SECTION 2.6.4—PHARMACOKINETICS WRITTEN SUMMARY

REMDESIVIR (GS-5734TM)

Gilead Sciences

2020

CONFIDENTIAL AND PROPRIETARY INFORMATION

TABLE OF CONTENTS

TAE	BLE OF	CONTENTS	2
LIS	T OF IN	I-TEXT TABLES	3
LIS	T OF AI	BBREVIATIONS	6
PH/	ARMAC	OKINETIC ABBREVIATIONS	7
1	NOTE		،, ر و
1.	NOTE		
2.	BRIEF	SUMMARY	9
3.	METH	IODS OF ANALYSIS	12
	3.1.	Bioanalytical Methods	12
		3.1.1. Bioanalytical Methods Supporting <i>In Vitro</i> Cellular Metabolism and	
		Pharmacokinetic Studies	12
	3.2	<i>In Vitro</i> Methods	12
	5.2.	3.2.1. Plasma Binding	
		3.2.2. Distribution within Blood	13
		3.2.3. Stability	14
		3.2.4. Intracellular Metabolism	14
		3.2.5. Interaction with Enzymes	14
		3.2.6. Induction Potential	15
	2.2	3.2./. Interaction with Transporters	15
	5.5.		10
4.	ABSO	RPTION	17
	4.1.	In Vitro Absorption Studies	17
	4.2.	Single Dose In Vivo Studies	17
		4.2.1. Intravenous Administration	1/
	43	4.2.2. Intrainuscular injection	23
	4.5.	4.3.1. Mouse Toxicokinetics	
		4.3.2. Rat Toxicokinetics	25
		4.3.3. Rabbit Toxicokinetics	
		4.3.4. Monkey Toxicokinetics	26
5.	DISTR	RIBUTION	
	5.1	In Vitro Plasma Protein Binding and Blood Distribution	28
	5.2	Tissue Distribution Studies	20
	0.2.	5.2.1. Studies Involving GS-443902 measurements	
		5.2.2. Radiolabeled Tissue Distribution	
6.	META	BOLISM (INTERSPECIES COMPARISON)	41
	61	In Vitro Metabolism	41
	0.1.	6.1.1. Plasma Stability	
		6.1.2. Metabolic Stability	
		6.1.3. Intracellular Metabolism	43
	6.2.	In Vivo Metabolism	44
	6.3.	Intracellular Metabolic Pathways	46
7.	EXCR	ETION	47
	7.1.	Rat	
	7.2.	Rabbit	47

	7.3.	Monkey		.47	
8.	PHARMACOKINETIC DRUG INTERACTIONS			.48	
	8.1.	Clinical Pl	narmacokinetic Parameters	.48	
	8.2.	Interaction	ns with Enzymes	.48	
		8.2.1.	Enzymology of Metabolism	.48	
		8.2.2.	Cytochrome P450 Inhibition	.49	
		8.2.3.	UGT Inhibition	. 50	
	8.3. Assessment of Induction Liability				
	8.4. Interactions with Transporters				
		8.4.1.	Transporter Substrate	.50	
		8.4.2.	Transporter Inhibition	.51	
	8.5.	Drug-Drug	g Interaction Liability Assessment	. 52	
9.	OTHE	R PHARMA	ACOKINETIC STUDIES	.55	
10.	DISCU	SSION AN	ID CONCLUSIONS	.56	
11.	TABL	ES AND FI	GURES	. 57	
12.	REFERENCES				

LIST OF IN-TEXT TABLES

Table 1.	Description of Remdesivir and its Diastereomers and Metabolites Referenced in the			
	Text	8		
Table 2.	Calibration Range and Lower Limit of Quantification for the Validated			
	Bioanalytical Methods used to Support the GLP Toxicokinetic Studies	13		
Table 3.	Cells and Experimental Conditions for Transporter Assays	16		
Table 4.	Pharmacokinetic Parameters for Remdesivir in Male Wistar Han Rat, Cynomolgus			
	Monkey, and Rhesus Monkey after Single Dose Intravenous Bolus Administration			
	of Remdesivir (Mean, n = 3)	18		
Table 5.	Pharmacokinetic Parameters for Metabolite GS-704277 in Male Wistar Han Rat,			
	Cynomolgus Monkey, and Rhesus Monkey after Single Dose Intravenous Bolus			
	Administration of Remdesivir (Mean, n = 3)	18		
Table 6.	Pharmacokinetic Parameters for Metabolite GS-441524 in Male Wistar Han Rat,			
	Cynomolgus Monkey, and Rhesus Monkey after Single Dose Intravenous Bolus			
	Administration of Remdesivir (Mean, n = 3)	19		
Table 7.	Protein Binding for Remdesivir, GS-704277 and GS-441524 at 2 μ M in Plasma from			
	Different Species (Mean, n = 2)	28		
Table 8.	Individual Concentrations of Radioactivity in Blood and Select Tissues Determined			
	After a Single Intravenous Administration of [¹⁴ C]Remdesivir to Male Sprague			
	Dawley Rats (10 mg/kg)	34		
Table 9.	Individual Concentrations of Radioactivity in Blood and Select Tissues After a			
	Single Intravenous Administration of [¹⁴ C]Remdesivir to Male Long Evans Rats (10			
	mg/kg)	36		
Table 10.	Mean Concentrations of Radioactivity in Blood and Select Tissues Determined			
	After a Single Intravenous Administration of [¹⁴ C]Remdesivir to Male Cynomolgus			
	Monkey at 10 mg/kg (n = 3)	39		
Table 11.	Plasma Profile Following IV Administration of [¹⁴ C]Remdesivir	45		
Table 12.	Plasma Cmax values for Remdesivir, GS-704277 and GS-441524 Following Daily			
	Intravenous Administrations of Remdesivir in Healthy Humans (Mean (%CV))	48		
Table 13.	Rates of Metabolism of Remdesivir by Cytochrome P450 Isoforms	49		
Table 14.	IC ₅₀ Values for Major Human CYP Enzymes for Remdesivir and Positive Control			
	Inhibitors (Mean, n = 7 data points)	50		

Table 15.	Inhibition of Transporters by Remdesivir	
Table 16.	Regulatory Calculations for Enzyme Inhibition by Remdesivir	53
Table 17.	Summary of Induction Liability Calculations for Remdesivir Using mRNA Results	
	from the Most Sensitive Hepatocytes (Donor 1)	53
Table 18.	Guidance Calculation Results for Transporter Interactions for Remdesivir	54
	*	

LIST OF IN-TEXT FIGURES

Figure 1.	Concentration-Time Profiles of Remdesivir and its Metabolites GS-704277 and	
	GS-441524 in Plasma Following Intravenous Administration of Remdesivir at 50	
	mg/kg as a 30-minute Infusion in Rats (Mean, n = 3)	20
Figure 2.	Concentration-Time Profiles of Remdesivir and its Metabolites GS-704277 and	
	GS-441524 in Plasma Following Intravenous Administration of Remdesivir at 10	
	mg/kg in Cynomolgus Monkeys (Mean, n = 3)	21
Figure 3.	Concentration-Time Profiles of Remdesivir and its Metabolites GS-704277 and	
	GS-441524 in Plasma Following Intravenous Injection of Remdesivir at 10 mg/kg	
	in Rhesus Monkeys (Mean, n = 3)	22
Figure 4.	Concentration-Time Profile of GS-441524 and its Phosphorylated Metabolites in	
-	Peripheral Blood Mononuclear Cells Following Intravenous Injection of Remdesivir	
	at 10 mg/kg in Rhesus Monkeys (Mean, n = 3)	22
Figure 5.	Concentration-Time Profiles of Remdesivir and its Metabolites GS-704277 and	
-	GS-441524 in Plasma Following Intramuscular Injection of Remdesivir at 3 mg/kg	
	in Rhesus Monkeys (Mean, n = 3)	23
Figure 6.	Concentration-Time Profile of Total GS-441524 and its Phosphorylated Metabolites	
C	in Peripheral Blood Mononuclear Cells Following Intramuscular Injection of	
	Remdesivir at 3 mg/kg in Rhesus Monkeys (Mean, $n = 3$)	24
Figure 7.	Concentration-time Profile of GS-441524 and Its Phosphorylated Metabolites in	
C	Lung Following Intravenous Injection of Remdesivir at 10 mg/kg in Marmosets	
	(mean, n=2 per time point)	29
Figure 8.	Concentration-time Profiles of GS-443902 in PBMC Following Daily Intravenous	
C	Administration of Remdesivir at 5 mg/kg for 7 days as Slow-Push Bolus in Rhesus	
	Monkeys (mean \pm SD, n=8)	30
Figure 9.	Concentration-time Profiles of GS-443902 in PBMC Following Daily Intravenous	
C	Administration of Remdesivir at 5 mg/kg for 7 days as a 30-minute Infusion in	
	Rhesus Monkeys (mean \pm SD, n=8)	30
Figure 10.	Concentration-Time Profiles of Remdesivir and its Metabolites in Plasma Following	
-	a 30-minute Intravenous Infusion of Remdesivir at 10 mg/kg in AGM (Mean \pm SD,	
	n=3 per time point [remdesivir 15 min time point, n=1])	31
Figure 11.	Profiles of GS-441524 and its Phosphorylated Metabolites in PBMC Following	
-	Intravenous Administration of Remdesivir at 10 mg/kg as a 30-minute Infusion in	
	African Green Monkeys (Mean, n = 3)	32
Figure 12.	Profiles of GS-441524 and its Phosphorylated Metabolites in Respiratory Tissues	
-	Following Intravenous Administration of Remdesivir at 10 mg/kg as a 30-minute	
	Infusion in African Green Monkeys (Mean, n = 3)	32
Figure 13.	Profiles of GS-441524 and its Phosphorylated Metabolites in Select Tissues	
C	Following Intravenous Administration of Remdesivir at 10 mg/kg as a 30-minute	
	Infusion in African Green Monkeys (Mean, n = 3)	33
Figure 14.	Representative Quantitative Whole-body Autoradiograph for Male Sprague Dawley	
C	Animal No. B50194 0.167 Hours After a Single Intravenous Administration of	
	[¹⁴ C]Remdesivir (10 mg/kg)	
Figure 15.	Representative Quantitative Whole-body Autoradiograph for Male Long Evans	
-	Animal No. B50205 0.167 Hours After a Single Intravenous Administration of	
	[¹⁴ C]Remdesivir (10 mg/kg)	

Figure 16.	Proposed Biotransformation Pathways of Remdesivir ^a	42
Figure 17.	Comparison of Intracellular GS-443902 Concentrations Formed in Peripheral Blood	
-	Mononuclear Cells and Monocytes from Human and Rhesus Monkey During	
	Incubation with Remdesivir	43
Figure 18.	Mean Intracellular Concentrations of GS-441524 and Metabolites in NHBE cells	
	Following a 2-hour Continuous Incubation with Remdesivir (1 µM) and for up to 30	
	hours Following Removal from Extracellular Media (Mean, n=3 experiments)	44
Figure 19.	Intracellular Metabolic Pathway of Remdesivir	46

LIST OF ABBREVIATIONS

AGM	African Green Monkey
BCRP	breast cancer resistance protein
СНО	Chinese hamster ovary (cells)
СҮР	cytochrome P450
EBOV	Ebola virus
g	gram
h	hours
HMVEC	human microvascular endothelial cells
IM	intramuscular
IV	intravenous
kg	kilogram
m	meter
μg	microgram
μl	microliter
μm	micrometer
μΜ	micromolar
LC/MS/MS	high performance liquid chromatography coupled to tandem mass spectrometry
MDCKII	Madin-Darby canine kidney cells
mg	milligram
ml	milliliter
mm	millimeter
mM	millimolar
min	minutes
М	Molar
mol	mole
Ν	Normal
NADPH	β -nicotinamide adenine dinucleotide phosphate (reduced form)
ng	nanogram
NHP	non-human primate
nm	nanometer
OATP	organic anion transporting polypeptide
PBMC	peripheral blood mononuclear cells
P-gp	P-glycoprotein
S	seconds
SBECD	sulfobutylether-β-cyclodextrin
SD	standard deviation
UDPGA	uridine 5'-diphosphoglucorinic acid

PHARMACOKINETIC ABBREVIATIONS

AUC	the area under the concentration versus time curve
AUC _{last}	the area under the concentration versus time curve from time zero to the last quantifiable concentration
AUC _{x-xx}	partial area under the concentration versus time curve from time "x" to time "xx"
CL	clearance
C _{max}	the maximum observed concentration of drug
MRT	mean residence time
t _{1/2}	estimate of the terminal elimination half-life of the drug in serum/plasma/PBMC, calculated by dividing the natural log of 2 by the terminal elimination rate constant (λ_z)
T _{max}	time of observed maximal concentration
V _{ss}	volume of distribution at distribution steady state

Abbreviations are in accordance with those accepted by Toxicology and Applied Pharmacology.

1. NOTE TO REVIEWER

Remdesivir (GS-5734) is a single diastereomer monophosphoroamidate prodrug of a nucleoside analog GS-441524. Early studies relevant for GS-5734 have been conducted with the diastereomeric mixture GS-466547 (approximately 1:1 mixture of GS-5734 and its diastereomer at phosphorous). Based on antiviral activity, as well as *in vitro* and *in vivo* pharmacokinetic profile, a single diastereoisomer (remdesivir) has been selected for further development. In these studies, the isomer remdesivir performed similarly to the mixture GS-466547, and results generated with both remdesivir and GS-466547 are presented in this document as they are considered relevant. To aid the reviewer, Table 1 lists the current nomenclature for remdesivir, the diastereomeric mixture, and the related metabolites referred to within the text of this document.

Gilead No.	Description	Conversion Factors
Remdesivir (GS-5734, GS-643134)	Nucleotide prodrug	$1 \ \mu M = 0.603 \ \mu g/mL$
GS-466547	Diastereomeric mixture at phosphorous containing GS-5734	$1 \ \mu M = 0.603 \ \mu g/mL$
GS-704277	Metabolite	$1 \ \mu M = 0.442 \ \mu g/mL$
GS-441524	Nucleoside analog	$1 \ \mu M = 0.291 \ \mu g/mL$
GS-719700	Nucleoside analog monophosphate	$1 \ \mu M = 0.369 \ \mu g/mL$
GS-719699	Nucleoside analog diphosphate	$1 \ \mu M = 0.448 \ \mu g/mL$
GS-443902	Pharmacologically active nucleoside triphosphate	$1 \ \mu M = 0.527 \ \mu g/mL$

Table 1.Description of Remdesivir and its Diastereomers and MetabolitesReferenced in the Text

2. BRIEF SUMMARY

Coronaviruses (CoVs) are positive-sense, single-stranded, enveloped RNA viruses, many of which are commonly found in humans and cause mild symptoms. However, over the past two decades, emerging pathogenic CoVs that can cause life-threatening disease in humans and animals have been identified, namely severe acute respiratory syndrome coronavirus (SARS-CoV; {Corman 2015, Hui 2016}), Middle Eastern respiratory syndrome coronavirus (MERS-CoV; {Assiri 2013, Choi 2016, Who Mers-Cov Research Group 2013}), and SARS-CoV-2 {Zhu 2020}). SARS-CoV-2 was identified as the cause of an outbreak of respiratory illness (COVID-19) that was first detected in Wuhan, China, in December 2019. The virus causes respiratory illness in people and can spread from person to person {Center for Disease Control (CDC) 2020, Center for Disease Control and Prevention (CDC) 2020}. In severe cases, SARS-CoV-2 can cause pneumonia, severe acute respiratory syndrome, kidney failure, and death {World Health Organization (WHO) 2020}.

Remdesivir (GS-5734[™]) is a single diastereomer monophosphoramidate prodrug of a nucleoside analog that is intracellularly metabolized into an analog of adenosine triphosphate that inhibits viral RNA polymerases and has broad-spectrum activity against members of the coronaviruses (eg, SARS-CoV-2, SARS-CoV and MERS-CoV), filoviruses (eg, Ebola virus [EBOV] and Marburg virus [MARV]), and paramyxoviruses (eg, respiratory syncytial virus [RSV], Nipah virus [NiV], and Hendra virus). Remdesivir is being developed for the treatment of patients with COVID-19. The availability of an effective antiviral agent with a favorable benefit/risk profile would address a serious unmet medical need for the treatment of patients with COVID-19.

Remdesivir was selected for its ability to distribute into cells, including those within tissues, where it is metabolized to form the pharmacologically active nucleoside triphosphate metabolite, GS-443902. In cells and tissues, remdesivir is converted by hydrolase and phosphoramidase cleavage to the nucleoside analog monophosphate. Further phosphorylation by nucleotide kinases results in formation of GS-443902. Dephosphorylation of nucleotide metabolites results in conversion to GS-441524 that itself is not well rephosphorylated. Efficient formation of the pharmacologically active triphosphate, GS-443902, has also been observed in a number of human lung cell types *in vitro* including normal human bronchial epithelial (NHBE) and Calu-3 as well as in PBMC, macrophages, monocytes, and human microvascular endothelial cells (HMVEC). Once formed, GS-443902 has been observed to have a half-life in excess of 15 h in the various cell types mentioned, following incubation with remdesivir *in vitro*.

Consistent with the high esterase activity in the plasma of rodent species, remdesivir was unstable in rat plasma but significantly more stable in human plasma and other nonrodent species. *In vitro* hepatic stability of remdesivir in rat, dog, monkey and human showed that across species, remdesivir was largely unstable and metabolized primarily via hydrolysis. The rate of biotransformation in rodents was relatively fast compared to non-rodents. In all species tested, remdesivir hydrolysis was associated predominantly with the formation of GS-704277 and to a lesser degree, formation of GS-441524.

Following IV administration, remdesivir generates sufficient levels of drug-related material in nonclinical species chosen for the assessment of toxicology. GS-704277 and GS-441524 are the predominant metabolites observed in plasma in rats and monkeys. While exposure to remdesivir is low in rat due to high levels of plasma esterase activity, correspondingly high levels of the metabolites GS-704277 and GS-441524 are observed reflecting ester cleavage of the prodrug. Since all target cells relevant for SARS-CoV-2 infection are not fully understood and may not be easily monitored for drug levels, peripheral blood mononuclear cells (PBMC) were initially used as a surrogate to assess intracellular activation following remdesivir administration.

Tissue distribution studies following IV administration with [¹⁴C]remdesivir showed appreciable amounts of remdesivir-derived material present in many tissues, including lungs. Subsequent studies confirmed that following intravenous administration, pharmacokinetic assessment shows the rapid decline in plasma levels of remdesivir is accompanied by sequential appearance of the intermediate metabolite GS-704277 and nucleoside metabolite GS-441524 in plasma. Remdesivir also showed broad distribution and efficient activation of remdesivir to GS-443902, the pharmacologically active metabolite, in respiratory tissues of marmosets and African green monkey at levels anticipated to match or exceed those targeted for efficacy. Similarly high intracellular levels of GS-441524 and its phosphorylated metabolites were also observed in surrogate cells (PBMC) from studies in African green, marmoset, cynomolgus and rhesus monkeys. A half-life of 22 and >24 h was observed for GS-443902 in lung and PBMC, respectively, following IV administration to marmosets, data supporting once daily administration.

Tissue distribution following a single intravenous dose of [¹⁴C]remdesivir to male non-pigmented and pigmented rats showed rapid and wide distribution to most tissues and was eliminated from majority of them by 96 hours post-dose, with no preference for melanin binding. In rats, tissues showing the highest maximum concentrations included kidney cortex, kidney, kidney medulla, liver, arterial wall, nonpigmented skin, cecum, urinary bladder, and esophagus. The distribution of remdesivir was also determined following IV administration of [¹⁴C]remdesivir to male cynomolgus monkeys, with tissues showing the highest mean concentrations included gall bladder, kidneys, liver, prostate gland, salivary gland (mandibular), pancreas, and seminal vesicle(s). At one-week postdose in monkeys, tissues still showed low levels of retained dose, mostly in liver and muscle. Most of the radioactivity in select samples was associated with GS-441524, indicating metabolism of remdesivir. Renal and biliary excretion of remdesivir-related material were the major routes of elimination in both rats and monkeys.

Remdesivir has a low potential for drug-drug interactions. While a substrate for cytochrome P450 (CYP) 2C8, 2D6, and 3A4 *in vitro*, coadministration with inhibitors of these CYP isoforms is unlikely to markedly increase remdesivir levels as its metabolism is predominantly mediated by hydrolase activity. Remdesivir is a substrate for the organic anion transporter 1B1 (OATP1B1) and P-glycoprotein (P-gp); however, the impact of these transporters on remdesivir disposition is likely minimized by the parenteral route of administration. Remdesivir is an inhibitor of CYP3A, and OATP1B1- and OATP1B3-mediated transport *in vitro*. but its potential to be the perpetrator of clinically significant drug-drug interactions is limited by its transient exposure at clinically relevant concentrations and its rapid

clearance. In human microsomes, remdesivir was a weak inhibitor of CYP1A2, 2B6, 2C8, 2C9, 2C19, and 2D6. The most potent effects of remdesivir were upon CYP3A activities, with an IC₅₀ of 11.0 μ M being determined with testosterone 6 β -hydroxylase activity, and an IC₅₀ of 1.6 μ M with midazolam 1'-hydroxylase. Further analysis showed that there was no evidence for remdesivir to be a mechanism-based inhibitor of CYP3A. Assessment of remdesivir, GS-704277 and GS-441524 in human hepatocytes indicated they were unlikely to pose any induction risk.

In summary, remdesivir administered IV in multiple species exhibits a favorable and consistent pharmacokinetic profile including efficient delivery of high levels of the pharmacologically active nucleoside triphosphate metabolite into tissues and cells relevant for SARS-CoV-2 replication, supporting its consideration as a novel agent for the treatment of COVID-19.

3. METHODS OF ANALYSIS

3.1. Bioanalytical Methods

3.1.1. Bioanalytical Methods Supporting *In Vitro* Cellular Metabolism and Pharmacokinetic Studies

Analyses of remdesivir and its metabolites in plasma and PBMC were performed during pharmacokinetic (PK) studies following single administration in Wistar Han rat, African green, marmoset, cynomolgus and rhesus monkeys (m2.6.5, Section 3; AD-399-2001; AD-399-2002; AD-399-2003; AD-399-2016; AD-399-2022; AD-399-2033; and m2.6.5, Section 5: AD-399-2023; AD-399-2028; AD-399-2030; AD-540-2003), single or repeat dose non-Good Laboratory Practice (GLP) toxicokinetic (TK) studies in cynomolgus monkey, rat, rabbit and Ces1c^{-/-} mouse (m2.6.7, Section 16; TX-399-2001; TX-399-2009; TX-399-2010; TX-399-2019), in rat and cynomolgus monkeys (m2.6.7, Section 7; TX-399-2003; TX-399-2016; TX-399-2004; TX-399-2017), in rat and rabbit (m2.6.7, Section 13; TX-399-2013; TX-399-2018), in rat (m2.6.7, Section 14; TX-399-2014) and rhesus monkey (m2.6.7, Section 6; TX-399-2021) used high performance liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS). Methods used to analyze intracellular levels of the pharmacologically active GS-443902 in PBMC and lung tissue (m2.6.5, Section 3; AD-399-2001 and m2.6.7, Section 16; TX-399-2019) in PK/TK studies were also applied to analysis of GS-441524 and its phosphorylated metabolites in PBMC, macrophages, monocytes, HeLa, and HMVEC cells incubated in vitro (m2.6.5, Section 7; AD-399-2004; AD-399-2006; AD-399-2015) and select respiratory and non-respiratory tissues in marmoset and African green monkeys (m2.6.5, Section 5; AD-399-2023; AD-540-2003). These methods did not strictly conform to regulatory guidelines but were evaluated for appropriate selectivity, sensitivity, linearity, as well as intra-assay accuracy and precision.

3.1.2. Bioanalytical Methods Supporting GLP Toxicokinetic Studies

Plasma concentrations of remdesivir and its metabolite GS-441524 were quantified in repeat dose toxicology studies in Wistar Han rat (m2.6.7, Section 7; TX-399-2003) and cynomolgus monkey (m2.6.7, Section 7; TX-399-2004) using fully validated LC/MS/MS methods (Table 1, m2.6.5, Section 2; BA-399-2002 and BA-399-2003). The anticoagulant was K₂EDTA and the sample volume was 50 μL. The extraction was via protein precipitation and the detection was by LC-MS/MS. The above-mentioned methods used structurally related analogs as the internal standards: GS-465124 and GS-441285 (for remdesivir and GS-441524, respectively). Subsequent methods (Table 1, m2.6.5, Section 2; BA-399-2004, BA-399-2006 and BA-399-2007) were upgraded to also include the metabolite GS-704277. The internal standards used were the following stable isotope labeled compounds: GS-829143, GS-828840, and GS-829466 (¹³C₃- remdesivir, ¹³C₃-GS-441524 and ¹³C₃-GS-704277, respectively). The K₂EDTA plasma matrix was also treated with dichlorvos 80 mM aqueous solution (100:2.5). Validation parameters for all methods in Table 2 conformed to the applicable regulatory guidance and documents on bioanalytical method validation {European Medicines Agency (EMA) 2011, Shah 2000, U. S. Department of Health & Human Services (DHHS) 2018,

Viswanathan 2007} and included selectivity, sensitivity, linearity, carryover, intra- and inter-assay precision and accuracy, stock solution stability, injection medium integrity, short-term matrix stability, freeze-thaw matrix stability, long-term matrix stability, dilution integrity and extraction recovery. Results of Incurred Sample Reanalysis (ISR) conducted during the toxicology studies confirmed the repeatability of the methods.

Table 2.Calibration Range and Lower Limit of Quantification for the
Validated Bioanalytical Methods used to Support the GLP
Toxicokinetic Studies

Validated Method Reference Number	Species	Calibration Range (ng/mL)	LLOQ (ng/mL)	Toxicology Studies using the Validated Method
BA-399-2002	Rat	Remdesivir: 2.00 to 1000 GS-441524: 2.00 to 500	2.00 2.00	TX-399-2003
BA-399-2003	Monkey	Remdesivir: 4.00 to 4000 GS-441524: 2.00 to 500	4.00 2.00	TX-399-2004
BA-399-2004	Rabbit	Remdesivir: 2.00 to 500 GS-441524: 2.00 to 1000 GS-704277: 5.00 to 5000	2.00 2.00 5.00	TX-399-2018
BA-399-2006	Rat	Remdesivir: 2.00 to 500 GS-441524: 2.00 to 1000 GS-704277: 5.00 to 5000	2.00 2.00 5.00	TX-399-2013 TX-399-2014 TX-399-2016
BA-399-2007	Monkey	Remdesivir: 2.00 to 500 GS-441524: 2.00 to 1000 GS-704277: 5.00 to 5000	2.00 2.00 5.00	TX-399-2015 TX-399-2017 TX-399-2021

3.2. *In Vitro* Methods

3.2.1. Plasma Binding

The extents of protein binding of remdesivir, GS-704277 and GS-441524 in plasma from Wistar Han rat, cynomolgus monkey, rhesus monkey and human were assessed by equilibrium dialysis by incubating 2 μ M compound for 3 h at 37 °C in a Dianorm[®] Equilibrium Dialyser device with 1 mL Teflon cells (Harvard Apparatus, Holliston MA; m.2.6.5, Section 5.1; AD-399-2013; AD-399-2031).

3.2.2. Distribution within Blood

The distribution of remdesivir and GS-441524 between the soluble and cellular fractions of blood from rhesus monkeys and humans was determined at a compound concentration of 0.5 μ M. After incubation at 37°C for 1 h the concentrations in the plasma and cellular fractions were determined by LC-MS. Methazolamide, a compound exhibiting preferential distribution to blood cells, was tested in parallel as an assay control (m2.6.5, Section 5.2; AD-540-2007),

3.2.3. Stability

The stability of remdesivir has been assessed in plasma, extracts, and enzyme preparations. In these studies the disappearance or metabolism of remdesivir was assessed by LC/MS/MS. The stability of 2 μ M remdesivir was assessed over a 4 h incubation in plasma from Sprague-Dawley rat, beagle dog, cynomolgus monkey, rhesus monkey, and human (m.2.6.5, Section 7.1; AD-399-2012). The stability of 2 μ M remdesivir was assessed in pooled post-mitochondrial supernatant (S9) isolated from the intestine of Sprague-Dawley rat, beagle dog, and human, and liver of Sprague-Dawley rat, beagle dog, cynomolgus monkey, rhesus monkey, rhesus monkey, and human (m.2.6.5, Section 7.2; AD-399-2014). Stability studies in hepatic S9 were initiated by addition of cofactors (NADPH and UDPGA) and monitored over 90 min. Stability studies in intestinal S9 were initiated by addition of remdesivir and monitored over 120 min. The metabolism of [¹⁴C]remdesivir was assessed in vitro using mouse, rat, monkey, and human cryopreserved hepatocytes (m.2.6.5, Section 7.6; AD-399-2024). Approximately 750,000 hepatocytes/mL were incubated with 1 and 10 μ M [¹⁴C]remdesivir for 0, 30, 60, and 120 minutes.

3.2.4. Intracellular Metabolism

The intracellular metabolism of the diastereomeric mixture, GS-466547, containing remdesivir was studied following a pulse incubation in primary human macrophages *in vitro* (m2.6.5, Section 7.4; AD-399-2004). Macrophages were differentiated from monocytes isolated from the blood of three healthy human donors. Following a 2 h incubation of GS-466547 at 1 μ M with human macrophages, the compound-containing media was changed with fresh drug-free media and intracellular metabolites were measured by LC/MS/MS over 24 h.

Intracellular levels of the pharmacologically active triphosphate, GS-443902, were studied during a 72 h continuous incubation with 1 μ M GS-466547, the diastereomeric mixture containing remdesivir, with cells permissive to EBOV infection, HMVEC, HeLa cells, or primary human macrophages *in vitro* (m2.6.5, Section 7.5; AD-399-2006). Concentrations of GS-443902 were determined at 2, 24, 48 and 72 h by LC/MS/MS and the intracellular concentrations were estimated based on cell number.

Species differences between rhesus monkeys and humans in the intracellular metabolism of 1 μ M remdesivir were assessed following a 2 h incubation in PBMC and monocytes (m2.6.5, Section 7.3; AD-399-2015). After a 2 h continuous incubation of 1 μ M remdesivir with PBMC and monocytes from human and rhesus monkey, the intracellular concentrations of GS-441524 (nucleoside analog) and its mono-, di-, and tri-phosphate metabolites were determined by LC/MS/MS analysis.

3.2.5. Interaction with Enzymes

Cytochrome P450 (CYP) reaction phenotyping was determined by incubating 5 µM remdesivir with BactosomesTM, cDNA expressed human CYP enzyme preparation co-expressed with human NADPH CYP reductase and monitoring compound disappearance (m2.6.5, Section 11.1; AD-399-2011). The enzymes studied were CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4.

The potential for CYP inhibition was assessed in pooled liver microsomal fraction at remdesivir concentrations up to 100 µM (m2.6.5, Section 9; AD-399-2010, AD-540-2004). Specific CYP-catalyzed transformations of probe substrates were monitored over 5 to 60 min depending on the CYP isoform. The CYP1A2-mediated formation of acetaminophen from phenacetin (30 µM) as well as the CYP2B6-, 2C8-, 2C9-, 2C19-, 2D6-mediated conversion of buproprion (110 μ M) to hydroxybuproprion, paclitaxel (7.5 μ M) to 6 α -hydroxypaclitaxel, tolbutamide (120 µM) to 4-hydroxytolbutamide, S-mephenytoin (25 µM) to 4'-hydroxymephenytoin, dextromethorphan (5 µM) to dextrorphan, respectively, as well as the CYP3A-mediated conversion of midazolam (2.5 μ M) to 1'-hydroxymidazolam and testosterone (50 μ M) to 6β-hydroxytestosterone were monitored by LC/MS/MS. To test the potential for remdesivir to act as a mechanism-based inhibitor of human CYP3A a two-stage incubation protocol was used, with the first stage allowing inactivation of the enzyme in the absence of substrate, and the second stage being used to assay remaining enzyme activity with conversion of midazolam (12.5 µM) to 1'-hydroxymidazolam monitored by LC/MS/MS. A 10-fold dilution was performed between the two stages to reduce any direct inhibitory effects of the test compounds. Effects of remdesivir upon human UGT1A1 were tested using insect cell microsomal fraction containing baculovirus-expressed enzyme. Enzyme activity was determined by estradiol 3-glucuronidation by LC/MS/MS and atazanavir was run in parallel as a positive control (m2.6.5, Section 9.3; AD-540-2005).

3.2.6. Induction Potential

The extent of induction of specific human cytochrome P450 (CYP) enzymes (CYP1A2, CYP2B6, and CYP3A4) was measured following exposure of human hepatocytes (n = 3 donors) to remdesivir, GS-441524, and GS-704277, and to compare the effects of the test articles with those of prototypical inducers. Induction of CYP enzymes were assessed by quantitating mRNA levels and CYP enzyme activities (m2.6.5, Section 9.4; AD-399-2027).

3.2.7. Interaction with Transporters

The interaction of remdesivir with membrane transporters either as an inhibitor or substrate was assessed in appropriate model systems. Remdesivir was tested for its interaction as a substrate and inhibitor with OATP1B1 (SLC21A6), OATP1B3 (SLC21A8), BCRP (ABCG2), and P-gp (MDR1, ABCB1). Additional testing of remdesivir, GS-704277 or GS-441524 as inhibitors of human BSEP, MRP2, MRP4, and NTCP transporters was evaluated using model substrates and transfected cell lines or membrane vesicles (m2.6.5, Section 11; AD-399-2005; AD-399-2007; AD-399-2008; AD-399-2029). Assay systems, probe substrates and model inhibitors are summarized in Table 3. Also investigated was the potential interaction of GS-441524, GS-719700, GS-719699, GS-443902 and GS-704277 with the human BCRP, BSEP, MRP2 and MRP3 efflux transporters in a vesicular transporter inhibition assay (m2.6.5, Section 11.5; AD-399-2035).

Transporter (System)	Negative Control	Probe Substrate	Reference Inhibitor	
BCRP (MDCKII)	parental MDCKII	pheophorbide A	fumitremorgin C	
P-gp (MDCKII)	parental MDCKII	calcein AM	verapamil	
OATP1B1 (CHO)	parental CHO cells	Fluo 3	rifampicin	
OATP1B3 (CHO)	parental CHO cells	Fluo 3	rifampicin	
human BSEP	betagal-Sf9	taurocholate	cyclosporin A	
human MRP2	defMRP-Sf9	$E_2 17\beta G$	benzbromarone	
human MRP4	HEK293-CTRL	DHEAS	MK571	
Human NTCP (CHO)	Na+ free buffer	taurocholate	TCDC	

Table 3.	Cells and Ex	perimental	Conditions fo	r Transporter	Assays

Source: AD-399-2005; AD-399-2007; AD-399-2008; AD-399-2029

3.3. Other in vivo methods

Absorption, distribution, metabolism, and excretion studies were performed in rat, rabbit and monkey following a single intravenous dose of [¹⁴C]remdesivir. Tissue distribution was determined following a single 10 mg/kg dose of [¹⁴C]remdesivir administration in non-pigmented and pigmented rats by quantitative whole body autoradiography (QWBA) and in rats and monkeys by scintillation counting (m2.6.5, Sections 5 and 10; AD-399-2017; AD-399-2019). Samples for absorption and excretion were determined in rabbits by scintillation counting (m2.6.5, Section 10; AD-399-2025) Plasma, urine, bile and feces samples were analyzed by LC-MS with eluent fractions collected at 10-second intervals into 96-well plates containing solid scintillant. Radioactivity in each well was determined using TopCount analysis, and radiochemical profiles were generated based on radioactivity counts. (m2.6.5, Section 6; AD-399-2018; AD-399-2020; AD-399-2026).

4. **ABSORPTION**

Plasma pharmacokinetics following a single dose of remdesivir have been assessed after intravenous (IV) administration to Wistar Han rat, cynomolgus monkey, and rhesus monkey or intramuscular (IM) injection to rhesus monkey. Intracellular pharmacokinetics in peripheral blood mononuclear cells (PBMC) were also assessed following a single dose in rhesus monkeys. The multiple dose toxicokinetics of remdesivir were assessed in the 2-week and 4-week IV administration studies in Wistar Han rat and cynomolgus monkey. The multiple dose toxicokinetics of GS-466547, the diastereomeric mixture containing remdesivir, were also assessed in plasma and PBMC during 7-day IM administration to cynomolgus monkey. Additional plasma, PBMC and select tissue pharmacokinetics were also conducted following single-dose IV remdesivir in marmoset, rhesus and African green monkey and are discussed in Section 5.2 (Tissue Distribution Studies), below.

4.1. *In Vitro* Absorption Studies

None. Remdesivir is being developed for IV administration as it has insufficient hepatic stability for oral delivery (Section 6.1.2).

4.2. Single Dose *In Vivo* Studies

4.2.1. Intravenous Administration

The plasma pharmacokinetics of remdesivir and its metabolites following a single IV administration of remdesivir in 12% sulfobutyl-β-cyclodextrin (SBECD) have been assessed in Wistar Han rat, cynomolgus monkey, and rhesus monkey (m2.6.5, Section 3; AD-399-2001; AD-399-2002; AD-399-2003; AD-399-2022; AD-399-2033). The plasma pharmacokinetic parameters for remdesivir, GS-704277, and GS-441524 are summarized in Table 4, Table 5, and Table 6, respectively. The clearance of remdesivir exceeded liver blood flow in all species. Disappearance of remdesivir was followed by transient exposure to the intermediate metabolite GS-704277 and more persistent exposure to the nucleoside metabolite GS-441524. Dose normalized exposure to remdesivir and its metabolites were similar in cynomolgus and rhesus monkeys. In rats, remdesivir had the shortest half-life and relatively high systemic levels of the metabolites GS-704277 and GS-441524. The different pharmacokinetic profile in rat likely reflects high levels of plasma esterase activity in some rodent species and extracellular prodrug clearance by hydrolysis.

Table 4.Pharmacokinetic Parameters for Remdesivir in Male Wistar Han Rat,
Cynomolgus Monkey, and Rhesus Monkey after Single Dose
Intravenous Bolus Administration of Remdesivir (Mean, n = 3)

Parameter (units)	Rat	Monkey (Cynomolgus)	Monkey (Rhesus)	Monkey (Rhesus)	
Dose (mg/kg)	50	10	3	10	
Formulation	12% (w/v) SBECD in water (w/v; pH = 4)	12% (w/v) SBECD and 98% water (pH = 4)	12% (w/v) SBECD in water, pH 3.5-4.0	12% (w/v) SBECD in water, pH 3.5-4.0	
C _{max} (µM)	17.5	16.0	2.39	5.07	
t _{1/2} (h)	0.05	0.29	0.35	0.39	
AUC ₀₋₂₄ (μM•h)	6.20	4.76	0.80	2.09	
CL (L/h/kg)	13.5	3.50	6.37	7.96	

Source: AD-399-2001; AD-399-2002; AD-399-2003; AD-399-2022

Table 5.Pharmacokinetic Parameters for Metabolite GS-704277 in
Male Wistar Han Rat, Cynomolgus Monkey, and Rhesus Monkey
after Single Dose Intravenous Bolus Administration of Remdesivir
(Mean, n = 3)

Parameter (units)	Rat	Monkey (Cynomolgus)	Monkey (Rhesus)	Monkey (Rhesus)	
Dose (mg/kg)	50	10	3	10	
Formulation	12% (w/v) SBECD in water (w/v; pH = 4)	12% (w/v) SBECD and 98% water (pH = 4)	12% (w/v) SBECD in water, pH 3.5-4.0	12% (w/v) SBECD in water, pH 3.5-4.0	
T _{max} (h)	0.48	0.08	0.33	0.19	
C_{max} (μM)	40.6	3.43	0.71	1.80	
t _{1/2} (h)	0.25	0.84	3.59	0.99	
AUC ₀₋₂₄ (µM•h)	25.1	2.73	0.84	2.38	

Source: AD-399-2001; AD-399-2002; AD-399-2003; AD-399-2022

Table 6.Pharmacokinetic Parameters for Metabolite GS-441524 in
Male Wistar Han Rat, Cynomolgus Monkey, and Rhesus Monkey
after Single Dose Intravenous Bolus Administration of Remdesivir
(Mean, n = 3)

Parameter (units)	Rat	Monkey (Cynomolgus)	Monkey (Rhesus)	Monkey (Rhesus)	
Dose (mg/kg)	50	10	3	10	
Formulation	12% (w/v) SBECD in water (w/v; pH = 4)	12% (w/v) SBECD and 98% water (pH = 4)	12% (w/v) SBECD in water, pH 3.5-4.0	12% (w/v) SBECD in water, pH 3.5-4.0	
T _{max} (h)	1.25	1.33	0.50	1.33	
C _{max} (µM)	7.82	1.15	0.33	1.14	
t _{1/2} (h)	6.21	7.16	8.71	8.55	
AUC ₀₋₂₄ (μM•h)	63.7	8.23	2.11	8.73	

Source: AD-399-2001; AD-399-2002; AD-399-2003; AD-399-2022

The plasma pharmacokinetics of remdesivir and its metabolites following a single, 30-minute IV infusion of 50 mg/kg remdesivir were assessed in male Wistar Han rats (m2.6.5, Section 3.2; AD-399-2003). The plasma profile of remdesivir, GS-704277, and GS-441524, are summarized in Figure 1. Remdesivir and GS-704277 achieved maximal concentrations in plasma during the infusion and exhibited short terminal elimination half-lives of 0.05 and 0.25 h, respectively. The nucleoside analog, GS-441524, achieved maximal concentration in plasma of 7.82 μ M and persisted with a terminal half-life of 6.2 h.

Figure 1.Concentration-Time Profiles of Remdesivir and its Metabolites
GS-704277 and GS-441524 in Plasma Following Intravenous
Administration of Remdesivir at 50 mg/kg as a 30-minute Infusion in
Rats (Mean, n = 3)

Source: AD-399-2003

The plasma pharmacokinetics of remdesivir and its metabolites following a single IV administration of 10 mg/kg remdesivir was assessed in male cynomolgus monkeys (m2.6.5, Section 3.3; AD-399-2001). The plasma profile of remdesivir, GS-704277 and GS-441524, are summarized in Figure 2. GS-5734 and GS-704277 achieved maximal concentrations in plasma during the infusion and exhibited short terminal elimination half-lives of 0.29 and 0.84 h, respectively. The nucleoside analog, GS-441524, achieved maximal concentration in plasma of 1.15 μ M and persisted with a terminal half-life of around 7.2 h. Similar results were obtained in a later plasma pharmacokinetic study following IV remdesivir at the same dose (m2.6.5, Section 3.6; AD-399-2033).

Figure 2.Concentration-Time Profiles of Remdesivir and its Metabolites
GS-704277 and GS-441524 in Plasma Following Intravenous
Administration of Remdesivir at 10 mg/kg in Cynomolgus Monkeys
(Mean, n = 3)

Source: AD-399-2001

The plasma and PBMC pharmacokinetics of remdesivir and its metabolites following a single IV administration of 3 or 10 mg/kg remdesivir were assessed in male rhesus monkeys (m2.6.5, Section 3.4 and 3.5; AD-399-2002; AD-399-2022). Remdesivir was rapidly eliminated followed by the sequential appearance of GS-704277 and GS-441524. The plasma profiles of remdesivir, GS-704277, and GS-441524, following 10 mg/kg remdesivir are summarized in Figure 3, consistent with those seen in cynomolgus monkeys above. GS-441524 and its phosphorylated metabolites in PBMC are summarized in Figure 4. Levels of the pharmacologically active metabolite, GS-443902 in PBMC achieved a C_{max} of 33.3 μ M at 2 h and had an apparent intracellular terminal elimination $t_{1/2}$ of approximately 14 h. Both plasma and PBMC exposures to all metabolites showed roughly dose-proportional increases between 3 and 10 mg/kg following IV bolus administration.

Figure 3.Concentration-Time Profiles of Remdesivir and its Metabolites
GS-704277 and GS-441524 in Plasma Following Intravenous Injection
of Remdesivir at 10 mg/kg in Rhesus Monkeys (Mean, n = 3)

Source: AD-399-2022

Figure 4.

Concentration-Time Profile of GS-441524 and its Phosphorylated Metabolites in Peripheral Blood Mononuclear Cells Following Intravenous Injection of Remdesivir at 10 mg/kg in Rhesus Monkeys (Mean, n = 3)

Source: AD-399-2022

4.2.2. Intramuscular Injection

The plasma and PBMC pharmacokinetics of remdesivir and its metabolites following a single IM injection of 3 mg/kg remdesivir were assessed in male rhesus monkeys (m2.6.5, Section 3.1; AD-399-2016). The plasma profile of remdesivir, its intermediate metabolite GS-704277, and its nucleoside metabolite GS-441524 are summarized in Figure 5. Slow and variable release of remdesivir was observed from muscle. Once released, remdesivir was rapidly metabolized to GS-704277 and GS-441524 which persisted over 24 h. High ($C_{max} > 10 \mu$ M) and persistent ($t_{1/2} > 24$ h) levels of GS-441524 and its phosphorylated metabolites were also observed in PBMC (Figure 6). Further studies to optimize IM administration were not pursued.

Figure 5.Concentration-Time Profiles of Remdesivir and its Metabolites
GS-704277 and GS-441524 in Plasma Following Intramuscular
Injection of Remdesivir at 3 mg/kg in Rhesus Monkeys (Mean, n = 3)

Source: AD-399-2016

Figure 6.Concentration-Time Profile of Total GS-441524 and its
Phosphorylated Metabolites in Peripheral Blood Mononuclear Cells
Following Intramuscular Injection of Remdesivir at 3 mg/kg in
Rhesus Monkeys (Mean, n = 3)

Source: AD-399-2016

4.3. Multiple Dose *In Vivo* Studies

Summaries of toxicokinetic findings from the GLP 4-week repeat dose toxicity studies in Wistar Han rat and cynomolgus monkey, and from the GLP reproduction and developmental toxicity studies in rats and rabbits are presented. Additional summaries from non-GLP studies in mice and rhesus monkeys are also included. Detailed results for all aspects of these toxicokinetic studies as well as those with shorter duration assessments are presented in m2.6.6 so they can be interpreted in the context of each study.

4.3.1. Mouse Toxicokinetics

The toxicokinetics (TK) of remdesivir and its metabolites was assessed in carboxylesterase 1c-deficient (Ces1c^{-/-}) mice following daily subcutaneous injection of GS-5734 for 7 days at 10 mg/kg and 50 mg/kg (m2.6.7, Section 16; TX-399-2019). In this study, the nucleoside metabolite, GS-441524, was the major compound observed in plasma with lower and more transient exposure to remdesivir and the intermediate metabolite GS-704277. The pharmacologically active triphosphate (GS-443902) was efficiently formed in mouse lung tissue and increased proportionally with dose. Lung maximal concentrations were measured at 4 h post-dose of 0.477 and 2.53 nmol/gram tissue following administration at 10 and 50 mg/kg, respectively. Lung levels of GS-443902 were substantially lower at 24 hours suggesting a short half-life (≤ 10 h). No significant gender difference in lung GS-443902 levels was observed.

4.3.2. Rat Toxicokinetics

The toxicokinetics of remdesivir and the nucleoside metabolite GS-441524 were assessed on Day 1 and during week 4 in male and female Wistar Han rat administered remdesivir via IV injection (slow bolus) once daily for 28 days at doses of 0 (vehicle), 1, 3, 10 mg/kg/day (m2.6.7, Section 7.1; TX-399-2016). Remdesivir was rapidly cleared and extensively metabolized to GS-441524 and GS-704277 in rats following intravenous administration. Exposure to GS-441524 increased with the increase in remdesivir dose level from 1 to 10 mg/kg/day. The increases in GS-441524 Cmax and AUC0-24 values were generally greater than dose proportional on Days 1 and 28, with differences generally within 2-fold. Sex-based differences were generally less than 2-fold in GS-441524 Cmax and AUC0-24 values. No accumulation of GS-441524 was observed after multiple doses of remdesivir in rats. Exposure to GS-704277 increased with the increase in remdesivir dose level from 1 to 10 mg/kg/day. The increases in GS-704277 Cmax and AUC₀₋₂₄ values were, in general, approximately dose proportional between the 3 and 10 mg/kg/day remdesivir dose levels on Day 1, and slightly greater than dose proportional between 1 and 10 mg/kg/day on Day 28. Males had higher GS-704277 C_{max} and AUC₀₋₂₄ values than females, with sex-based differences generally greater than 2-fold for AUC₀₋₂₄ values. No accumulation of GS-704277 was observed after multiple doses of remdesivir in rats.

The toxicokinetics of remdesivir, GS-704277 and GS-441524 were assessed on GD 6 and GD 17 in female pregnant rats administered remdesivir at doses of 0 (vehicle), 2.5, 5, 10, and 20 mg/kg/day via once daily IV injection (slow-push over 1-2 minutes to pregnant Crl:CD(SD) rats (25/group) during organogenesis (GD 6 to 17) (m2.6.7, Section 13.1, TX-399-2013). All concentration values of remdesivir were below the lower limit of quantitation on GD 6 and 17 therefore no toxicokinetic parameters were calculated. These results indicated that remdesivir was rapidly cleared and extensively metabolized in pregnant rats following IV administration of remdesivir. Exposure to GS-441524 and GS-704277 increased with the increase in remdesivir dose level from 2.5 to 20 mg/kg/day. For GS-441524, the increase in C_{max} and AUC₀₋₂₄ values were approximately dose proportional between the 2.5 to 20 mg/kg/day remdesivir dose levels. For GS-704277, the increase in C_{max} and AUC₀₋₂₄ values were, in general, approximately dose proportional between the 2.5 to 20 mg/kg/day. AUC₀₋₂₄ values were slightly higher on GD 17 than on GD 6 for GS-441524 (1.3- to 2.5-fold) and GS-704277 (1.2- to 2.4-fold) after multiple doses of remdesivir in pregnant rats.

The toxicokinetics of remdesivir, GS-704277 and GS-441524 were assessed on GD 6 and lactation day (LD) 20 in four groups of mated female Crl:CD(SD) rats following administration of remdesivir at 0 (vehicle), 1, 3, and 10 mg/kg/day, once daily via IV injection (slow bolus) from GD 6 through LD 20, and on PND 10 from 1 pup/sex/litter from litters whose dams were used for the same collection time points on LD 10 (m2.6.7, Section 14, TX-399-2014). All concentration values of remdesivir, GS-441524, and GS-704277 for maternal and pup rats in the vehicle control group were below the lower limit of quantitation. All concentration values of remdesivir on GD 6 and LD 10 for maternal rats and the majority of concentration values of remdesivir on PND 10 for pups were below the lower limit of quantitation; therefore, no toxicokinetic parameters were calculated. Exposure to GS-441524 and GS-704277 increased with the increase in maternal remdesivir dose level from 1 to 10 mg/kg/day for maternal rats and

exposure to GS-441524 slightly increased with the increase in maternal remdesivir dose level from 3 to 10 mg/kg/day for pups. The increase in C_{max} and AUC₀₋₂₄ values were approximately dose proportional between the 1 and 10 mg/kg/day remdesivir dose levels for maternal rats on GD 6 and LD 10, and were slightly greater than dose proportional for GS-704277 on LD 10. No accumulation of GS-441524 and GS-704277 was observed after multiple doses of remdesivir in maternal rats. Due to limited data in pups for GS-441524, assessment of dose proportionality and gender were not possible. Exposure to GS-441524, in regards to C_{max} , was higher in maternal rats than in pups, with maternal:pup C_{max} ratios of 42.6 for females at the 3 mg/kg/day remdesivir dose level and 143 and 114 for males and females, respectively, at the 10 mg/kg/day remdesivir dose level. Concentrations of GS-704277 were not measurable in pups.

4.3.3. Rabbit Toxicokinetics

The toxicokinetics of remdesivir, GS-704277 and GS-441524 were assessed in plasma on GD7 and GD 20 in pregnant, time-mated New Zealand white rabbits when administered remdesivir at doses of 0 (vehicle), 2.5, 5, 10, and 20 mg/kg/day via once daily IV injection (slow bolus) during organogenesis (m2.6.7, Section 13.2, TX-399-2018). Exposure to remdesivir increased with dose level from 2.5 to 20 mg/kg/day. The increases in C_{max} and AUC₀₋₂₄ were generally greater than dose proportional between 2.5 and 20 mg/kg/day. Values for mean C_{max} and AUC₀₋₂₄ were approximately 5- to 13-fold higher on GD 20 than on GD 7; however, concentration values were generally below the lower limit of quantitation by 12 hours postdose, indicating no accumulation of remdesivir after multiple doses. Exposure to metabolites GS-441524 and GS-704277 increased with the increase in remdesivir dose level from 2.5 to 20 mg/kg/day dose levels and greater than dose proportional between the 10 and 20 mg/kg/day dose levels. No accumulation of GS-441524 and GS-704277 was observed after multiple doses of remdesivir. Mean T_{max} values and C_{max} and AUC_{0-24} metabolite to parent ratios indicate that remdesivir was rapidly and extensively metabolized to GS-441524 and GS-704277 in rabbits.

4.3.4. Monkey Toxicokinetics

The toxicokinetics of GS-466547, the diastereomeric mixture containing remdesivir, GS-704277 and GS-441524 were assessed in plasma on Day 1 and 7, together with GS-441524 and its phosphorylated metabolites in PBMC collected 24 h post-dose on Day 7 in male cynomolgus monkey administered GS-466547 via IM injection once daily for 7 days at doses of 0 (vehicle), 2.5, 7.5, and 15 mg/kg/day (m2.6.7, Section 16; TX-399-2001). On Day 1 the rate of GS-466547 absorption from muscle was dose-dependent with T_{max} values of 1.17, 2.42, and 5.08 h at 2.5, 7.5, and 15 mg/kg/day, respectively. The increases in exposures of GS-466547 and its metabolites, GS-704277 and GS-441524, were approximately dose proportional between 2.5 and 7.5 mg/kg/day but less than dose proportional between 7.5 and 15 mg/kg/day on Day 1. No evidence for accumulation of GS-466547 was observed between Day 1 and Day 7. In the 2.5 and 7.5 mg/kg/day dose groups, the metabolites accumulated approximately 2-fold between Day 1 and Day 7. Marked accumulation of metabolites was observed in the 15 mg/kg/day dose group between Day 1 and Day 7 with increases in GS-704277 and GS-441524 AUC₀₋₂₄ of 5.7- and 9.4-fold, respectively. Total levels of GS-441524 and its phosphorylated metabolites in PBMCs increased with dose achieving 122 μ M 24 h post Day 7 dosing in the 15 mg/kg/day group.

The toxicokinetics of remdesivir, GS-704277 and GS-441524 were assessed in plasma on Day 1 and Day 28 in male and female cynomolgus monkeys administered remdesivir via IV injection (slow bolus) once daily for 15 days at doses of 0 (vehicle), 1, 3, or 10 mg/kg/day (m2.6.7, Section 7.4; TX-399-2017). Exposures to remdesivir, GS-441524, and GS-704277 increased with the increase in remdesivir dose level from 1 to 10 mg/kg/day. The increases in remdesivir, GS-441524, and GS-704277 C_{max} and AUC₀₋₂₄ were approximately dose proportional between the 1 and 10 mg/kg/day remdesivir dose levels. Sex-based differences were less than 2-fold in remdesivir, GS-441524, and GS-704277 C_{max} and AUC₀₋₂₄ values. No accumulation of remdesivir, GS-441524, and GS-704277 was observed after multiple doses of remdesivir in monkeys. The mean AUC₀₋₂₄ metabolite to parent ratios indicate that remdesivir was extensively metabolized to GS-441524 and GS-704277 in monkeys.

The toxicokinetics of remdesivir, GS-704277 and GS-441524 were assessed in plasma on Day 0 and Day 6 in male Indian-origin rhesus monkeys administered remdesivir via IV injection (slow bolus) once daily for 7 days at doses of 0 (vehicle), 5, 10, and 20 mg/kg/day (m2.6.7, Section 6; TX-399-2021). Exposure to remdesivir increased with the increase in dosage level from 5 to 20 mg/kg/day. The increases in C_{max} and AUC₀₋₂₄ were generally greater than dose proportional between the 5 and 20 mg/kg/day. No accumulation of remdesivir was observed after multiple doses. Exposure to GS-441524 and GS-704277 increased with the increase in remdesivir dose from 5 to 20 mg/kg/day. The increases in Cmax and AUC0-24 were approximately dose proportional between the 5 and 20 mg/kg/day on Day 0 for GS-441524 and GS-704277 and between the 5 and 10 mg/kg/day on Day 6 for GS-704277. The increases in C_{max} and AUC₀₋₂₄ were greater than dose proportional between the 5 and 20 mg/kg/day on Day 6 for GS-441524 and between the 10 and 20 mg/kg/day on Day 6 for GS-704277. No accumulation of GS-441524 was observed after multiple doses of remdesivir in monkeys at 5 mg/kg/day; however, accumulation was observed at the 10 and 20 mg/kg/day. No accumulation of GS-704277 was observed after multiple doses of remdesivir in monkeys. The mean C_{max} and AUC₀₋₂₄ metabolite to parent ratios indicate that remdesivir was rapidly and extensively metabolized to GS-441524 and GS-704277 in monkeys following intravenous (slow bolus) injection administration of remdesivir.

5. **DISTRIBUTION**

5.1. In Vitro Plasma Protein Binding and Blood Distribution

The extent of remdesivir, GS-704277 and GS-441524 binding to plasma proteins was determined in plasma from Wistar Han rat, cynomolgus monkey, rhesus monkey and human (m2.6.5, Section 5; AD-399-2013; AD-399-2031). Remdesivir had moderate protein binding in all species with a free fraction ranging from 8.0% in rat to 14.2% in cynomolgus monkey (Table 7). The free fraction in human was 12.1%. GS-704277 and GS-441524 exhibited very low protein binding in plasma from Wistar Han rat, cynomolgus monkey, rhesus monkey and human.

Table 7.Protein Binding for Remdesivir, GS-704277 and GS-441524 at 2 μ M in
Plasma from Different Species (Mean, n = 2)

	Free Fraction (%)				
Species	Remdesivir	GS-704277	GS-441524		
Wistar Han Rat	8.0	95	90		
Cynomolgus monkey	14.2	127	99		
Rhesus Monkey	13.5	106	85		
Human	12.1	99	98		

Source: AD-399-2013; AD-399-2031

The distribution of remdesivir and GS-441524 between the cellular and soluble fractions of blood from rhesus monkey and human was assessed (m2.6.5, Section 5.2; AD-540-2007). After incubation of blood with the compounds (initial concentration 0.5 μ M) remdesivir was found to be somewhat excluded from the blood cellular fraction in both species, with mean whole blood/plasma concentration ratios of 0.71 and 0.76 for monkey and human, respectively, while GS-441524 showed some association with the cellular fraction with respective mean blood/plasma ratios of 1.36 and 1.19 for monkey and human.

5.2. Tissue Distribution Studies

5.2.1. Studies Involving GS-443902 measurements

5.2.1.1. Marmoset

A single dose pharmacokinetic study with remdesivir was conducted in male marmosets (m2.6.5, Section 5.6; AD-399-2023). Remdesivir was administered by intravenous (IV) injection (slow bolus) at 10 mg/kg and formulated in 12% SBECD in water, pH 3.5-4.0. As seen in previous monkey studies, remdesivir was rapidly eliminated followed by the sequential appearance of GS-704277 and GS-441524 as well as efficient formation of the pharmacologically active triphosphate, GS-443902, observed in PBMCs. Additionally, profiles of GS-441524 and its phosphorylated species in marmoset lung are shown in Figure 7. Once formed, GS-443902 appeared to persist with an approximate half-life of > 24 h and 22 h in PBMC and lung, respectively.

Figure 7. Concentration-time Profile of GS-441524 and Its Phosphorylated Metabolites in Lung Following Intravenous Injection of Remdesivir at 10 mg/kg in Marmosets (mean, n=2 per time point)

Source: AD-399-2023

5.2.1.2. Rhesus

A multiple dose pharmacokinetic study with remdesivir was conducted in rhesus monkeys (m2.6.5, Section 5.8; AD-399-2030). Remdesivir was administered either by intravenous (IV) injection (slow bolus) or as a 30-minute IV infusion at 5 mg/kg, daily for 7 days (qd x7). The bolus vehicle was 12% SBECD in water and sterile saline reconstitution of lyophilized powder for infusion administration. Following IV administration as either bolus or infusion at 5 mg/kg, plasma pharmacokinetic profiles were similar to previously reported studies in rhesus (described previously in Section 4.2). Efficient formation of the pharmacologically active triphosphate, GS-443902, was observed in PBMCs, with accumulation to steady-state concentrations achieved by day 7. No marked difference in exposure of GS-443902 in PBMCs was observed between bolus or infusion administration following daily dosing for 7 days (Figure 8 and Figure 9, respectively).

Figure 8.Concentration-time Profiles of GS-443902 in PBMC Following Daily
Intravenous Administration of Remdesivir at 5 mg/kg for 7 days as
Slow-Push Bolus in Rhesus Monkeys (mean ± SD, n=8)

Source: AD-399-2030

Figure 9.Concentration-time Profiles of GS-443902 in PBMC Following Daily
Intravenous Administration of Remdesivir at 5 mg/kg for 7 days as a
30-minute Infusion in Rhesus Monkeys (mean ± SD, n=8)

Source: AD-399-2030

5.2.1.3. African Green Monkey

A single dose pharmacokinetic study with remdesivir was conducted in African green monkeys (m2.6.5, Section 5.9; AD-540-2003). Remdesivir was administered by constant rate intravenous infusion over 30 minutes at 10 mg/kg formulated in 12% SBECD in water (pH 3.5). The plasma profiles of remdesivir, GS-704277, and GS-441524, are summarized in Figure 10. Profiles for GS-441524 and its phosphorylated metabolites in PBMC and respiratory tissues in are provided in Figure 11 and Figure 12, respectively, and for total GS-441524 phosphorylated metabolites in liver, gastrointestinal (GI) tract, kidney, testis and eye in Figure 13. At 24 h postdose, levels of the pharmacologically active metabolite, GS-443902 persisted in respiratory tissues which is suggestive of broad and efficient loading within these tissues following IV administration. Consistent with previous tissue distribution results in cynomolgus monkey, but reflective of specific intracellular activation, high levels of GS-441524 phosphorylated metabolites were observed in kidney and liver, moderate levels in GI tract with more limited distribution observed in testis and eye.

Figure 10.

Concentration-Time Profiles of Remdesivir and its Metabolites in Plasma Following a 30-minute Intravenous Infusion of Remdesivir at 10 mg/kg in AGM (Mean \pm SD, n=3 per time point [remdesivir 15 min time point, n=1])

Figure 11.Profiles of GS-441524 and its Phosphorylated Metabolites in PBMC
Following Intravenous Administration of Remdesivir at 10 mg/kg as a
30-minute Infusion in African Green Monkeys (Mean, n = 3)

Figure 12. Profiles of GS-441524 and its Phosphorylated Metabolites in Respiratory Tissues Following Intravenous Administration of Remdesivir at 10 mg/kg as a 30-minute Infusion in African Green Monkeys (Mean, n = 3)

Figure 13. Profiles of GS-441524 and its Phosphorylated Metabolites in Select Tissues Following Intravenous Administration of Remdesivir at 10 mg/kg as a 30-minute Infusion in African Green Monkeys (Mean, n = 3)

5.2.2. Radiolabeled Tissue Distribution

5.2.2.1. Rat

The tissue distribution following a single intravenous dose of [¹⁴C]remdesivir at 10 mg/kg to male Sprague Dawley (SD; non-pigmented) and Long Evans (LE; pigmented) rats was determined by quantitative whole body autoradiography (QWBA; AD-399-2017). A total of 52 tissues were examined and results from select tissues are shown in Table 8 and Table 9; a complete listing is provided in m2.6.5, Section 5.3 and 5.4. [¹⁴C]remdesivir-derived radioactivity was widely distributed to most tissues by the first collection time point (0.167 hours postdose) in both SD and LE male rats. Distribution of radioactivity was similar in both SD and LE rats. Most of the tissues reached maximum concentration (C_{max}) by the first collection time point for both SD and LE rats. Low levels of radioactivity were detected in testes, suggesting [¹⁴C]remdesivir-derived radioactivity crossed the blood to testes barrier. Radioactivity was eliminated from majority of the tissues by 96 hours postdose in both SD and LE rats. No melanin binding was observed.

In SD rats (Figure 14), the tissues showing the highest maximum concentrations of radioactivity included kidney cortex, kidney, kidney medulla, liver, arterial wall, nonpigmented skin, cecum, urinary bladder, and esophagus (Table 8). The tissues with the lowest C_{max} values were brain medulla, spinal cord, brain cerebellum, brain cerebrum, and bone. Radioactivity was cleared from the majority of tissues by 96 hours postdose, with the exception of cecum, kidney, kidney cortex, kidney medulla, liver, nonpigmented skin, stomach, and urinary bladder. At 168 hours postdose, radioactivity was still quantifiable in kidney, kidney cortex, kidney medulla, liver, and nonpigmented skin.

Table 8.

In LE rats (Figure 15), the distribution of radioactivity was similar to SD rats, and the tissues showing the highest maximum concentrations of radioactivity included kidney cortex, kidney, kidney medulla, liver, cecum, urinary bladder, arterial wall, and pigmented skin (Table 9). The tissues with the lowest C_{max} values were brain cerebellum, brain olfactory lobe, eye lens, abdominal fat, and bone. Radioactivity was cleared from the majority of tissues by 96 hours postdose, with the exception of kidney, kidney cortex, kidney medulla, liver, and pigmented skin. At 168 hours postdose, radioactivity was still quantifiable in kidney, kidney cortex, and pigmented skin. No melanin binding was observed.

			1 0	•	· · · · ·	
	Concentration (ng Equivalents ¹⁴ C-GS-5734/g)					
Tissue	0.167 h	1 h	4 h	12 h	48 h	168 h
Adrenal gland(s)	3310 ^a	1140	364 ^a	159ª	ND	ND
Bile	189000	ND	ND	ND	ND	ND
Blood	6690	1130	384	187	ND	ND
Bone	367	BLQ	BLQ	ND	ND	ND
Bone marrow	2010	892	395	121	ND	ND
Brain choroid plexus	1220	241	ND	ND	ND	ND
Brain medulla	158	BLQ	ND	ND	ND	ND
Cecum	3300	1140	6380	4710	223	ND
Diaphragm	1960	1080	605	398	147	BLQ
Epididymis	3850ª	819	326	138ª	BLQ	ND
Esophagus	4680	960	506	407	257	BLQ
Eye(s)	906	212	146	BLQ	ND	ND
Fat (brown)	2130	751	399	244	BLQ	ND
Kidney(s)	115000	158000	120000	78500	10700	745
Liver	51000	29400	22200	5620	501	123
Lung(s)	3800	1280	605	268	ND	ND
Lymph node(s)	3540	1330	491	275	ND	ND
Muscle	959	927	376	226	122	ND
Myocardium	3210	1310	604	346	ND	ND
Nasal turbinates	2010	354	227	121	ND	ND
Pancreas	2810ª	1750ª	1120	772	BLQ	ND
Preputial gland	2210ª	593ª	287ª	185ª	234ª	ND
Prostate gland	3030 ^a	570	394	190	BLQ	ND

Individual Concentrations of Radioactivity in Blood and Select Tissues Determined After a Single Intravenous Administration of [¹⁴C]Remdesivir to Male Sprague Dawley Rats (10 mg/kg)

	Concentration (ng Equivalents ¹⁴ C-GS-5734/g)					
Tissue	0.167 h	1 h	4 h	12 h	48 h	168 h
Seminal vesicle(s)	846 ^a	188ª	BLQª	ND	ND	ND
Skin (nonpigmented)	7150	1130	675	936	840	509
Spleen	1610	1160	439	202	BLQ	ND
Stomach	3820	1190	629	410	201	ND
Testis(es)	1250	451	298	146	ND	ND
Thyroid	3290	1150	549	ND	ND	ND
Urinary bladder	5470	1360	5580	5820	761	ND
Urine	171000	117000	89700	16900	1730	ND

BLQ = Below the limit of quantitation (<112 ng equivalents ¹⁴C-GS-5734/g); h = hours; ND = not detectable (sample shape not discernible from background or surrounding tissue)

a Tissue appeared to be fat-soaked.

Source: AD-399-2017

	Concentration (ng Equivalents 14C-GS-5734/g)					
Tissue	0.167 h	1 h	4 h	12 h	48 h	168 h
Adrenal gland(s)	1720	941	518 ^a	ND	ND	ND
Bile	255000	ND	ND	ND	ND	ND
Blood	5360	1060	583	131	ND	ND
Bone	162	BLQ	144	BLQ	ND	ND
Bone marrow	1180	1020	508	114	ND	ND
Brain choroid plexus	718	132	ND	ND	ND	ND
Cecum	2070	985	12000	ND ^b	ND	ND
Diaphragm	1800	1240	622	230	BLQ	ND
Epididymis	2700 ^a	626 ^a	451ª	119a	ND	ND
Esophagus	3330	1260	921	255	ND	ND
Eye uveal tract	2780	1330	639	578	144	ND
Eye(s)	694	277	219	119	BLQ	ND
Fat (brown)	1020	583	327	119	ND	ND
Kidney(s)	62400	134000	119000	55900	7810	407
Liver	47500	34200	32200	6830	392	BLQ
Lung(s)	3670	991	552	167	ND	ND
Lymph node(s)	2190	1370	585	141	ND	ND
Muscle	719	979	454	144	BLQ	ND
Myocardium	2030	1270	798	256	ND	ND
Nasal turbinates	653	410	202	ND	ND	ND
Pancreas	2560	2030	1240	419	BLQ	ND
Preputial gland	1610 ^a	399ª	243ª	ND ^a	ND	ND
Prostate gland	1670	860	581	124	ND	ND
Seminal vesicle(s)	731	147 ^a	134	BLQ ^a	ND	ND
Skin (pigmented)	4560	1000	730	626	664	316
Spleen	1120	1180	560	165	ND	ND
Stomach	3170	1220	817	254	BLQ	ND
Testis(es)	1030	386	395	BLQ	ND	ND
Thyroid	1930	1170	671	ND	ND	ND
Urinary bladder	7890	6240	11100	ND ^b	ND	ND
Urine	288000	95000	45400	31500	1060	ND

BLQ = Below the limit of quantitation (<112 ng equivalents ¹⁴C-GS-5734/g); h = hours; ND = not detectable (sample shape not discernible from background or surrounding tissue)

a Tissue appeared to be fat-soaked;

b Tissue was not detectable due to flare from gastrointestinal contents/urine

Source: AD-399-2017
Figure 14.Representative Quantitative Whole-body Autoradiograph for Male
Sprague Dawley Animal No. B50194 0.167 Hours After a Single
Intravenous Administration of [14C]Remdesivir (10 mg/kg)

Source: AD-399-2017

Figure 15.Representative Quantitative Whole-body Autoradiograph for Male
Long Evans Animal No. B50205 0.167 Hours After a Single
Intravenous Administration of [14C]Remdesivir (10 mg/kg)

Source: AD-399-2017

5.2.2.2. Monkey

The distribution of remdesivir was also determined by liquid scintillation counting following a single IV administration of 10 mg/kg [¹⁴C]remdesivir to male cynomolgus monkeys (m2.6.5, Section 5.5; AD-399-2019). A total of 38 tissues were examined and results from select tissues are shown in Table 10; a complete listing is provided in m2.6.5, Section 5.5. Tissues showing the highest mean concentrations of radioactivity at 4 hours postdose, excluding GI tract, were gall bladder, kidneys, liver, prostate gland, salivary gland (mandibular), pancreas, and seminal vesicle(s). Notably, appreciable levels of radioactivity were also found in lung tissue, while some of the lowest levels were seen in bone, brain, eye and testis(es). Total radioactivity declined over 168 h; elimination of radioactivity was not complete and radioactivity was still quantifiable in most tissues. At 168 hours, a mean of 8.26% of the administered dose was retained in the tissues, mostly in liver and muscle.

Table 10.	Mean Concentrations of Radioactivity in Blood and Select Tissues
	Determined After a Single Intravenous Administration of
	[¹⁴ C]Remdesivir to Male Cynomolgus Monkey at 10 mg/kg (n = 3)

Tissues/Organs ↓	Mean Tissue Concentration of R [¹⁴ C]GS-5734	adioactivity (ng Equivalents //g tissue)
	4 h	168 h
Adrenal gland(s)	2470	81.9
Bile (from gall bladder)	359000	513
Blood (sac)	750	87.4
Bone (femur)	291	NA
Bone marrow (femur)	1610	NA
Brain	99.3	114
Cerebrospinal fluid	NA	NA
Epididymis	1430	NA
Eye(s)	378	NA
Gall bladder	123000	393
Heart	4920	400
Kidney (s)	72900	2400
Large intestine	15400	157
Liver	67900	2880
Lungs	3540	293
Lymph node(s), axillary	5730	NA
Muscle (biceps femoris)	2460	1460
Pancreas	12800	222
Pituitary gland	7290	243

Tissues/Organs ↓	Mean Tissue Concentration of Radioactivity (ng Equivalents [¹⁴ C]GS-5734/g tissue)			
	4 h	168 h		
Plasma (sac)	822	76.1		
Prostate gland	14300	338		
Salivary gland	13800	424		
Seminal vesicle(s)	12800	160		
Skin (dorsal, shaved)	1570	NA		
Small intestine	5670	174		
Spinal cord	NA	NA		
Spleen	7510	523		
Stomach	4740	253		
Testis(es)	1060	NA		
Thymus	2960	83.6		
Thyroid (including parathyroid)	3100	399		
Urinary bladder	6110	225		

BLQ = below the limit of quantitation (<112 ng equivalents ¹⁴C-GS-5734/g); h = hours; NA = not applicable Source: AD-399-2019

6. METABOLISM (INTERSPECIES COMPARISON)

6.1. In Vitro Metabolism

The metabolism of remdesivir has been characterized through *in vitro* studies. The interaction of remdesivir with pathways commonly associated with the metabolism of xenobiotics has been characterized.

6.1.1. Plasma Stability

The stability of remdesivir in plasma from Sprague-Dawley rat, beagle dog, cynomolgus monkey, rhesus monkey, and human was determined (m2.6.5, Section 7.1; AD-399-2012). Consistent with the presence of high esterase activity in plasma in many rodent species, remdesivir was unstable in rat plasma ($t_{1/2} \le 0.9$ min). Remdesivir was substantially more stable in non-rodent species with $t_{1/2}$ ranging from 68.5 min in human to 630 min in dog.

6.1.2. Metabolic Stability

The metabolic stability of remdesivir was assessed in intestinal S9 from Sprague-Dawley rat, beagle dog, and human and hepatic S9 from Sprague-Dawley rat, beagle dog, cynomolgus monkey, rhesus monkey, and human (m2.6.5, Section 7.2; AD-399-2014). Across species, remdesivir was moderately stable in intestinal extract ($t_{1/2} = 40.3 - 114.1$ min) but was unstable in hepatic extract ($t_{1/2} < 3.9$ min). Of the species tested, remdesivir was relatively stable in human intestinal S9 ($t_{1/2} = 114.1$ min).

The metabolism of [¹⁴C]remdesivir was assessed *in vitro* using mouse, rat, monkey, and human cryopreserved hepatocytes (m2.6.5, Section 7.6; AD-399-2024); identified metabolites are shown in Figure 16. [¹⁴C]remdesivir was metabolized by mouse, rat, monkey, and human hepatocytes, primarily via hydrolysis. The rate of biotransformation in mouse and rat was faster relative to monkey and human at both 1 and 10 μ M concentrations. The remaining unchanged [¹⁴C]remdesivir accounted for <10% of the total radioactivity in samples across all the species at 120 minutes. In all four species, most of the [¹⁴C]remdesivir-derived radioactivity was associated with three major metabolites; GS-704277, GS-441524, and GS-441524-phosphate generated via hydrolysis. GS-704277 was the predominant component.

Figure 16. Proposed Biotransformation Pathways of Remdesivir ^a

a The proposed pathways represent biotransformation products formed through one or more steps and are based on general knowledge of xenobiotic metabolism. The pathways were not established experimentally. Human - in vivo metabolites not listed; metabolite identification from the radiolabeled ADME study (GS-US-399-4231) in progress. Source: M2.6.5, Section 8.1

6.1.3. Intracellular Metabolism

One of the main target tissues for SARS-CoV-2 is the lung, which is largely inaccessible for routine sampling. Therefore, a sampling surrogate could potentially be used to assess target distribution and metabolism. Circulating PBMCs may be appropriate as they are currently collected to assess active metabolite exposure and antiviral potency of nucleos(t)-ide analogs, or respective prodrugs, in human patients. To support nonclinical evaluations, and to assess potential differences in metabolism between monkey and human, the metabolism of remdesivir was compared in human and rhesus PBMC and monocytes (m2.6.5, Section 7.3; AD-399-2015). Intracellular triphosphate concentrations were higher in human PBMC (3.64-fold) and monocytes (4.24-fold) compared to respective monkey cell types (Figure 17) in vitro.

Figure 17. Comparison of Intracellular GS-443902 Concentrations Formed in Peripheral Blood Mononuclear Cells and Monocytes from Human and Rhesus Monkey During Incubation with Remdesivir

Concentrations measured following a 2 h incubation with 1 μ M remdesivir. Values are the average of n = 2 donors with duplicate measurements in the cells from each donor. Source: AD-399-2015

NHBE are representative target cells for SARS-CoV-2 infection. Therefore, the kinetics of loading of NHBE by remdesivir and subsequent metabolism to GS-441524 and its phosphorylated metabolites, followed by their elimination, were studied following a 2 h pulse incubation with 1 μ M remdesivir, *in vitro* (m2.6.5, Section 7.8; AD-540-2001). The pulse incubation is designed to mimic the transient exposure to prodrug following IV administration. The pharmacologically active triphosphate analog, GS-443902, was efficiently formed in NHBE cells from three different donors (mean GS-443902 C_{max} of 14.5 ± 12.7 pmol/million cells and persisted with a t_{1/2} of approximately 15 h (Figure 18).

Figure 18.Mean Intracellular Concentrations of GS-441524 and Metabolites in
NHBE cells Following a 2-hour Continuous Incubation with
Remdesivir (1 μM) and for up to 30 hours Following Removal from
Extracellular Media (Mean, n=3 experiments)

Calu-3 is a lung cell line which may be used to assess antiviral activity against SARS-CoV-2. An experiment was carried out to characterize GS-443902 concentrations following continuous incubation for 48 h with either 1 μ M remdesivir or its nucleoside metabolite, GS-441524 at 10 μ M in Calu-3 cells (m2.6.5, Section 7.9; AD-540-2002). GS-443902 was again efficiently formed intracellularly, with almost 3-fold higher levels following incubation with remdesivir compared to GS-441524, on a dose-normalized basis.

6.2. In Vivo Metabolism

In vivo biotransformation pathways described for the select species assessed below are also represented as described above in Figure 16.

Following IV administration of 10 mg/kg [¹⁴C]remdesivir to intact and bile duct-cannulated (BDC) Sprague Dawley rats, most of the radioactivity in plasma, bile, and urine was associated with the nucleoside analog GS 441524 (m2.6.5, Section 6.1; AD-399-2018). No unchanged remdesivir was detected in any of these matrices. The other major systemic metabolite, GS-704277, was also an abundant component in plasma (Table 11) and bile, contributing approximately 19% and 20.3% of the total radioactivity exposure through 36 and 24 hours, respectively. A minor unidentified component, M1, contributed approximately 6% of the total radioactivity exposure through 36 hours. Desamino-hydroxy-GS-441524 was a major component in feces from intact rats, accounting for 22.6% of the dose through 48 hours.

Following IV administration of 10 mg/kg [¹⁴C]remdesivir to monkeys, the nucleoside analog GS-441524 was the only circulating component in the AUC-pooled plasma sample and accounted for 100% of the total radioactivity exposure through 96 hours (Table 11; m2.6.5, Section 6.3; AD-399-2020). However, profiles of individual plasma samples showed radioactive peaks associated with remdesivir, GS-704277, GS-441524 and GS-441524-glucuronide. Less than 1% of the dose was recovered as unchanged remdesivir in urine in the first collection interval, 0 to 24 hours. GS-441524 and GS-441524-glucuronide were the major components in urine, accounting for 15.6% and 8.43% of the dose, respectively, through 72 hours postdose. No unchanged remdesivir was recovered in feces. Desamino-hydroxy-GS-441524 was the major component in feces, accounting for 19.9% of the dose through 72 hours.

Following IV administration of 10 mg/kg [¹⁴C]remdesivir to rabbits, unchanged remdesivir contributed <1% of the total radioactivity through 96 hours in plasma (m2.6.5, Section 6.5; AD-399-2026). GS-441524 was the major circulating metabolite in plasma and accounted for approximately 45% and desamino-hydroxy-GS-441524 (M15) contributed approximately 25% of the total radioactivity exposure through 96 hours (Table 11), while profiles of individual plasma samples also showed peaks associated with GS-704277. Renal elimination was the major route of excretion, with approximately 64% of the dose recovered in urine through 72 hours postdose and less than 1% of the dose recovered as unchanged remdesivir. Hepatobiliary excretion was a minor route of elimination of radioactivity, with approximately 10% of radioactivity eliminated in feces after IV dosing through 72 hours postdose, with no unchanged parent detected.

C	% of Total Radioactivity in AUC Pooled Plasma ^a				
Component	Rat	Rabbit	Monkey	Human	
M1	6.03	ND	ND		
GS-704277 (M5)	19.0	ND ^b	ND ^b		
M14	ND	24.8	ND		
GS-441524 (M15)	70.3	44.5	100	Ongoing Analysis	
M24	ND	8.03	ND		
M25	ND	11.0	ND		
Remdesivir	ND	0.73	ND ^b		

Fable 11.	Plasma Profile Following IV Admini	stration of [¹⁴ C]Remdesivir
-----------	------------------------------------	--

ND = not detected or below the limit of quantitation

AUC pool plasma = area under the plasma ¹⁴C concentration-time curve from time zero to 36 hours post dose in Sprague Dawley rats, from time zero to 96 hours post dose in rats, from time zero to 96 hours post dose in cynomolgus monkeys
Profiles of individual plasma samples showed radioactive peaks associated with these metabolites

 Metabolite identification from the human ADME study (GS-US-399-4231) is on-going Source: AD-399-2018, AD-399-2020, AD-399-2026

6.3. Intracellular Metabolic Pathways

Combined results from pharmacology and pharmacokinetic studies have led to the proposed intracellular metabolic pathway presented in Figure 19. Remdesivir is activated to the pharmacologically active nucleoside analog triphosphate, GS-443902, by a sequential metabolic activation pathway: (i) hydrolase activity removes the ester, resulting in the release of 2-ethyl-butanol; (ii) a spontaneous chemical step that releases phenol and forms the intermediate metabolite, GS-704277; (iii) phosphoramidase activity cleaves the phosphoramidate bond, liberating the nucleoside analog monophosphate and alanine; and (iv) nucleotide kinases likely catalyze the conversion to the active triphosphate, GS-443902. Dephosphorylation of the nucleoside analog monophosphate results in the formation of the nucleoside analog, GS-441524, that is not efficiently rephosphorylated.

7. EXCRETION

7.1. Rat

The routes and extent of remdesivir excretion were determined after IV administration of 10 mg/kg [¹⁴C]remdesivir to Sprague-Dawley rats (m2.6.5, Section 10.1; AD-399-2017). Most of the radioactivity was excreted within 48 hours after IV administration to intact rats. Means of 63.0% and 27.8% of the administered radioactivity were excreted in urine and feces, respectively, by 168 hours postdose. After IV dosing in BDC rats, means of 63.4%, 22.7%, and 3.26% of the administered radioactivity were excreted in urine, bile, and feces, respectively, by 168 hours postdose, indicating renal and biliary excretion were the major routes of elimination of [¹⁴C]-remdesivir-derived radioactivity. Mean overall recoveries of radioactivity after intravenous dosing to intact and bile duct-cannulated rats were 95.1 and 95.3%, respectively.

7.2. Rabbit

The routes and extent of remdesivir excretion were also determined after IV administration of 10 mg/kg [¹⁴C]remdesivir to rabbits (m2.6.5, Section 10.4; AD-399-2025). Most of the [¹⁴C]remdesivir-derived radioactivity was excreted after IV administration by 48 hours postdose, primarily in urine. Means of 67.0 and 11.9% of the administered radioactivity were excreted in urine and feces, respectively, by 168 hours postdose. Overall mean recovery of radioactivity after IV dosing to rabbits was 91.7%.

7.3. Monkey

The routes and extent of remdesivir excretion were also determined after IV administration of 10 mg/kg [¹⁴C]remdesivir to monkeys (m2.6.5, Section 10.3; AD-399-2019). By 168 hours postdose, means of 33.6% and 25.6% of the administered radioactivity were recovered in urine and feces, respectively, indicating that renal and biliary excretion were the major routes of elimination. Significant radioactivity was recovered in cage rinses, accounting for a mean of 16.9% of the dose. Overall mean recovery in monkeys was 78.8%.

8. PHARMACOKINETIC DRUG INTERACTIONS

8.1. Clinical Pharmacokinetic Parameters

Human plasma C_{max} values for remdesivir, GS-704277 and GS-441524 are presented in Table 12 as reference values for comparison to relative enzyme or transporter interactions.

Table 12.Plasma Cmax values for Remdesivir, GS-704277 and GS-441524
Following Daily Intravenous Administrations of Remdesivir in
Healthy Humans (Mean (%CV))

	cohort 1 and 2 Day 1 (n=28) (200 mg, 30-minutes IV)	cohort 1 and 2 Day 5 and 10 (n=26) (100 mg QD, 30-minutes IV)
Species	C _{max} (n	g/mL)
Remdesivir	4380 (23.5)	2230 (19.2)
GS-704277	370 (29.3)	246 (33.9)
GS-441524	143 (21.5)	69.2 (18.2)

Source: (Study GS-US-399-5505)

8.2. Interactions with Enzymes

8.2.1. Enzymology of Metabolism

In order to determine if remdesivir is a substrate for CYP enzymes, remdesivir (5 μ M) was incubated with seven individual cDNA expressed human CYP enzyme preparations co-expressed with human NADPH CYP reductase (m2.6.5, Section 11.1; AD-399-2011). Rates of CYP-mediated metabolism of remdesivir and control substrates are summarized in Table 13. There was no detectable metabolism of remdesivir by recombinant CYP1A2, 2B6, 2C9, or 2C19. Remdesivir was metabolized by CYP2C8, 2D6, and 3A4. The rate of CYP3A4 metabolism was considerably greater than CYP2C8 and 2D6 and was 42.1% of that of the positive control simvastatin.

	Metabolism Rate (min ⁻¹)						
Compound	CYP1A2	CYP2B6	CYP2C8	CYP2C9	CYP2C19	CYP2D6	CYP3A4
Remdesivir (% Positive Control Rate)	< 0.12 (2.2%)	< 0.12 (< 12%)	3.9 (16.1%)	< 0.47 (< 1.9%)	< 0.12 (< 0.6%)	1.9 (16.4%)	18.3 (42.1%)
Tacrine	4.6	NA	NA	NA	NA	NA	NA
Efavirenz	NA	1.77 ^a	NA	NA	NA	NA	NA
Amodiaquine	NA	NA	24.5	NA	NA	NA	NA
Diclofenac	NA	NA	NA	17.2	NA	NA	NA
Omeprazole	NA	NA	NA	NA	21.8	NA	NA
Dextromethorphan	NA	NA	NA	NA	NA	11.6	NA
Simvastatin	NA	NA	NA	NA	NA	NA	43.5

Table 13.Rates of Metabolism of Remdesivir by Cytochrome P450 Isoforms

NA = not applicable

Efavirenz is a selective substrate for CYP2B6 but is metabolized relatively slowly. Source: AD-399-2011

Source: AD-399-2011

8.2.2. Cytochrome P450 Inhibition

The potential for remdesivir to inhibit CYP enzymes was evaluated using human hepatic microsomes and monitoring specific CYP-mediated transformations of probe substrates (m2.6.5, Section 9.1 and 9.2; AD-399-2010; AD-540-2004). The results of the CYP inhibition study are provided in Table 14. Remdesivir was a weak inhibitor of CYP1A2, 2B6, 2C8, 2C9, 2C19, and 2D6. The most potent effects of remdesivir were upon CYP3A activities, with an IC₅₀ of 11.0 μ M being determined with testosterone 6 β -hydroxylase activity, and an IC₅₀ of 1.6 μ M with midazolam 1'-hydroxylase. Further analysis showed that there was no evidence for remdesivir to be a mechanism-based inhibitor of CYP3A using the most sensitive activity.

Due to its weak potency, remdesivir is unlikely to cause clinical drug interactions through inhibition of human CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19 or CYP2D6. Effects upon CYP3A activity would be dependent upon plasma exposure and the plasma free fraction with clinical data summarized above suggesting limited interaction based on the transient exposure to low concentration of intact, unbound remdesivir following a 30-minute IV infusion.

Table 14.	IC ₅₀ Values for Major Human CYP Enzymes for Remdesivir and
	Positive Control Inhibitors (Mean, n = 7 data points)

		Calculated IC50 (µM)		% Inhibition by
Enzyme	Activity	Control ^a	Remdesivir	Remdesivir at 100 µM
CYP1A2	Phenacetin O-deethylase	0.15	> 100	15.2%
CYP2B6	Bupropion hydroxylase	1.3	77.8	54.6%
CYP2C8	Paclitaxel 6α-hydroxylase	0.98	54.9	68.8%
CYP2C9	Tolbutamide 4-hydroxylase	0.66	63.3	60.3%
CYP2C19	S Mephenytoin 4'-hydroxylase	7.7	68.3	64.3%
CYP2D6	Dextromethorphan O-demethylase	0.05	73.0	61.0%
CVD2 A	Midazolam 1'-hydroxylase	0.04	1.6	87.7%
UIFJA	Testosterone 6 _β -hydroxylase	0.21	11.0	88.8%

a Control Inhibitors: CYP1A2 α-Naphthoflavone (0–3 μM); CYP2B6 Ticlopidine (0-25 μM); CYP2C8 Montelukast (0–10 μM); CYP2C9, Sulfaphenazole (0–10 μM); CYP2C19, Tranylcypromine (0–50 μM); CYP2D6, Quinidine (0–3 μM); CYP3A, Ketoconazole (0–3 μM).

Source: AD-399-2010; AD-540-2004

8.2.3. UGT Inhibition

The potential for remdesivir to inhibit the catalytic activity of human UGT1A1 was also assessed (m2.6.5, Section 9.3; AD-540-2005). The rate of enzyme-specific metabolite formation from estradiol, the probe substrate, was quantified in the presence and absence of test compound and the IC₅₀ value was determined. Remdesivir inhibited UGT1A1 activity with an IC₅₀ of 9.78 μ M.

8.3. Assessment of Induction Liability

The potential of induction of CYP enzymes (CYP1A2, CYP2B6, and CYP3A4) following exposure of human hepatocytes to remdesivir, and its major systemic metabolites, GS-704277 and the nucleoside analog GS-441524, was assessed by quantitating messenger RNA (mRNA) levels and CYP enzyme activities (m2.6.5, Section 9.4; AD-399-2027). DDI assessment using even the most sensitive donor in this assay predicts no liability for remdesivir, GS-704277 or GS-441524.

8.4. Interactions with Transporters

8.4.1. Transporter Substrate

Studies were completed in transfected cell lines to determine if remdesivir is a substrate for hepatic uptake transporters OATP1B1 and OATP1B3 (m2.6.5, Section 11.3; AD-399-2008). Remdesivir was found to be a substrate for the OATP1B1 but not for OATP1B3. The rates of uptake of remdesivir increased in OATP1B1 transfected CHO cells and its uptake was inhibited by the addition of rifampicin. The uptake rates of remdesivir were comparable in both

Remdesivir was assessed as a substrate for the efflux transporters P-gp and BCRP (m2.6.5, Section 11.2; AD-399-2007). Remdesivir was found to be a substrate for P-gp but not BCRP based on the changes in its permeability observed in P-gp but not BCRP over-expressing MDCKII cells. Consistent with P-gp dependent transport, the efflux ratio of remdesivir decreased in the presence of the P-gp inhibitor cyclosporin A in P-gp over-expressing cells. In contrast the efflux ratio observed for remdesivir remained similar in the presence and absence of BCRP inhibitor Ko143 in BCRP over-expressing cells.

In cells overexpressing human organic anion transporters (OAT) 1 and 3, no evidence for transport of remdesivir and its major systemic metabolites, GS-704277 and the nucleoside analog GS-441524, was observed (m2.6.3, Section 3; PC-399-2020). Similarly, rat OAT1 did not transport remdesivir or its metabolites, and rat OAT3 did not transport remdesivir or GS-441524. In contrast to human OAT3, cells overexpressing rat OAT3 were observed to transport GS-704277 and showed increased cytotoxicity compared to mock-transfected control cells. Concomitant with the increase in GS-704277 transport, significant increases in GS-443902 accumulation were also observed in these cells, compared to those overexpressing human OAT3.

8.4.2. Transporter Inhibition

The potential for remdesivir to inhibit drug transporters has been assessed *in vitro* in transfected cell lines expressing OATP1B1, OATP1B3, Pgp, and BCRP (m2.6.5, Section 11.4; AD-399-2005). Inhibition constants for tested transporters are presented in Table 15. Remdesivir did not inhibit P-gp transport of calcein AM or BCRP transport of pheophorbide A at the highest concentration tested (40 μ M). Remdesivir inhibited OATP1B1- and OATP1B3-dependent transport of Fluo-3, with IC₅₀ values of 2.8 and 2.1 μ M, respectively. The potential for clinically significant drug-drug interactions caused by inhibition of OATP1B1 and OATP1B3 is limited by the transient exposure to low concentration of intact, unbound remdesivir following IV infusion.

Maximum Inhibition (Concentration)	IC ₅₀ (μM)
0 (40 µM)	> 40
0 (40 µM)	> 40
88.5% (40 μM)	2.8
95.2% (40 μM)	2.1
	Maximum Inhibition (Concentration) 0 (40 μM) 0 (40 μM) 88.5% (40 μM) 95.2% (40 μM)

Table 15.Inhibition of Transporters by Remdesivir

AD-399-2005

Studies were also performed to investigate whether remdesivir or its major systemic metabolites, GS-704277 and the nucleoside analog GS-441524, are inhibitors of human bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), MRP4, and sodium-taurocholate co-transporting polypeptide (NTCP) transporters using model substrates and transfected cell lines or membrane vesicles (m2.6.5, Section 11.6; AD-399-2029). Remdesivir inhibited BSEP-,

MRP4- and NTCP-mediated probe substrate transport, with calculated IC₅₀ values of 22, 5.1, and 72 μ M, respectively. No interaction of remdesivir with MRP2 was observed at up to 100 μ M. GS-704277 showed 25% and 44% inhibition of MRP2- and NTCP-mediated transport, respectively, at the 100 μ M test concentration. No interaction of GS-704277 with BSEP or MRP4 was observed at up to 100 μ M. GS-441524 showed 24% inhibition of NTCP-mediated transport at the 100 μ M test concentration. No interaction of GS-441524 with BSEP, MRP2, or MRP4 was observed at up to 100 μ M.

Remdesivir metabolites GS-441524, GS-719700 (GS-441524-MP), GS-719699 (GS-441524-DP), GS-443902 and GS-704277 were investigated for interaction with the human BCRP, BSEP, MRP2 and MRP3 efflux transporters in the vesicular transporter inhibition assay (m2.6.5, Section 11.5; AD-399-2035). Transporter inhibition was only observed in the case of GS-719699 and GS-443902. GS-719699 inhibited BCRP (26%), while GS-443902 had an inhibitory effect on MRP2 (24%), both at 200 μ M, thus no IC50 values were calculated. The remaining transporters were not affected by these test articles. GS-719700, GS-704277 and GS-441524 did not have an effect on the investigated transporters.

8.5. Drug-Drug Interaction Liability Assessment

The liability for remdesivir to cause pharmacokinetic drug interactions was assessed using current FDA Guidelines ({U. S. Department of Health & Human Services (DHHS) 2020}; and m2.6.5, Section 11.7; AD-540-2006) and representative clinical pharmacokinetic data (Table 12). Due to instability of remdesivir in microsomal fractions during dialysis the microsomal binding was estimated using an in silico model ($f_{u,m}$ 45.3% at a microsomal concentration of 0.5 mg/mL). Inhibitory effects upon enzyme activities were determined using the Basic model and the Mechanistic Static model (Table 16). For the mechanistic model remdesivir is predicted to not be a clinically relevant inhibitor of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 or UGT1A1. Remdesivir is a weak inhibitor of CYP3A enzymes. The pharmacokinetic half-life of remdesivir is < 1 h, so concentrations would lie in the inhibitory range for < 2.5 h post-infusion on dosing Day 1 and < 1.5 h on subsequent days.

		Basic Model	Mechanistic Static Model		
Enzyme	Κ _{i,u} (μ Μ)	R 1	Hepatic Component	AUCR	
CYP1A2	> 32.3	< 1.027	> 0.97	< 1.02	
CYP2B6	31.8	1.028	0.97	1.02	
CYP2C8	15.0	1.059	0.94	1.05	
CYP2C9	12.6	1.070	0.93	1.06	
CYP2C19	21.3	1.041	0.96	1.04	
CYP2D6	17.8	1.049	0.95	1.05	
СҮРЗА М	0.6	2.445	0.41	2.11 / 1.61 ^a	
СҮРЗА Т	2.4	1.367	0.73	1.31 / 1.16 ^a	
UGT1A1	3.1	1.285	0.78	1.22	

Table 16.	Regulatory	Calculations	for Enzyme	Inhibition h	ov Remdesivir
	Iteguineory	Culculations	IOI LINLYING	I IIIII O I U O II K	y itemacore

Values potentially exceeding the threshold are in **bold**

 $a \qquad Value \ calculated \ using \ Day \ 1 \ C_{max} \ / \ Value \ calculated \ using \ Day \ 5 \ C_{max}$

Remdesivir exhibited little effect as an inducer in the hepatocyte assay, with no induction effect upon CYP1A2, CYP2B6 or CYP3A activities at concentrations up to 25 μ M (the cytotoxicity limit). Remdesivir also had no effect upon CYP3A4 mRNA. Remdesivir was negative for effects upon CYP1A2 and CYP2B6 in two of the three donors and weakly positive in the third (Donor 1). EC₅₀ values for remdesivir for CYP1A2 and CYP2B6 mRNA were estimated using data solely from Donor 1 (the most sensitive) and the Basic model and Mechanistic Static model calculations performed (Table 17). Using the mechanistic model remdesivir is predicted to have no liability as an inducer.

	CYP1A2	CYP2B6
EC _{50,u} (µM)	83.9	80.6
E _{max} (fold over control)	22.5	20.1
R ₃	0.32	0.34
Hepatic component	1.23	1.22
AUCR	0.84	0.88

Table 17.	Summary of Induction Liability Calculations for Remdesivir Using
	mRNA Results from the Most Sensitive Hepatocytes (Donor 1)

Values potentially exceeding the associated threshold are in **bold**

The inhibitory effects of remdesivir upon transporters was assessed and the data are summarized in Table 18. At systemic plasma concentrations achieved following intravenous infusion dosing, remdesivir has no liability as an inhibitor of P-gp and BCRP but is predicted to be a weak inhibitor of OATP1B1 and OATP1B3. As noted above, the short pharmacokinetic half-life of remdesivir means that inhibitory concentrations would only last < 2.5 h post-infusion on dosing Day 1 and < 1.5 h on subsequent days.

Transporter	IC50,u (µM)	Κ _{i,u} (μ Μ)	Guidance Metric
P-gp	> 40	> 40	< 0.022
BCRP	> 40	> 40	< 0.022
OATP1B1	2.8	2.8	0.31
OATP1B3	2.1	2.1	0.42

Table 18.Guidance Calculation Results for Transporter Interactions for
Remdesivir

Values potentially exceeding the respective threshold are in **bold**

In conclusion, the only drug interaction liabilities identified for remdesivir are inhibition of CYP3A, OATP1B1 and OATP1B3. The inhibitory effects are weak and, due to the short half-life of remdesivir, the effects would only be manifest briefly. Further evaluation of GS-704277 and GS-441524 for possible interactions with drug metabolizing enzymes and transporters is ongoing.

9. OTHER PHARMACOKINETIC STUDIES

There are no other pharmacokinetic studies to include.

10. DISCUSSION AND CONCLUSIONS

Absorption, distribution, and metabolism studies support the selection of Wistar Han rat and cynomolgus monkey for the assessment of the toxicology of remdesivir. Both rat and monkey formed the intermediate metabolite GS-704277 and the nucleoside metabolite GS-441524. GS-441524 is the predominant metabolite in plasma observed in all nonclinical studies. Based on a similar *in vitro* stability profile in plasma, hepatocytes and subcellular fractions, monkey is expected to more closely mimic human with respect to the behavior of remdesivir. While forming the same major metabolites, rats had markedly reduced levels of intact remdesivir in plasma and correspondingly elevated plasma exposure to the metabolites GS-704277 and GS-441524, consistent with higher levels of plasma esterase activity in rats.

Intracellular metabolism studies conducted *in vitro* illustrated effective activation in NHBE and Calu-3, relevant cell types for SARS-CoV-2 infection. Additionally, high plasma stability in non-rodent species demonstrated sufficient systemic exposure to intact prodrug to load target tissues and cells supporting SARS-CoV-2 replication. *In vivo* studies performed in cynomolgus monkey also showed distribution of [¹⁴C]remdesivir-equivalents to the lungs, which are a target tissue. Additional distribution studies confirmed rapid delivery and efficient formation of the active triphosphate metabolite in marmoset and African green monkey lungs following intravenous administration of remdesivir. Finally, extensive studies in nonhuman primates demonstrated the utility of monitoring the active triphosphate in PBMC as an accessible surrogate for exposure in target tissues. The half-life of the pharmacologically active triphosphate GS-443902 observed *in vitro* in NHBE (15 h) and confirmed *in vivo* in marmoset lung and PBMC following IV administration (at least 22 h) supports once daily administration of remdesivir. Collectively, these results corroborate utility of remdesivir as an optimal prodrug for parenteral delivery, and in the context of a rapidly progressing viral infection, IV administration may be preferred.

While remdesivir is a substrate for cytochrome P450 (CYP) 2C8, 2D6, 3A4 *in vitro*, coadministration with inhibitors of these CYP isoforms is unlikely to markedly increase remdesivir levels as its metabolism is predominantly mediated by hydrolase activity. Remdesivir is a substrate for the organic anion transporter 1B1 (OATP1B1) and P-glycoprotein (P-gp). However, the impact of inhibition of these transporters on remdesivir disposition is likely minimized by the parenteral route of administration. Remdesivir is an inhibitor of CYP3A, OATP1B1 and OATP1B3 *in vitro* but its potential to be the perpetrator of clinically significant drug-drug interactions is limited by its rapid clearance. No potential of a clinical induction risk for remdesivir, GS-704277 or GS-441524 was observed in human hepatocyte assays. The once daily administration and short duration of remdesivir treatment may allow for temporary dose modification of other drugs as needed.

In summary, remdesivir administered IV exhibits a favorable and consistent pharmacokinetic profile as well as efficient delivery of high levels of the pharmacologically active nucleoside triphosphate metabolite into tissues and cells relevant for SARS-CoV-2 replication, supporting its consideration as a novel agent for the treatment of COVID-19.

11. TABLES AND FIGURES

Tables and figures have been integrated into the summary above.

12. REFERENCES

- Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, et al. Epidemiological, Demographic, and Clinical Characteristics of 47 Cases of Middle East Respiratory Syndrome Coronavirus Disease From Saudi Arabia: A Descriptive Study. Lancet Infect Dis 2013;13 (9):752-61.
- Center for Disease Control (CDC). What You Need to Know About 2019 Novel Coronavirus (2019-nCoV). Available at: https://www.cdc.gov/coronavirus/2019-ncov/downloads/2019-ncov-factsheet.pdf. 05 February. 2020:
- Center for Disease Control and Prevention (CDC). About 2019 Novel Coronavirus (2019nCoV). Available at: https://www.cdc.gov/coronavirus/2019ncov/about/index.html. Accessed: 10 February. 2020:
- Choi WS, Kang CI, Kim Y, Choi JP, Joh JS, Shin HS, et al. Clinical Presentation and Outcomes of Middle East Respiratory Syndrome in the Republic of Korea. Infect Chemother 2016;48 (2):118-26.
- Corman VM, Albarrak AM, Omrani AS, Albarrak MM, Farah ME, Almasri M, et al. Viral Shedding and Antibody Response in 37 Patients With Middle East Respiratory Syndrome Coronavirus Infection [Accepted Manuscript]. Clin Infect Dis 2015:1-27.
- European Medicines Agency (EMA). Guideline on Bioanalytical Method Validation. 21 July. 2011.
- Hui DS. Super-spreading events of MERS-CoV infection. Lancet 2016.
- Shah VP, Midha KK, Findlay JW, Hill HM, Hulse JD, McGilveray IJ, et al. Bioanalytical method validation--a revisit with a decade of progress. Pharm Res 2000;17 (12):1551-7.
- U. S. Department of Health & Human Services (DHHS), Food and Drug Administration, Center for Drug Evaluation and Research (CDER). In Vitro Drug Interaction Studies — Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. January. 2020:
- U. S. Department of Health & Human Services (DHHS), Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM). Bioanalytical Method Validation Guidance for Industry. May. 2018.
- Viswanathan CT, Bansal S, Booth B, DeStefano AJ, Rose MJ, Sailstad J, et al. Workshop/Conference Report - Quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays. AAPS Journal 2007;9 (1):E30-42.

- Who Mers-Cov Research Group. State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans. PLoS currents 2013;5.
- World Health Organization (WHO). Coronavirus. Available at: https://www.who.int/health-topics/coronavirus. Accessed: 10 February. 2020:
- Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020.

SECTION 2.6.5—PHARMACOKINETICS TABULATED SUMMARY

REMDESIVIR (GS-5734[™])

Gilead Sciences

2020

CONFIDENTIAL AND PROPRIETARY INFORMATION

TABLE OF CONTENTS

TAI	BLE OF	CONTENTS	2
NO	TE TO	REVIEWER	4
1.	PHAR	MACOKINETICS: OVERVIEW	5
2.	PHAR	MACOKINETICS: ANALYTICAL METHODS AND VALIDATION REPORTS	9
3.	PHAR	MACOKINETICS: ABSORPTION AFTER A SINGLE DOSE	10
	3.1.	AD-399-2016: Pharmacokinetics of GS-5734 and Metabolites Following Intramuscular	
	0.11	Administration to Male Rhesus Monkeys	10
	3.2.	AD-399-2003: Pharmacokinetics of GS-5734 and its Metabolites Following Intravenous	
	2.2	Administration to Male Wistar Han Rats	11
	3.3. 3.4	AD-399-2001. Finalinacokinetics of OS-5754 in Male Cynolioligus Molikeys	12
	3.5	AD-399-2002: Single Dose Pharmacokinetic Study with GS-5734 in Male Rhesus Monkeys	15
	3.6.	AD-399-2033: Single Dose Pharmacokinetic Study with GS-5734 in Male Cynomolgus	
		Monkeys	15
4.	PHAR	MACOKINETICS: ABSORPTION AFTER REPEATED DOSES	16
5	PHAR	MACOKINETICS: IN VITRO AND IN VIVO DISTRIBUTION	17
5.	- 1 III II		17
	5.1.	AD-399-2013 and AD-399-2031: Plasma Binding of GS-5/34	17
	5.2. 5.3	AD-540-2007: Distribution within Blood from Knesus Monkeys and Human	18
	5.5.	[¹⁴ C]GS-5734	19
	5.4.	AD-399-2017: Distribution in Long Evans Rats Following a Single Intravenous Dose of	
		[¹⁴ C]GS-5734	22
	5.5.	AD-399-2019: Distribution in Cynomolgus Monkeys Following a Single Intravenous Dose of	
		[¹⁴ C]GS-5734	25
	5.6.	AD-399-2023: Single Dose Plasma, PBMC, and Lung PK	27
	5.7. 5.8	AD 200 2020: Multiple Dose Plasma and PBMC PK.	28
	5.8.	AD-540-2003: Single Dose Pharmacokinetic Study with Remdesivir in Male African Green	
	5.9.	Monkeys	31
6	PHAR	MACOKINETICS: METABOLISM IN VIVO	33
0.	6.1	AD 200 2018: Metabolite Profiling of Samples from Bat After Administration of [4]CICS	
	0.1.	5734	33
	6.2.	AD-399-2018: Proposed Biotransformation Pathways of [¹⁴ C]GS-5734 in Rat	
	6.3.	AD-399-2020: Metabolite Profiling of Samples from Monkey After Administration of	
		[¹⁴ C]GS-5734	36
	6.4.	AD-399-2020: Proposed Biotransformation Pathways of [¹⁴ C]GS-5734 in Monkey	37
	6.5.	AD-399-2026: Metabolite Profiling of Samples from Rabbit After Administration of [¹⁴ C]GS-	
		5734	38
	6.6.	AD-399-2026: Proposed Biotransformation Pathways of [¹⁴ C]GS-5734 in Rabbit	39
7.	PHAR	MACOKINETICS: METABOLISM IN VITRO	40
	7.1.	AD-399-2012: In Vitro Plasma Stability of GS-5734	40
	7.2.	AD-399-2014: In Vitro Stability of GS-5734 in Hepatic and Intestinal Subcellular Fractions	41
	7.3.	AD-399-2015: In Vitro Activation of GS-5734 in Peripheral Blood Mononuclear Cell	
	_	(PBMC) and Monocyte from Human and Monkey	42
	7.4.	AD-399-2004: In Vitro Activation of GS-466547 in Human Macrophage Cells	43
	7.5.	AD-399-2006: In Vitro Activation and Intrinsic Potency of GS-46654/ in Human	A A
		wacrophage Cens, riuman wherevascular Endoulenal Cens (riviveC) and rieLa Cens.	

	7.6.	AD-399-2024: Metabolites of GS-5734 in Cryopreserved Hepatocytes	45
	7.7.	AD-399-2024: Proposed Biotransformation Pathways of [14C]GS-5734 in Cryopreserved	
	70	Hepatocytes from Mouse, Rat, Monkey and Human ^a	46
	7.8.	AD-340-2001: In vitro Activation of GS-5734 in Normal Human Bronenial Epitnenial (NHBE) cells	47
	7.9.	AD-540-2002: In Vitro Activation of GS-5734 and GS-441524 in Calu-3, human lung	
		adenocarcinoma cell line	48
8.	PHAR	MACOKINETICS: POSSIBLE METABOLIC PATHWAYS	49
	8.1.	Proposed Biotransformation Pathways of GS-5734 in Mouse, Rat, Monkey, and Human	49
9.	PHAR	MACOKINETICS: INDUCTION/INHIBITION OF DRUG METABOLIZING ENZYMES	50
	9.1.	AD-399-2010 and AD-540-2004: In Vitro Assessment of Human Cytochrome P450 Inhibition	
		Potential of GS-5734.	50
	9.2.	AD-540-2004: CYP3A Mechanism-Based Inhibition Potential of Remdesivir	51
	9.5. 9.4	AD-340-2005: Human OGTTAT Innotition Potential of Reindesivit	
	J. 1 .	Humans	53
10.	PHAR	MACOKINETICS: EXCRETION	55
	10.1	AD-399-2017: Excretion in Bile Duct-Intact Rats Following Intravenous Administration of	
	10.11	$[^{14}C]GS-5734$	55
	10.2.	AD-399-2017: Excretion in Bile Duct Cannulated Rats Following Intravenous Administration	56
	10.3.	AD-399-2019: Excretion in Cynomolgus Monkey Following Intravenous Administration of	
	10.4	[¹⁴ C]GS-5734	57
	10.4.	AD-399-2025: Excretion in New Zealand White Rabbit Following Intravenous Administration of [¹⁴ ClGS-5734	58
11.	PHAR	MACOKINETICS: OTHER DRUG-DRUG INTERACTIONS	59
	11.1	AD 200 2011: Catachama P450 Matchalia Pasation Phanataring of CS 5724	50
	11.1.	AD-399-2011. Cytochionic P450 Metabolic Reaction Flenotyping of OS-5754	
	11.2.	Over-Expressing Cells	60
	11.3.	AD-399-2008: In Vitro Assessment of GS-5734 as Substrate for Human OATP1B1 and	
	11.4	AD 300 2005: In Vitro Inhibition Assessment of GS 5734 with Human P on BCRP	61
	11.4.	OATP1B1 and OATP1B3	62
	11.5.	AD-399-2035: In Vitro inhibition assessment of GS-441524, GS-719700, GS-719699, GS-	
		443902 and GS-704277 with the BCRP, BSEP, MRP2 and MRP3 Efflux Transporters	63
	11.6.	AD-399-2029: <i>In Vitro</i> Inhibition Assessment of GS-5734 and its Metabolites with human	<i>.</i>
	117	AD-540-2006: Regulatory DDI Calculations	64
	11./.		05
12.	PHAR	MACOKINETICS: OTHER	68

NOTE TO REVIEWER

Remdesivir (GS-5734) is a single diastereomer monophosphoroamidate prodrug of a nucleoside analog GS-441524. Early studies relevant for GS-5734 have been conducted with the diastereomeric mixture GS-466547 (approximately 1:1 mixture of GS-5734 and its diastereomer at phosphorous). Based on antiviral activity, as well as *in vitro* and *in vivo* pharmacokinetic profile, a single diastereoisomer (remdesivir) has been selected for further development. In these studies, the isomer remdesivir performed similarly to the mixture GS-466547, and results generated with both remdesivir and GS-466547 are presented in this document as they are considered relevant. To aid the reviewer, Table 1 lists the current nomenclature for remdesivir, the diastereomeric mixture, and the related metabolites referred to within the text of this document.

Gilead No.	Description	Conversion Factors
Remdesivir (GS-5734, GS-643134)	Nucleotide prodrug	$1 \ \mu M = 0.603 \ \mu g/mL$
GS-466547	Diastereomeric mixture at phosphorous containing GS-5734	$1 \ \mu M = 0.603 \ \mu g/mL$
GS-704277	Metabolite	$1 \ \mu M = 0.442 \ \mu g/mL$
GS-441524	Nucleoside analog	$1 \ \mu M = 0.291 \ \mu g/mL$
GS-719700	Nucleoside analog monophosphate	$1 \ \mu M = 0.369 \ \mu g/mL$
GS-719699	Nucleoside analog diphosphate	$1 \ \mu M = 0.448 \ \mu g/mL$
GS-443902	Pharmacologically active nucleoside triphosphate	$1 \ \mu M = 0.527 \ \mu g/mL$

Table 1.Description of GS-5734 and its Diastereomers and Metabolites Referenced in the Text

1. **PHARMACOKINETICS: OVERVIEW**

Type of Study / Description	GLPª	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)	
Analytical Methods and Validation						
Method Validation	Yes	Rat	In Vitro	, USA	BA-399-2002	
Method Validation	Yes	Monkey	In Vitro	, USA	BA-399-2003	
Method Validation	Yes	Rabbit	In Vitro	, USA	BA-399-2004	
Method Validation	Yes	Rat	In Vitro	, USA	BA-399-2006	
Method Validation	Yes	Monkey	In Vitro	, USA	BA-399-2007	
Absorption						
Single Dose Pharmacokinetics	No	Rhesus Monkey	IM	, USA	AD-399-2016	
Single Dose Pharmacokinetics	No	Wistar Han Rats	IV	, USA	AD-399-2003	
Single Dose Pharmacokinetics	No	Cynomolgus Monkey	IV	, USA	AD-399-2001	
Single Dose Pharmacokinetics	No	Rhesus Monkey	IV	, USA	AD-399-2002	
Single Dose Pharmacokinetics	No	Rhesus Monkey	IV	, USA	AD-399-2022	
Single Dose Pharmacokinetics	No	Cynomolgus Monkey	IV	, USA	AD-399-2033	

Test Article: GS-5734

Type of Study / Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)			
Distribution								
Plasma Protein Binding	No	Wistar Han rat, cynomolgus monkey, rhesus monkey, and human	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-399-2013 and AD-399-2031			
Tissue distribution	No	Sprague Dawley Rat	IV	, USA	AD-399-2017			
Tissue distribution	No	Cynomolgus Monkey	IV	, USA	AD-399-2019			
Single Dose Pharmacokinetics	No	Marmosets	IV	USA	AD-399-2023			
Single Dose Pharmacokinetics	No	Rhesus Monkey	IV	, USA	AD-399-2028			
Repeat Dose Pharmacokinetics	No	Rhesus Monkey	IV	, USA	AD-399-2030			
Single Dose Pharmacokinetics	No	African Green Monkey	IV	, USA	AD-540-2003			
Blood/plasma ratio	No	Blood from rhesus monkeys and human	In Vitro	, UK	AD-540-2007 (CYP0174-R468)			
Metabolism								
Metabolite identification and profiling of radioactivity	No	Sprague-Dawley rat	IV	, USA	AD-399-2018			
Metabolite identification and profiling of radioactivity	No	Cynomolgus Monkey	IV	, USA	AD-399-2020			
Metabolite identification and profiling of radioactivity	No	New Zealand White Rabbit	IV	, USA	AD-399-2026			
Plasma Stability	No	Sprague-Dawley rat, beagle dog, cynomolgus monkey, rhesus monkey, and human	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-399-2012			

					Test in hele: GB 5754
Type of Study / Description	GLP ^a	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Hepatic and Intestinal S9 Stability	No	Sprague-Dawley rat, beagle dog, cynomolgus monkey, rhesus monkey, and human	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-399-2014
Metabolism in PBMCs and Monocytes	No	Human	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-399-2015
Metabolism in Macrophages	No	Human	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-399-2004
Metabolism in Macrophages, HMVECs, and HeLa cells	No	Human	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-399-2006
Metabolism in Hepatocytes	No	C57BL6 Mouse, Wistar Han Rat, Cynomolgus Monkey, and Human Primary Hepatocytes	In Vitro	, USA	AD-399-2024
Metabolism in NHBE	No	Human	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-540-2001
Metabolism in Calu-3 cells	No	Human	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-540-2002
Excretion					
Excretion of radioactivity	No	Sprague Dawley Rat	IV	, USA	AD-399-2017
Excretion of radioactivity	No	Cynomolgus Monkey	IV	, USA	AD-399-2019
Excretion of radioactivity	No	New Zealand White Rabbit	IV	, USA	AD-399-2025
Pharmacokinetic Drug Interactions					
CYP Phenotyping	No	Recombinant human CYP enzymes	In Vitro	, UK	AD-399-2011
Cytochrome P450 Inhibition	No	Human hepatic microsomal fraction	In Vitro	, UK	AD-399-2010

Type of Study / Description	GLPª	Test System	Method of Administration	Testing Facility	Gilead Study No. (CRO Study No.)
Hepatocyte Induction	No	Human hepatocytes	In Vitro		AD-399-2027 (8344953)
Effect on P-gp and BCRP	No	Human	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-399-2007
Substrate Potential on OATP1B1 and OATP1B3	No	Human	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-399-2008
Inhibition Potential on OATP1B1 and OATP1B3	No	Human	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-399-2005
Inhibition Potential on BCRP, BSEP, MRP2 and MRP3	No	Human	In Vitro	, Hungary	AD-399-2035
Inhibition Potential on BSEP, MRP2, MRP4, and NTCP	No	Human	In Vitro	, Hungary	AD-399-2029
Cytochrome P450 Inhibition	No	Human hepatic microsomal fraction	In Vitro	, UK	AD-540-2004 (CYP0174-R333)
UGT1A1 Inhibition	No	Recombinant human UGT1A1	In Vitro	, UK	AD-540-2005
DDI report	No	In Vitro	In Vitro	Gilead Sciences, Inc., Foster City, CA, USA	AD-540-2006
Other Pharmacokinetic Studies					
None					

a An entry of "Yes" indicates that the study includes a GLP or regulatory compliance statement.

2. PHARMACOKINETICS: ANALYTICAL METHODS AND VALIDATION REPORTS

Type of Study	Test Articles	GLP ^a	Test System	Analytical Method	Testing Facility	Study Number
Method Validation	GS-5734 GS-441524	Yes	Rat Plasma	LC/MS/MS	, USA	BA-399-2002
Method Validation	GS-5734 GS-441524	Yes	Monkey Plasma	LC/MS/MS	, USA	BA-399-2003
Method Validation	GS-5734 GS-441524 GS-704277	Yes	Rabbit Plasma	LC/MS/MS	, USA	BA-399-2004
Method Validation	GS-5734 GS-441524 GS-704277	Yes	Rat Plasma	LC/MS/MS	, USA	BA-399-2006
Method Validation	GS-5734 GS-441524 GS-704277	Yes	Monkey Plasma	LC/MS/MS	, USA	BA-399-2007

Location in CTD: 4.2.2.1

a An entry of "Yes" indicates that the study includes a GLP or regulatory compliance statement.

3. PHARMACOKINETICS: ABSORPTION AFTER A SINGLE DOSE

3.1. AD-399-2016: Pharmacokinetics of GS-5734 and Metabolites Following Intramuscular Administration to Male Rhesus Monkeys

Report Title		Study Type	Test Article	Report Number
Pharmacokinetics of GS-5734 and Metabolites Following Intramuscular Administration to Male Rhesus Monkeys		Absorption	GS-5734	AD-399-2016
Species		Rhesus Macaque Monkey		
Gender (M/F) / N of Animals		M / 6		
Feeding Condition		Non-fasted		
Vehicle / Formulation		5% ethanol / 95% propylene glycol (v/v)		
Method of Administration		IM		
Dose (mg/kg)		3		
Sample		Plasma and PBMCs		
Analyte		GS-5734, GS-704277, and GS-441524 for plasma and GS-441524, -MP, -DP and GS-443902 for PBMCs		
Assay		LC/MS/MS		
Plasma PK Parameters ^a	GS-5734	GS-704277		GS-441524
T _{max} (h)	0.79 ± 0.70	1.50 ± 0.55		2.33 ± 0.82
C _{max} (µM)	2.08 ± 1.04	0.16 ± 0.05		0.13 ± 0.03
$AUC_{0-t} (\mu M \cdot h)$	6.80 ± 2.68	1.58 ± 0.43		2.13 ± 0.52
t _{1/2} (h)	5.40 ± 1.86	16.4 ± 8.9		> 24
Time (h)		Total PBMC Concentrations (μM) ^b		
2		11.4 ± 6.2		
4		10.8 ± 4.5		
8		8.62 ± 3.33		
24		10.2 ± 2.7		

a Data represent the mean \pm SD of 6 animals.

b Sum of GS-441524, -MP, -DP and GS-443902 from PBMC samples, n = 6 per time point for 2, 4 and 8 h and n = 3 for 24 h

IM = intramuscular; M = male; PBMC = peripheral blood mononuclear cells

3.2. AD-399-2003: Pharmacokinetics of GS-5734 and its Metabolites Following Intravenous Administration to Male Wistar Han Rats

Report Title		Study Type	Test Article	Report Number
Pharmacokinetics of GS-5734 and Its Metabolites Following Intravenous Administration to Male Wistar Han Rats		Absorption	GS-5734	AD-399-2003
Species		Wistar Han Rat		
Gender (M/F) / N of Animals		M / 3		
Feeding Condition		Non-fasted		
Vehicle / Formulation		12% Sulfobutylether- β -cyclodextrin in water (w/v; pH = 4)		
Method of Administration		IV		
Dose (mg/kg)		50		
Sample		Plasma		
Analyte		GS-5734, GS-704277, and GS-441524		
Assay		LC/MS/MS		
PK Parameters ^a	G8-5734	GS-704277		GS-441524
T _{max} (h)	0.48 ± 0.00	0.48 ± 0.00		1.25 ± 0.43
C _{max} (µM)	17.5 ± 0.65	40.6 ± 2.66		7.82 ± 1.31
$AUC_{0-t} (\mu M \cdot h)$	6.20 ± 0.68	25.1 ± 2.52		63.7 ± 7.42
t _{1/2} (h)	0.05 ± 0.01	0.25 ± 0.02		6.21 ± 0.56
CL (L/h/kg)	13.5 ± 1.41	NA		NA

a Data represent the mean \pm SD of 3 animals.

IV = intravenous; M = male; NA = not applicable

3.3. AD-399-2001: Pharmacokinetics of GS-5734 in Male Cynomolgus Monkeys

Report Title		<u>Study Type</u>	Test Article	Report Number
Pharmacokinetics of GS-5734 in Male Cynomolgus Monkeys		Absorption	GS-5734	AD-399-2001
Species		Cynomolgus Monkey		
Gender (M/F) / N of Animals		M / 3		
Feeding Condition		Non-fasted		
Vehicle / Formulation		12% (w/v) Sulfobutylether- β -cyclodextrin and 98% water (pH = 4)		
Method of Administration		IV Bolus		
Dose (mg/kg)		10		
Sample		Plasma		
Analyte		GS-5734, GS-704277, and GS-441524		
Assay		LC/MS/MS		
PK Parameters ^a	GS-5734	GS-704277		GS-441524
T _{max} (h)	0.08 ± 0.00	0.08 ± 0.00		1.33 ± 0.58
C _{max} (µM)	16.0 ± 2.84	3.43 ± 1.14		1.15 ± 0.49
$AUC_{0-t} (\mu M \cdot h)$	4.76 ± 0.50	2.73 ± 0.79		8.23 ± 6.80
t _{1/2} (h)	0.29 ± 0.10	0.84 ± 0.36		7.16 ± 3.19
CL (L/h/kg)	3.50 ± 0.37	NA		NA

a Data represent the mean \pm SD of 3 animals.

IV = intravenous; M = male; NA = not applicable

3.4.	AD-399-2002: Single Dose Pharmacokinetic Study with GS-5734 in Male Rhesus Monkeys

Report Title		Study Type	Test Article	Report Number
Single Dose Pharmacokinetic Study with GS-5734 in Male Rhesus Monkeys		Absorption	GS-5734	AD-399-2002
Species		Rhesus Macaque Monkey		
Gender (M/F) / N of Animals		M / 3		
Feeding Condition		Non-fasted		
Vehicle / Formulation		12% Sulfobutylether-β-cyclodextrin in water, pH 3.5-4.0		
Method of Administration		IV		
Dose (mg/kg)		3		
Sample		Plasma and PBMCs		
Analyte		GS-5734, GS-704277, and GS-441524 for plasma and GS-441524, -MP, -DP and GS-443902 for PBMCs		
Assay		LC/MS/MS		
Plasma PK Parameters ^a	GS-5734	GS-704277		GS-441524
T _{max} (h)	0.083 ± 0.000	0.33 ± 0.14		0.50 ± 0.43
C _{max} (µM)	2.39 ± 0.60	0.71 ± 0.24		0.33 ± 0.11
$AUC_{0-t} \left(\mu M \bullet h \right)$	0.80 ± 0.18	0.84 ± 0.25		2.11 ± 0.25
t _{1/2} (h)	0.35 ± 0.07	3.59 ± 2.11		8.71 ± 0.45
CL (L/h/kg)	6.37 ± 1.59	NA		NA
Time (h)		Total PBMC Concentrations (µM) ^b		
2		26.3 ± 5.0		
4		22.9 ± 0.7		
8		19.9 ± 3.0		
24		12.8 ± 4.8		

IV = intravenous; M = male; NA = not applicable; PBMC = peripheral blood mononuclear cells; MP = monophosphate; DP = diphosphate

a Data represent the mean \pm SD of 3 animals.

b Sum of GS-441524, -MP, -DP and GS-443902 from PBMC samples; -MP and -DP concentrations were estimated based on calibration curve for GS-443902.
3.5. AD-399-2022: Single Dose Pharmacokinetic Study with GS-5734 in Male Rhesus Monkeys

Report Title			Study Type	Test Article	Report Number				
Single Dose Pharmacokinetic	c Study with GS-5734 in Male Rh	esus Monkeys	Absorption	GS-5734	AD-399-2022				
Species		Rhesus Macaq	ue Monkey						
Gender (M/F) / N of Animals		M / 3	3						
Feeding Condition		Non-fas	sted						
Formulation		12% Sulfobutylether-β-cyclod	extrin in water, pH 3.	5-4.0					
Method of Administration	IV (slow bolus)								
Dose (mg/kg/day)	10								
Sample	Plasma and PBMCs								
Analyte	GS-441524	GS-5734, GS-704277, and (Nuc), GS-719700 (MP), GS-7196	GS-441524 for plasm 599 (DP), and GS-443	na 902 (TP) for PBMCs					
Assay		LC/MS/	/MS						
		Plasma Pharm	acokinetics						
Parameters ^a	GS-5734	GS-704	277	GS-4	41524				
T _{max} (h)	0.08 ± 0.000	0.19 ± 0.19	0.10 1.33 ± 0.58						
C _{max} (µM)	5.07 ± 0.42	1.80 ± 0	0.13 1.14 ± 0.18						
AUC ₀₋₂₄ (µM•h)	2.09 ± 0.31	2.38 ± 0	0.07 8.73 ± 1.10						
t _{1/2} (h)	0.39 ± 0.08	0.99 ± 0	0.01	8.55	± 1.05				
CL (L/h/kg)	7.96 ± 1.11	NA		N	IA				
V _{ss} (L/kg)	2.97 ± 0.30	NA		Ν	JA				
Time (h)		PBMC Concent	ration (µM)						
Time (n)	GS-441524	GS-719700	GS-719699		GS-443902				
2	6.19 ± 4.03	0.11 ± 0.04	10.3 ± 4.3		33.3 ± 9.7				
4	3.26 ± 1.47	0.07 ± 0.02	8.73 ± 2.65		32.8 ± 6.2				
8	1.63 ± 0.48	0.05 ± 0.03	8.07 ± 2.93	26.0 ± 8.0					
24	0.93 ± 0.17	BLQ	4.23 ± 2.44 11.4 ± 4.5						

a Data represent the mean \pm SD of 3 animals.

BLQ = below lower limit of quantitation; IV = intravenous; M = male; NA = not applicable; PBMC = peripheral blood mononuclear cells

3.6.	AD-399-2033: Single Dose Phar	macokinetic Study with GS	S-5734 in Male Cynomol	lgus Monkevs
	a	•		a v

Report Title		<u>Study Type</u>	Test Article	Report Number						
Single Dose Pharmacokinetic Study Monkeys	y with GS-5734 in Male Cynomolgus	Absorption	GS-5734	AD-399-2033						
Species		Cynomolgus Monkey								
Gender (M/F) / N of Animals		M / 3								
Feeding Condition		Non-fasted								
Vehicle / Formulation	12% Sulfobutylether-β-cyclodextrin in water, pH 3.5									
Method of Administration	IV (slow bolus)									
Dose (mg/kg)	10									
Sample	Plasma									
Analyte	G	S-5734, GS-704277, and GS-441524								
Assay		LC/MS/MS								
Plasma PK Parameters ^a	GS-5734	GS-704277	GS-44	1524						
C _{max} (µM)	7.29 ± 0.78	0.80 ± 0.11	$0.68 \pm$	0.35						
T _{max} (h)	0.083 ± 0.0	0.39 ± 0.53	$2.08 \pm$	1.88						
$AUC_{0-24} (\mu M \bullet h)$	3.15 ± 0.99	1.36 ± 0.53	7.02 ±	3.55						
t _{1/2} (h)	0.57 ± 0.08	$0.57 \pm 0.08 \qquad \qquad 1.30 \pm 0.10 \qquad \qquad 6.42 \pm 0.58$								
CL (L/h/kg)	5.64 ± 1.87	NA	NA	<u> </u>						
V _{ss} (L/kg)	2.21 ± 0.50	NA	NA	<u> </u>						

a Data represent the mean \pm SD of 3 animals.

Data represent the mean \pm SD of 3 animals.

BLQ = below lower limit of quantitation; IV = intravenous; M = male; NA = not applicable

4. PHARMACOKINETICS: ABSORPTION AFTER REPEATED DOSES

Repeated dose pharmacokinetic studies of GS-5734 are described in m2.6.7 as a part of toxicology studies.

5.1. AD-399-2013 and AD-399-2031: Plasma Binding of GS-5734

Report Title	Study Type	Test Article	Report Number
Plasma Protein Binding of GS-5734	Distribution	GS-5734	AD-399-2013
			AD-399-2031

Method

The equilibrium dialysis assay was conducted for 3 hr at 37 °C in duplicate using plasma from Wistar Han rat, cynomolgus monkey, rhesus monkey, or human spiked with GS-5734 to a final concentration of 2 μ M (initial concentration in protein-containing dialysis cell). Analysis of remdesivir, GS-704277 and GS-441524 was done by LC/MS/MS.

		% Free Fraction ^a (Recovery)									
Matrix	Remdesivir	GS-704277	GS-441524								
Human Plasma	12.1 ± 0.7 (132)	99 ± 10 (72)	98 ± 6 (74)								
Wistar Han Rat Plasma	8.0 ± 0.1 (87)	95 ± 13 (72)	90 ± 0 (70)								
Cynomolgus Monkey Plasma	14.2 ± 0.6 (112)	127 ± 20 (67)	99 ± 8 (71)								
Rhesus Monkey Plasma	13.5 ± 0.6 (108)	106 ± 18 (69)	85 ± 10 (75)								

a Mean \pm Standard Deviation (n =3)

5.2. AD-540-2007: Distribution within Blood from Rhesus Monkeys and Human

Report Title		Study Type	Report Number		
In Vitro Assessment of H	uman Blood Distribution of Remdesivir and GS-441524	Distribution	AD-540-2007		
Method					

Remdesivir, GS-441524 or positive control (methazolamide) spiked into pooled blood from rhesus monkey or human to a final concentration of 0.5 μ M. Assay n = 6 for methaazolamide in rhesus monkey and n = 3 otherwise. Incubated at 37°C for 1 h and then concentrations of the compounds determined in the soluble (plasma) and cellular fractions by LC-MS. Cell to plasma concentration ratios (CPR) calculated and then whole blood to plasma ratios (λ) calculated using CPR and hematocrit.

	R	emdesivir ^a	GS-441	524 ^a	Methazolamide		
Species	CPR	λ	CPR	λ	λ		
Rhesus Monkey	0.33 ± 0.08	0.71 ± 0.03	1.79 ± 0.30	1.36 ± 0.14	68.67 ± 42.49 ^b		
Human	0.42 ± 0.17	0.76 ± 0.07	1.46 ± 0.29	1.19 ± 0.12	$14.95\pm4.00~^{\rm a}$		

a N = 3

b N = 6

5.3. AD-399-2017: Distribution in Sprague Dawley Rats Following a Single Intravenous Dose of [¹⁴C]GS-5734

Report Title							Study	Туре	Test Article	Report Number		
Pharmacokinetics, Distribution Administration to Rats	n, and Excre	tion of ¹⁴ C-C	S-5734 Fol	lowing a Sir	ngle Intraven	ous Bolus	Distril	oution	[¹⁴ C]GS-5734	AD-3	99-2017	
Species	Sprague D	awley (non-j	pigmented) l	Rat								
Gender /No. of Animals	Male / 11 ((1 per time p	oint)									
Feeding Condition	Non-fasted	l										
Vehicle/Formulation	12% Sulfo	% Sulfobutylether-β-cyclodextrin in water, pH 3.0										
Method of Administration	Intravenou	s slow-bolus										
Dose	10 mg/kg (mg/kg (100 µCi/kg)										
Radionuclide	Carbon-14	bon-14										
Specific Activity	58.0 mCi/r	mCi/mmol Specific Activity of Formulation 8.45 µCi/mg										
Sampling Time	0.167, 0.5,	167, 0.5, 1, 2, 4, 8, 12, 24, 48, 96, and 168 h post-dose										
Analyte/Assay	Carbon-14/Quantitative Whole Body Autoradiography											
Tissues/Organs			Tissue Co	ncentration	n of Radioac	tivity (ng Ec	uivalents	¹⁴ C]GS-57	34/g tissue)	1		
Time-point (h) \rightarrow	0.167	0.50	1	2	4	8	12	24	48	96	168	
Adrenal gland(s)	3310 ^a	1560ª	1140	882	364ª	398ª	159ª	ND	ND	ND	ND	
Arterial wall	9360	2630	1590	1250	618	811	404	ND	ND	ND	ND	
Bile	189000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Blood	6690	1740	1130	811	384	478	187	BLQ	ND	ND	ND	
Bone	367	245	BLQ	136	BLQ	ND	ND	ND	ND	ND	ND	
Bone marrow	2010	1360	892	797	395	224	121	BLQ	ND	ND	ND	
Brain cerebellum	197	BLQ	BLQ	BLQ	BLQ	ND	ND	ND	ND	ND	ND	
Brain cerebrum	287	178	BLQ	BLQ	ND	ND	ND	ND	ND	ND	ND	
Brain choroid plexus	1220	723	241	ND	ND	ND	ND	ND	ND	ND	ND	
Brain medulla	158	BLQ	BLQ	BLQ	ND	ND	ND	ND	ND	ND	ND	

Report Title							Study	Туре	Test Article	Test Article Report Nun	
Pharmacokinetics, Distribution Administration to Rats	n, and Excre	tion of ¹⁴ C-C	3S-5734 Fol	lowing a Sin	igle Intraven	ous Bolus	Distribution		[¹⁴ C]GS-5734	GS-5734 AD-399-2017	
Brain olfactory lobe	437	BLQ	BLQ	123	BLQ	BLQ	ND	ND	ND	ND	ND
Bulbo-urethral gland	3670ª	2070	1110	893	453	404	269	ND	ND	ND	ND
Cecum	3300	1450	1140	5830	6380	3950	4710	2820	223	344	ND
Diaphragm	1960	1450	1080	986	605	499	398	206	147	BLQ	BLQ
Epididymis	3850ª	1120ª	819	540	326	240	138ª	BLQ	BLQ	ND	ND
Esophagus	4680	1440	960	1130	506	450	407	184	257	ND	BLQ
Exorbital lacrimal gland	2860	1440	1190	951	568	393	284	BLQ	ND	ND	ND
Eye lens	270	427	137	ND	BLQ	BLQ	BLQ	ND	ND	ND	ND
Eye uveal tract	2670	961	571	467	291	276	192	ND	ND	ND	ND
Eye(s)	906	535	212	189	146	BLQ	BLQ	ND	ND	ND	ND
Fat (abdominal)	381	BLQ	BLQ	BLQ	ND	ND	ND	ND	ND	ND	ND
Fat (brown)	2130	1480	751	669	399	294	244	BLQ	BLQ	ND	ND
Harderian gland	1240	882	849	608	ND	ND	ND	ND	ND	ND	ND
Intra-orbital lacrimal gland	2140	1430	1000	870	ND	ND	ND	ND	ND	ND	ND
Kidney cortex	133000	153000	163000	159000	113000	124000	83700	40900	11900	1930	757
Kidney medulla	49800	69000	20300	26800	40600	50300	18000	3640	3250	619	114
Kidney(s)	115000	141000	158000	154000	120000	118000	78500	39500	10700	1890	745
Large intestine	4230	1730	955	927	467	467	433	225	ND	ND	ND
Liver	51000	34000	29400	28100	22200	13700	5620	2500	501	187	123
Lung(s)	3800	2650	1280	758	605	628	268	BLQ	ND	ND	ND
Lymph node(s)	3540	1670	1330	881	491	318	275	BLQ	ND	ND	ND
Muscle	959	775	927	875	376	291	226	117	122	ND	ND

Report Title							Study	Туре	Test Article	Report Number	
Pharmacokinetics, Distribution Administration to Rats	n, and Excre	tion of ¹⁴ C-C	S-5734 Foll	lowing a Sin	gle Intraven	ous Bolus	Distribution		[¹⁴ C]GS-5734 AD-399-2017		99-2017
Myocardium	3210	1760	1310	1020	604	760	346	158	ND	ND	ND
Nasal turbinates	2010	703	354	369	227	192	121	ND	ND	ND	ND
Pancreas	2810 ^a	2230	1750 ^a	1810	1120	892	772	274	BLQ	ND	ND
Pituitary gland	2360	1400	1290	927	444	441	115	ND	ND	ND	ND
Preputial gland	2210 ^a	1250 ^a	593 ^a	713 ^a	287ª	225ª	185 ^a	BLQ ^a	234 ^a	ND	ND
Prostate gland	3030 ^a	930	570	533	394	225	190	BLQ	BLQ	ND	ND
Salivary gland(s)	3480	1710	1310	999	516	514	307	139	BLQ	ND	ND
Seminal vesicle(s)	846 ^a	602ª	188 ^a	324 ^a	BLQ ^a	ND	ND	ND	ND	ND	ND
Skin (nonpigmented)	7150	1930	1130	949	675	1010	936	511	840	828	509
Small intestine	2770	2000	1090	1120	970	549	532	507	ND	ND	ND
Spinal cord	172	BLQ	BLQ	ND	ND	ND	ND	ND	ND	ND	ND
Spleen	1610	1490	1160	988	439	320	202	BLQ	BLQ	ND	ND
Stomach	3820	1610	1190	1080	629	821	410	215	201	159	ND
Testis(es)	1250	562	451	459	298	215	146	BLQ	ND	ND	ND
Thymus	1680	1510	1290	1050	553	447	226	BLQ	ND	ND	ND
Thyroid	3290	1650	1150	663	549	ND	ND	ND	ND	ND	ND
Urinary bladder	5470	4210	1360	977	5580	1390	5820	4100	761	113	ND
Urine	171000	129000	117000	111000	89700	19500	16900	5640	1730	169	ND

BLQ = below the limit of quantitation (<112 ng equivalents ¹⁴C-GS-5734/g); h = hours; ND = not detectable (sample shape not discernible from background or surrounding tissue)

a Tissue appeared to be fat soaked

Final

5.4. AD-399-2017: Distribution in Long Evans Rats Following a Single Intravenous Dose of [¹⁴C]GS-5734

Report Title			Study Type	Test Article	Report Number					
Pharmacokinetics, Distribut Administration to Rats	ion, and Excretion of ¹⁴ C-GS-5734 Following a S	ingle Intravenous Bolus	Distribution	[¹⁴ C]GS-5734	AD-399-2017					
Species	Long Evans (pigmented) Rat									
Gender /No. of Animals	Male / 11 (1 per time point)	tale / 11 (1 per time point)								
Feeding Condition	Jon-fasted									
Vehicle/Formulation	12% Sulfobutylether-β-cyclodextrin in water, p	12% Sulfobutylether-β-cyclodextrin in water, pH 3.0								
Method of Administration	Intravenous slow-bolus									
Dose	10 mg/kg (100 µCi/kg)									
Radionuclide	Carbon-14									
Specific Activity	58.0 mCi/mmol	Specific Activity of Formulation 8.45 µCi/mg								
Sampling Time	0.167, 0.5, 1, 2, 4, 8, 12, 24, 48, 96, and 168 h post-dose									
Analyte/Assay	Carbon-14/Quantitative Whole Body Autoradio	ography								

Tissues/Organs ↓]	lissue Conc	entration of	Radioactivit	ty (ng Equiv	alents [¹⁴ C	C]GS-5734/§	g tissue)		
Time-point (h) \rightarrow	0.3	0.50	1	2	4	8	12	24	48	96	168
Adrenal gland(s)	1720	1470 ^a	941	789ª	518ª	193ª	ND	ND	ND	ND	ND
Arterial wall	5920	3420	1610	1060	796	448	209	ND	ND	ND	ND
Bile	255000	56500	ND	ND	ND	ND	ND	ND	ND	ND	ND
Blood	5360	2450	1060	709	583	206	131	BLQ	ND	ND	ND
Bone	162	293	BLQ	BLQ	144	BLQ	BLQ	ND	ND	ND	ND
Bone marrow	1180	1900	1020	668	508	164	114	BLQ	ND	ND	ND
Brain cerebellum	BLQ	122	BLQ	BLQ	115	BLQ	ND	ND	ND	ND	ND
Brain cerebrum	BLQ	BLQ	BLQ	BLQ	BLQ	ND	BLQ	ND	ND	ND	ND
Brain choroid plexus	718	1190	132	218	ND	ND	ND	ND	ND	ND	ND

Tissues/Organs ↓		7	Tissue Conc	entration of	Radioactivit	y (ng Equiv	alents [¹⁴ C	C]GS-5734/g	g tissue)		
Time-point (h) \rightarrow	0.3	0.50	1	2	4	8	12	24	48	96	168
Brain medulla	BLQ	BLQ	BLQ	BLQ	BLQ	ND	ND	ND	ND	ND	ND
Brain olfactory lobe	BLQ	188	BLQ	BLQ	BLQ	ND	ND	ND	ND	ND	ND
Bulbo-urethral gland	2950	2540	1070	749	ND	274	ND	ND	ND	ND	ND
Cecum	2070	2650	985	857	12000	16900	ND ^b	1320	ND	ND	ND
Diaphragm	1800	1700	1240	795	622	284	230	192	BLQ	ND	ND
Epididymis	2700ª	1430 ^a	626ª	543ª	451ª	186	119ª	BLQ ^a	ND	ND	ND
Esophagus	3330	2730	1260	836	921	310	255	234	ND	ND	ND
Exorbital lacrimal gland	1590	2060	1180	824	634	341	230	171	ND	ND	ND
Eye lens	BLQ	197	BLQ	114	ND	BLQ	ND	BLQ	ND	ND	ND
Eye uveal tract	2780	2110	1330	1360	639	503	578	439	144	ND	ND
Eye(s)	694	590	277	329	219	145	119	120	BLQ	ND	ND
Fat (abdominal)	244	225	BLQ	BLQ	BLQ	ND	ND	ND	ND	ND	ND
Fat (brown)	1020	1140	583	421	327	141	119	ND	ND	ND	ND
Harderian gland	1030	1360	933	838	310	ND	ND	ND	ND	ND	ND
Intra-orbital lacrimal gland	2140	2060	1192	824	490	ND	ND	ND	ND	ND	ND
Kidney cortex	58900	153000	146000	127000	142000	80600	74600	50300	10600	1730	488
Kidney medulla	57800	59000	40800	44700	50000	21300	26300	21900	3070	670	BLQ
Kidney(s)	62400	121000	134000	107000	119000	70900	55900	37900	7810	1900	407
Large intestine	3270	2270	1360	674	796	625	193	319	ND	ND	ND
Liver	47500	42800	34200	23600	32200	15800	6830	1970	392	180	BLQ
Lung(s)	3670	2100	991	733	552	179	167	BLQ	ND	ND	ND
Lymph node(s)	2190	1990	1370	849	585	274	141	ND	ND	ND	ND
Muscle	719	1350	979	779	454	212	144	119	BLQ	BLQ	ND
Myocardium	2030	2240	1270	951	798	347	256	BLQ	ND	ND	ND

Tissues/Organs ↓		Т	issue Conc	entration of	Radioactivit	y (ng Equiva	alents [¹⁴ C	C]GS-5734/g	g tissue)		
Time-point (h) \rightarrow	0.3	0.50	1	2	4	8	12	24	48	96	168
Nasal turbinates	653	856	410	289	202	202	ND	ND	ND	ND	ND
Pancreas	2560	2850	2030	1770	1240	550	419	ND ^b	BLQ	ND	ND
Pituitary gland	1520	1650	1050	676	505	275	ND	ND	ND	ND	ND
Preputial gland	1610 ^a	1050 ^a	399ª	474 ^a	243ª	120 ^a	ND ^a	ND	ND	ND	ND
Prostate gland	1670	1260	860	616	581	205	124	ND	ND	ND	ND
Salivary gland(s)	2180	2130	1180	826	757	297	222	BLQ	ND	ND	ND
Seminal vesicle(s)	731	321ª	147 ^a	147	134	BLQ ^a	BLQ ^a	ND	ND	ND	ND
Skin (nonpigmented)	2520	2120	962	789	591	487	ND	ND	ND	ND	ND
Skin (pigmented)	4560	2240	1000	602	730	657	626	929	664	367	316
Small intestine	1740	2160	1570	986	2790	318	328	ND	ND	ND	ND
Spinal cord	BLQ	BLQ	BLQ	BLQ	BLQ	BLQ	ND	ND	ND	ND	ND
Spleen	1120	1970	1180	845	560	231	165	BLQ	ND	ND	ND
Stomach	3170	1850	1220	876	817	510	254	200	BLQ	BLQ	ND
Testis(es)	1030	748	386	418	395	150	BLQ	BLQ	ND	ND	ND
Thymus	1290	1800	1350	881	693	277	179	ND	ND	ND	ND
Thyroid	1930	1450	1170	656	671	ND	ND	ND	ND	ND	ND
Urinary bladder	7890	6600	6240	809	11100	ND ^c	ND ^c	1350	ND	ND	ND
Urine	288000	347000	95000	127000	45400	51800	31500	7900	1060	158	ND

BLQ = below the limit of quantitation (<112 ng equivalents ¹⁴C-GS-5734/g); h = hours; ND = not detectable (sample shape not discernible from background or surrounding tissue)

a Tissue appeared to be fat soaked

b Tissue was not detectable due to flare from gastrointestinal contents.

c Tissue was not detectable due to flare from urine

5.5. AD-399-2019: Distribution in Cynomolgus Monkeys Following a Single Intravenous Dose of [¹⁴C]GS-5734

Report Title			Study Type	Test Article	Report Number				
Pharmacokinetics, Distribution, and Exc Monkeys	cretion of ¹⁴ C-GS-5734 Following an Int	ravenous Administration to	Distribution	[¹⁴ C]GS-5734	AD-399-2019				
Species	cynomolgus monkey								
Gender /No. of Animals	Male / 6 (3 per time point)								
Feeding Condition	Non-fasted								
Vehicle/Formulation	12% Sulfobutylether-β-cyclodextrin in	n water, pH 3.0							
Method of Administration	Intravenous slow-bolus								
Dose	10 mg/kg (25 µCi/kg)	mg/kg (25 μCi/kg)							
Radionuclide	Carbon-14	arbon-14							
Specific Activity	58.0 mCi/mmol	8.0 mCi/mmol Specific Activity of Formulation 2.38 µCi/mg							
Sampling Time	4 and 168 h post-dose								
Analyte/Assay	Carbon-14/Liquid Scintillation Counti	ng							
	Tissue Co	ncentration of Radioactivity (n	g Equivalents [¹⁴ C]GS	5-5734/g tissue)					
Tissues/Organs ↓	4 h		168 h						
	Mean	SD	Mean		SD				
Adrenal gland(s)	2470	914	81.9		13.3				
Bile (from gall bladder)	359000	301000	513		128				
Blood (sac)	750	192	87.4		23.0				
Bone (femur)	291	45.0	NA		NA				
Bone marrow (femur)	1610	390	NA		NA				
Brain	99.3	NA	114		82.6				
Cerebrospinal fluid	NA	NA	NA		NA				
Epididymis	1430	222	NA		NA				
Eye(s)	378	55.5	NA		NA				
Gall bladder	123000	86100	393		43.9				
Heart	4920	1160	400		79.8				
Kidney (s)	72900	18800	2400		1020				
Large intestine	15400	2700	157		37.8				

Report Title			Study Type	Test Article	Report Number	
Pharmacokinetics, Distribution, and Excre Monkeys	tion of ¹⁴ C-GS-5734 Following an	Intravenous Administration to	Distribution	[¹⁴ C]GS-5734	AD-399-2019	
Large intestine contents and wash	16900	5800	49.4		8.23	
Liver	67900	14600	2880		321	
Lungs	3540	318	293		18.7	
Lymph node(s), axillary	5730	1310	NA		NA	
Lymph node(s), iliac	4450	712	NA		NA	
Lymph node(s), inguinal	2970	840	194		NA	
Lymph node(s), mesenteric	2910	271	120		NA	
Muscle (biceps femoris)	2460	425	1460		469	
Pancreas	12800	3870	222		55.9	
Pituitary gland	7290	3160	243		16.2	
Plasma (sac)	822	238	76.1		30.6	
Prostate gland	14300	11800	338		62.3	
Salivary glands (mandibular)	13800	2720	424		118	
Seminal vesicle(s)	12800	14100	160		6.87	
Skin (dorsal, shaved)	1570	203	NA		NA	
Small intestine	5670	2200	174		25.7	
Small intestine contents and wash	2440	677	21.6		NA	
Spinal cord	NA	NA	NA		NA	
Spleen	7510	1120	523		206	
Stomach	4740	290	253		19.2	
Stomach contents and wash	436	189	60.9		20.0	
Testis(es)	1060	7.94	NA		NA	
Thymus	2960	332	83.6		NA	
Thyroid (including parathyroid)	3100	156	399		250	
Urinary bladder	6110	6900	225		38.8	

BLQ = below the limit of quantitation (<112 ng equivalents ¹⁴C-GS-5734/g); h = hours; NA = not applicable

5.6. AD-399-2023: Single Dose Plasma, PBMC, and Lung PK

Report Title			Study Type	Test Article	Report Number			
Single Dose Pharmacokinetic S	tudy with Intravenous GS-5734 in Ma	ale Marmosets	Distribution	GS-5734	AD-399-2023			
Species	Marmosets							
Gender (M/F) / N of Animals	M / 7 (Group1: N=2, Group2: N=2,	Group3: N=3)						
Feeding Condition	Non-fasted							
Formulation	12% Sulfobutylether-β-cyclodextrin	in water, pH 3.0						
Method of Administration	IV slow bolus							
Dose (mg/kg/day)	10							
Sample	Plasma, PBMC, and Lung							
Analyte	GS-5734, GS-704277, and GS-4415 GS-441524, -MP, -DP and GS-4439	524 for plasma (Group 3) 902 for PBMC and lung (Group 1 and	2)					
Assay	LC/MS/MS							
	Plasma Pharmacokinetics							
Parameters	GS-5734	GS-7	GS-704277		41524			
$C_{max} \left(\mu M \right)$	5.8	2.	33	1.74				
T _{max} (h)	0.25	0.	25	1.33				
AUC ₀₋₂₄ (µM•h)	7.72	2.	96	11.2				
T _{1/2} (h)	1.02	0.	64	5	.87			
Cl (L/h/kg)	7.74	N	A	Ν	JA			
Τ'(1.)		PBMC Conce	ntration (µM)					
Time (n)	GS-441524	GS-719700	GS-719699		GS-443902			
2	2.42	BLQ	1.63		5.92			
24	0.53	BLQ	1.45		5.99			
Time (b)		Lung Concer	ntration (μM)					
Time (ii)	GS-441524	GS-719700	GS-719699		GS-443902			
2	1.05	0.08	0.17		1.48			
24	0.16	0.03	0.08		0.81			

BLQ = below the limit of quantitation; NA = not applicable

5.7. AD-399-2028: Single Dose Plasma and PBMC PK

Report Title						Study	у Туре	Test A	rticle	Report Number
GS-5734 Plasma and I	Lymphocyte Pl	narmacokii	netics Following Two Ho	our Infusion in Male Rh	esus Monkeys	Distri	bution	GS-5	734	AD-399-2028
Species		Rhesus N	Ionkey							
Gender (M/F) / N of A	nimals	M / 4								
Feeding Condition		Non-fast	ed							
Vehicle / Formulation		88:12 wa	ter:sulfobutylether-ß-cycl	odextrin pH 3.0						
Method of Administrat	tion	IV 2 h in	fusion							
Dose (mg/kg)		10								
Sample		Plasma a	nd PBMC							
Analyte		GS-5734	, GS-704277, and GS-44	1524 for plasma and C	GS-441524, -MP,	-DP and	GS-44390	2 for PBM	С	
Assay		LC/MS/MS								
Plasma PK ParametersaGS-5734GS-704277GS-44							GS-441524			
C_{max} (μM)						4.20 =	± 2.25	$1.85 \pm$	0.37	0.95 ± 0.21
T _{max} (h)						0.86 =	± 0.71	$2.00 \pm$	0.09	2.17 ± 0.10
$AUC_{0-24} \left(\mu M \bullet h \right)$						6.82 =	6.82 ± 3.01 3.9		0.66	6.25 ± 1.61
t _{1/2} (h)						0.36 ± 0.05		0.84 ± 0.32		15.2 ± 1.6
CL (L/h/kg)						2.73 =	± 0.93	4.32 ±	0.74	1.99 ± 0.41
V _{ss} (L/kg)						0.48 =	± 0.25	3.48 ±	0.78	NA
				PBMC Con	centration (µM))				
									GS	-441524 after
Time (h)	GS-441	524	GS-719700	GS-719699	GS-443902	2	Summed	Total	depł	osphorylation ^₅
1.92	6.22		0.212	12.5	19.9		38.9			33.0
4	1.44	ļ	0.164	16.6	29.5	47.8		3	27.5	
8	0.750	0	0.092	6.88	11.4		19.1	1		19.1
24	0.595	5	0.054	7.71	11.8		20.2	2		18.6

a Nucleotide metabolites were converted to GS-441524 (Nuc) by treatment with calf intestinal alkaline phosphatase; NA = not applicable

5.8. AD-399-2030: Multiple Dose Plasma and PBMC PK

Report Title				Study Type	Test Article	Report Number			
Pharmacokinetics of GS-5734 or 30-minute IV Infusion	in Healthy Rhesus Monke	eys Following Administr	ation as Either IV Bolus	Distribution	GS-5734	AD-399-2030			
Species	Marmosets								
Gender (M/F) / N of Animals	4 Males, 4 Females / 16	6 (8 per group)							
Feeding Condition	Non-fasted	ion-fasted							
Formulation	IV slow bolus: 88:12- v IV infusion: lyophilize	V slow bolus: 88:12- water:sulfobutyl ether beta-cyclodextrin with hydrogen chloride/sodium hydroxide, pH- 3.5 (Group 1) V infusion: lyophilized powder dissolved in saline (Group 2)							
Method of Administration	IV slow bolus (Group 1	/ slow bolus (Group 1) or IV 30-min infusion (Group 2)							
Dose (mg/kg/day)	5								
Duration (days)	7, QD								
Sample	Plasma and PBMC								
Analyte	GS-5734, GS-704277,	and GS-441524 for plasm	na and GS-443902 (TP) for	r PBMC					
Assay	LC/MS/MS								
]	Plasma Pharmacokinetics	s - Group 1: Slow Bolus	5				
		Day 1			Day 7				
Parameters	GS-5734	GS-704277	GS-441524	GS-5734	GS-704277	GS-441524			
C _{max} (ng/mL)	$2{,}620\pm320$	290 ± 76	175 ± 40	$3,\!080\pm870$	294 ± 43	193 ± 47			
T _{max} (h)	0.083 ± 0	0.083 ± 0	0.38 ± 0.13	0.083 ± 0	0.10 ± 0.06	0.44 ± 0.12			
AUC ₀₋₂₄ (ng•h/mL)	559 ± 89	184 ± 48	899 ± 255	690 ± 177	205 ± 45	$1,\!240\pm360$			
T _{1/2} (h)	0.33 ± 0.03	0.40 ± 0.10	6.23 ± 0.60	0.38 ± 0.02	0.44 ± 0.08	7.41 ± 0.90			
Cl (L/h/kg)	9.05 ± 1.37	NA	NA	7.58 ± 2.04	NA	NA			

NA = not applicable

	Plasma Pharmacokinetics - Group 2: 30-min Infusion							
		Day 1			-	Day 7		
Parameters	GS-5734	GS-704277	GS-441524	GS-5734	GS	5-704277	GS-441524	
C _{max} (ng/mL)	$3,660 \pm 400$	165 ± 25	127 ± 28	$3,\!350\pm390$	1	55 ± 18	140 ± 36	
T _{max} (h)	0.28 ± 0.08	0.48 ± 0	0.91 ± 0.13	0.25 ± 0	0	$.48 \pm 0$	0.83 ± 0.19	
AUC ₀₋₂₄ (ng•h/mL)	$1,\!480\pm240$	137 ± 34	837 ± 195	$1,\!430\pm230$	14	43 ± 27	$1,\!060\pm240$	
T _{1/2} (h)	0.31 ± 0.05	0.38 ± 0.07	7.34 ± 1.90	0.50 ± 0.10	0.5	51 ± 0.09	7.58 ± 0.88	
Cl (L/h/kg)	3.43 ± 5.65	NA	NA	3.57 ± 0.62		NA	NA	
		Gro	oup 1: PBMC GS-44390	2 (TP) Concentrations (μM)			
Time (h)	Da	y 1		Day 6			Day 7	
0 (pre-dose)	N	C ^a	5.28 ± 4.47				NC	
2	3.7 =	± 3.5		NC			7.9 ± 5.0	
4	4.18 =	± 2.83		NC		14.2 ± 7.6		
8	4.1 =	± 3.5		NC			11.1 ± 8.5	
24	2.68 =	± 1.87		NC			7.9 ± 4.6	
		Gro	oup 2: PBMC GS-44390	2 (TP) Concentrations (μM)			
Time (h)	Da	y 1		Day 6			Day 7	
0 (pre-dose)	N	C		12.6 ± 17.7			NC	
2	7.5 ±	10.0	NC			17.6 ± 18.6		
4	5.6 =	± 5.4		NC			21.0 ± 28.5	
8	5.9 =	± 4.5		NC		8.7 ± 6.2		
24	6.0 =	± 7.4		NC		7.1 ± 6.7 ^a		

Data represent the mean \pm SD of 8 animals

NA: Not applicable; NC: Not collected

a 24h PBMC data from animal RA1972 excluded as outlier

Unit conversions - GS-5734: 1 μ M = 0.603 μ g/mL; GS-704277: 1 μ M = 0.442 μ g/mL; GS-441524: 1 μ M = 0.291 μ g/mL

5.9. AD-540-2003: Single Dose Pharmacokinetic Study with Remdesivir in Male African Green Monkeys

Report Title			Study Type	Test Article	Report Number			
Single Dose Pharmacokinetic S	Study with Remdesivir in Male Afr	ican Green Monkeys	Distribution	Remdesivir	AD-540-2003			
Species	African Green Monkey							
Gender (M/F) / N of Animals	M / 3							
Feeding Condition	Non-fasted							
Vehicle / Formulation	12% Sulfobutylether-β-cyclodextrin	n in water, pH 3.5						
Method of Administration	IV (30-minute infusion)							
Dose (mg/kg)	10							
Sample	Plasma, peripheral blood mononucl gastrointestinal tract, kidney, testis,	Plasma, peripheral blood mononuclear cells (PBMCs), Respiratory Tissues (lung, trachea, bronchi), Non-respiratory tissues (liver gastrointestinal tract, kidney, testis, and eye)						
Analyte	Remdesivir, GS-704277, and GS-441524 for plasma GS-441525, GS-441524-MP, GS-441524-DP, GS-443902 for PBMC and Tissues							
Assay	LC/MS/MS							
		Plasma P	harmacokinetics					
Parameters	Remdesivir	G	S-704277	G	8-441524			
C _{max} (µM)	12.6 ± 1.0	1	5.9 ± 4.9	1.2	23 ± 0.36			
T _{max} (h)	0.48 ± 0.00	0.	33 ± 0.13	1.0	67 ± 0.58			
AUC ₀₋₂₄ (µM•h)	7.26 ± 1.29	9.	47 ± 1.07	9.0	06 ± 2.60			
T _{1/2} (h)	1.00 ± 0.07	0.	35 ± 0.05	6.2	24 ± 0.70			
		PBMC Con	ncentrations (µM)					
Time (h)	GS-441524	GS-441524-MP	GS-441524	-DP	GS-443902			
2	3.05 ± 1.63	0.56 ± 0.05	4.30 ± 0.1	76	14.9 ± 4.6			
24 ^a	0.71	0.55 2.51 7.54						

		Respirator	y Tissue Concentrations (nn	nol/g tissue)					
Issue	GS-441524	GS-441524-MP	GS-441524-DP	GS-443902	Total Nucleotide				
Lower Lung Lobe	BLQ	BLQ	0.27 ± 0.04	1.03 ± 0.19	1.30 ± 0.23				
Upper Trachea	BLQ	BLQ	0.27 ± 0.08	0.54 ± 0.15	0.81 ± 0.14				
Lower Trachea	BLQ	BLQ	0.26 ± 0.08	0.53 ± 0.36	0.78 ± 0.44				
Mainstem Bronchi	BLQ	BLQ	0.40 ± 0.03	0.81 ± 0.47	1.21 ± 0.50				
Lower Bronchi	BLQ	BLQ	0.45 ± 0.06	1.12 ± 0.12	1.57 ± 0.16				
T!	Non-respiratory Tissue Concentrations (nmol/g tissue)								
IIssue	Total Metabolite Concentrations ^b								
Liver			17.3 ± 2.7						
Gastrointestinal Tract			3.78 ± 0.93						
Kidney		39.8 ± 2.5							
Testis			0.71 ± 0.31						
Eye			0.26 ± 0.09						

Data represent the mean \pm SD of 3 animals

a Mean calculated based on n=2

b Summed total of GS-441524 and its phosphorylated metabolites

IV = intravenous; M = male; PBMC = peripheral blood mononuclear cells

BLQ = below lower limit of quantitation in respiratory tissue: For GS-441524: 0.154 nmol/g tissue; for GS-719700: 0.463 nmol/g tissue

GS-441524-MP (GS-719700) and GS-441524-DP (GS-719699) were quantified using authentic standard

6. PHARMACOKINETICS: METABOLISM IN VIVO

6.1. AD-399-2018: Metabolite Profiling of Samples from Rat After Administration of [¹⁴C]GS-5734

Report Title		Study Type	Test Article	Report Number	
Metabolite Profiling and Identification of Metabolites Urine, Bile, and Feces Samples after a Single Intraven from Study No. 8328793	of ¹⁴ C-GS-5734 in Selected Rat Plasma, nous Bolus Administration of ¹⁴ C-GS-5734	Metabolism	[¹⁴ C]GS-5734	AD-399-2018	
Study System	Metabolite profiling of [¹⁴ C]GS-5734 in plasma, duct-cannulated male Sprague Dawley rats follow	urine, bile, and fec wing a 10 mg/kg in	es from bile duct-in travenous dose	ntact and bile	
	Plasma P	rofile (0-36 h pool)		
Component ^a	AUC _{0-36h} (ng [¹⁴ C]GS-5734 eq·h/g) % ¹⁴ C in Plasma AUC j			UC pool	
M1	688	688 6.03			
GS-704277 (M5)	2163		19.0		
GS-441524 (M15)	8011		70.3		
Total in Plasma	11402		100		
	Urine Profile from Bile Duct-Intact Rats (0-48 h pool)	Urine Pro	Urine Profile from Bile Duct-Cannulated Rats (0-48 h pool)		
Component ^a	% Admi	inistered ¹⁴ C Dose			
GS-704277 (M5)	4.20		10.6		
M7	0.0919		0.854		
M14	9.31		0.123		
GS-441524 (M15)	43.8		45.6		
Other	2 components detected, each < 0.5 % 4 components detected, each ·			each < 0.5 %	
Total ¹⁴ C Dose	61.2		62.2		

Report Title		Study Type	Test Article	e Report Number		
Metabolite Profiling and Identification of Metabolites Urine, Bile, and Feces Samples after a Single Intraver from Study No. 8328793	s of ¹⁴ C-GS-5734 in Selected Rat Plasma, nous Bolus Administration of ¹⁴ C-GS-5734	Metabolism	[¹⁴ C]GS-573	AD-399-2018		
	Feces Profile from Bile Duct-Intact Rats (0-48 h pool)	Intact Feces Profile from Bile Duct-Cannulated Rats (0-48 h pool)		Bile Profile (0-24h pool)		
Component ^a	% Administered ¹⁴ C Dose					
GS-704277 (M5)	ND	ND		20.3		
M11	0.0596	ND		0.546		
M14	22.6	2.29		ND		
GS-441524 (M15)	0.348	0.129		0.58		
Other	3 components detected, each < 0.2%	1 component dete each < 0.1%	cted,	2 components detected, each $< 0.5 \%$		
Total ¹⁴ C Dose	26.7	2.78	2.78			

ND = not detected or below the limit of quantitation

a Proposed structures are shown in Section 6.2 and summarized across species in Section 8.1

6.2. AD-399-2018: Proposed Biotransformation Pathways of [¹⁴C]GS-5734 in Rat

6.3. AD-399-2020: Metabolite Profiling of Samples from Monkey After Administration of [¹⁴C]GS-5734

Report Title	eport Title				Report Number	
Metabolite Profiling and Identification of Metabolites of ¹⁴ C-GS-5734 in Selected Monkey Plasma, Urine, and Feces Samples after a Single Intravenous Administration of ¹⁴ C-GS-5734 from Study No. 8328795			Metabolism	[¹⁴ C]GS-5734	AD-399-2020	
Study System	Metabolite profiling of [14C]GS-5734 in plasma, urine, and feces from cynomolgus monkeys following a 10 mg/kg intravenous dose					
	Plasma Profile (0-96 h pool) ^a					
Component ^b	AUC _{0-96h} (ng [¹⁴ C]GS-5734 eq·h/g) %			‰ ¹⁴ C in Plasma A	UC pool ^a	
GS-441524 (M15)	31273			100		
Total ¹⁴ C in Plasma	31273			100		
	Urine (0-72 h pool) Feces (0-72 h pool)			Cage Rinse (0-48 h pool)		
Component ^b	%	Administered ¹⁴ C	Dose			
GS-704277 (M5)	0.884	NE)	1.55		
M14	2.65	19.)	0.509		
GS-441524 (M15)	15.6	0.22	1	6	.17	
M18	8.43	NE		3.18		
M19	0.276	NE		ND		
M20	0.333 ND			ND		
GS-5734	0.950	NE		1	.19	
Other	1 component detected < 0.2% NE)	2 components det	ected, each < 0.1 %	
Total ¹⁴ C Dose	30.9	24.:	5	1	4.6	

ND = not detected or below the limit of quantitation

a Individual time point radiochromatograms showed up to 4 peaks. Composition at 0.5 h: GS-704277 (M5) = 29.4%; M18 = 35.9%; GS-441524 (M15) = 36.3%; GS-5734 = 15.2%

b Proposed structures are shown in Section 6.4 and summarized across species in Section 8.1

6.4. AD-399-2020: Proposed Biotransformation Pathways of [¹⁴C]GS-5734 in Monkey

M19-structure unknown

6.5. AD-399-2026: Metabolite Profiling of Samples from Rabbit After Administration of [¹⁴C]GS-5734

Report Title	Report Title				Report Number
Metabolite Profiling and Ic Urine, and Feces Samples No. 8341988	Ietabolite Profiling and Identification of Metabolites of ¹⁴ C-GS-5734 in Selected Rabbit Plasma, rine, and Feces Samples after a Single Intravenous Dose of ¹⁴ C-GS-5734 from Study o. 8341988			[¹⁴ C]GS-5734	AD-399-2026
Study System	Metabolite profiling of [14C]GS-5734 in plasma, urine, and feces from NZW rabbit following a 10 mg/kg intravenous dose				
	Plasma Profile (0-96 h pool)				
Component ^a	AUC _{0-96h} (ng [¹⁴ C]GS-5734 eq·h	/g)		% ¹⁴ C in Plasma A	UC pool
M14	7049			24.8	
GS-441524 (M15)	12647			44.5	
M24	2281			8.03	
M25	3110			11.0	
GS-5734	207			0.73	
Total ¹⁴ C in Plasma	28400			100	
	Urine (0-72 h pool)	Urine (0-72 h pool) Feces (0-72 h pool)		Cage Rinse (0-48 h pool)	
Component ^a	%	Administered ¹⁴ C	Dose		
M1	0.199	1.3	9	ND	
M2	0.324	0.1	96	ND	
GS-704277 (M5)	14.8	NI)	2.40	
M14	11.9	3.9	96	3.02	
GS-441524 (M15)	16.2	0.1	17	2.68	
M22	0.258	NI)	1	ND
M25	15.0 1.05		95	2	.20
GS-5734	0.669	NI)	1	ND
Other	ND	NI	D	1	ND
Total ¹⁴ C Dose	64.4	9.5	50	1	0.9

ND = not detected or below the limit of quantitation; NZW = New Zealand white

a Proposed structures are shown in Section 6.6 and summarized across species in Section 8.1

6.6. AD-399-2026: Proposed Biotransformation Pathways of [¹⁴C]GS-5734 in Rabbit

M1, M2 - structures unknown

7. PHARMACOKINETICS: METABOLISM IN VITRO

7.1. AD-399-2012: *In Vitro* Plasma Stability of GS-5734

Report Title	Study Type	Test Article	Report Number
In Vitro Plasma Stability of GS-5734	Metabolism, In Vitro	GS-5734	AD-399-2012

Method

Duplicate aliquots of 2 µM GS-5734 were incubated with pooled plasma from Sprague-Dawley rat, beagle dog, cynomolgus monkey, rhesus monkey, and human at 37 °C up to 4 hours. Rates of metabolism (loss of GS-5734 expressed as *in vitro* half-life values) were determined. Analysis of GS-5734 and GS-7340 was done by LC/MS/MS.

	Plasma Stability, T _{1/2} (min) ^a				
Compound	Human	Dog	Rat	Cynomolgus Monkey	Rhesus Monkey
GS-5734	68.5 ± 3.1	630 ± 96	≤ 0.9	385 ± 14	467 ± 12
GS-7340 (Control) ^b	90.0 ± 7.5	105 ± 6	≤ 0.9	151 ± 3	154 ± 3

a Mean \pm Standard Deviation (n =2)

b GS-7340: Tenofovir Alafenamide

7.2. AD-399-2014: In Vitro Stability of GS-5734 in Hepatic and Intestinal Subcellular Fractions

Report Title	Study Type	Test Article	Report Number
In Vitro Stability of GS-5734 in Hepatic and Intestinal Subcellular Fractions	Metabolism, In Vitro	GS-5734	AD-399-2014
Method			

Duplicate aliquots of 2 µM GS-5734 were incubated with hepatic S9 fraction from Sprague-Dawley rat, beagle dog, cynomolgus monkey, rhesus monkey, or human at a final protein concentration of 2.4 mg/ml, 1.25 mM NADP, 3.3 mM glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase, 1.9 mM UDPGA and 3.3 mM MgCl₂ in 100 mM potassium phosphate buffer, pH 7.4. Duplicate aliquots of GS-5734 were incubated with intestinal S9 fraction from Sprague-Dawley rat, beagle dog, or human at a final protein concentration of 1.0 mg/ml in potassium phosphate buffer, pH 7.4. Rates of metabolism (loss of GS-5734 expressed as *in vitro* half-life values) were determined. Analysis of GS-5734 and controls was done by LC/MS/MS.

	Hepatic S9 Stability, T _{1/2} (min) ^a				
Compound	Human	Rhesus Monkey	Cynomolgus Monkey	Beagle Dog	Sprague-Dawley Rat
GS-5734	< 3.9	< 3.9	< 3.9	< 3.9	< 3.9
Propranolol (Control)	81.5 ± 3.2	30.2 ± 1.4	39.9 ± 2.6	60.0 ± 5.1	< 3.9

	Intestinal S9 Stability, T1/2 (min) ^a			
Compound	Human	Beagle Dog	Sprague-Dawley Rat	
GS-5734	114.1 ± 9.1	88.2 ± 10.0	40.3 ± 1.9	
GS-7340 (Control)	35.5 ± 2.0	25.6 ± 2.5	14.0 ± 0.7	

a Mean \pm SE, N = 12 datapoints from duplicate determinations

Report Title	Study Type	Test Article	Report Number
<i>In Vitro</i> Activation of GS-5734 in Peripheral Blood Mononuclear Cell (PBMC) and Monocyte from Human and Monkey	Metabolism	GS-5734	AD-399-2015

Method

PBMCs and monocytes from rhesus monkey and human were incubated with GS-5734 at 1 μ M for 2 hours. Following oil spin extraction, intracellular concentrations of GS-441524 and its phosphorylated metabolites were determined. Analysis was done by LC/MS/MS.

		Intracellular Concentrations (pmol/million) ^a				
Cells	Species	GS-441524	GS-441524-MP ^b	GS-441524-DP ^b	GS-443902 (GS-441524-TP)	Total ^c
PBMCs	Human	BLQ ^c	2.30	47.4	21.0	70.7
	Rhesus Monkey	4.92	BLQ	0.70	5.77	11.4
Managatas	Human	3.22	0.83	6.88	21.5	32.4
Monocytes	Rhesus Monkey	7.70	BLQ^d	0.33	5.07	13.1

MP = nucleoside analog monophosphate; DP = nucleoside analog diphosphate

a Mean from 2 donors determined in duplicate experiments

b GS-441524-MP and -DP concentrations were estimated based on calibration curve for GS-443902.

c Sum of GS-441524, GS-441524-MP, GS-441524-DP, and GS-443902

d BLQ = Below the lower limit of quantitation (LOQ for GS-441524 and GS-443902: $0.4 \mu M$)

7.4. AD-399-2004: In Vitro Activation of GS-466547 in Human Macrophage Cells

Report Title	Study Type	Test Article	Report Number
In Vitro Activation of GS-466547 in Human Macrophage Cells	Metabolism	GS-466547	AD-399-2004
Method			

Human macrophage cells were incubated with GS-466547 (isomeric mixture containing remdesivir) at 1 μ M for 2 hours. After 2 h the compound containing media was removed and cells were washed two times in 37 °C media. Compound-free media was then added and cells were incubated for an additional 22 h. At select time points (2, 4, 8, 24), cells were harvested and intracellular concentrations of GS-443902 were determined. Analysis was done by LC/MS/MS.

	Intracellular GS-443902 Concentration (pmol/million)				
Time	Donor 1	Donor 2	Donor 3	Mean ± SD	
2	53.5	71.6	147	90.8 ± 49.7	
4	55.8	97.4	241	131 ± 97	
8	50.1	76.2	191	106 ± 75	
24	20.8	26.9	50.7	32.8 ± 15.8	

PK Parameters	Donor 1	Donor 2	Donor 3	Mean ± SD
T _{max} (h)	4.0	4.0	4.0	4.0 ± 0.0
C _{max} (pmol/million)	55.8	97.4	241	131 ± 97
C ₂₄ (pmol/million)	20.8	26.9	50.7	32.8 ± 15.8
AUC ₀₋₂₄ (pmol*h/million)	942	1413	3328	1890 ± 1260
t _{1/2} (h)	13.6	10.8	8.70	11.0 ± 2.5

7.5. AD-399-2006: *In Vitro* Activation and Intrinsic Potency of GS-466547 in Human Macrophage Cells, Human Microvascular Endothelial Cells (HMVEC) and HeLa Cells

Report Title	Study Type	Test Article	Report Number
<i>In Vitro</i> Activation and Intrinsic Potency of GS-466547 in Human Macrophage Cells, Human Microvascular Endothelial Cells (HMVEC) and HeLa Cells	Metabolism	GS-466547	AD-399-2006

Method

Human macrophage cells were incubated with GS-466547 (isomeric mixture containing remdesivir) at 1 μ M for 72 hours. At select time points (2 or 4, 24, 48, 72 h), cells were harvested and intracellular concentrations of GS-443902 were determined. Analysis was done by LC/MS/MS. Based on the observed mean trihosphate levels and EC₅₀ values, the triphosphate levels required fifty percent inhibition (IIC₅₀) were calculated.

	Intracellular GS-443902 Concentration (pmol/million) ^a			
Time	Macrophage	HMVEC $(n = 2)$	HeLa	
2	93.5	36.1	7.30	
24	299	103	90.8	
48	140	109	62.8	
72	93.2	64.9	43.0	

	Macrophage	HMVEC $(n = 2)$	HeLa
Mean Triphosphate (pmol/million) ^b	156	76.0	51.0
EC ₅₀ (μM)	0.100 ^d	0.12°	0.18^{d}
IIC ₅₀ (pmol/million)	15.6	9.20	9.38

a LOQ: 0.549 pmol/million (Macrophages), 1.37 pmol/million (HMVEC), and 0.229 pmol/millions (HeLa). Human macrophage results are from cells from a single donor done in duplicate. HMVEC results from 2 different donors done in duplicate. HeLa cells are from a single experiment done in duplicate.

b Values are average of intracellular concentrations of GS-443902 at 2, 24, 48, and 72 h.

c Source: PC-399-2007

d Source: PC-399-2008

7.6. AD-399-2024: Metabolites of GS-5734 in Cryopreserved Hepatocytes

Report Title		Study Type	Test Article	Report Number	
Metabolism of 14C-GS	-5734 in Mouse, Rat, Monkey, an	Metabolism	[¹⁴ C]GS-5734	AD-399-2024	
Study System	Cryopreserved hepate	ocytes mixed-sex pool from C57BL	6 mouse, Wistar Han	rat, cynomolgus monkey,	and human
Method	[¹⁴ C]GS-5734 (1 & 1	0 μ M) was incubated (n =3) in hepa	tocyte suspensions (7	50,000 cells/mL) at 37°C	for 0, 0.5, 1, and 2 h.
	Percent l	Relative Abundance at 2 Hours Fo	llowing [¹⁴ C]GS-573	4 (10 µM) Incubation ^a	
Component ^c	Mouse	Rat	Monkey		Human
M1	1.22	4.86	2.97		ND
M2	ND	2.70	ND		ND
M4	14.9	7.92	1.43		3.49
GS-704277 (M5)	64.2	58.8	31.1		54.3
GS-441524 (M15)	6.05	10.7	12.2		18.2
M16	ND	1.57	ND		ND
M17	ND	1.70	ND		ND
M19	ND	1.20	1.09		ND
M27	ND	1.06	ND		ND
M28	ND	ND	1.50		1.11
M30	ND	ND	3.67		1.22
M31b	ND	1.01	8.25		5.66
M32	ND	ND	3.31		1.54
M35	ND	ND	4.74		1.35
M38	ND	ND	ND		ND
GS-5734	5.51	1.54	5.65		5.13
Total	91.9	93.0	63.7		92.0

ND = Peak not detected or below the limit of quantitation

a Determined by comparison of radiochromatographic peak area.

b M31 shown to be an artifact of ethanol

c Proposed structures are shown in Section 7.7

7.7. AD-399-2024: Proposed Biotransformation Pathways of [¹⁴C]GS-5734 in Cryopreserved Hepatocytes from Mouse, Rat, Monkey and Human^a

7.8. AD-540-2001: In Vitro Activation of GS-5734 in Normal Human Bronchial Epithelial (NHBE) cells

Report Title	Study Type	Test Article	Report Number
<i>In Vitro</i> Activation of GS-5734 in Normal Human Bronchial Epithelial (NHBE) cells	Metabolism	GS-5734	AD-540-2001
Method			

NHBE cells were incubated with GS-5734 at 1 μ M for 2 hours. After 2 hours, the compound containing media was removed and cells were washed two time with 37 \Box media. Compound-free media was added and cells were incubated for an additional 30 hours. At selected time point (2,4,8,24 and 32), cells were collected and intracellular concentrations of GS-441524 and its phosphorylated metabolites were measured. Analysis was done by LC/MS/MS.

	Mean Intracellular Concentration (pmol/million)				
Time	GS-441524	GS-719700	GS-719699	GS-443902	GS-704277
2	12.4 ± 7.43	1.02 ± 0.470	1.66 ± 0.849	14.5 ± 12.7	17.9 ±11.5
4	1.06 ± 0.420	0.811 ± 0.205	1.12 ± 0.498	10.2 ± 7.40	2.27 ± 0.860
8	0.558 ± 0.152	0.397 ± 0.020	0.796 ± 0.457	7.94 <u>+</u> 6.80	0.962 ± 0.317
24	0.384 ± 0.101	BLQ	0.595 ± 0.150	2.92 ± 2.69	0.552 ± 0.182
32	0.554 ± 0.125	BLQ	0.455 ± 0.146	2.31 ± 1.82	0.551 ± 0.144

Data represent the mean \pm SD of 3 independent experiments

BLQ = Below lower limit of quantitation (All analytes: 0.274 pmol/million)

7.9. AD-540-2002: In Vitro Activation of GS-5734 and GS-441524 in Calu-3, human lung adenocarcinoma cell line

Report Title	Study Type	Test Article	Report Number
In Vitro Activation of GS-5734 and GS-441524 in Calu-3, human lung adenocarcinoma cell line	Metabolism	GS-5734, GS-441524	AD-540-2002
Method			

Calu-3 cells were incubated with remdesivir at 1 μ M or GS-441524 at 10 μ M for 48 hours. At select time points (2, 8, 24, 36 and 48 h), cells were harvested and intracellular concentrations of GS-704277 (For remdesivir incubation only), GS-441524 and its phosphorylated metabolites were measured. Analysis was done by LC/MS/MS

	Mean Intracellular Concentrations in Calu-3 cells Following a 48-hour Continuous Incubation with 1 µM Remdesivir (Mean ± SD) ^{b,c}				
Time	GS-441524	GS-719700	GS-719699	GS-443902	GS-704277
2	2.86 ± 0.85	0.169 ± 0.026	0.517 ± 0.442	1.37 ± 0.37	1.44 ± 0.34
8	4.01 ± 0.42	0.363 ± 0.030	0.932 ± 0.517	3.88 ± 0.47	1.50 ± 0.29
24	6.52 ± 3.47	0.678 ± 0.104	1.69 ± 0.90	8.33 ± 1.72	1.93 ± 0.26
36 ^a	10.0 ± 0.4	0.727 ± 0.100	1.81 ± 0.68	8.36 ± 1.31	1.80 ± 0.10
48	4.31 ± 1.62	0.325 ± 0.009	1.14 ± 0.50	5.72 ± 1.10	0.959 ± 0.183

	Mean Intracellular Concentration of GS-441524 and its Phosphorylated Metabolites in Calu-3 cells Following a 48- hour Continuous Incubation with 10 μM GS-441524 (Mean ± SD) ^{b,c}				
Time	GS-441524	GS-719700	GS-719699	GS-443902	
2	71.4 ±20.2	0.550 ± 0.108	0.715 ±0.146	3.69 ± 1.28	
8	201 ± 98	3.83 ± 0.20	3.76 ± 0.64	14.6 ± 2.4	
24	238 ± 150	4.05 ± 0.01	6.95 ± 1.43	26.8 ± 4.6	
36 ^a	316 ± 43	4.08 ± 0.02	7.82 ± 0.99	30.3 ± 8.1	
48	157 ± 63	1.99 ± 0.01	4.01 ± 1.22	17.2 ± 4.5	

Page 48

a 36-hour time point samples were not collected during experiment 1.

b Time points from each experiment were collected in duplicate.

c Mean of 3 independent experiments performed in duplicate, total n=6 replicates except for 36 h with n=4 replicates

8. PHARMACOKINETICS: POSSIBLE METABOLIC PATHWAYS

8.1. Proposed Biotransformation Pathways of GS-5734 in Mouse, Rat, Monkey, and Human

9. PHARMACOKINETICS: INDUCTION/INHIBITION OF DRUG METABOLIZING ENZYMES

9.1. AD-399-2010 and AD-540-2004: *In Vitro* Assessment of Human Cytochrome P450 Inhibition Potential of GS-5734

Report Title	Study Type	Test Article	Report Number
In Vitro Assessment of Human Cytochrome P450 Inhibition Potential of GS-5734	Drug-drug interaction	GS-5734	AD-399-2010 AD-540-2004
Method			

The inhibitory effect of GS-5734 on human P450 enzymes was investigated using human liver microsomes in the presence of NADPH at concentrations of GS-5734 up to 100 μ M.

			Calculated IC ₅₀ (µM)		Maximum Inhibition by
Enzyme	Report	Activity	Control Inhibitor ^a	GS-5734	GS-5734 (%)
CYP1A2	AD-540-2004	Phenacetin O-deethylase	0.15	> 100	15.2%
CYP2B6	AD-540-2004	Bupropion hydroxylase	1.3	77.8	54.6%
CYP2C8	AD-540-2004	Paclitaxel 6α-hydroxylase	0.98	54.9	68.8%
CYP2C9	AD-399-2010	Tolbutamide 4-hydroxylase	0.66	63.3	60.3%
CYP2C19	AD-399-2010	(S) Mephenytoin 4'-hydroxylase	7.7	68.3	64.3%
CYP2D6	AD-399-2010	Dextromethorphan O-demethylase	0.05	73.0	61.0%
CVD2 A	AD-399-2010	Midazolam 1'-hydroxylase	0.04	1.6	87.7%
CYP3A	AD-540-2004	Testosterone 6β-hydroxylase	0.21	11.0	88.8%

a Control Inhibitors: CYP1A2 α Naphthoflavone (0-3 μM); CYP2B6 Ticlopidine (0-25 μM); CYP2C8 Montelukast (0-10 μM); CYP2C9, Sulfaphenazole (0-10 μM); CYP2C19, Tranylcypromine (0-50 μM); CYP2D6, Quinidine (0-3 μM); CYP3A, Ketoconazole (0-3 μM).

9.2. AD-540-2004: CYP3A Mechanism-Based Inhibition Potential of Remdesivir

Report Title		Study Type Report Number					
Further Assessment of Human Cytochrome	P450 Inhibition Potential of Remdesivir	vir Drug-drug interactions AD-540-2004					
Method							
Human hepatic microsomal fraction spiked incubated \pm NADPH cofactor at 37°C for 3 with LC-MS detection. The %Change valu for changes in incubations with DMSO veh	with remdesivir (final concentration 100 μ), 0 min. Incubations then diluted 10-fold and was calculated from the incubation with co- cicle. A %Change value of > 30% is consider	positive control (mifepristone, 25 μ M) remaining CYP3A activity determine ompound + NADPH in comparison to red positive.	I) or DMSO vehicle. Aliquots d using midazolam 1'-hydroxylase that without NADPH and corrected				
		%Change (Mean ± SD)				
Enzyme	Positive control	Positive Control Remdesivir					
CYP3A (midazolam)	Mifepristone	79.6 ± 1.0	26.1 ± 6.3				

Report Title		Study Type	Report Number	
In Vitro Assessment of Human UGT1A1 Inhi	ibition Potential of Remdesivir	Drug-drug interactions	AD-540-2005	
Method				
Remdesivir or positive control inhibitor (ataza UDP-glucuronic acid cofactor. Activity deter values calculated by nonlinear regression (bes	anavir) incubated with insect cell microsomal rmined by estradiol 3-glucuronidation. Activi st-fit value \pm standard error, n = 7 data points)	fractions containing baculovirus-exp ity remaining compared to incubation).	pressed human UGT1A1 and ns with DMSO vehicle. IC_{50}	
Compound	Role	IC ₅₀ (μM)		
Remdesivir Test compound		9.78 ± 2.11		
Atazanavir	Clinically relevant positive control	0.37 ± 0.02		

9.4. AD-399-2027: In Vitro Assessment of Induction Potential of GS-5734 and Metabolites in Humans

Report Title		Study Type	Test Articles	Report Number
Evaluation of Cytochrome P450 Indu Cultures of Human Hepatocytes to G	ction Following Exposure of Primary S-5734, GS-441524 and GS-704277	Drug-drug interactions	GS-5734 GS-704277 GS-441524	AD-399-2027
Method				

Human hepatocytes (n = 3 donors) incubated with test compounds, DMSO vehicle, positive controls and negative control (flumazenil) for three days (media changed every 24 h). Activity for CYP1A2 (phenacetin O-deethylase), CYP2B6 (bupropion hydroxylase) and CYP3A (testosterone 6β -hydoxylase) then determined by LC-MS and mRNA for CYP1A2, CYP2B6 and CYP3A4 determined by qRT-PCR. Concentrations of test compounds used were shown to be non-toxic using the MTS assay using a single hepatocyte donor in a prestudy.

		Results for GS-5734 (1, 10 and 25 µM)							
			mRNA			Enzyme Activity			
Endpoint	Donor	Fold Change	%Emax	Induction	Fold Change	%Emax	Induction		
	1	7.19	4.19	Yes	0.552	0	No		
CYP1A2	2	1.40	1.05	No	1.13	1.12	No		
	3	0.750	3.73	No	0.784	2.77	No		
	1	7.19	4.19	Yes	0.552	0	No		
CYP2B6	2	1.40	1.05	No	1.13	1.12	No		
	3	0.750	3.73	No	0.784	2.77	No		
	1	7.19	4.19	No	0.552	0	No		
CYP3A4	2	1.40	1.05	No	1.13	1.12	No		
	3	0.750	3.73	No	0.784	2.77	No		

		Results for GS-441524 (5, 20 and 50 μM)							
			mRNA			Enzyme Activity			
Endpoint	Donor	Fold Change	%Emax	Induction	Fold Change	%Emax	Induction		
	1	1.76	6.11	No	2.11	2.46	No		
CYP1A2	2	1.28	1.61	No	2.17	0.964	No		
	3	1.15	1.84	No	1.21	0.714	No		
	1	1.16	4.11	No	1.66	5.39	No		
CYP2B6	2	0.911	3.18	No	0.929	0	No		
	3	1.40	6.80	No	0.833	0	No		
	1	0.939	0.670	No	0.918	0	No		
CYP3A4	2	0.750	0.441	No	1.10	1.17	No		
	3	1.01	5.50	No	1.03	0.449	No		

Endpoint	Donor	Results for GS-704277 (1, 10 and 25 µM)							
		mRNA		Enzyme Activity					
		Fold Change	%Emax	Induction	Fold Change	%Emax	Induction		
	1	7.19	4.19	Yes	0.552	0	No		
CYP1A2	2	1.40	1.05	No	1.13	1.12	No		
	3	0.750	3.73	No	0.784	2.77	No		
	1	7.19	4.19	Yes	0.552	0	No		
CYP2B6	2	1.40	1.05	No	1.13	1.12	No		
	3	0.750	3.73	No	0.784	2.77	No		
	1	7.19	4.19	No	0.552	0	No		
CYP3A4	2	1.40	1.05	No	1.13	1.12	No		
	3	0.750	3.73	No	0.784	2.77	No		

10. PHARMACOKINETICS: EXCRETION

10.1. AD-399-2017: Excretion in Bile Duct-Intact Rats Following Intravenous Administration of [¹⁴C]GS-5734

Report Title	ort Title Study Type Test Article J						Report Number	
Pharmacokinetics, Distribution, and Excretion of ¹⁴ C-GS-5734 Following a Single Intravenous Bolus Administration to Rats Excretion [¹⁴ C]GS-5734 AD-39							AD-399-2017	
Species	Sprague Dawley Rat (bile duct-intact)						
Gender /No. of Animals	Male/3							
Feeding Condition	Non-fasted							
Vehicle/Formulation	12% Sulfobutylether-	3-cyclodextrin in water,	pH 3.0					
Method of Administration	Intravenous slow-bolu	S						
Dose	10 mg/kg (100 µCi/kg)						
Analyte	Carbon-14							
Specific Activity	58.0 mCi/mmol							
Specific Activity of Formulation	8.45 μCi/mg	3.45 μCi/mg						
Assay	Liquid scintillation co	unting						
	Cu	mulative Recovery of	% Administered ¹⁴ C D	ose		% Administered	¹⁴ C Dose	
	Ur	ine	Fe	ces		Cage Rin	se	
Collection Period (h)	Mean	SD	Mean	SD	I	Mean	SD	
0-8	37.0	3.93	NA	NA		NA	NA	
0–24	54.5	1.94	20.0	1.82		1.44	0.793	
0–48	61.2	0.882	26.7	0.896		1.92	0.709	
0–72	62.2	0.672	27.3	1.11		2.08	0.756	
0–96	62.6	0.614	27.6	1.15		2.16	0.779	
0-120	62.8	0.677	27.7	1.14		2.24	0.770	
0–144	62.9	0.660	27.7	1.14		2.28	0.783	
0–168	63.0	0.666	27.8	1.13		NA	NA	
Total Recovery (%) ^a			9:	5.1				

a Mean recovery of radioactivity from excreta and cage rinse.

10.2. AD-399-2017: Excretion in Bile Duct Cannulated Rats Following Intravenous Administration of [¹⁴C]GS-5734

Report Title					Study	Туре	Test Article	Report Number		
Pharmacokinetics, Distribution, and E Administration to Rats	Pharmacokinetics, Distribution, and Excretion of ¹⁴ C-GS-5734 Following a Single Intravenous Bolus Administration to Rats						[¹⁴ C]GS-5734	AD-399-2017		
Species	Sprague Dawley	Rat (bile duct-ca	innulated)							
Gender /No. of Animals	Male/3									
Feeding Condition	Non-fasted									
Vehicle/Formulation	12% Sulfobutyle	ether-β-cyclodext	rin in water, pH 3.	0						
Method of Administration	Intravenous slov	v-bolus								
Dose	10 mg/kg (100 µ	ıCi/kg)								
Analyte	Carbon-14									
Specific Activity	58.0 mCi/mmol	58.0 mCi/mmol								
Specific Activity of Formulation	8.45 µCi/mg	8.45 µCi/mg								
Assay	Liquid scintillat	ion counting								
		Cumulativ	ve Recovery of %	Administered ¹⁴	C Dose		% Administered ¹⁴ C Dose			
Collection Period (h)	Ur	ine	Bile		Feces		Cage Rinse			
	Mean	SD	Mean	SD	Mean	SD	Mean	SD		
0-4	32.5	13.3	22.0	19.1	NA	NA	NA	NA		
0-8	42.3	15.5	22.3	19.2	NA	NA	NA	NA		
0–24	58.0	16.1	22.6	19.5	1.58	1.25	1.13	0.393		
0–48	62.2	18.0	22.7	19.6	2.78	1.75	1.40	0.330		
0-72	62.9	17.5	22.7	19.6	3.05	1.98	1.57	0.393		
0–96	63.1	17.2	22.7	19.6	3.15	2.07	1.62	0.389		
0–120	63.2	17.2	22.7	19.6	3.20	2.11	1.64	0.403		
0–144	63.3	17.1	22.7	19.6	3.23	2.14	1.67	0.425		
0–168	63.4	17.1	22.7	19.6	3.26	2.16	NA	NA		
Total Recovery (%) ^a				9	5.3					

a Mean recovery of radioactivity from excreta, bile cannula & jacket, and cage rinse.

10.3. AD-399-2019: Excretion in Cynomolgus Monkey Following Intravenous Administration of [¹⁴C]GS-5734

Report Title				Study Type	Test Article	Report Number		
Pharmacokinetics, Distribution, and E Administration to Monkeys	xcretion of ¹⁴ C-GS-5734	Following a Single Int	ravenous Bolus	Excretion	[¹⁴ C]GS-5734	AD-399-2019		
Species	Cynomolgus monkey ((bile duct-intact)						
Gender /No. of Animals	Male/3							
Feeding Condition	Non-fasted							
Vehicle/Formulation	12% Sulfobutylether-β	-cyclodextrin in water,	рН 3.0					
Method of Administration	Intravenous slow-bolu	S						
Dose	10 mg/kg (25 µCi/kg)							
Analyte	Carbon-14							
Specific Activity	58.0 mCi/mmol	58.0 mCi/mmol						
Specific Activity of Formulation	2.37 µCi/mg	2.37 µCi/mg						
Assay	Liquid scintillation cou	Liquid scintillation counting						
	Cu	mulative Recovery of	% Administered ¹⁴ C D	lose	% Administ	ered ¹⁴ C Dose		
Collection Period (h)	Uri	ine	Fe	ces	es Cage Rinse			
	Mean	SD	Mean	SD	Mean	SD		
0-4	4.44	3.26	NA	NA	NA	NA		
0-8	7.34	7.17	NA	NA	NA	NA		
0–24	22.1	4.30	10.0	1.26	12.1	4.97		
0–48	29.0	3.64	22.1	1.81	14.6	5.92		
0-72	30.9	3.81	24.6	2.16	15.5	5.82		
0–96	31.9	4.10	25.1	2.06	15.9	5.76		
0–120	32.5	4.25	25.3	1.99	16.4	5.64		
0–144	33.2	4.19	25.5	2.00	16.9	5.64		
0–168	33.6	4.28	25.6	2.00	NA	NA		
Total Recovery (%) ^a			78	8.8				

a Mean recovery of radioactivity from excreta, carcass (8.26%), and cage rinse.

10.4. AD-399-2025: Excretion in New Zealand White Rabbit Following Intravenous Administration of [¹⁴C]GS-5734

Report Title				Study Type	Test Article	Report Number		
Pharmacokinetics, Distribution, and Ex Administration to New Zealand White	ravenous Bolus	Excretion	[¹⁴ C]GS-5734	AD-399-2025				
Species	Cynomolgus monkey (bile duct-intact)						
Gender /No. of Animals	Male/3							
Feeding Condition	Non-fasted							
Vehicle/Formulation	12% Sulfobutylether-β	-cyclodextrin in water,	рН 3.0					
Method of Administration	Intravenous							
Dose	10 mg/kg (30 µCi/kg)							
Analyte	Carbon-14							
Specific Activity	57.9 mCi/mmol							
Specific Activity of Formulation	2.45 µCi/mg	2.45 µCi/mg						
Assay	Liquid scintillation cou	inting						
	Cu	mulative Recovery of	% Administered ¹⁴ C D	2 Dose % Administered ¹⁴ C Dose				
Collection Period (h)	Urine		Feces		Cage Rinse			
	Mean	SD	Mean	SD	Mean	SD		
0-4	0.00	0.00	NA	NA	NA	NA		
0-8	0.00	0.00	NA	NA	NA	NA		
0–24	48.5	3.12	3.30	0.505	9.11	4.66		
0–48	60.8	5.68	7.38	1.01	10.9	5.36		
0–72	64.4	6.43	9.50	1.45	11.8	5.39		
0–96	65.6	6.57	10.5	1.49	12.1	5.37		
0–120	66.4	6.82	11.1	1.50	12.4	5.42		
0–144	66.7	6.84	11.6	1.54	12.4	5.46		
0–168	67.0	6.90	11.9	1.57	NA	NA		
Total Recovery (%) ^a			. 91	l.7	•			

a Mean recovery of radioactivity from excreta and cage rinse.

11. PHARMACOKINETICS: OTHER DRUG-DRUG INTERACTIONS

11.1. AD-399-2011: Cytochrome P450 Metabolic Reaction Phenotyping of GS-5734

Report Title	Study Type	Test Article	Report Number
Cytochrome P450 Metabolic Reaction Phenotyping of GS-5734	Metabolism, In Vitro	GS-5734	AD-399-2011

Method

Rates of metabolism, as assessed by the loss of GS-5734 (5 μ M) catalyzed by cDNA expressed major human cytochrome P450 enzyme preparations co-expressed with NADPH CYP450 reductase. GS-5734 was assayed by LC/MS/MS.

	Metabolism Rate (min ⁻¹)						
Test Compound	CYP1A2	CYP2B6	CYP2C8	CYP2C9	CYP2C19	CYP2D6	CYP3A4
GS-5734 (% Positive Control Rate)	< 0.12 (< 2.2%)	< 0.12 (< 2.2%)	3.9 (16.1%)	< 0.47 (< 1.9%)	< 0.12 (< 0.6%)	1.9 (16.4%)	18.3 (42.1%)
Tacrine	4.6	_	_	_	_	_	_
Efavirenz	_	1.77 ^a	_	_	_	_	—
Amodiaquine	_	_	24.5	_	_	_	_
Diclofenac	_	_	_	17.2	_	_	_
Omeprazole	_	_	_	_	21.8	_	—
Dextromethorphan	_					11.6	
Simvastatin							43.5

a Efavirenz is a selective substrate for CYP2B6 but is metabolized relatively slowly.

Final

11.2. AD-399-2007: Bidirectional Permeability of GS-5734 through Monolayers of P-gp and BCRP Over-Expressing Cells

Report Title	Study Type	Test Article	Report Number
Bidirectional Permeability of GS-5734 through Monolayers of P-glycoprotein and Breast Cancer Resistance Protein Over-expressing Cells	Drug-drug interaction	GS-5734	AD-399-2007

Method

The potential for GS-5734 to act as a substrate for P-gp (MDR1) and BCRP was tested in monolayers of either wild type, MDR1-transfected or BCRP-transfected Madin-Darby canine kidney (MDCK II) cells (MDCK II-WT, MDCK II-MDR1 and MDCK II-BCRP, respectively). The effects of transporter-selective inhibitors were also assessed. GS-5734 was assayed by LC/MS/MS.

						P _{app} (10 ⁻⁶ cm/s)			
Cell Type	Target Conc. (µM)	Direction	Initial Conc. (µM)	Recovery (%)	Replicate 1	Replicate 2	Average	Efflux Ratio	
		Cell-Free	0.7	94	39	—	39		
MDCKII-WT		Forward	0.7	110	0.4	0.2	0.3	20	
		Reverse	0.7	110	5.7	6.5	6.1	20	
		Forward	0.5	170	0.2	0.1	0.1	69	
MDCKII-MDRI		Reverse	0.5	160	9.6	10	9.9	08	
MDCKII-MDR1	1	Forward	0.3	170	0.5	0.3	0.4	6.6	
(10 µM CsA)		Reverse	0.4	170	3.0	2.3	2.6	0.0	
		Forward	0.5	170	0.9	0.4	0.7	16	
WIDCKII-BCKF		Reverse	0.5	150	12	9.4	11	10	
MDCKII-BCRP		Forward	0.3	160	0.6	1.3	1.0	12	
(10 µM Ko143)		Reverse	0.4	130	14	9.3	12	12	

BCRP = breast cancer resistance protein; MDR1 = P-glycoprotein (P-gp, ABCB1)

Final

11.3. AD-399-2008: In Vitro Assessment of GS-5734 as Substrate for Human OATP1B1 and OATP1B3

Report Title	Study Type	Test Article	Report Number
<i>In Vitro</i> Assessment of GS-5734 as Substrate for Human OATP1B1 and OATP1B3	Drug-drug interaction (in vitro)	GS-5734	AD-399-2008

Method

The potential of GS-5734 as a substrate in human OATP1B1 and OATP1B3 was assessed in Chinese Hamster Ovary (CHO) cells, either wild type or transfected with the genes encoding human OATP1B1 or OATP1B3 in the presence and absence of 40 μ M rifampicin (OATP inhibitor). Atorvastatin and antipyrine were used as positive and passive permeability controls, respectively. Following removal of media, the cell extracts were analyzed by LC/MS/MS.

	Uptake Rate (pmole/min/million cells)							
Test Compound	0.5 μM GS-5734	0.5 μM GS-5734 + Rifampicin	0.1 μM Atorvastatin	0.1 μM Atorvastatin + Rifampicin	10 μM Antipyrine	10 μM Antipyrine + Rifampicin		
CHO-WT	0.080	0.067	0.093	0.094	9.0	9.4		
CHO-OATP1B1	0.14	0.070	3.3	0.29	8.7	8.9		
CHO-OATP1B3	0.072	0.061	4.6	0.36	8.8	9.0		
OATP1B1/WT Ratio	1.8	NA	35	NA	1.0	NA		
OATP1B3/WT Ratio	0.90	NA	50	NA	1.0	NA		

NA = not applicable; OATP = organic anion transporting polypeptide (SLCO or SLC22A gene products)

11.4. AD-399-2005: In Vitro Inhibition Assessment of GS-5734 with Human P-gp, BCRP, OATP1B1 and OATP1B3

Report Title	Study Type	Test Article	Report Number
<i>In Vitro</i> Inhibition Assessment of GS-5734 with Human P-gp, BCRP, OATP1B1 and OATP1B3	Drug-drug interaction (in vitro)	GS-5734	AD-399-2005

Method

The inhibition potential of GS-5734 of human P-gp and BCRP was assessed in Madin Darby Canine Kidney (MDCKII) cells, either wild type or transfected with the genes encoding human P-gp or BCRP. The incubation was carried out in cell culture medium (without FBS) containing 10 μ M Calcein AM (P-gp) or 1 μ M pheophorbide a (PhA) (BCRP). Following removal of media containing calcein AM or PhA, the cells were analyzed immediately for calcein fluorescence at an excitation of 494 nm and an emission of 517 nm or PhA fluorescence at an excitation of 415 nm and an emission of 675 nm.

The inhibition potential of GS-5734 of human OATP1B1 and OATP1B3 was assessed in Chinese Hamster Ovary (CHO) cells, either wild type or transfected with the genes encoding human OATP1B1 or OATP1B3. GS-5734 and positive control compound were diluted in assay buffer containing 2 μ M Fluo 3. Following removal of media containing Fluo 3, the cells were immediately analyzed for Fluo 3 fluorescence at an excitation of 485 nm and emission of 530 nm.

	Efflux Transpo	rters IC50 (µM)	Uptake Transporters IC50 (µM)			
Test Compound	P-gp	BCRP	OATP1B1	OATP1B3		
GS-5734	> 40	> 40	2.8 ± 0.6	2.1 ± 0.6		
Verapamil	4.9 ± 2.0	NA	NA	NA		
Fumitremorgin C (FTC)	NA	1.01	NA	NA		
Rifampicin	NA	NA	4.1 ± 0.5	3.1 ± 0.6		

BCRP = breast cancer resistance protein; NA = not applicable; OATP = organic anion transporting polypeptide (SLCO or SLC22A gene products); P-gp = P-glycoprotein

Report Title:	Study Type	Test Article	Report Number
<i>In Vitro</i> inhibition assessment of GS-441524, GS-719700, GS-719699, GS-443902 and GS-704277 with the BCRP, BSEP, MRP2 and MRP3 Efflux Transporters	Drug-drug interaction (in vitro)	GS-441524, GS-719700, GS-719699, GS-443902 and GS-704277	AD-399-2035

Method The potential for test compounds to inhibit the human breast cancer resistance protein (BCRP), bile salt export pump (BSEP), and multidrug resistance associated proteins (MRP2 and MRP3) was assessed in vitro in membrane vesicular transport assays. In BCRP vesicular transport assay, test compounds were incubated with membrane vesicle preparations (total protein: $25 \ \mu g/well$) and probe substrate estrone-3-sulfate (1 μ M) in the absence or presence of ATP. In BSEP vesicular transport assay, test compounds were incubated with membrane vesicle preparations (total protein: $50 \ \mu g/well$) and probe substrate taurocholate (2 μ M) in the absence or presence of ATP. In MRP2 vesicular transport assay, test compounds were incubated with membrane vesicle preparations (total protein: $50 \ \mu g/well$) and probe substrate E217 β G ($50 \ \mu$ M) in the absence or presence of ATP. In MRP3 vesicular transport assay, test compounds were incubated with membrane vesicle preparations (total protein: $50 \ \mu g/well$) and probe substrate E217 β G ($10 \ \mu$ M) in the absence or presence of ATP. The amount of substrate inside the vesicles was determined by liquid scintillation counting for all vesicular transport assays.

	GS-441524		GS-719700		GS-719699		GS-443902		GS-704277	
Transporter	IC50 (μM)	Maximum inhibition (%)	IC ₅₀ (μM)	Maximum inhibition (%)	IC50 (μM)	Maximum inhibition (%)	IC50 (μM)	Maximum inhibition (%)	IC50 (μM)	Maximum inhibition (%)
BCRP	NA	NIO up to 200µM	NA	NIO up to 200µM	NA	26% at 200µM	NA	NIO up to 200µM	NA	NIO up to 200µM
BSEP	NA	NIO up to 200µM	NA	NIO up to 200µM	NA	NIO up to 200µM	NA	NIO up to 200µM	NA	NIO up to 200µM
MRP2	NA	NIO up to 200µM	NA	NIO up to 200µM	NA	NIO up to 200µM	NA	24% at 200µM	NA	NIO up to 200µM
MRP3	NA	NIO up to 200µM	NA	NIO up to 200µM	NA	NIO up to 200µM	NA	NIO up to 200µM	NA	NIO up to 200µM

BCRP = breast cancer resistance protein; BSEP = bile salt export pump; MRP2 = multidrug resistance associated protein 2; MRP2 = multidrug resistance associated protein 3; E217 β G = estradiol 17 β -D-glucuronide; ND = Not Applicable; NIO = No Inhibition Observed

11.6. AD-399-2029: *In Vitro* Inhibition Assessment of GS-5734 and its Metabolites with human BSEP, MRP2, MRP4, and NTCP Transporters

Report Title:	Study Type	Test Article	Report Number
<i>In Vitro</i> Inhibition Assessment of GS-5734 and its Metabolites with human BSEP, MRP2, MRP4, and NTCP Transporters	Drug-drug interaction (in vitro)	GS-5734, GS-704277, GS-441524	AD-399-2029

Method The potential for test compounds to inhibit the human bile salt export pump (BSEP), multidrug resistance associated proteins (MRP2 and MRP4), and Na/Taurocholate co-transporting polypeptide (NTCP) transporter was assessed in vitro in membrane vesicular transport or cell-based transporter assays. In BSEP vesicular transport assay, test compounds were incubated with membrane vesicle preparations (total protein: 50 µg/well) and probe substrate taurocholate (2 µM) in the absence or presence of ATP. In MRP2 vesicular transport assay, test compounds were incubated with membrane vesicle preparations (total protein: 50 µg/well) and probe substrate transport assay, test compounds were incubated with membrane vesicle preparations (total protein: 50 µg/well) and probe substrate E217 β G (50 µM) in the absence or presence of ATP. In MRP4 vesicular transport assay, test compounds were incubated with membrane vesicle preparations (total protein: 50 µg/well) and probe substrate DHEAS (0.5 µM) in the absence or presence of ATP. In NTCP transport assay, test compounds were incubated with NTCP transporters and probe substrate taurocholate (2 µM) in the presence and absence of sodium. The amount of substrate inside the vesicles or cells was determined by liquid scintillation counting for all vesicular transport assays.

		GS-5734		GS-704277	GS-441524		
Transporter	IC50 (µM)	Maximum inhibition (%)	IC50 (µM)	Maximum inhibition (%)	IC50 (µM)	Maximum inhibition (%)	
BSEP	22	86% at 100µM	>100	25% at 100µM	>100	NIO up to 100µM	
MRP2	>100	NIO up to 100µM	>100	NIO up to 100µM	>100	NIO up to 100µM	
MRP4	5.1	91% at 100µM	>100	NIO up to 100µM	>100	NIO up to 100µM	
NTCP	72	58% at 100µM	>100	44% at 100µM	>100	24% at 100µM	

 $BSEP = bile salt export pump; MRP2 = multidrug resistance associated protein 2; MRP4 = multidrug resistance associated protein 4; NTCP = Na/Taurocholate co-transporting polypeptide; E217<math>\beta$ G = estradiol 17 β -D-glucuronide; DHEAS = dehydroepiandrosterone sulfate; CHO = Chinese Hamster Oocyte; NIO = No Inhibition Observed

11.7. AD-540-2006: Regulatory DDI Calculations

Report Title		Study Type	Report Number
Drug-Drug Interaction Liability Assessment for Remdesivir		Drug-drug interactions	AD-540-2006
Method			
Using current FDA Guidelines, repre enzyme inhibitor.	esentative plasma Cmax values for remdes	ivir were compared with its potency to act	as an inducer and its potency to be an
Inhibitory Effects of Remdesivir u	pon Enzyme Activities: Basic Model		
Enzyme	K _{i,u} (μM)		R ₁
CYP1A2	> 32.3		< 1.027
CYP2B6	31.8		1.028
CYP2C8	15.0		1.059
CYP2C9	12.6		1.070
CYP2C19	21.3		1.041
CYP2D6	17.8		1.049
СҮРЗА М	0.6		2.445
СҮРЗА Т	2.4		1.367
UGT1A1	3.1	3.1 1.285	

Values in **bold** potentially exceed the threshold for liability

Inhibitory Effects of Remdesivir upon Enzyme Activities: Mechanistic Static Model				
Enzyme	Hepatic Component	AUCR		
CYP1A2	> 0.97	< 1.02		
CYP2B6	0.97	1.02		
CYP2C8	0.94	1.05		
СҮР2С9	0.93	1.06		
CYP2C19	0.96	1.04		
CYP2D6	0.95	1.05		
СҮРЗА М	0.41	2.11 / 1.61 ^a		
СҮРЗА Т	0.73	1.31 / 1.16 ^a		
UGT1A1	0.78	1.22		

T., L 11. 14 E.cc. CD. E. Marken States States Market

Values in **bold** potentially exceed the threshold for liability

a Value calcuated using Day 1 C_{max} (200 mg dose) / Value calculated using Day 5 C_{max} (100 mg dose)

Basic and Mechanistic Static Model Calculations for Induction Liability for Remdesivir for the Hepatocytes (Donor 1) and Endpoints (CYP1A2 and CYP2B6 mRNA) Exhibiting a Positive Signal

Parameter	CYP1A2	CYP2B6
EC _{50,u} (µM)	83.9	80.6
E _{max} (fold over control)	22.5	20.1
R ₃	0.32	0.34
Hepatic component	1.23	1.22
AUCR	0.84	0.88

Values in **bold** potentially exceed the threshold for liability

Inhibitory Effects of Remdesivir upon Transporters				
Transporter	IC50,u (µM)	Κ _{i,u} (μM)	Guidance Metric	
P-gp	> 40	> 40	< 0.022	
BCRP	> 40	> 40	< 0.022	
OATP1B1	2.8	2.8	0.31	
OATP1B3	2.1	2.1	0.42	

Values in **bold** potentially exceed the threshold for liability

12. PHARMACOKINETICS: OTHER

No other pharmacokinetic studies have been conducted.