	
P-gp	> 80	>	40		11.1		44	.5	11.1	
BCRP	> 80	> 80 > 4			11.1		44	.5	11.1	
		Calculati	ons for Hepati	c Upt	ake Transporte	Interac	tions for	BIC		
Transporter	IC _{50,u} (µM)	$K_{i,u} \left(\mu M \right)$	FDA [I] ₁ /K	i,u	FDA R		EMA 25	$\times \left[I \right]_{h} \left(\mu M \right)$	PMDA R	
OATP1B1	Not an inh	ibitor	< 0.1		< 1.25		2.9		< 1.25	
OATP1B3	> 80	> 40	< 0.34	1.0			2.9		1.0	
OCT1	> 100	> 50	< 0.27	1.0 2.9		2.9	1.0			
	Ca	lculations for Hep	oatic Efflux Tra	anspo	orter and Renal '	Transpo	rter Inte	ractions for BIC	1	
Transporter	$K_{i,u}\left(\mu M\right)$	FDA [I] ₁ /K _{i,u}	FDA C _{ma}	_{x,u} /K _{i,t}	u ^a EMA 50	× C _{max,u}	$C_{\max,u} (\mu M)^a$ PMDA $[I_1]/2$		$\begin{array}{c c} & \mathbf{PMDA 1} + \\ & \mathbf{C}_{\max,u}/\mathbf{K}_{i,u}^{a} \end{array}$	
OAT1	Not an inhibitor	NA	< 0.	1	1	.7 / 6.9		NA	< 1.25	
OAT3	27.5	NA	0.001 / 0	0.005	1	.7 / 6.9		NA	1.001 / 1.00	
OCT1	> 50	NA	< 0.001 / -	< 0.00)3 1	.7 / 6.9		NA	< 1.001 / < 1.003	
OCT2	0.21	NA	0.16 /	0.65	1	7 / 6.9		NA	1.16 / 1.65	
MATE1	4.0	NA	0.01 / 0	0.03	1	.7 / 6.9		NA	1.01 / 1.03	
Pgp	> 80	< 0.34	NA		1	.7 / 6.9		< 0.34	NA	
BCRP	> 80	< 0.34	NA		1	.7 / 6.9		< 0.34	NA	
BSEP	> 100	< 0.27	NA		1	.7 / 6.9		< 0.27	NA	

BIC = bictegravir (GS-9883); NA = not applicable (transporter does not fall in that classification) Values exceeding the respective threshold are in **bold**

- a Value calculated using plasma $f_u = 0.25\%$ / value calculated using plasma $f_u = 1.0\%$
- b Calculated R values failed using the FDA basic models
- c Corrected for baseline (1-fold) increase in mRNA
- d Value calculated using d = 0.40 / value calculated using d = 1.0

14.2. FTC

Results from FTC transporter related drug-drug interaction studies are described as a component of STB (EVG/COBI/FTC/TFV) in Section 14.4.

14.3. TAF and TFV

14.3.1. AD-120-2018: Bidirectional Permeability of TAF Through Monolayers of P-glycoprotein and BCRP Overexpressing Cells

Report Title:	<u>Study Type</u>	Test Article	<u>Report Number</u>
Bidirectional Permeability of GS-7340 Through Monolayers of P-glycoprotein and BCRP Over-expressing Cells	Drug-drug interaction (in vitro)	TAF	AD-120-2018

Methods: The potential for TAF to act as a substrate for P-gp (MDR1) and BCRP was tested in monolayers of either wild type, MDR1-transfected or BCRP-transfected Madin-Darby canine kidney (MDCK II) cells (MDCK II-WT, MDCK II-MDR1 and MDCK II-BCRP, respectively). The effects of transporter-selective inhibitors were also assessed.

	Initial Conc. Recovery]					
Cell Type	Direction	(µM)	(%)	R1	R2	Average	Efflux Ratio	
	Cell-Free	7.9	112	45.7	NA	45.7	NA	
MDCK II-WT	Forward	7.9	103	1.4	1.5	1.5	4.8	
	Reverse	7.6	99	6.7	7.4	7.1		
MDCK II-MDR1	Forward	7.4	92	0.1	0.3	0.2		
MDCK II-MDR1	Reverse 7.7	96	12.8	11.3	12.1	66.2		
	Forward	9.4	91	1.3	1.2	1.3	5.6	
MDCK II-MDR1 (10 µM Cyclosporin A)	Reverse	8.4	90	6.8	7.4	7.1		

Wild Type and MDR1 Transfected MDCKII Cells

TAF = tenofovir alafenamide; MDR1 = P-glycoprotein (P-gp, ABCB1); NA = not applicable

Report Title:			Study 7	Гуре	Test Articl	<u>e</u> <u>Re</u>	Report Number	
Bidirectional Permeability of GS-7340 T P-glycoprotein and BCRP Over-express		of	Drug-drug interac	ction (in vitro)	TAF	А	AD-120-2018	
	Wild	Fype and BCR	P Transfected MI	OCK II Cells				
		Initial Conc.	Recovery		P_{app} (× 10 ⁻⁶ cm/s)		
Cell Type	Direction	μM)	(%)	R1	R2	Average	Efflux Ratio	
MDCK II-WT	Cell-Free	7.9	112	45.7	NA	45.7	NA	
	Forward	7.9	103	1.4	1.5	1.5	4.0	
	Reverse	7.6	99	6.7	7.4	7.1	4.8	
	Forward	7.8	79	2.1	2.2	2.1	()	
MDCK II-BCRP	Reverse	7.8	104	13.5	13.3	13.4	6.2	
MDCK II-BCRP (10 µM Ko134)	Forward	8.9	103	3.8	5.8	4.8	1.4	
	Reverse	10.3	96	5.9	8.0	6.9	1.4	

TAF = tenofovir alafenamide; NA = not applicable

14.3.2. AD-120-2019: In Vitro Assessment of TAF Inhibition of Human OATP1B1, OATP1B3, P-gp, and BCRP

Report Title:				Study Ty	ype	Test Article	Report Number			
In Vitro Assessn OATP1B3, P-gp		0 Inhibition of Human OATP1	B1,	Drug-drug interact	ion (in vitro)	TAF	AD-120-2019			
 Methods: The inhibition potential of TAF of human OATP1B1 and OATP1B3 was assessed in Chinese Hamster Ovary (CHO) cells, either wild type transfected with the genes encoding human OATP1B1 or OATP1B3. TAF and positive control compound were diluted in assay buffer cont 2 μM Fluo 3. Following removal of media containing Fluo 3, the cells were immediately analyzed for Fluo 3 fluorescence at an excitation of 485 nm and emission of 530 nm. The inhibition potential of TAF of human P-gp and BCRP was assessed in Madin Darby Canine Kidney (MDCKII) cells, either wild type of transfected with the genes encoding human P-gp or BCRP. The incubation was carried out in cell culture medium (without FBS) containing Calcein AM (P-gp) or 1 μM pheophorbide a (PhA) (BCRP). Following removal of media containing calcein AM or PhA, the cells were ana immediately for calcein fluorescence at an excitation of 494 nm and an emission of 517 nm or PhA fluorescence at an excitation of 415 nm emission of 675 nm. 										
		Uptake Trans	porters IC ₅₀	μΜ)		Efflux Transporters	IC ₅₀ (µM)			
Test Compound	1	OATP1B1	(DATP1B3		P-gp	BCRP			
TAF		> 100		> 100		> 100	> 100			
Rifampicin		2.4 ± 1.1		1.7 ± 0.4		NA	NA			
Verapamil	apamil NA NA 3.7 ± 3.1 NA									
Fumitremorgin C	C	NA		NA		NA	0.32 ± 0.03			

BCRP = breast cancer resistance protein; NA = not applicable; P-gp = P-glycoprotein; TAF = tenofovir alafenamide

14.3.3. AD-120-2013: Effect of GS-9350 on the Bidirectional Permeability of TAF Through Caco-2 Cells

Report Title:	-					<u>Study Type</u>		Test Article		Report Number	
Effect of GS-9350 on the Bidirectional Permeability of GS-7340 through Caco-2 Cells				Absor	rption (in vitro))	TAF		AD-120-2013		
			bility of TAF '	Fhrough Caco	-2 Cells						
	Target Initial Concentration Conc Decouvery]	P _{app} (10 ⁻⁶ cm/s)			
Inhibitor	Direction	Concentration (µM)	Conc. (µM)	Recovery (%)	Replicate 1	Replicate 2	Replicate 3	Replicate 4	Average	Efflux Ratio	
	Cell-Free		9.61	119	31.6	-	30.1	_	30.8		
-	Forward	10	9.92	64	0.59	0.69	0.82	0.88	0.74	20	
_	Reverse		8.71	102	18.0	15.1	12.6	14.8	15.1		
GS-9350	Forward	10	11.0	101	3.98	3.56	2.47	2.55	3.14	1.6	
GS-9350	Reverse	10	11.4	115	6.71	6.18	3.33	3.33	4.89	1.0	

 $Caco-2 = human colonic adenocarcinoma cell line; TAF = tenofovir alafenamide; P_{app} = apparent permeability; GS-9350 = cobicistat (COBI)$

14.3.4. AD-120-2022: In Vitro Assessment of TAF as a Substrate for Human OATP1B1 and OATP1B3

Report Title:		<u>Study Type</u>	Test Article	<u>Report Number</u>
In Vitro Assessment of GS-7340 as a Substrate for Human OATP1B1 and OATP1B3		Drug-drug interaction (in vitro)	TAF	AD-120-2022
Methods: The potential of TAF as a substrate in human OATP1B1 and OATP1B3 was assessed in Chinese Hamster Ovary (CHO) cells, either wild type or transfected with the genes encoding human OATP1B1 or OATP1B3 in the presence and absence of 40 µM rifampicin (OATP inhibitor). Following removal of media, the cell extracts were analyzed by LC-MS/MS.				
	Uptake Rate (pmole/min/million cells)			
Test Compound	TAF	TAF + Rifampici	n t	Uptake Ratio
CHO-WT	9.0	6.0		1.5
CHO-OATP1B1	12.0	6.2		1.9
CHO-OATP1B3	24.1	5.8		4.2
OATP1B1/WT Ratio	1.3	NA		NA
OATP1B3/WT Ratio	2.7	NA		NA

NA = not applicable; OATP = organic anion transporting polypeptide (SLCO or SLC22A gene products); TAF = tenofovir alafenamide

14.3.5. AD-120-2042: Effect of an OATP Inhibitor on Uptake of TAF into Primary Human Hepatocytes

Report Title:			Study 7	Гуре	<u>Test Article</u>	<u>Report Number</u>
Effect of an OATP Inhibitor on Uptake of TAF into Primary Human Hepatocytes			Drug-drug interac	ction (in vitro)	TAF	AD-120-2042
Methods: The effect of OATP1B1 and OATP1B3 inhibitor, rifampicin on TAF uptake into primary human hepatocytes was assessed by measuring the intracellular levels of the pharmacologically active nucleotide analog diphosphate, tenofovir diphosphate (TFV-DP). Cells were pre-incubated 20 μM rifampicin followed by incubation with 0.5 μM TAF. The amount of TFV-DP formation was analyzed by LC-MS/MS. Bosentan was u as a positive control.						
		Me	ean Concentration	(pmole/million	cells) ^a	
Compound	Hepatocyte Donor	Т	TAF TAF + 20 μM Rifampicin		%Inhibition	
	1	3	3.3		31.7	4.8
	2	1	2.6		11.8	6.3
TAF	3	1	6.6		11.0	34
	4	9	9.3		8.0	14
	Mean \pm SD	17.9	± 10.6	15.	$.6 \pm 10.8$	13
	1	6	4.8		40.8	37
	2	5	3.4		36.0	33
Bosentan	3	4	-5.8		30.3	34
	4	8	1.1		43.5	46
	Mean \pm SD	61.3	± 15.4	37	1.7 ± 5.8	38

OATP = organic anion transporting polypeptide (SLCO or SLC22A gene products); TAF = tenofovir alafenamide

a For TAF, intracellular levels of TFV-DP are reported and for bosentan, cell-associated levels are reported. Results are mean of duplicate experiments.

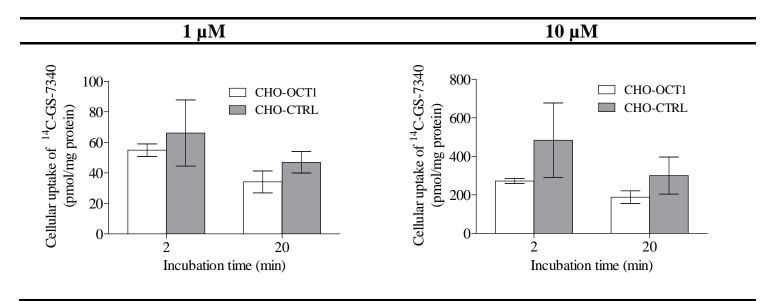
14.3.6. AD-120-2036: In Vitro Assessment of TAF as an Inhibitor of OAT1, OAT3, OCT1, OCT2, MATE1, and BSEP or as a Substrate for OCT1

Report Title:	<u>Study Type</u>	Test Article	Report Number
Studies to Determine if Tenofovir Alafenamide (GS-7340) is an Inhibitor of OAT1, OAT3, OCT1, OCT2, MATE1, and BSEP or a Substrate for OCT1	Drug-drug interaction (in vitro)	TAF	AD-120-2036

Methods: The potential for TAF to inhibit the human organic anion and cation uptake transporters, and multidrug and toxin extrusion transporter MATE1 was assessed in vitro using transfected Chinese Hamster Ovary (CHO) cells (for OAT1, OCT1, OCT2, and MATE1), transfected Flp-In 293 cells (for OAT3). The amount of substrate inside the cells was determined by liquid scintillation/fluorescence reader.

Inhibitor or Enhancer	IC ₅₀ (μM)	Maximum Inhibition at 100 µM (% of Control)
OCT1	> 100	26
OCT2	> 100	NA
OAT1	> 100	8
OAT3	> 100	16
MATE1	> 100	34

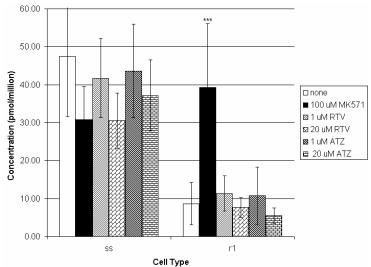
BSEP = bile salt export protein; MATE1 = multidrug and toxin extrusion protein 1; NA = not applicable; OAT = organic anion transporter; OCT = organic cation transporter; TAF = tenofovir alafenamide


Report Titl	le:		<u>Study Type</u>	Test Article	<u>Report Number</u>
Studies to Determine if Tenofovir Alafenamide (GS-7340) is an Inhibitor of OAT1, OAT3, OCT1, OCT2, MATE1, and BSEP or a Substrate for OCT1		Drug-drug interaction (in vitro)	TAF	AD-120-2036	
Methods: The potential for TAF to inhibit the bile salt export pump BSEP was assessed in vitro using transfected Chinese hamster ovary (CHO) cells. TAF was incubated with membrane vesicle preparations (total protein: 50 µg/well) and probe substrate, taurocholate (2 µM) in the absence or presence of ATP. The amount of substrate inside the filtered vesicles was determined by liquid scintillation reader.					
Inhibitor o	tor or Enhancer IC ₅₀ (µM)		IC ₅₀ (μM)	Maximum Inhibition at 100 μM (% of Con	
BSEP			> 100	43	

BSEP = bile salt export protein; TAF = tenofovir alafenamide

Report Title:	<u>Study Type</u>	Test Article	<u>Report Number</u>
Studies to Determine if Tenofovir Alafenamide (GS-7340) is an Inhibitor of	Drug-drug interaction (in vitro)	[¹⁴ C]TAF	AD-120-2036
OAT1, OAT3, OCT1, OCT2, MATE1, and BSEP or a Substrate for OCT1			

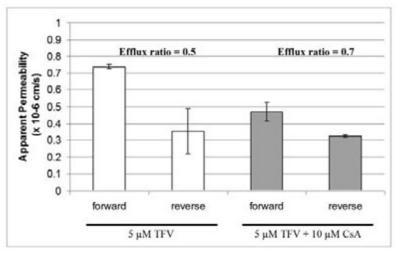
Methods: The interactions of TAF with human cation transporters OCT1 was assessed in vitro using OCT1 transporter-expressed Chinese hamster ovary (CHO) cells. Transporter specific accumulation into OCT1 transporter-expressing cells was investigated at 2 concentrations (1 and 10 μM) and time points (2 and 20 minutes) to determine if TAF is a substrate for this transporter.


Results: TAF was found not to be a substrate for OCT1 based on no transporter specific accumulation of TAF in the OCT1 transporter-expressing cells.

14.3.7. AD-104-2001: In Vitro Study of the Potential of TFV to be a Substrate of MRP2 and MRP4 and the Effect of the HIV Protease Inhibitors Atazanavir and Ritonavir

Report Title:	<u>Study Type</u>	<u>Test Article</u>	<u>Report Number</u>
Effect of HIV Protease Inhibitors on the Transport of Tenofovir by the	Drug-Drug Interaction	TFV	AD-104-2001
Multidrug Resistance Related Proteins 2 and 4			

The effects of RTV and ATZ on the accumulation of TFV (1 μ M) in MRP4 over-expression cells (r1) and parental cells (SS) were determined. It was found that > 5-fold less TFV accumulated in CEM-R1cells (MRP4 over-expressing) relative to CEM-SS parental cells following. MK571 (100 μ M, a potent inhibitor of MRPs) was able to increase TFV levels in CEM-R1 cells to concentrations similar to those in CEM-SS cells. RTV and ATZ (1 and 20 μ M) had no significant effect on TFV levels in CEM-SS or -R1 cells.


Statistically significant change in intracellular TFV relative to no cotreatment in CEM-R1 cells (MRP4 overexpressing). Unpaired 2-tailed student's t-test assuming equal variance (***P < 0.001).

Conclusion: These findings implicate MRP4, but not MRP2, as a transporter potentially contributing to the active tubular secretion of TFV. The results of these studies also suggest that the HIV-PIs ATZ and RTV, even when tested at supra-pharmacological concentrations, are either weak or not inhibitors of transport mediated by MRP2 and MRP4.

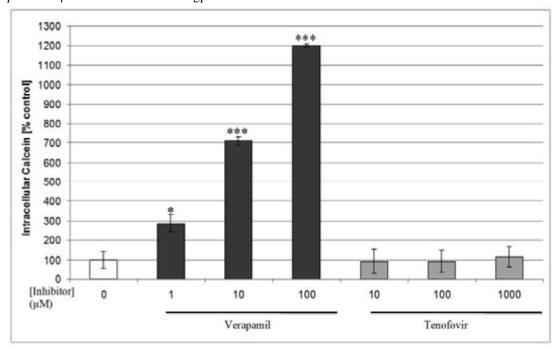
14.3.8. AD-104-2002: In Vitro Study of the Potential of TFV to be a Substrate of P-gp and the Effect of other Drugs

Report Title:	<u>Study Type</u>	Test Article	<u>Report Number</u>
Lack of a Contribution from P-glycoprotein (P-gp) in the Active Tubular Secretion of Tenofovir	Drug-Drug Interaction	TFV or TDF or tenofovir amidate	AD-104-2002

- **Methods:** In vitro bidirectional permeability experiments with TFV (5 and 50 μ M) in Caco-2 cell monolayers. In vitro inhibition studies of the accumulation of a model multidrug resistance protein (MDR1; P-glycoprotein) substrate (calcein) by TFV (up to 1000 μ M) were conducted following incubation of a Madin-Darby canine kidney cell line (MDCK II), both parental and stably transfected with human P-gp, with calcein AM.
- **Results:** The figure below shows the forward and reverse permeability of TFV through Caco-2 cell monolayers, and the calculated efflux ratio in the presence or absence of CsA. TFV had similar forward and reverse permeability that was unaffected by incubation with the P-gp inhibitor CsA (cyclosporine).

Report Title:

Study Type


Test Article Report Number AD-104-2002

Lack of a Contribution from P-glycoprotein (P-gp) in the Active Tubular Secretion of Tenofovir

Drug-Drug Interaction

TFV or TDF or tenofovir amidate

The figure below displays the effect of TFV and the control P-gp inhibitor, verapamil, on the accumulation of the fluorescent P-gp substrate calcein in MDCK cells transfected with human P-gp. Verapamil significantly inhibited P-gp and resulted in higher intracellular calcein levels with increasing concentration. Tenofovir at concentrations up to 1000 µM did not inhibit the P-gp efflux of calcein.

Conclusion: The observation that TFV has an efflux ratio close to 1, which is not affected by a P-gp inhibitor, in Caco-2 cell monolayers suggests that it is not a P-gp substrate. TFV did not inhibit the transport of a P-gp substrate when tested at suprapharmacological concentrations in MDCK II cells stably transfected with P-gp indicating that it is not a substrate or inhibitor of P-gp.

14.3.9. PC-104-2010: Potential for TFV to be an OAT1 Substrate and the Effect of the Other Drugs

Report Title:		<u>Study Type</u>	Test Article Report Numb		
Effect of HIV Protease Inhibitors and O of Tenofovir by Human Renal Organic		Drug-Drug Interaction TFV PC-104-201			
Methods: The effect of protease inhibitors and other therapeutics on the OAT1 mediated transport of $[^{3}H]$ TFV (1.2 µM) was studied in a stable cell line (CHO-OAT1 cells). The test drugs were examined at concentrations corresponding to 3×, 1× and 0.33× their reported clinical C _{max} values.					
Concentration Transport of TFV by OAT1 [% C				Control]	
Tested Drug	(Fold Clinical C _{max})	Serum-free Mediu	ım 50%	6 Human Serum ^a	
None	-	100		100	
	3×	62.5 ± 0.7		113.0 ± 19.8	
Lopinavir	1×	87.5 ± 0.7		94.8 ± 1.8	
	0.33×	96.0 ± 4.2		109.0 ± 7.1	
	3×	55.0 ± 2.8		95.0 ± 5.7	
Lopinavir/ritonavir	$1 \times$ 86.5 ± 0.7 97		97.0 ± 5.7		
	0.33×	109.5 ± 3.5		103.0 ± 0.0	
	3×	73.0 ± 7.1		98.5 ± 6.4	
Ritonavir	1×	89.5 ± 4.9		97.5 ± 7.8	
	0.33×	95.5 ± 4.9		102.5 ± 13.4	

Report Title:		<u>Study Type</u>	Test Article	Report Number
Effect of HIV Protease Inhibitors and Other Therapeutics on the Transport of Tenofovir by Human Renal Organic Anion Transporter Type 1 (OAT1)		Drug-Drug Interaction	TFV	PC-104-2010
	Concentration	Transport of TFV by OAT1 [% Control]		
Tested Drug	(fold Clinical C _{max})	Serum-free Mediu	im 50%	b Human Serum ^a
	3×	104.0 ± 0.0		nd ^b
Atazanavir	1×	102.0 ± 2.8		nd
	0.33×	103.5 ± 3.5		nd
	3×	88.5 ± 9.2		102.5 ± 10.6
Saquinavir	1×	90.0 ± 8.5		96.0 ± 7.1
	0.33×	97.5 ± 2.1	± 2.1 98.0 ± 9.9	
	3×	63.5 ± 13.4		90.5 ± 6.4
Nelfinavir	1×	78.5 ± 10.6		94.0 ± 1.4
	0.33×	95.0 ± 12.7		107.5 ± 0.7
	3×	78.5 ± 7.8		96.5 ± 12.0
Amprenavir	1×	85.0 ± 8.5		104 ± 9.9
	0.33×	98.0 ± 7.1		109 ± 8.5

a Serum protein binding: lopinavir – 98%, ritonavir – 99%, atazanavir – 86%, saquinavir – 97%, nelfinavir – 98%, amprenavir – 90%.

b nd: not determined

Report Title:		<u>Study Type</u>	Test Article	<u>Report Number</u>	
	d Other Therapeutics on the Transport ic Anion Transporter Type 1 (OAT1)	Drug-Drug Interaction	TFV	PC-104-2010	
	Concentration	Transport of TFV by OAT1 [% Control]			
Tested Drug	(fold Clinical C _{max})	Serum-free Mediu	m 50°	% Human Serum ^a	
None	-	100		100	
	3×	91 ± 2.8		nd ^b	
Acyclovir	1×	94 ± 2.8		nd	
	0.33×	101 ± 4.2		nd	
	3×	101 ± 0.0		nd	
Ganciclovir	1×	92.5 ± 7.8		nd	
	0.33×	102.5 ± 0.7		nd	
	3×	101 ± 2.8		nd	
Oseltamivir carboxylate	1×	102 ± 1.4		nd	
	0.33×	118 ± 2.8		nd	
	3×	103.5 ± 6.4		nd	
Trimethoprim	1×	98.5 ± 4.9		nd	
	0.33×	101.5 ± 0.7		nd	
	3×	79.5 ± 6.4		91.5 ± 0.7	
Sulfamethoxazole	1×	93.5 ± 0.7		98.5 ± 0.7	
	0.33×	102 ± 1.4		112 ± 4.2	

Report Title:		<u>Study Type</u>	Test Article Report Num	
Effect of HIV Protease Inhibitors and O of Tenofovir by Human Renal Organic				
	Concentration	Transpor	rt of TFV by OAT1 [% C	Control]
Tested Drug	(fold Clinical C _{max})	Serum-free Mediu	im 50%	ə Human Serum ^a
	3×	91 ± 5.7		nd ^b
Amoxicillin	1×	91.5 ± 3.5		nd
	0.33×	94 ± 8.5		nd
	3×	7 ^c		99.5 ± 2.1
Ibuprofen	1×	19 ^c		102.5 ± 0.7
	0.33×	32 ^c		114.5 ±4.9
	3×	78.5 ± 3.5		94.5 ± 3.5
Acetaminophen	1×	88 ± 1.4		94.5 ± 9.2
	0.33×	97 ± 7.1		106.5 ± 3.5

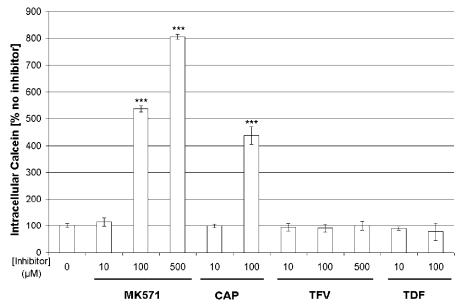
Serum protein binding: sulfomethoxazole -70%, ibuprofen -99%, acetaminophen -25%. nd: not determined а

b

n = 1 с

14.3.10. PC-104-2011: Potential for TFV to be an OAT3 Substrate and the Effect of HIV-PIs

Report Title:			<u>Study Type</u>	Test Article	<u>Report Number</u>	
Effect of HIV Protease Inhibitors on the Transport of TFV by Human Renal Organic Anion Transporter Type 3 (OAT3)			Drug-Drug Interaction	TFV	PC-104-2011	
Type of Study:In vitro study was conducted in appropriate cell lines expressing hOAT3 to define the role of OAT3 in tenofovir (TFV) transport and to assess the effect of HIV protease inhibitors (HIV-PIs) on the OAT3 transport of TFV.						
Methods:	The effect of HIV-PIs on the OAT3 mediated transport of $[^{3}H]$ TFV (1.2 μ M) was studied in a stable cell line (BHK-OAT3 cells). HIV-PIs were tested at concentrations corresponding to 2x, 1x, and 0.5x their reported clinical C _{max} values. The kinetics of $[^{3}H]$ TFV and $[^{3}H]$ estrone sulphate transport were also determined in BHK-OAT3 cells.					
Substrate [µM]			V _{max} [pmol/10 ⁶ cells/mi		nsport efficiency (V _{max} /K _m)	
Tenofovir (n = 3) 767 ± 145		31.6 ± 8.0	(0.043 ± 0.016		
Estrone sulfate (n = 4) 3.0 ± 1.2		2.9 ± 1.2		0.97 ± 0.15		


Report Title:		Study Type	Test Article	Report Number
Effect of HIV Protease Inhibitor Renal Organic Anion Transporte	s on the Transport of TFV by Human er Type 3 (OAT3)	Drug-Drug Interaction	TFV	PC-104-2011
Concentration		Transport of	TFV by OAT3 [% Cont	rol]
Tested PI	[fold Clinical C _{max}]	Serum-free Medium	40% I	Human serum
No inhibitor	-	100		100
	0.5×	57.7 ± 5.1	8	7.1 ± 6.7
Ritonavir	1×	38.4 ± 5.7	6	5.9 ± 8.8
	2×		5	9.4 ± 7.0
	0.5×	78.9 ± 2.6	93	3.3 ± 12.2
Lopinavir/ritonavir	1×	63.5 ± 8.7	92.1 ± 6.8	
	2×	46.1 ± 5.1	78.5 ± 9.1	
	0.5×	102.3 ± 1.6	10	3.8 ± 14.9
Atazanavir	1×	94.7 ± 7.8	9	8.5 ± 4.4
	2×	90.8 ± 2.4	9	7.1 ± 7.7
	0.5×	84.6 ± 2.3	10	2.0 ± 10.2
Nelfinavir	1×	73.1 ± 3.2	10	1.6 ± 11.2
	2×	47.7 ± 2.3	9	9.4 ± 9.8
	0.5×	98.3 ± 0.1	9	9.2 ± 8.7
Saquinavir	1×	95.1 ± 3.6	9	8.3 ± 3.7
	2×	98.8 ± 3.7	10	1.1 ± 13.2
	0.5×	87.8 ± 5.6	9	7.0 ± 2.7
Amprenavir	1×	81.4 ± 3.1	90.3 ± 5.2	
-	2×	78.7 ± 2.4	8	6.0 ± 1.5

Conclusion: TFV was found to be a low affinity substrate for OAT3 (K_M 767 uM). When adjusted for plasma protein binding and tested at their clinical C_{max} concentration, HIV-PIs had no significant effect on TFV transport by OAT3.

14.3.11. PC-104-2014: Effect of TFV on the Activity of Human Multidrug Resistance Related Protein MRP1

Report Title:	<u>Study Type</u>	Test Article	<u>Report Number</u>
Lack of a Contribution from MRPI in Tubular Re-absorption of TFV	Drug-Drug Interaction	TFV	PC-104-2014

Methods: Inhibition of the accumulation of a model MRP1 substrate (calcein) in a Madin-Darby canine kidney cell line (MDCK II) stably transfected with human MRP1, and treated with calcein-AM. Control inhibitors, MK571 and CAP (caffeic acid phenethyl ester), were tested in parallel.

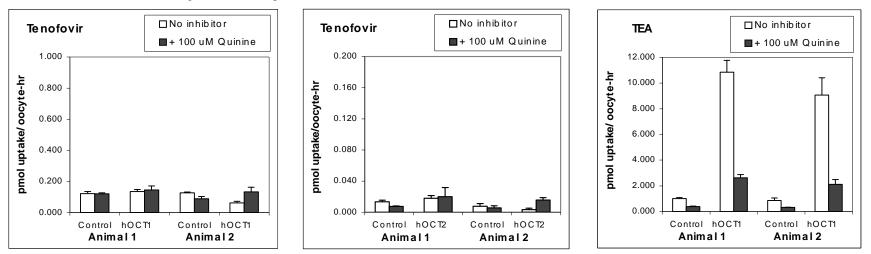
Conclusion: Suprapharmacological concentrations of TFV did not inhibit the transport of an MRP1 substrate in MDCK II cells stably transfected with MRP1.

14.3.12. AD-104-2012: Effects of TFV on Transport by Human OCT2 and MATE1

Report Title:			<u>Study Type</u>	<u>Test Article</u>	<u>Report Number</u>		
In Vitro Inhibition Studies of Tenofovir with Human OCT2 and MATE1 Transporters			Drug-Drug Interaction	TFV	AD-104-2012		
Type of Study:	Type of Study: In vitro study of the effect of TFV on the activity of the human renal transporters, OCT1 and MATE1, expressed individually in CHO cells.						
Methods:	The model substrate was $[^{14}C]$ triethylamine (TEA, 3.6 µM) and cell monolayers were exposed for 5 minutes (OCT2) or 20 minutes (MATE1) before being washed and cell-associated radioactivity determined. Results were compared to those obtained in nontransfected CHO cells. Positive control inhibitors (100 µM verapamil for OCT2 and 100 µM quinidine for MATE1) were tested in parallel.						
Results:	In the absence of inhibitors, accumulation of TEA in transfected cells was 25-fold higher (OCT2) and 18-fold higher (MATE1) than parental CHO cells. Positive control inhibitors reduced the transporter-specific accumulation of TEA to $8.68 \pm 2.56\%$ (OCT2) and $3.70 \pm 0.62\%$ (MATE1) of the vehicle control, confirming sensitivity to inhibitors. At concentrations of TFV up to 300 µM there was little or no effect on TEA accumulation.						
Inhibitor	itor Transporter IC ₅₀ (µM) Maximum inhibition						
TFV		OCT2	> 300		< 10%		

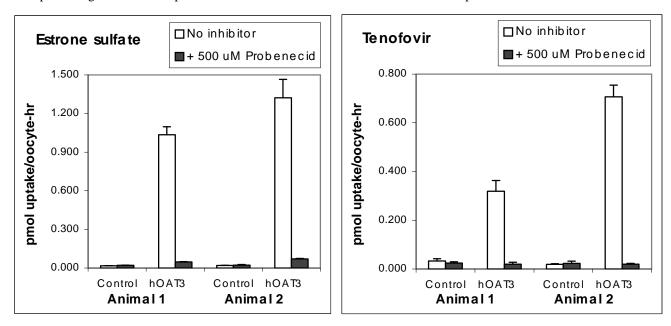
> 300

CHO = Chinese hamster ovary; MATE1 = multidrug and toxin extrusion protein 1; OCT2 = organic cation transporter 2


MATE1

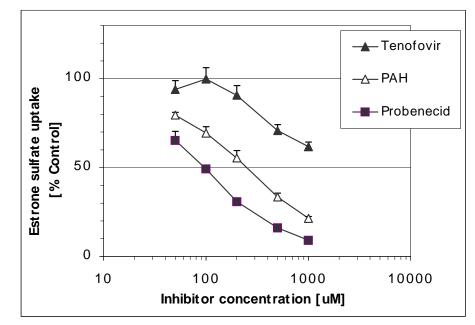
~20%

14.3.13. PC-103-2001: Interactions of TFV with Human OAT3, OCT1, and OCT2


Report Title:		<u>Study Type</u>	Test Article	<u>Report Number</u>	
In Vitro Interactions of Acyclic Nucleoside Phosphonate Analogs with Human Organic Cation and Anion Transporters		Drug-Drug Interaction	TFV	PC-103-2001	
Type of Study:	of Study: In vitro study to evaluate the interactions of tenofovir (TFV) with human organic anion transporter OAT3 and humat transporters OCT1 and OCT2.				
Methods:	The interactions of TFV with OCT1, OCT2, and OAT3 were studied in a Xenopus oocyte expression system through uptake transport of [3 H]TFV (10 μ M) and appropriate control substrates ([14 C]TEA triethylamine, 100 μ M for OCT1 and OCT2, and [3 H]estrone sulphate (100 nM) for OAT3). Inhibition studies were also conducted for OAT3 by measuring the uptake of [3 H]est sulphate (100 μ M) in the presence of TFV and the positive control inhibitor, probenicid, at concentrations from 50 to 1000 μ M.				
Results (OCT1 and OCT2):	The figures below show the results of uptake	e studies of [³ H]TFV (10 μM) for 0	OCT1 and OCT2 in comp	parison to water-injected	

Results (OCT1 and OCT2): The figures below show the results of uptake studies of $[^{3}H]TFV$ (10 μ M) for OCT1 and OCT2 in comparison to water-injected occytes (Control) in the presence and absence of the inhibitor quinine. The positive control substrate, TEA, showed the expected high level of transport. TFV was shown not to be a substrate for OCT1 and OCT2.

Report Title:	<u>Study Type</u>	Test Article	<u>Report Number</u>
In Vitro Interactions of Acyclic Nucleoside Phosphonate Analogs with	Drug-Drug Interaction	TFV	PC-103-2001
Human Organic Cation and Anion Transporters			


Results (OAT3): The figures below display the results of uptake studies of $[{}^{3}H]TFV$ (10 μ M) for human OAT3 in comparison to water-injected oocytes (Control) in the presence and absence of the control inhibitor, probenecid. The positive control substrate $[{}^{3}H]$ estrone sulphate showed the expected high level of transport. TFV was shown to be a substrate for OAT3 transport.

Report Title:

Study Type Test Article Report Number In Vitro Interactions of Acyclic Nucleoside Phosphonate Analogs with **Drug-Drug Interaction** TFV PC-103-2001 Human Organic Cation and Anion Transporters

The affinity of TFV for OAT3 was assessed indirectly through inhibition of the transport of [³H]estrone sulphate in comparison to the effect of probenicid and para-aminohippurate (PAH). The results are shown in the figure below. No inhibition of OAT3 was observed in the presence of up to 100 µM TFV indicating a low affinity interaction between TFV and OAT3.

Conclusion: This study demonstrated that TFV was not a substrate for human cation transporters OCT1 and OCT2. TFV was shown to be a low affinity substrate for OAT3.

14.3.14. AD-120-2035: Effect of Cyclosporin A Pretreatment on Pharmacokinetics of TAF in Dogs

Report Title: Effect of Cyclosporin A pretreatment on Pharmacokinetics of Tenofovir Alafenamide in dogs			<u>Study Type</u>	Test Article	Report Number
			Drug-drug interaction (in vivo)	TAF	AD-120-2035
Species:	Beagle dogs				
Sex (M/F) / No. of Animals	M/3				
Method of Administration:	Intravenous ir	fusion			
Dose (mg/kg):	0.5				
Sample	Plasma/PBM0	C			
Assay:	LC-MS/MS				
				РВМС	
	Pla	sma	- Phosphatase	+ Phosphatase	-
Parameter	TAF	TFV	TFV	TFV	TFV-DP
T _{max} (h)	0.41	0.90	0.48	2.32	6.00
C _{max} (µg/mL)	0.47	0.03	2.96	5.25	7.24
t _{1/2} (h)	0.12	> 24	NC	> 24	> 24
AUC _{0-t} (µg•h/mL)	0.23	0.15	12.3	78.7	137
CL (L/h/kg)	2.23	NA	NA	NA	NA

 AUC_{0-t} = area under the time-concentration curve from time zero to last measured time-point; C_{max} = maximum plasma concentration; CL = plasma clearance; F = female; LC-MS/MS = liquid chromatography-tandem mass spectrometry; M = male; NA = not applicable; PBMC = peripheral blood mononuclear cell; $t_{1/2}$ = estimated plasma elimination half-life; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir; TFV-DP = tenofovir diphosphate

Report Title:	Report Title:			Test Article	<u>Report Number</u>
Effect of Cyclosporin A pretreatment on pharmacokinetics of Tenofovir Alafenamide in dogs		Drug-drug interaction (in vivo)	TAF	AD-120-2035	
Species	Beagle dogs				
Sex (M/F) / No. of Animals	M/3				
Method of Administration:	Oral gavage				
Dose (mg/kg):	2				
Feeding Condition:	Fasted				
Vehicle/Formulation:	0.9% sodium chloride in 50 mM ammonium acetate, pH 5.5				
Assay:	LC-MS/MS				
				PBMC	
	Plas	sma	- Phosphatase	+ Phosphatase	_
	TAF	TFV	TFV	TFV	TFV-DP
T _{max} (h)	0.14	0.67	1.00	1.00	8.70
C _{max} (µg/mL)	0.05	0.10	0.12	0.75	1.81
$t_{\nu_2}(h)$	0.21	> 24	NC	> 24	> 24
AUC _{0-t} (µg•h/mL)	0.01	0.33	NA	10.8	31.2
F%	1.67	NA	NA	NA	NA

 AUC_{0-t} = area under the time-concentration curve from time zero to last measured time-point; C_{max} = maximum plasma concentration; F = female; F% = bioavailability; LC-MS/MS = liquid chromatography-tandem mass spectrometry; M = male; NA = not applicable; PBMC = peripheral blood mononuclear cell; $t_{1/2}$ = estimated plasma elimination half-life; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir; TFV-DP = tenofovir diphosphate

Report Title:			Study Type	Test Article	Report Number
Effect of Cyclosporin A pretreatment on pharmacokinetics of Tenofovir Alafenamide in dogs		ics of Drug-	drug interaction (in vivo)	TAF	AD-120-2035
Species:	Beagle dogs				
Sex (M/F) / No. of Animals:	M/3				
Method of Administration:	Oral gavage				
Dose (mg/kg):	2				
Co-administered CsA Dose (mg/kg): 75				
Feeding Condition:	Fasted				
Vehicle/Formulation:	50 mM citrate	, pH 5			
Assay:	LC-MS/MS				
			PBMC (Pr	etreated with 75 mg Cyc	losporin A)
	Plasma (Pretreated wit	h 75 mg Cyclosporin A)	- Phosphatase	+ Phosphatase	_
	TAF	TFV	TFV	TFV	TFV-DP

	TAF	TFV	TFV	TFV	TFV-DP
T _{max} (h)	0.25	1.00	1.00	1.00	3.00
C _{max} (µg/mL)	0.39	0.05	2.10	4.91	3.15
$t_{1/2}(h)$	0.15	> 24	> 24	> 24	> 24
$AUC_{0-t} (\mu g \bullet h/mL)$	0.15	0.38	9.39	75.8	59.5
F%	16.6	NA	NA	NA	NA

 AUC_{0-t} = area under the time-concentration curve from time zero to last measured time-point; C_{max} = maximum plasma concentration; F = female; F% = bioavailability; LC-MS/MS = liquid chromatography-tandem mass spectrometry; M = male; NA = not applicable; PBMC = peripheral blood mononuclear cell; $t_{1/2}$ = estimated plasma elimination half-life; T_{max} = time to reach the maximum plasma concentration; TAF = tenofovir alafenamide; TFV = tenofovir; TFV-DP = tenofovir diphosphate

14.3.15. AD-236-2003: Assessment of Inhibition of Human P-gp and BCRP by EVG, FTC, and TFV In Vitro

Report Title:		<u>Study Type</u>	<u>Test Article</u>	Report Number		
In Vitro Inhibition of Human P-gp and BCRP by Elvitegravir, Emtricitabine and Tenofovir		Drug-drug interaction (in vitro) EVG, COBI, FTC, TFV	AD-236-2003		
Methods: The inhibition of the ATP-Binding Cassette (ABC) efflux P-glycoprotein (P-gp) transporter and breast cancer resistance protein (BCRP) by EVG, COBI, FTC, and TFV was assessed in vitro using the MDCKII cells expressing individual transporters and fluorescent model substrates. Verapamil was the positive control inhibited P-gp activity and fumitremorgin C was the positive control inhibitor in BCRP inhibition assay.						
	Efflux Transporter IC ₅₀ (μM)					
Test Compound		P-gp	BCRP			
Elvitegravir	69	9.7 ± 5.4	88.9 ± 1	16.0		
Emtricitabine		> 100	> 10	0		
Tenofovir	:	> 1000	> 10	0		
Cobicistat 30		36 ± 10	59 ± 28			
Verapamil	5.	.2 ± 1.2	NA			
Fumitremorgin C		NA	0.37 ± 0).18		

COBI = cobicistat; EVG = elvitegravir; FTC = emtricitabine; MDCKII = Madin-Darby canine kidney cells; TFV = tenofovir; NA = not applicable

14.3.16. AD-236-2004: Bidirectional Permeability of EVG, FTC, TFV, and COBI through Monolayer of P-gp (MDR1)-Overexpressing Cells

Report Title:	<u>Study Type</u>	Test Article	<u>Report Number</u>
Bidirectional Permeability of Elvitegravir, Emtricitabine, Tenofovir, and Cobicistat (Quad) through Monolayers of P-glycoprotein Over-expressing Cells	Drug-drug interaction (in vitro)	TFV	AD-236-2004

Bidirectional Permeability of TFV Through MDR1 Transfected MDCKII Cells							
	Initial Conc.		Recovery				
Cell Type	Direction	(µM)	(%)	Replicate 1	Replicate 2	Average	Efflux Ratio
	Cell-Free	9.8	88	13.3	_	13.3	_
MDCKII-WT	Forward	9.5	104	0.18	0.11	0.15	15
	Reverse	13.1	95	0.19	0.25	0.22	1.5
MDCKII-MDR1	Forward	16.0	94	0.10	0.12	0.11	1.0
	Reverse	16.8	92	0.07	0.15	0.11	1.0
MDCKII-MDR1 (10 µM CsA)	Forward	13.2	83	0.12	0.07	0.10	1.5
	Reverse	11.0	82	0.14	0.15	0.14	1.5

CsA = cyclosporin A; MDCKII = Madin-Darby canine kidney cells; MDR1 = P-glycoprotein (P-gp, ABCB1 gene product); $P_{app} = apparent permeability; TFV = tenofovir; WT = wild type$

Final

14.3.17. AD-236-2005: Bidirectional Permeability of EVG, FTC, TFV, and COBI through Monolayers of BCRP-Overexpressing Cells

Report Title:					<u>Study Type</u>		Test A	rticle	<u>Report Number</u>	
Bidirectional Permeability of Elvitegravir, Emtricitabine, Tenofovir, and Cobicistat (Quad) through Monolayers of BCRP Over-expressing CellsDrug-drug interaction (in vitro)TFV							1	AD-236-2005		
	Bidirectio	nal Permeability	of TFV T	hrougl	h BCRP Transfect	ted MD	CKII Cells			
		Initial Conc.	Recov	P_{app} (10 ⁻⁶ cm/s)						
Cell Type	Direction	(µM)	Recovery (%)	Replicate 1	Re	plicate 2	Averag	e	Efflux Ratio	
	Cell-Free	9.8	88		13.3		_	13.3		_
MDCKII-WT	Forward	9.5	104		0.18		0.11	0.15		1.5
	Reverse	13.1	95		0.19		0.25	0.22		1.3
MDCKII-BCRP	Forward	12.1	92		0.17		0.14	0.16		2.2
WIDCKII-DCKP	Reverse	13.1	81		0.40		0.32	0.36		2.3
	Forward	11.2	91		0.18		0.21	0.19		2.4
MDCKII-BCRP (10 µM CsA)	Reverse	11.2	97		0.85		0.45	0.65		3.4

BCRP = breast cancer resistance protein; CsA = cyclosporin A; MDCKII = Madin-Darby canine kidney cells; P_{app} = apparent permeability; TFV = tenofovir; WT = wild type

14.3.18. AD-236-2006: Assessment of Inhibition of Human OATP1B1 and OATP1B3 by FTC and TFV

Report Titl	e:		<u>Study Type</u>	Test Article	<u>Report Number</u>			
In Vitro Inh and Tenofov	ibition of Human OATP1B1 and OAT vir	TP1B3 by Emtricitabine	Drug-drug interaction (in vitro)	FTC, TFV	AD-236-2006			
Methods	type or transfected with the genes e assay buffer containing 2 µM Fluo	st compounds of human OATP1B1 and OATP1B3 was assessed in Chinese hamster ovary (CHO) cells, either enes encoding human OATP1B1 or OATP1B3. The test compounds and positive control compound were dilut Fluo 3. Following removal of media containing Fluo 3, the cells were immediately analyzed for Fluo 3 fluores d emission of 530 nm. Rifampicin was used as positive control.						
			Influx Transporters IC ₅₀ (µM)					
Test Comp	ound	OA	ATP1B1	P1B1 OATP1B3				
Elvitegravir			> 2	0.44 ± 0.22				
Emtricitabir	ne	>	> 100	> 100				
Tenofovir		>	> 100	> 100				
Cobicistat		3.5	0 ± 0.72	$1.88 \pm$	0.76			
Rifampicin		1.	3 ± 0.8	3.0 ± 0	0.7			

FTC = emtricitabine; OATP = organic anion transporting polypeptide; TFV = tenofovir

14.3.19. AD-236-2007: Assessment of Inhibition of EVG, FTC, TFV, and COBI with Human OAT1, OAT3 and MRP4 Transporters

Report Title:	<u>Study Type</u>	Test Article	<u>Report Number</u>
In Vitro Inhibition Studies of Quad Components with Human OAT1, OAT3 and MRP4 Transporters	Drug-drug interaction (in vitro)	EVG, COBI, FTC, TDF	AD-236-2007

Methods: The potential for test compounds to inhibit the human organic anion uptake transporters (OAT1 and OAT3) and the apically expressed human multidrug resistance related protein 4 (MRP4) was assessed in vitro. OAT1 and OAT3 cellular uptake assay was performed on Chinese hamster ovary (CHO) cells and human embryonic kidney (HEK293) cells with FlpIn technology (FlpIn293) stably transfected with OAT1 and OAT3, respectively. In MRP4 vesicular transport assay, the test compounds were incubated with membrane vesicle preparations (total protein: 50 μg/well) in the absence or presence of ATP. The amount of substrate inside the cells was determined by liquid scintillation counting.

		Em	Emtricitabine		Elvitegravir		Cobicistat		Tenofovir	
Transporter	Probe Substrate	IC ₅₀ (µM)	Maximum inhibition (%)							
OAT1	РАН	> 100	40	> 20	No Inhibition	> 100	140 activation	33.8	NA	
OAT3	E3S	> 100	No Inhibition	> 20	14	> 100	No Inhibition	770	NA	
MRP4	E217 G	> 100	No Inhibition	> 20	19	20.7	~92	> 1,000	NA	

 $COBI = cobicistat; EVG = elvitegravir; FTC = emtricitabine; TFV = tenofovir; PAH = {}^{3}H- para-aminohippuric acid; E3S = {}^{3}H-estrone-3-sulfate;$

E217 G = estradiol-17-beta-glucuronide; OAT = organic anion transporter; NA = not applicable

Note: Maximum concentrations used for elvitegravir, emtricitabine, cobicistat and tenofovir were 20, 100, 100, and 1000 µM, respectively.

14.3.20. AD-236-2008: Assessment of Inhibition of EVG, COBI, FTC, and TFV with Human OCT1 and BSEP Transporters

Report Title:	<u>Study Type</u>	Test Article	<u>Report Number</u>				
In Vitro Inhibition Studies of Stribild Components with Human OCT1 and BSEP Transporters	Drug-drug interaction (in vitro)	EVG, COBI, FTC, TFV	AD-236-2008				
Methods The potential for test compounds to inhibit the human organic cation uptake transporter (OCT1) and hile salt export pump (BSEP) was assessed in							

Methods The potential for test compounds to inhibit the human organic cation uptake transporter (OCT1) and bile salt export pump (BSEP) was assessed in vitro using transfected Chinese Hamster Ovary (CHO) cells. In OCT2 cellular uptake assay, plated cells were washed with Krebs-Henseleit buffer and were then exposed for 10 minutes to the same buffer containing [¹⁴C]-tetraethylammonium chloride (TEA) substrate (3.6 μ M) and test compounds. In BSEP vesicular transport assay, test compounds were incubated with membrane vesicle preparations (total protein: 50 μ g/well) and probe substrate, taurocholate (2 μ M) in the absence or presence of ATP. The amount of substrate inside the cells was determined by liquid scintillation counting for both assays.

	Elvitegravir Emtricitabine		ntricitabine	Tenofovir		Cobicistat		Ritonavir		
Transporter	IC ₅₀ (µM)	Maximum inhibition (%)	IC ₅₀ (µM)	Maximum inhibition (%)	IC ₅₀ (µM)	Maximum inhibition (%)	IC ₅₀ (µM)	Maximum inhibition (%)	IC ₅₀ (µM)	Maximum inhibition (%)
OCT1	> 20	30	>100	No Inhibition	> 100	No Inhibition	14.7	76	~20	49
BSEP	> 20	33	>100	No Inhibition	> 100	No Inhibition	6.5	97	1.8	95.3

BSEP = bile salt export pump; COBI = cobicistat; EVG = elvitegravir; FTC = emtricitabine; OCT = organic cation transporter; Stribild = fixed-dose combination of elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate; TFV = tenofovir

Note: Maximum concentrations used for elvitegravir, emtricitabine, cobicistat, tenofovir and ritonavir were 20, 100, 100, 100, and 20 µM, respectively.

14.3.21. AD-236-2011: Interaction of FTC and TFV with Human OCT2 Uptake Transporters

Report Titl	e:		<u>Study Type</u>	<u>Test Article</u>	<u>Report Number</u>			
	raction Study of Emtricitabine and Te ke Transporter	nofovir with the Human	Drug-drug interaction (in vitro)	FTC, TFV	AD-236-2011			
Methods:	wild-type and transfected Chinese I cells overexpressing the OCT2 upta	that as substrates for the renal uptake transporter organic cation transporter (OCT2) was assessed in vitre Hamster Ovary (CHO) cells. The transporter specific uptake of emtricitabine and TFV was determined take transporters as well as the control (parental) cells. The test articles were incubated at $37\pm1^{\circ}$ C at fir he amount of substrate inside the cells was determined by LC-MS/MS method.						
			Fold Accumu	lation				
Condition ((Concentration [µM]/Time [min])	Emtricit	abine					
1/2		2.35	a	1.24				
1/20		1.12	2	1.37				
10/2		1.10)	0.82				
10/20		1.82	2	0.98				

FTC = emtricitabine; LC/MS = high performance liquid chromatography coupled to tandem mass spectrometry; OCT = organic cation transporter; TFV = tenofovir

a Considered outlier

14.4.1. AD-236-2001: Inhibition Potential of EVG, FTC, TFV, and COBI with Human OCT2 and MATE1 Transporters

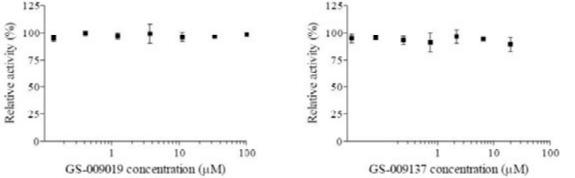
Report Title	Study Type	Test Article	Report Number
In Vitro Inhibition Studies of Elvitegravir, Emtricitabine, Tenofovir, and Cobicistat (Quad) with Human OCT2 and MATE1 Transporters	Drug-drug interaction (in vitro)	EVG, COBI, FTC, TFV	AD-236-2001

MethodsThe potential for EVG, COBI, FTC, and TFV to inhibit the human organic cation uptake transporters OCT2 and multidrug and toxin extrusion
transporter MATE1 was assessed in vitro using transfected Chinese Hamster Ovary (CHO) cells lines stably expressing human OCT2 or MATE1
protein. The amount of cell-associated radioactivity was determined by liquid scintillation counting. IC₅₀ values were calculated by analysis of
the concentration-dependent reduction of the fractional transport activity by the test compounds, with 100% transport activity being that seen with
the vehicle control. IC₅₀ values were determined by nonlinear regression using GraphPad Prism 5.0.

Inhibitor or Enhancer	Transporter	IC ₅₀ (μM)	Maximum inhibition at 100 μM (% of control)
	OCT2	>20	31
Elvitegravir	OCT2 >20 MATE1 2.0 OCT2 >100 MATE1 >100 OCT2 >300 MATE1 >300 OCT2 14.4	98	
Emtricitabine	OCT2	>100	18
Emulchaome	MATE1	>100	ND
Tenofovir	OCT2	>300	ND
Tenorovir	MATE1	>300	20
Cobicistat	OCT2	14.4	70
Codicistat	MATE1	1.87	98

COBI = cobicistat; EVG = elvitegravir; FTC = emtricitabine; ND = not determined; TAF = tenofovir alafenamide; TFV = tenofovir

Note: Maximum concentration tested was 300 µM for tenofovir, 100 µM for emtricitabine and cobicistat, and 20 µM for elvitegravir


14.4.2. AD-236-2010: Interaction of FTC with Human OAT1 and OAT3 Transporters

Report Title			Study Type	Test Article	Report Number		
In vitro Intera Transporters	ction Study of Emtricitabine with the H	Human OAT1 and OAT3 Uptake	Drug-drug interaction (in vitro)	FTC	AD-236-2010		
Methods	The potential for test compounds that as substrates for the renal uptake transporters organic anion transporter (OAT1 and OAT vitro using wild-type and transfected cell-lines. The transporter specific uptake of emtricitabine was determined using cells ov OAT1 and OAT3 uptake transporters as well as the control (parental) cells. The test article was incubated at $37\pm1^{\circ}$ C at final co and 10 μ M. An additional experiment was performed in OAT3 overexpressing cells in the presence and absence of probenecies of the transporter. The amount of substrate inside the cells was determined by LC/MS method.						
Transporter		Condition (µM/min)	Fold Accumulation				
		1/2		1.59			
OAT1		1/20	0.66				
UATI		10/2	1.51				
		10/20		1.45			
		1/2		2.09			
		1/20		1.82			
0.4 T2		10/2		2.32			
OAT3		10/20		2.13			
		10/2	2.7	1 (Emtricitabine Alo	one)		
		10/2	1.02 (1	Emtricitabine + Prob	enecid)		

FTC = emtricitabine; LC/MS = high performance liquid chromatography coupled to tandem mass spectrometry; OAT = organic anion transporter

14.4.3. AD-236-2012: Assessment of Interaction of EVG and FTC with Human MRP2 Transporters

T T7', T 1'1	e	Study Type	Test Article	Report Number				
	Inhibition of Human MRP2 ABC (Efflux) Transporter by Stribild Drug-drug interaction (in vitro) EVG, FTC A							
Methods	ds The inhibition potential of test compounds with human MRP2 ABC (efflux) transporters was assessed in vitro using MRP2 containing vesion model substrate estradiol-17-beta-glucuronide (E217bG). The vesicular transport assay was performed with cell membrane vesicles contain human MRP2 efflux transporter. The MRP2 transporter was expressed in Spodoptera frugiperda (Sf9) ovarian cells. The isolated membrane vesicles were prepared and characterized. The specificity of the interaction was confirmed using control membrane vesicles in the negative experiment. The concentration of test articles was 0 and the highest applied test article concentration. The amount of substrate inside the filt vesicles was determined by liquid scintillation.							
Results	Elvitegravir and emtricitabine did not influence the MRP2-mediated E217 G transport when tested at concentrations up to 20 µM and 100 µ respectively.							
	Effect of FTC and EVG on the MR	P2-Mediated E217 G Transpo	ort					
	GS-009019	GS-009137						

EVG = elvitegravir (GS-009137), FTC = emtricitabine (GS-009019); MRP2 = multidrug resistance-associated protein-2 (ABCC2, cMOAT); Stribild = fixed-dose combination of elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate

14.4.4. AD-236-2013: Interaction of FTC with Human MRP2 Transporters

Report Title			Study Type	Test Article	Report Number
In Vitro Interaction Study of Emtricitabine with the Human MRP2 ABC (Efflux) Transporter			Drug-drug interaction (in vitro)	FTC	AD-236-2013
Methods	The potential for test compound that as substrates for human MRP2 ABC transporter was assessed in vitro using MRP2 containing membrane vesicles. Transporter specific accumulation of emtricitabine in MRP2 vesicles was investigated at 2 concentrations (1 and 10 μ M) and at 2 incubation times (2 and 20 minutes). Emtricitabine was incubated at 37±1°C at final concentrations of 1 and 10 μ M. The amount of emtricitabine accumulated in the vesicles was determined by LC/MS method. MRP2-mediated E217 G transport in the presence or absence of 100 μ M benzbromarone was carried out as a positive control for MRP2 function.				
Transporter		Condition (µM/min)	Fold Accumulation		
MRP2		1/2	ND		
		1/20	ND		
		10/2	1.06		
		10/20		0.99	

E217 G = estradiol-17-beta-glucuronide; FTC = emtricitabine; MRP2 = multidrug resistance-associated protein-2 (ABCC2, cMOAT); ND = not determined Most of the samples from the 1 μ M group were below the limit of quantification therefore fold accumulations could not be calculated

15. PHARMACOKINETICS: OTHER

There are no additional studies to report under this heading.