Janssen Research & Development

Pharmacokinetics Written Summary

MODULE 2.6.4

Rilpivirine Long-Acting

Issue Date: 1 July 2019

Document No.: EDMS-ERI-166216102

Confidentiality Statement

The information in this document contains trade secrets and commercial information that are privileged or confidential and may not be disclosed unless such disclosure is required by applicable law or regulations. In any event, persons to whom the information is disclosed must be informed that the information is *privileged* or *confidential* and may not be further disclosed by them. These restrictions on disclosure will apply equally to *all* future information supplied to you that is indicated as *privileged* or *confidential*.

TABLE OF CONTENTS

TABL	E OF CONTENTS	2
LIST	OF IN-TEXT TABLES	4
LIST	OF IN-TEXT FIGURES	5
LIST	OF ABBREVIATIONS	6
1.	BRIEF SUMMARY	8
2 .	METHODS OF ANALYSIS	12
2.1.	Rilpivirine	
2.1.1.		
2.1.2.		
2.1.3.		
2.2.	Poloxamer 338	
	ABSORPTION	
3.1.	Absorption	
3.1.1.		
3.1.2.		
3.1.3.		
3.1.3.	o	
3.1.4.		
3.1.4.	0	
3.1.4.2		
3.1.5.		
3.1.5.	o	
3.1.5.2		
3.2.	Kinetic Parameters, Bioequivalence and/or Bioavailability	
3.3.	Comparison of Exposure in Animals and Man	22
4.	DISTRIBUTION	25
4.1.	Tissue Distribution	
4.1.1.		
4.1.1.	F	
4.1.1.2		
4.1.2.		
4.1.2.		
4.1.2.		
4.2.	Protein Binding and Distribution in Blood Cells	
4.3.	Placental Transfer	
5 .	METABOLISM	
5.1.	Chemical Structures and Quantities of Metabolites in Biological Samples	32
5.1.1.		
5.1.2.	Studies in Rats	33
5.1.2.	1. Single Dose Administration	33
5.1.2.2		
5.1.3.	Studies in Dogs	
5.1.4.	Studies in Humans	35
5.1.5.	Metabolite Plasma Profile of Rilpivirine Across Species	37
5.2.	Possible Metabolic Pathways	
5.3.	Presystemic Metabolism (Glycemic Index/Hepatic First-Pass Effects)	
5.4.	In Vitro Metabolism, Including P450 Studies	
5.4.1.		

5.4.2.	/	
5.4.2.	· · · · · · · · · · · · · · · · · · ·	
5.4.2.		
5.5.	Enzyme Induction and Inhibition	44
5.5.1.		
	Induction in Human Hepatocytes	
5.5.2.		
5.5.3.		45
5.5.4.		
5.5.5.	Effect of Rilpivirine on Adrenal Gland	47
6.	EXCRETION	48
6.1.	Routes and Extent of Excretion	
6.2.	Excretion in Milk	49
7.	PHARMACOKINETIC DRUG INTERACTIONS	49
7.1.	Transporter Studies	
7.2.	Drug-Drug Interactions	
7.3.	Combination of RPV LA With CAB LA in Rats	
8.	OTHER PHARMACOKINETIC STUDIES	51
8.1.	After Administration of Other non-G001 Rilpivirine LA Formulations	
8.1.1.		
812		
8.1.3.		
8.1.4.		
8.1.5.	•	
8.2.	Rilpivirine Impurity related substance D*	
8.2.1.		
8.2.2.	,	
8.3.	Poloxamer 338	
8.3.1.		
8.3.2.	Toxicokinetic Studies	56
8.3.2.	1. Rats	56
8.3.2.	1. Rabbits	59
9.	DISCUSSION AND CONCLUSIONS	60
9.1.	Rilpivirine LA	
9.2.	From RPV oral (EDURANT®)	
10.	TABLES AND FIGURES	62
11.	LIST OF LITERATURE CITATIONS	63

LIST OF IN-TEXT TABLES

Table 1:	Concentration Range, Anticoagulant and Sample Volume for Validated LC-MS/MS	
-	Methods	
Table 2:	Long- and Short-Term Conditions Under Which RPV is Found to be Stable	15
Table 3:	Calibration Range, Anticoagulant and Sample Volume for Validated LC-MS/MS	40
T-1-1- 4:	Methods for P338	
Table 4:	The Particle Sizes of Different Formulations Administered in Rabbits	18
Table 5:	Mean RPV Toxicokinetic Parameters Following Repeated Intramuscular	40
-	Administration of RPV LA (G001) in Dogs	19
Table 6:	Mean RPV Pharmacokinetic Parameters Following Intravenous Administration of RPV	0.4
- -	in Minipigs (n=3)	21
Table 7:	Mean RPV Toxicokinetic Parameters Following Repeated Intramuscular	
	Administration of RPV LA (G001) in Minipigs	22
Table 8:	Mean Plasma Pharmacokinetic Parameters of RPV After IV Administration of RPV or	
	IM Administration of G001 Formulation	22
Table 9:	RPV Exposure in Animals (Oral/IM Administration) Relative to Human (IM	
	Administration)	24
Table 10:	Tissue, Plasma and Blood Concentrations of RPV and Tissue/Plasma or Blood Ratios	
	of RPV After IM Administration of RPV LA(G001) in Rats	26
Table 11:	Mean Tissue Concentrations (Range) of RPV in the Administration Site and Lymph	
	Nodes at the Administration and Contralateral Sides and Plasma Concentrations	
	(Range) in Female Rabbits (n=3) After Single Intramuscular Dosing at 150 mg/kg at 1-	
	Month Post-Dosing	27
Table 12:	Plasma Protein Binding and Blood Distribution of RPV at 1 μg/mL (Various Species)	
	or 2.5 μg/mL (Guinea pig and Monkey)	31
Table 13:	Total Percentage of the Administered Dose Metabolized per Major Pathways in Man	
	and its Corresponding Percentages in Mice, Rats and Dogs After Oral Administration	
	of ¹⁴ C-RPV	38
Table 14:	Percentage of Testosterone 6β-hydroxylase, Lauric Acid 12-hydroxylase and UDP-GT	
	Activities Relative to Control Values in Hepatic Microsomal Fractions of CD-1 Mouse,	
	Sprague-Dawley Rat and Beagle Dog After Repeated Administration of RPV or RPV	
	Base	46
Table 15:	Interaction of RPV With Human CYP450 in Vitro	46
Table 16:	Urinary and Fecal Excretion of the Radioactivity Following a Single Oral Dose of ¹⁴ C-	
	RPV Base in Mouse and Rat at 96 Hours After Dosing and in Dog and Human at 168	
	Hours After Dosing	49
Table 17:	Mean (n=3) Pharmacokinetic Parameters of RPV in Male Rats After Single IM	
	Administration at 60 mg/kg, Dosed Alone as RPV LA (G001) in Combination with	
	GSK1265744A (CAB) at 10 mg/kg	51
Table 18:	Mean Pharmacokinetic Parameters of P338 After Single Oral or Intramuscular	
	Administration of P338	56
Table 19:	Mean Toxicokinetic Parameters of P338 After Intramuscular Administration of P338 in	
		58
Table 20.	Mean Toxicokinetic Parameters of P338 After Intramuscular Administration of P338 in	00
	Rabbits	59

LIST OF IN-TEXT FIGURES

Figure 1:	Structural Formula of ¹⁴ C-RPV (Left) and ³ H-RPV (Right)	12
Figure 2:	Individual Plasma Profiles of RPV After Single IM Administration of RPV LA (G001) in	
	Rabbits After 3 Months of Follow-up at 150 mg/kg (Mod4.2.2.2/2683_14279 [FK7521])	18
Figure 3:	Individual Plasma Profiles of RPV After Single IM Administration of RPV LA (G001) in	
	Male Minipigs After 3 Months of Follow-up (Mod4.2.3.6/TMC278-NC359 [TOX9403])	
	at 600 mg/Minipig	20
Figure 4:	Tissue to Blood AUC _{0-4h} Ratios of Total Radioactivity, as Determined by	
	Radioluminography of Whole-Body Sections of Tissues in the Male Pigmented Long	
	Evans Rats After a Single Oral Administration of ¹⁴ C-RPV Base at 40 mg/kg	29
Figure 5:	Tissue to Blood AUC _{0-8h} Ratios of Total Radioactivity, as Determined by	
	Radioluminography of Whole-Body Sections of Tissues in the Pregnant Female	
	Sprague-Dawley Rats After a Single Oral Administration of ¹⁴ C-RPV Base at 40 mg/kg	
Figure 6:	In Vivo Metabolic Pathways of RPV in Animals and Humans (Excluding Rat Bile)	39
Figure 7:	In Vitro Metabolic Pathways of RPV in the Liver of Swiss Albino Mouse, Sprague-	
	Dawley Rat, Guinea Pig, Rabbit, Dog, Monkey, Man and Black Agouti ras H2 Mouse	42

LIST OF ABBREVIATIONS

ARV antiretroviral

AUC_{0-t} area under the plasma concentration versus time curve from time 0 to time 't'

BSA bovine serum albumin

CA citric acid

CHO Chinese Hamster ovary

cDNA complementary deoxyribonucleic acid

Cl_b blood clearance Cl_n plasma clearance

C_{max} maximum plasma concentration

CN- nitrile

CYP cytochrome P450
D50 diameter 50
DMSO dimethyl sulfoxide

DOSS dioctyl sodium sulfosuccinate

EC₅₀ 50% effective concentration values

EDTA ethylenediamine tetra-acetic acid

EMA European Medicines Agency

F004 clinical formulation containing 100 mg/mL RPV LA in P338 F006 clinical formulation containing 300 mg/mL RPV LA in PS80

F_{abs} absolute bioavailability FDA Food and Drug Administration

F_{rel} relative bioavailability

G001 clinical formulation containing 300 mg/mL RPV LA in P338

GD gestation day

GLP good laboratory practices GST glutathione S-transferase

HCl hydrochloride

HIV-1 human immunodeficiency virus type 1

HLM human liver microsomes

HPLC high performance liquid chromatography

HPMC hydroxypropyl-methylcellulose

IC₅₀ concentration resulting in 50% of maximum inhibition

 $\begin{array}{ll} IM & intramuscular \\ IV & intravenous \\ K_i & inhibition constant \\ K_m & substrate concentration \\ \end{array}$

LA long-acting

LC-MS/MS liquid chromatography with tandem mass spectrometry

LLOQ lower limit of quantification LSC liquid scintillation counting

MATE multi-antimicrobial extrusion protein

MBI mechanism-based inhibition
MRM multiple reaction monitoring
mRNA messenger ribonucleic acid

NADPH nicotinamide adenine dinucleotide phosphate

NMR nuclear magnetic resonance

NNRTI non-nucleoside reverse transcriptase inhibitor

NRS NADPH regenerating system

NZW New Zealand white

OCT2 organic cation transporter 2

OECD Organization for Economic Co-operation and Development

P338 poloxamer 338 PE polyethylene

PEG400 polyethylene glycol 400

P-gp P-glycoprotein
PI pre-incubation

PopPK population pharmacokinetic

PS80 polysorbate 80 PVP polyvinylpyrrolidine QC quality control

QWBA quantitative whole-body autoradiography

RLG radioluminography

RPV rilpivirine SC subcutaneous SCN- thiocyanate

SPE solid phase extraction TEA tetra ethyl ammonium

 t_{max} time to reach the maximum plasma concentration TPGS D- α -tocopheryl Polyethyleneglycol 1000 succinate

TR total radioactivity

UDP-GT uridine diphosphate-glucuronosyltransferase

ULOQ upper limit of quantification

US United States

Vd_{ss} volume of distribution at steady-state

Vit E vitamin E

V_{max} maximum rate achieved

1. BRIEF SUMMARY

Rilpivirine (RPV, previously known as TMC278, JNJ-16150108 or R278474), a diarylpyrimidine derivative, is a potent non-nucleoside reverse transcriptase inhibitor (NNRTI) with *in vitro* activity against wild-type human immunodeficiency virus type 1 (HIV-1) and NNRTI-resistant mutants. Rilpivirine is available as a 25 mg oral tablet, which has been approved for the treatment of HIV-1 infection in antiretroviral (ARV) treatment-naïve adult patients in multiple countries including Europe (EMEA/H/C/002264), the United States of America, Canada, and Japan as EDURANT®.

Janssen Sciences Ireland UC in partnership with ViiV Healthcare Company are developing the RPV Long-Acting (LA) + Cabotegravir (CAB) LA injectable regimen for the treatment of HIV-1 infection. The overall objective of the CAB + RPV clinical program is to develop a novel, highly effective, well tolerated 2-drug intramuscular (IM) injectable regimen LA administration for the treatment of HIV-1 infection. This Marketing Authorization Application (MAA) focuses on the RPV LA component of this 2-drug regimen. CAB will be the subject of a separate, parallel, MAA, submitted by ViiV Healthcare. Janssen is the sponsor of the RPV LA development and manufacturing program; ViiV Healthcare is the sponsor of the CAB + RPV clinical program.

The present summary reviews the available data of RPV after administration as an IM injection. In addition, all the relevant nonclinical pharmacokinetic studies of RPV on distribution, metabolism and excretion performed for the EDURANT® registration (i.e., oral tablet) are also included.

After IM injection of RPV LA, with focus on the final clinical formulation G001 containing 300 mg RPV base/mL suspension and poloxamer 338 (P338; JNJ-4360418; 50 mg/mL), the pharmacokinetics of RPV has been studied in rabbits, dogs and minipigs. Distribution studies were conducted in rats and rabbits, and a pharmacokinetic study after administration of RPV LA and CAB LA was performed in rats. During the development of RPV LA, two other formulations were also administered in clinic i.e., the P338 (25 mg/mL)-containing formulation F004 (100 mg RPV base/mL suspension), and the polysorbate 80 (PS80)-containing formulation F006 (300 mg RPV base/mL suspension). Other formulations including F004 and F006 were also tested in animals after IM or subcutaneous (SC) administration and some studies were performed on the genotoxic impurity [Apartical action of RPV]. In addition, supportive pharmacokinetic/toxicokinetic studies on P338 were conducted after IM or oral administration of P338 or IM administration of RPV LA; these studies are described in Section 8.

For the registration of EDURANT®, RPV has been examined in both in vitro and in vivo test systems. The relevant information on the distribution, metabolism and excretion are included in this summary to support overall conclusions on RPV LA.

All pharmacokinetic studies were conducted in accordance with best scientific principles. Pivotal studies were conducted in compliance with the United States (US) Food and Drug Administration (FDA) Good Laboratory Practice (GLP) regulations (21 CFR Part 58) and Organization for Economic Co-operation and Development (OECD) principles of GLP

(Directive 2004/10/EC) in OECD-adherent countries. All conducted studies are listed in Mod2.6.5.1/Pharmacokinetics Overview Table.

The following convention is applied throughout this Module: reference is made to 'RPV' when the hydrochloride (HCl) salt was administered and to 'RPV base' when the free base was administered. The RPV LA formulation contains the RPV base form. The dose or concentration is always given as base equivalent and the appropriate correction factor was used when the HCl salt was administered.

• RPV LA

In rabbits and minipigs, after a single IM administration of RPV LA as the P338-containing formulation (G001), the RPV release was fast, after which mean plasma concentrations declined, remained fairly constant thereafter and were still quantifiable after 3 months. The absolute bioavailability (F_{abs} after 3 months) is 67% in rabbits at 150 mg/kg and ranges between 35 and 62% in minipigs at 600 mg, indicating the release from the depot was still incomplete after 3 months.

Several studies were performed in rabbits and minipigs, mainly comparing different P338 containing formulations and the final selected G001 formulation. No relevant changes in plasma profiles across studies were observed.

After repeated oral administration of RPV in various animal species used in the toxicology studies compared to IM administration of RPV LA in patients, the highest maximum plasma concentration (C_{max}) ratio (animal/human) of RPV was around 406 in female mice and 252 in male mice, 82 in female rats and 39 male rats, 123 in pregnant rabbits, 33 in dogs, and 2 in female monkeys. The highest AUC_{0-day28} ratio (animal/human) of RPV was around 258 in female mice, 170 in male mice, 82 in female rats, 25 in male rats, 78 in pregnant rabbits, 22 in dogs, and 2 in female monkeys. After IM administration of RPV LA in minipigs and dogs compared to IM administration of RPV LA in patients, the C_{max} ratios (animal/human) were around 2 and 10 and AUC_{0-day28} (animal/human) ratios were around 0.6 and 5, respectively.

In rabbits, at the administration site after a single IM administration of RPV LA (150 mg/kg; G001) at the end of a 1-month follow-up period, the RPV concentrations were high (1456-fold) compared those in the contralateral side. In the lymph nodes, the RPV concentrations were similar between the injection and contralateral site except for one rabbit for which higher concentrations were seen in the accessory popliteal lymph nodes of the injection side. In rats, after a single IM administration of RPV LA (60 mg/kg; G001), the highest exposures of RPV were measured in the left popliteal and medial iliac lymph nodes adjacent to the injection site with tissue/plasma AUC_{0-day42} ratios of 12,203 and 2256, respectively. In the contralateral right popliteal and medial iliac lymph nodes, the tissue/plasma AUC_{0-day42} ratios were 6.7 and 2.6, respectively. In the kidney, adrenal glands, lungs, liver, and pancreas, the tissue/plasma AUC_{0-day42} ratios were 3.7, 3.2, 1.5, 1.5 and 1.2, respectively. The tissue/plasma AUC_{0-day42} ratios were lower than 1 in brain (0.4), heart (0.8), spleen (0.97) and thymus (0.87).

In rats, following single IM administration at 60 mg/kg of RPV LA (G001) alone or in combination with a LA injectable suspension of GSK1265744A (CAB) at 10 mg/kg, the plasma concentrations of RPV were comparable for the 2 groups and the mean C_{max} and AUC_{0-1444h or 2months} values of RPV were similar.

In addition, other studies were performed after administration of RPV LA at lower concentration of RPV containing P338 or with PS80 after IM or SC in different species. A faster increase of the RPV concentrations were observed after administration of a P338 containing formulation compared to a PS80 containing formulation.

Some studies were performed in rats on the in vitro metabolism or in vivo after single IM injection of minimum properties of a genotoxic impurity of RPV. It could be concluded that in the rat, minimum properties rapidly metabolically cleared and that the main metabolite pathways are sulfate conjugation and loss of the nitrile (CN-) function. Some pharmacokinetic and toxicokinetic studies were conducted after oral or IM administration of P338 in rats, rabbits and after IM administration of RPV LA in minipigs. Measurement of P338 was also performed in plasma samples from a clinical study (Mod5.3.1.2/TMC278LAHTX1001) after single IM administration of RPV LA (300 mg/mL in 50 mg/mL P338; 2-mL injection). After oral administration in rats and rabbits, no or very limited absorption of P388 was observed. After IM administration of P338 or RPV LA (G001) in rabbits, minipigs and human, the P338 release was fast, after which plasma concentrations declined, remained fairly constant thereafter and were still quantifiable after at least 672 h.

• From RPV oral (EDURANT®)

In rats, tissue distribution of ¹⁴C-RPV and its metabolites after single oral dose was rapid and extensive. The highest concentrations of radioactivity were measured in the liver, adrenal gland, brown fat and kidney. There was no evidence of undue retention and there were no indications of irreversible binding of RPV and its metabolites to melanin. In pregnant rats, there was distribution of ¹⁴C-RPV to the placenta and the fetus. Total radioactivity (TR) exposure values in the placenta and in whole fetus were 0.94- and 0.64-fold those of maternal blood, respectively.

Rilpivirine is highly bound to plasma proteins and this is independent of the concentration and species. In the various animal species and human, plasma protein binding ranged from 99.08% to 99.97%. Rilpivirine is highly bound to human albumin and to a much lesser extent to α_1 -acid glycoprotein. The distribution of RPV to red blood cells is limited in all species.

Some differences were seen in clearance across species. In rats, blood clearance (Cl_b) of RPV is moderate whereas in rabbits, dogs and monkeys it is low compared to the hepatic blood flow. The volume of distribution at steady-state (Vd_{ss}) was larger in rats, dogs and monkeys and very low in rabbits.

Rilpivirine is metabolized by Phase I and Phase II pathways including aromatic and aliphatic hydroxylation, glutathione conjugation, N-glucuronidation and CN- split-off followed by reduction/oxidation, whether or not in combination with secondary pathways such as

glucuronidation, dehydration and catabolism of the glutathione conjugate. In mice, oxidation of RPV and to a lesser extent glutathione conjugation were the predominant pathways. In rats, the glutathione conjugation pathway was the predominant pathway whereas in dog and man, oxidation of RPV was the predominant one. No unique human metabolites were observed. In plasma of animals and human, unchanged RPV was more abundant than any metabolite. After repeated oral administration of RPV for 11 days in healthy subjects at 75 and 300 mg q.d, there was no disproportionate increase in exposure of any of the relevant metabolites compared to the parent compound exposure.

In all animal species and human, the predominant route of excretion was via feces (>85%). Renal excretion of TR was very limited (0.45% to 6.1% of the dose) in all animal species and human and the amount of unchanged RPV in urine was negligible. In rats, biliary excretion was limited (18%-25% of the dose) and the amount of unchanged RPV in bile was negligible. In rats, there was indication that RPV was excreted in milk.

In vitro, the cytochrome P450 (CYP) 3A4 isoenzyme plays a major role in the biotransformation of RPV. Rilpivirine might be a very weak inducer of CYP1A2 and CYP2B6 and a moderate inducer of CYP2C19 and CYP3A4. Ex-vivo induction studies in rodents showed that RPV is an inducer of the CYP3A-family (up to 1.7-fold in mice at 320 mg/kg and up to 6-fold in rats at 400 mg/kg) and CYP4A-family (up to 25-fold in mice and up to 4.7-fold in rats). Additionally, RPV induced uridine diphosphate-glucuronosyltransferase (UDP-GT) activity in mice (up to 2.3-fold at 320 mg/kg) and to a lesser extent in rats (up to 1.3-fold only at 400 mg/kg in males). In dogs, treatment with RPV did not result in any enzyme induction.

Rilpivirine is an inhibitor of CYP2C8 (inhibition constant $(K_i) = 10\mu M$) and CYP2C9 $(K_i = 1.7 \,\mu M)$ in vitro whereas no inhibition is expected in vivo. In human liver microsomes (HLM), the limited mechanism-based inhibition (MBI) of CYP2C9 is unlikely to have clinical relevance at therapeutic doses of RPV.

Rilpivirine was shown to have P-glycoprotein (P-gp) inhibitor properties with an apparent concentration resulting in 50% of maximum inhibition (IC₅₀) value of 9.2 μ M (3.4 μ g/mL). Inhibition of the organic cation transporter 2 (OCT2) by RPV was evaluated in vitro. The in vitro IC₅₀ for inhibition of OCT2 by RPV was 5.46 μ M (2.0 μ g/mL). The inhibition of multi-antimicrobial extrusion protein (MATE)-mediated transport by RPV was investigated in vitro in Chinese Hamster ovary (CHO) cells overexpressing MATE-1 and MATE-2K. The uptake of ¹⁴C-Tetra Ethyl Ammonium (TEA) was inhibited by Rilpivirine with an IC₅₀ value of 7.51 μ M (2.75 μ g/mL) for MATE-1 and of <0.05 μ M (<0.018 μ g/mL) for MATE-2K. In conclusion, the effect of RPV on MATE-1 is unlikely to be clinically relevant, but it cannot be excluded that RPV would inhibit MATE-2K at clinically relevant concentrations.

2. METHODS OF ANALYSIS

2.1. Rilpivirine

2.1.1. Radiolabeled Rilpivirine

A large number of studies, originally conducted to suppport the registration of EDURANT® and rediscussed in this summary for RPV LA, were conducted with radiolabeled RPV. Two radiolabeled (¹⁴C and ³H) RPV compounds were used but most of the studies were performed with ¹⁴C. The ¹⁴C atom was on the CN- carbon of the benzonitrile of the RPV molecule (Figure 1). The original material had a radiochemical purity of 98.2% and a specific activity of 2.03 GBq/mmol. The ³H atom was in the pyrimidine moiety of RPV molecule. The radiochemical purity was 99.7% and the specific activity was 8.07 TBq/mmol (Figure 1), and was used in one study to investigate plasma protein binding and distribution in blood.

Figure 1: Structural Formula of ¹⁴C-RPV (Left) and ³H-RPV (Right)

*: 14C-label; T: 3H-label

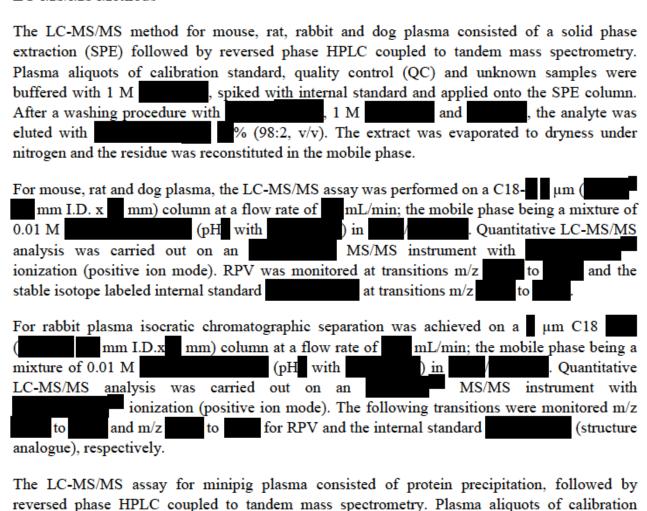
The metabolic stability of the ¹⁴C label of RPV was investigated following a single oral dose of ¹⁴C-RPV at 10 mg/kg in Sprague-Dawley rats (Mod4.2.2.1/R278474-FK4686). The recovery of ¹⁴CO₂ from the expired air collected for 25 hours after administration was negligible. This indicates that the ¹⁴C label is metabolically stable.

2.1.2. Radiochemical Methods

The following techniques were used:

- Tissue distribution of TR was studied by quantitative whole-body autoradiography (QWBA) in male pigmented rats and pregnant female Sprague-Dawley rats (see Section 4.1.1.1). The concentration of radioactivity in the different tissues was determined by radioluminography (RLG), whereas the concentration of radioactivity in the eye and in biological fluids (blood and plasma) was determined by liquid scintillation counting (LSC).
- TR in biological samples was measured by LSC, using appropriate scintillation cocktails. Aliquots of biological fluids were counted directly (plasma, urine and bile) following extraction or combustion (blood and feces residues).

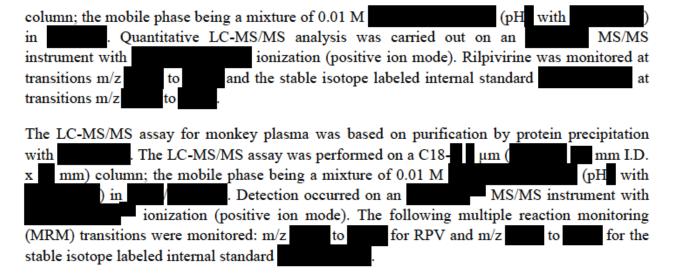
In metabolism and/or mass balance studies, unchanged compound and/or its major metabolites were determined in various biological samples (plasma, urine, bile and feces). Mass balance was based on the recovery of radioactivity from various samples or pools of samples. In in vitro and in vivo studies with ¹⁴C-labeled RPV, metabolite profiles were determined by radio-high performance liquid chromatography (HPLC). Metabolite identification was done by a combination of liquid chromatography with tandem mass spectrometry (LC-MS/MS) and co-chromatography with synthesized metabolites (see Sections 5.1 and 5.4.1).


2.1.3. Bioanalytical Methods

Bioanalytical methods were developed to support the RPV and RPV LA toxicokinetic and pharmacokinetic program. Methods were all based on the same detection technique, i.e. tandem mass spectrometry.

An LC-MS/MS method was validated for the determination of RPV in mouse, rat, rabbit, dog, minipigs and monkey ethylenediamine tetra-acetic acid (EDTA) plasma and dog heparin plasma. Tissue samples were analyzed with qualified research methods based on the validated plasma methods. The validation data for LC-MS/MS methods (heparin and EDTA plasma) are summarized below and details are outlined in the respective method validation reports.

In-study validation was conducted for nonclinical GLP studies. These validation data are appended to the individual preclinical study reports (Mod4.2.2.1/R278474-FK4240, Mod4.2.2.1/R278474-FK4170, Mod4.2.2.1/R278474-BA104, Mod4.2.2.1/R278474-FK4169, Mod4.2.2.1/TMC278-NC298 [BA1061], Mod4.2.2.1/TMC278-NC273 [BA1062]).


LC-MS/MS Methods

standard, QC and unknown samples were spiked with internal standard and precipitated with

. The assay was performed on a C18- μm (

mm I.D. x

For the LC-MS/MS assays a fixed calibration range was defined for each species. Table 1 presents the anticoagulant, sample volume and effective linear range for the analysis of animal heparin or EDTA plasma.

Table 1: Concentration Range, Anticoagulant and Sample Volume for Validated LC-MS/MS Methods

Species	Anticoagulant	Volume (mL)	RPV LLOQ-ULOQ (ng/mL)
Mouse	EDTA ^b	0.05	2.00 - 4000
Rat	EDTA ^a	0.1	1.00 - 2000
Rabbit	EDTA ^b	0.1	1.00 - 2000
Dog	EDTA ^a	0.1	1.00 - 2000
	Heparin ^b	0.1	1.00 - 2000
Minipig	EDTA ^b	0.05	1.00 - 2000
Monkey	EDTA ^b	0.05	1.00 - 2000

^a Full validation; ^b Partial validation

The selectivity of the LC-MS/MS assay towards endogenous compounds was proven in six different batches of non-pooled blank EDTA or heparin plasma.

The inter-batch accuracy and inter-batch precision were calculated by comparing the theoretical concentration with the mean measured concentration for sets of QC samples at 4 concentrations (lower limit of quantification (LLOQ), Low, Medium and High). The accuracy was within the criteria of 80 to 120% at the LLOQ QC level and 85 to 115% at the other levels. The inter-batch precision of the LLOQ QC was ≤20% and ≤15% at the other levels. Detailed information on the accuracy and precision can be found in the method validation reports.

Stability

The stability of RPV was assessed in the stock solution solvent (methanol) and in biological matrices (both heparin and EDTA blood and plasma at several temperatures). The test article was found not to be stable in daylight. When RPV is exposed to daylight, the drug is transformed to

LLOQ: lower limit of quantification; ULOQ: upper limit of quantification

the Z-isomeric form. Therefore, each assay was carried out under yellow light conditions and samples were protected from light.

RPV was stable in methanol for at least 6 months after storage in a freezer (-18°C), for 1 month in a refrigerator ($4^{\circ}C \pm 2^{\circ}C$) and for 3 days at room temperature (Mod4.2.2.1/R278474-FK4170) (yellow light conditions).

All the conditions in which RPV was found to be stable in blood, plasma and processed QC samples, are detailed in Table 2.

Institut Long	,				
Species	Short-term st	torage	Long-term storage	Processed QC samples	
	Blood	Plasma	Plasma		
Mouse (EDTA)	21		914 days in freezer	3 days	
Rat (EDTA)	2 h at refrigerator temp. 2 h at room temp.		581 days in freezer	2 days	
Dog (EDTA or heparin)	2 h at 37°C	24 h at RT 3 freeze/thaw cycles	1085 days in freezer	5 days	
Rabbit (EDTA)	2 h at refrigerator temp. 4 h at room temp. 2 h at 37°C		1119 days in freezer	6 days	
Minipig (EDTA)	2 h on melting ice 4 h at room temp. 2 h at 37°C		343 days in freezer	6 days	
Monkey (EDTA)	2 h on melting ice 4 h at room temp. 2 h at 37°C	-	361 days in freezer	2 days	

Table 2: Long- and Short-Term Conditions Under Which RPV is Found to be Stable

EDTA: ethylene diamine tetra-acetic acid; RT: room temperature

2.2. Poloxamer 338

Bioanalytical methods were developed to support the P338 toxicokinetic and pharmacokinetic studies. Plasma assays for P338, used to support GLP studies were validated according to US FDA guidance and European Medicines Agency (EMA) guideline on bioanalytical method validation [1, 2]. It was necessary to expand the acceptance criteria for this assay by 5% due to the complexity of this analyte and the challenges encountered during assay development. The analyte is a polymer that undergoes in source fragmentation and multiple transitions are monitored and summed to obtain the required sensitivity, which increases assay variability. An LC-MS/MS method was validated for the determination of P338 in rat (Mod4.2.2.1/BA13148 [304191]) and rabbit (Mod4.2.2.1/BA13146 [304196]) EDTA plasma at UK).

Detailed information on the method validations for the analysis of P338 is described in the individual validation reports which are referenced in Mod2.6.5.1.

The validated LC-MS/MS method for rat and rabbit plasma consisted of a protein precipitation step followed by reversed phase HPLC coupled to tandem mass spectrometry. Plasma aliquots of calibration standard, QC and unknown samples were spiked with internal standard and precipitated with acetonitrile.

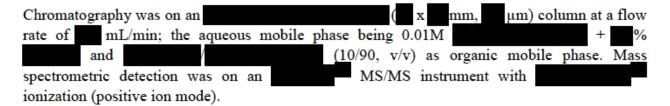


Table 3 presents the anticoagulant, sample volume and assay range for rat and rabbit.

Table 3: Calibration Range, Anticoagulant and Sample Volume for Validated LC-MS/MS Methods for P338

Species Anticoagulant		Volume (mL)	LLOQ-ULOQ (µg/mL)
Rat	EDTA ^a	0.025	1.00 - 100
Rabbit	EDTA ^a	0.025	1.00 - 100

a Full validation

LLOQ: lower limit of quantification; ULOQ: upper limit of quantification

The inter-batch accuracy and inter-batch precision were calculated by comparing the theoretical concentration with the mean measured concentration for sets of QC samples at 4 concentrations (LLOQ, Low, Medium and High). The accuracy was within the criteria of 75 to 125% at the LLOQ QC level and 80 to 120% at the other levels. The inter-batch precision of the LLOQ QC was ≤25% and ≤20% at the other levels. Freeze/thaw-, benchtop- and long-term stability was proven. Detailed information on all validation experiments can be found in the method validation reports.

For non-GLP studies, qualified LC-MS/MS methods were used for the determination of P338 at Janssen's internal Bioanalysis lab. These are scientifically sound methods with documented preset acceptance criteria and QC samples for batch acceptance. These methods used the same principle for quantification of P338 as the assays validated at In-study validation data are maintained in the raw data. In one study, the same qualified assay was used to document exposure in human plasma. The range for each assay is documented in the respective study data. The LLOQ in plasma ranged between 0.075 – 1.00 μg/mL. A qualified method was also used for tissues and the LLOQ ranged between 1.00 - 5.00 μg/g.

ABSORPTION

3.1. Absorption

Studies in which the final clinical formulation for IM administration (i.e. RPV 300 mg/mL, P338 50 mg/mL (G001)) was used, are described below.

3.1.1. Studies in Mice

No studies were performed in mice with the G001 formulation. Studies performed with other formulations are described in Section 8.1.1.

3.1.2. Studies in Rats

No studies were performed in rats with the G001 formulation. Studies performed with other formulations are described in Section 8.1.2.

3.1.3. Studies in Rabbits

3.1.3.1. Single Dose Administration

Two IM studies were performed in female New Zealand white (NZW) rabbits (n=3 per formulation) with RPV LA (150 mg/kg; 0.5 mL/kg) in P338 (G001; used as reference control). In the first study (Mod4.2.2.2/2683_14278 [FK7491]), 2 other formulations were administered IM with a follow-up of 1 month: the first formulation tested contained an aged (i.e., larger particle size) RPV batch of the G001 formulation and the second formulation was a 3-fold dilution of the G001 formulation containing 100 mg/mL RPV in P338 (16.7 mg/mL) (Mod2.6.5.3A). In the second study (Mod4.2.2.2/2683_14279 [FK7521]), 3 other formulations were administered IM with a follow-up of 3 months: each formulation consisted of 300 mg/mL RPV, and was milled to smaller diameter (D50), or was an aged G001 formulation stored at 40°C or was freshly milled to edge of specification (Mod2.6.5.3B).

After a single IM administration of RPV LA as G001 in female rabbits, the initial release was rapid in both studies with high plasma concentrations being reached within 24 h after administration. After the high plasma concentrations on the first day after dosing, the concentrations declined until Day 3; then they slowly increased again up to 9 or 14 days after administration. After this second peak, plasma levels declined slowly and remained quantifiable up to the last sampling point (1 or 3 months; Figure 2). After 1 and 3 months of follow-up, the C_{max} and the $AUC_{0-1or3month}$ values were 4.6 and 6.5 $\mu g/mL$ and 2383 and 3561 $\mu g.h/mL$, respectively.

In the study with 1 month of follow-up, the highest $AUC_{0\text{-}1\text{month}}$ value was obtained with the 3-fold diluted G001 formulation taking into account the dose difference, whereas the exposure after the formulation containing an aged RPV batch was similar to that of the G001 formulation. In the study with 3 months of follow-up, the $AUC_{0\text{-}3\text{months}}$ values were similar between the freshly milled to smaller D50 formulation, aged clinical batch and G001 formulation whereas it was slightly lower (12%) with the aged clinical batch stored at 40°C.

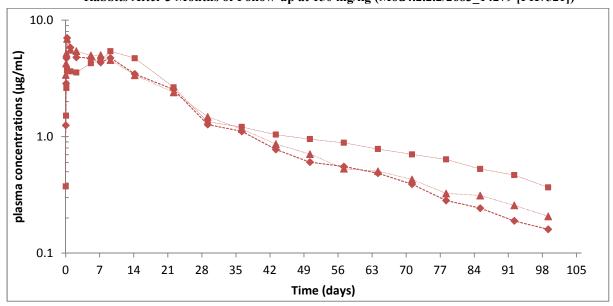


Figure 2: Individual Plasma Profiles of RPV After Single IM Administration of RPV LA (G001) in Rabbits After 3 Months of Follow-up at 150 mg/kg (Mod4.2.2.2/2683 14279 [FK7521])

An additional study was performed in female NZW rabbits (n=3 per formulation) after IM administration of G001 formulation (150 mg/kg; 0.5 mL/kg) with different particle sizes (Table 4) with a follow-up of 3 weeks (Mod4.2.2.2/FK12066 and Mod2.6.5.3C).

Table 4: The Particle Sizes of Different Formulations Administered in Rabbits

Particle Size	$D_v 10 (\mu m)$	$D_v50 (\mu m)$	D _v 90 (μm)	D _v 99 (μm)
Target	0.081	0.218	0.953	2.596
Aged at higher temperature	0.082	0.226	1.964	3.888
Smaller particle size, close to target	0.082	0.202	0.576	2.173

The $AUC_{0-3weeks}$ values were the highest when administering the formulation with the smallest particle size, followed by the targeted one and the aged one at higher temperature: the relative bioavailability (F_{rel}), as compared to the targeted particle size formulation, was 128% and 88%, respectively.

There was one study performed with another formulation (non-G001); this is described in Section 8.1.3.

3.1.4. Studies in Dogs

3.1.4.1. Single Dose Administration

No single dose studies were performed in dogs with the G001 formulation. Studies performed with other formulations are described in Section 8.1.4.

3.1.4.2. Multiple Dose Administration

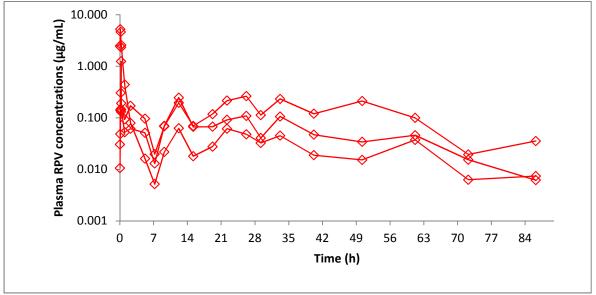
G001 formulation was administered IM in a 4-week GLP toxicity study in male and female beagle dogs (Mod4.2.3.2/TOX10759 and Mod2.6.5.4A). The dose of RPV was 150 mg/dog (18-21 mg/kg; 0.5 mL) and 1200 mg/dog (143-160 mg/kg: 4 x 1 mL) at Days 1 and 15.

Systemic exposure to RPV increased generally in a sub-proportional manner in males and females on Days 1 and 15 between doses and was generally comparable between Days 1 and 15 at 150 and 1200 mg/dog in both sexes. A trend to slightly higher C_{max} in females than males was noted at 150 mg/dog on both days. In general, exposure (AUC) was comparable between sexes at 150 and 1200 mg/dog on both days (Table 5).

Table 5:	Mean RPV Toxicokinetic Parameters Following Repeated Intramuscular Administration of
	RPV LA (G001) in Dogs

Dose	Number Per Group/ Sex	Sampling period	C _{max} (µg/mL)	t _{max} (h)	AUC _{0-264h} ^a (μg.h/mL)	AUC _{0-336h} ^b (μg.h/mL)	AUC _{0-600h} ^c (μg.h/mL)
	3/M	Day 1	0.12	264	22	29	-
150 mg/dog	3/1VI	Day 15	0.18	24	35	1	63
	3/F	Day 1	0.25	24	39	46	-
		Day 15	0.40	24	49	-	94
	5/M	Day 1	1.2	24	185	218	-
1200	3/1VI	Day 15	1.4	24	217	-	435
1200 mg/dog	5/F	Day 1	1.2	24	175	204	-
	3/F	Day 15	1.2	24	206	-	410

^a AUC_{0-264h (11 days)}; ^b AUC_{0-336h (14 days)}; ^c AUC_{0-600h (25 days)} IM Administration on Day 1 and Day 15


3.1.5. Studies in Minipigs

3.1.5.1. Single Dose Administration

In the first study, G001 formulation was administered IM to male Göttingen minipigs (n=3) with a follow-up period of 3 months at 600 mg/minipig (~60 mg/kg; 2 mL) (Mod4.2.3.6/TMC278-NC359 [TOX9403]). In addition, 5 other formulations containing 300 mg/mL of RPV with P338 (50 mg/mL) and Na-deoxycholate (2 mg/mL) or polyethylene polyethylene glycol (PE PEG) 350 (1.5 mg/mL) or dioctyl sodium sulfosuccinate (DOSS) (2 mg/mL) or 200 mg/mL of RPV base with P338 at 50 mg/mL with and without Na-deoxycholate were also administered (Mod2.6.5.3D).

After IM administration of G001 formulation in male minipigs, mean RPV plasma concentrations fluctuated or remained constant until a drop in the plasma concentrations occurred between Day 1 and 7. Afterwards, relatively flat profiles were observed between Day 9 and 86 (Figure 3). The mean C_{max} and $AUC_{0-3months}$ values of RPV at 600 mg/minipig (G001) were 2.2 µg/mL and 152 µg.h/mL, respectively. The plasma profiles were very similar across the different formulations tested. The highest $AUC_{0-3month}$ values were obtained at 600 mg/minipig with the G001 formulation and 300 mg/mL of RPV with P338 and DOSS. Based on this study, the G001 formulation was selected to be further evaluated in the clinic and became the final formulation.

Figure 3: Individual Plasma Profiles of RPV After Single IM Administration of RPV LA (G001) in Male Minipigs After 3 Months of Follow-up (Mod4.2.3.6/TMC278-NC359 [TOX9403]) at 600 mg/Minipig

In two other studies, G001 formulation was administered as reference in male minipigs. In the first study (Mod4.2.2.2/2683_14277 [FK7490]) with a follow-up of 1 month, 2 other formulations were administered IM: the first formulation tested contained an aged (i.e., larger particle size) RPV batch of the G001 formulation and the second one was a 3-fold dilution of the G001 formulation containing 100 mg/mL RPV in P338 (Mod2.6.5.3E). In the second study (Mod4.2.2.2/2683_14125 [FK7520]) with a follow-up of 3 months, 3 other formulations were administered IM: one formulation consisted of 300 mg/mL RPV LA, milled to smaller D50, a second formulation consisted of the aged G001 formulation, stored at 40°C, and the last one contained 300 mg/mL of RPV LA, freshly milled to edge of specification (Mod2.6.5.3F).

In the first study, after 1 month of follow-up, the C_{max} and AUC_{0-1month} values of the 3-fold diluted G001 formulation taking into account the dose difference appeared slightly higher than those of the clinical formulation G001 and similar to the formulation containing the aged RPV batch. In the second study, after 3 months of follow-up, the AUC_{0-3months} values from the formulation consisting of 300 mg/mL RPV LA, milled to smaller D50, were higher than the other 3 formulations (fresh and aged G001 formulation and the formulation freshly milled to edge of specification).

The G001 formulation was also administered IM to male minipigs with a follow-up period of 3 months at 600 mg/minipig and compared with 3 other formulations at 300 mg/mL of RPV contained sodium metabisulfite or low or high concentration of polyvinylpyrrolidone (PVP) (Mod4.2.2.2/2683_0040908 (FK10294) and Mod2.6.5.3G). The mean AUC_{0-3months} value after G001 administration was comparable to that after low PVP administration while it was lower after administration of the formulation containing sodium metabisulfite ($F_{rel} = 80\%$) or high PVP (58%).

In addition, RPV was also given after intravenous (IV) administration (slow bolus) at 2 mg/kg in 20% Captisol in male minipigs (Mod4.2.2.2/2683_14125 (FK7520) and Mod2.6.5.3F). The Vd_{ss} was large and total plasma clearance (Cl_p) was low (Table 6).

Table 6: Mean RPV Pharmacokinetic Parameters Following Intravenous Administration of RPV in Minipigs (n=3)

AUC _{0-48 h}	AUC _{0-∞}	t _{1/2}	Cl _p	Vd _{ss}
(μg.h/mL)	(μg.h/mL)	(h)	(mL/h/kg)	(L/kg)
2.97	2.80	8	753	4.9

There was one study performed with another formulation (non-G001); this is described in Section 8.1.5.

3.1.5.2. Multiple Dose Administration

The G001 formulation was administered IM in a 6-week (Mod4.2.3.2/TMC278-NC368 [TOX9508] and Mod2.6.5.4B), and a 9-month toxicity study (Mod4.2.3.2/TMC278-NC349 [TOX9517] and Mod2.6.5.4C) in male and female Göttingen minipigs. In the 6-week study, RPV LA was dosed every 2 weeks at 600 mg/injection (75-83 mg/kg; 4 injections at days 0, 14, 28 and 42). In the 9-month study minipigs received once monthly injections at 600 mg/injection (66-85 mg/kg, 10 injections at days 0, 28, 56, 84, 112, 140, 168, 196, 224 and 252).

The release from the injection site started fast (t_{max} between 2 and 7 h after injection) in the 2 studies. In the 6-week study, plateau concentrations were reached approximately 24 h post-dose which remained fairly constant up to 2 weeks. Corresponding AUC_{0-336h} (AUC_{0-day14}) values in female minipigs after the first injection tended to be somewhat higher than in males. This difference disappeared after the third dose although the difference of weight between males and females was maintained. In the 9-month study, a plateau phase was reached at 24 h after dosing after which concentrations declined slowly or were maintained up to 28 days after dosing. Exposure, represented by mean C_{max} and AUC values, after repeated dosing was similar or 2.4-fold higher (AUC in males) than that after the single dose. In general, after single dosing, exposure was higher in females than in males. Values were comparable between males and females after repeated dosing (Table 7).

Number Per **AUC**^e Sampling \mathbf{C}_{\max} Dose Group/ $t_{max}(h)$ period (µg/mL) (µg.h/mL) Sex 600 mg^a Day 1 0.58 4.3 18 3/M Every 2 weeks 0.72 Day 28^c 51 5 5.3 Day 1 1.0 33 3/F Day 28^c 1.2 4.3 53 $600 \text{ mg}^{\text{b}}$ Day 1 0.19 7 21 3/M Every month Day 224^d 0.35 6 50 Day 1 0.64 4.3 35 3/F 44 Day 2246 0.40

Table 7: Mean RPV Toxicokinetic Parameters Following Repeated Intramuscular Administration of RPV LA (G001) in Minipigs

3.2. Kinetic Parameters, Bioequivalence and/or Bioavailability

Total clearance of RPV is low compared to the hepatic blood flow in rabbits and minipigs. Furthermore, Vd_{ss} is very low in rabbits but large in minipigs. Half-lives are comparable after IV dosing. After IM administration of RPV LA after single administration of G001 with a follow-up of 3 months, the F_{abs} is 67% in rabbits at 150 mg/kg and ranges between 35-62% in minipigs at 600 mg (Table 8).

Table 8:	Mean Plasma Pharmacokinetic Parameters of RPV After IV Administration of RPV or IM
	Administration of G001 Formulation

Species	Route	Formulation	Dose	C _{max} (μg/mL)	t _{max} (h)	AUC _{0-∞} (μg.h/ mL)	t _{1/2} (h)	Cl _p (Cl _b) (L/h/kg)	Vd _{ss} (L/kg)	F _{abs} (%)
Female rabbits	IV ^a	PEG400/ water (25%)	1.25 mg/kg	8.5 ^f	NA	44	12	0.03 (0.049)	0.32	-
	IM^b	G001	150 mg/kg	6.5	78.3	3,562 ^g	-	-	-	67
Male	IV ^c	20% Captisol	2 mg/kg	1.7 ^f	NA	2.8	8	0.75	4.9	-
minipigs	IM ^d	G001	600 mg (~67 mg/kg ^f)	2.2	100	152	-	-	-	62
	IM ^c G001		600 mg (69 mg/kg)	0.23	2.67	25	-	-	-	35 ^h
	IM ^e	G001	600 mg (22-30 mg/kg)	0.12	0.5-24	16				43 ⁱ

^a Mod4.2.2.2/TMC278-FK4293; ^b Mod4.2.2.2/2683_14279 (FK7521); ^c Mod4.2.2.2/2683_14125 (FK7520); ^d Mod4.2.3.6/TMC278-NC359 (TOX9403); ^e Mod4.2.2.2/2683_0040908 (FK10294); ^f C₀; ^g AUC_{0-Day99}; ^h calculated using the minipig receiving IV and RPV LA (G001) after a wash out of 1 week; ^r the mean dose 26 mg/kg was used for calculation

3.3. Comparison of Exposure in Animals and Man

The C_{max} and AUC values of RPV after repeated oral administration in various animal species used in the toxicology studies and after repeated IM administration of RPV LA in dogs and minipigs are summarized in Table 9. These exposures were compared with the human predicted exposure ($C_{max} = 0.14 \mu g/mL$ and $AUC_{0-day28} = 83 \mu g.h/mL$) obtained in HIV-1 infected patients

^a Each 600 mg dose was administered IM once every 2 weeks for a total of 6 weeks (4 injections); ^b Each 600 mg dose was administered IM once every month for a total of 9 months (10 injections); ^c Third administration; ^d Ninth administration;

^e For 6-week study AUC_{0-336h}; For 9-month study AUC_{0-672h}

AUC: area under the plasma concentration-time curve; C_{max} : maximum plasma concentration; F: female; h: hour; M: male; t_{max} : time to reach the maximum plasma concentration

 $AUC_{0-\infty}$: area under the plasma concentration versus time curve from time 0 to infinity; Cl_b : blood clearance; Cl_p : plasma clearance; C_{max} : maximum plasma concentration; F_{abs} : absolute bioavailability; IM: intramuscular; IV: intravenous; NA: not applicable; PEG: polyethylene glycol; $t_{1/2}$: half-life; t_{max} : time at C_{max} ; Vd_{ss} : volume of distribution at steady-state

at steady-state after 600 mg of RPV LA given every 4 weeks (G001) (Mod5.3.5.3/RPV LA PopPK report) using the population pharmacokinetic (PopPK) model.

After repeated oral administration of RPV in various animal species used in the toxicology studies compared to IM administration of RPV LA in patients, the highest C_{max} ratio (animal/human) of RPV was around 406 in female mice and 252 in male mice, 82 in female rats and 39 male rats, 123 in pregnant rabbits, 33 in dogs, and 2 in female monkeys. The highest AUC_{0-day28} ratio (animal/human) of RPV was around 258 in female mice, 170 in male mice, 82 in female rats, 25 in male rats, 78 in pregnant rabbits, 22 in dogs, and 2 in female monkeys. After IM administration of RPV LA in minipigs and dogs compared to IM administration of RPV LA in patients, the C_{max} ratios (animal/human) of RPV were around 2 and 10 and AUC_{0-day28} (animal/human) ratios of RPV were around 0.6 and 5, respectively.

Table 9: RPV Exposure in Animals (Oral/IM Administration) Relative to Human (IM Administration)

Species	RPV formulation	Sampling Time	Sex/n	Dose (mg/kg/day)	C _{max} (μg/mL)	C _{max} ratio	AUC _{0-24h} (μg.h/mL)	AUC _{0-day28} ratio ^b
			M/9	20	9.8	69	76	26
Mouse	DO: DDW:		M/9	60	22	154	230	78
	PO: RPV in HPMC (0.5%	Week 28	M/9	160	36	252	505	170
	w/v)	WEEK 20	F/9	20	9.9	69	51	17
	W/V)		F/9	60	29	203	278	94
			F/9	160	58	406	766	258
	PO: RPV base in PEG400/CA (10%)	Day 28	M/4	10	0.88	6.3	7.2	2.4
			M/4	40	2.6	19	27	9.1
			M/4	160	6.7	48	51	17
			F/4	10	1.6	11	14	4.7
			F/4	40	5.8	41	42	14
			F/4	160	8.7	62	89	30
		Day 175 ^a	M/3	40	1.7	12	12	4
	PO: RPV base in PEG400/CA (10%)		M/3	120	3.0	21	35	12
			M/3	400	6.2	43	73	25
Rat			F/5	40	6.6	46	50	17
			F/5	120	8.8	62	116	39
			F/6	400	16	112	244	82
	PO: RPV in HPMC (0.5% w/v)	Week 39	M/9	40	0.82	6	6.3	2
			M/9	200	1.3	9	8.2	3
			M/9	500	1.8	13	14	5
			M/9	1500	2.2	15	18	6
			F/9	40	2.1	15	14	5
			F/9	200	4.7	33	41	14
			F/8	500	8.5	59	46	16
			F/9	1500	9.4	66	84	28
	PO: RPV base in PEG400/CA (10%)	Day 11 (GD 16)	F/4	<u>40</u>	5.6	39	37	12
Pregnant rat			F/4	120	7.2	50	63	21
			F/6	400	13	91	152	51
			M/8	40	2.6	18	12	4
Juvenile rat	PO: RPV in HPMC (0.5% w/v)		M/7	120	3.7	26	34	11
(aged 25		Day 14	M/7	400	9.1	64	50	17
days)		Day 14	F/8	40	5.8	41	18	6
uu joj			F/8	120	3.6	25	28	9
			F/7	400	7.3	51	53	18
Pregnant rabbit	PO: RPV base in HPMC	Day 14 (GD 19)	F/3	5	6.7	47	105	35
			F/3	10	10	70	170	57
	(0.5% w/v)		F/3	<u>20</u>	15	105	232	78
Dog	PO: RPV base in PEG400/CA (10%)	Day 363	M/4	5	1.1	8	17	6
			M/2	10	1.3	9	24	8
			M/4	40	4.1	29	65	22
			F/4	5	1.5	10	19	6
			F/4	10	2.2	15	36	12
			F/3	40	5.5	38	61	21
Monkey	PO: RPV in	Day 55	F/8	100 b.i.d	0.14	1	2.7	0.9
	HPMC (1%)/Tween 20		F/7	250 b.i.d	0.31	2	4.6	1.6
Minipig	IM: RPV LA	Day 224 (after 8 injections)	M/3	600 mg/ 4weeks	0.35	2	50°	0.6
	(G001)		F/3	600 mg/ 4weeks	0.41	3	44 ^c	0.5
Dog	IM: RPV LA	Day 224	M/3	1200 mg/ 2 weeks	1.4	10	435 ^d	5
	(G001)	(after 8 injections)	F/3	1200 mg/ 2 weeks	1.2	9	410 ^d	5

^a Total dosing volume of 10 mL/kg was changed after Day 83 to two administrations of 5 mL/kg with 1.5 hours between the two administrations. The underlined dose is the no observed adverse effect level dose when it is determined; ^b animal/human AUC ratio was calculated as follows: AUC_{0-24h} at steady-state multiplied by 28 days in animals divided by AUC_{0-day28} obtained in HIV infected patients at steady-state after 600 mg every 4 weeks; ^c AUC_{0-672h (28days)}; ^d AUC_{0-600h (25days)}; CA: citric acid; HPMC: hydroxypropyl-methylcellulose; IM: intramuscular; PO: oral

4. DISTRIBUTION

A single IM dose of RPV LA (as the G001 formulation) has been administered in rats and rabbits to determine the distribution of RPV in certain tissues/organs (see Section 4.1).

For RPV oral, tissue distribution has been studied in pigmented Long Evans rats and pregnant female Sprague-Dawley rats after a single oral administration of ¹⁴C-RPV by means of QWBA, as well as in a single oral dose pharmacokinetic study administering RPV in rats. Protein binding and/or distribution in blood cells of RPV has been studied in vitro in mouse, rat, rabbit, guinea pig, dog, monkey and human.

4.1. Tissue Distribution

4.1.1. Rilpivirine LA

4.1.1.1. Studies in Rats

A single IM dose of RPV LA (G001; 60 mg/kg; 0.2 mL/kg) was administered to male Sprague-Dawley rats in the left hind leg (n=3; Mod4.2.2.3/ADME_58575 and Mod2.6.5.5A). The concentrations of RPV were determined in different tissues/organs and in blood and plasma with a follow-up of 42 days. All individual RPV plasma concentration-time profiles showed two distinct concentration peaks or shoulders within 216 h post-dose, the first one occurring between 4 and 24 h, and the second one between 120 and 216 h. Subsequently, a slow first-order decline in plasma concentrations was observed, lasting till the last observation time point of 42 days post-dose (Table 10). The highest exposures of RPV were measured in left popliteal and medial iliac lymph nodes adjacent to injection site with tissue/plasma AUC_{0-day42} ratios of 12,203 and 2256, respectively. In the contralateral right popliteal and medial iliac lymph nodes, the tissue/plasma AUC_{0-day42} ratios were 6.7 and 2.6, respectively. In the kidney, adrenal gland, lungs, liver, and pancreas, the tissue/plasma AUC_{0-day42} ratios were 3.7, 3.2, 1.5, 1.5 and 1.2, respectively. The tissue/plasma AUC_{0-day42} ratios were lower than 1 in brain (0.4), heart (0.8), spleen (0.97) and thymus (0.87) (Table 10).

Table 10: Tissue, Plasma and Blood Concentrations of RPV and Tissue/Plasma or Blood Ratios of RPV After IM Administration of RPV LA(G001) in Rats

Tissue/organs	$\begin{array}{c c} C_{max} & t_{max} \\ (\mu g/mL \ or \ g) & (h) \end{array}$		AUC _{0-day42} (μg.h/mL or g)	Tissue-to-plasma AUC _{0-day42} ratio	Tissue to blood AUC _{0-dav42} ratio	
Blood	0.061	2	15.1	0.64	1	
Plasma	0.129	2	23.7	1	1.6	
Adrenal gland	0.16	168	73.5	3.2	4.9	
Brain	0.023	168	2.7ª	0.4	0.7	
Eye	BLQ	=	-	=	_	
Heart	0.046	24	12.5 ^b	0.8	1.2	
Kidney	0.16	168	84.8	3.7	5.6	
Liver	0.069	24	24 ^b	1.5	2.3	
Lung	0.075	24	33.9	1.5	2.2	
Lymph Node (Medial iliac left)	409	168	51,200	2256	3391	
Lymph Node (Medial iliac right)	0.088	24	58.2	2.6	3.9	
Lymph Node (Popliteal left)	1100	504	277,000	12,203	18,344	
Lymph Node (Popliteal right)	1.2	24	153	6.7	10	
Pancreas	0.058	168	28.1	1.2	1.9	
Spleen	0.048	168	22.1	0.97	1.5	
Thymus	0.094	24	19.7	0.87	1.3	
Thyroid	0.050	168	-	-	-	

^a AUC_{0-day7}; ^b AUC_{0-day21}

BLQ: below the limit of quantification <10.0 ng/g

4.1.1.2. Studies in Rabbits

A single IM dose of RPV LA (G001) was administered in the musculus biceps femoris to female NZW rabbits at 150 mg/kg (0.5 mL/kg; n=3) (Mod4.2.2.2/2683_14278 [FK7491] and Mod2.6.5.5B). RPV concentrations at the administration and contralateral sides were measured at the end of a 1-month follow-up period (Table 11). At the administration site, the RPV concentrations were high (1456-fold) compared those in the contralateral side. In the lymph nodes, the RPV concentrations were similar between the injection and contralateral side except for one rabbit for which higher concentrations were seen in the accessory popliteal lymph nodes of the injection side.

Tissue-to-Plasma Tissue/organs C (µg/mL or g) **Concentration Ratio** Plasma 1.43 (1.3-1.5) Administration site (injection side) 5390 (5000-5830) 3769 (3560-3887) Administration site (contralateral side) 3.7 (2.1-6.4) 2.6 (1.4-4.2) Lymph Node, accessory axillary (injection side) $0.45^{a}(0.37-0.53)$ $0.31^{a}(0.29-0.35)$ Lymph Node, accessory axillary (contralateral side) 0.61 (0.57-0.66) $0.43^{a}(0.38-0.50)$ Lymph Node, medial iliac (injection side) 0.86 (0.49-1.15) 0.60(0.33-0.77)Lymph Node, medial iliac (contralateral side) 0.59 (0.52-0.65) 0.41 (0.35-0.46) Lymph Node, accessory popliteal (injection side) 13 (1.0-37) 9.1 (0.66-28) Lymph Node, accessory popliteal (contralateral side) 1.2 (0.34-2.87) 0.84 (0.23-2.2)

Table 11: Mean Tissue Concentrations (Range) of RPV in the Administration Site and Lymph Nodes at the Administration and Contralateral Sides and Plasma Concentrations (Range) in Female Rabbits (n=3) After Single Intramuscular Dosing at 150 mg/kg at 1-Month Post-Dosing

C: concentration

4.1.2. Rilpivirine

4.1.2.1. Studies in Rats

The tissue distribution of RPV and its metabolites was studied in male pigmented Long Evans rats and pregnant female Sprague-Dawley rats by QWBA, following a single oral dose of ¹⁴C-RPV base in polyethylene glycol 400 (PEG400)/citric acid (CA) (10%) at 40 mg/kg (Mod4.2.2.3/TMC278-NC108 [FK4951]), (Mod4.2.2.3/TMC278-NC109 [FK4950]) (Mod2.6.5.5C and Mod2.6.5.5D). The tissue distribution of RPV was assessed in a limited set of tissues obtained in a pharmacokinetic study in male Sprague-Dawley rats given a single oral dose of RPV at 40 mg/kg (PEG400/CA (10%)) (Mod4.2.2.3/FK4195 and Mod2.6.5.5E).

In pigmented rats, highest TR levels were observed at 4 hours post-dose in non-pigmented and most pigmented tissues, indicating a rapid distribution of ¹⁴C-RPV-related radioactivity. Only in the pigmented parts of the eye and the uveal tract, the highest concentration of radioactivity was measured at 24 hours after dosing.

In most non-pigmented tissues, radioactivity levels were only quantifiable by RLG until 4 hours after dosing. The highest concentration of radioactivity was measured in the liver and the exposure (AUC_{0-4h}) was 12-fold higher than the AUC_{0-4h} observed in blood (Figure 4). In the adrenal gland, brown fat and kidney AUC_{0-4h} values were about 4- to 5-fold those in blood. In pancreas and white fat, the AUC_{0-4h} values were almost 3-fold that in blood. In spleen, based on C_{4h} , the radioactivity level was almost 3-fold that in blood. Tissue to blood AUC_{0-4h} ratios in lung, heart, white skin and thyroid were about 2. AUC_{0-4h} values in prostate gland, bone marrow, muscle, testis and brain were similar or a bit lower than those in blood.

In pigmented tissues, the radioactivity decreased more slowly than in the other tissues and was still quantifiable by RLG 14 days post-dose. Tissue to blood AUC_{0-336h} ratios were 146 (uveal tract), 18 (brain meninges) and 15 (pigmented skin). Although levels in pigmented tissues at 14 days post-dose still represented about 20% of corresponding peak levels, radioactivity levels

a n=2

decreased from 4 or 24 hours onwards. Therefore, no undue retention of ¹⁴C-RPV derived material is expected.

The QWBA study in non-pigmented pregnant rats showed a similar tissue distribution profile as the one observed in the male rat (Figure 5). In most tissues, highest radioactivity levels were observed at 4 hours post-dose, indicating rapid distribution into the tissues. Only in uterine epithelium and to a lesser extent in adrenal gland, radioactivity concentrations declined more slowly than in blood from 8 to 24 hours.

Some specific procreative tissues were evaluated. The AUC_{0-8h} values of uterine epithelium, mammary gland and ovary were 4-, 3- and 2-fold higher than the corresponding blood AUC_{0-8h} values, respectively. The AUC_{0-8h} values in uterus, placenta and vagina were similar to slightly lower than those in blood. The AUC_{0-8h} in whole fetus was 0.64-fold that in maternal blood, suggesting that the placenta presents a partial barrier for RPV and/or its metabolites.

In a pharmacokinetic study after administration of non-radiolabeled RPV base in male Sprague-Dawley rats, plasma and tissue samples from the adrenal glands, brain, liver, and muscle were collected. Maximum tissue concentrations were observed within 20 to 60 min after administration. Tissue levels declined in parallel with plasma concentrations. Highest tissue concentrations were observed in the liver and the adrenal gland reaching tissue-to-plasma AUC_{0-24h} ratios of 3.4 and 2.7, respectively. In brain and muscle, the tissue-to-plasma ratios were 0.49 and 0.45, respectively. These results were similar to the data obtained with radiolabeled material showing high distribution to the liver and adrenal glands and lower distribution to the muscles and brain.

Figure 4: Tissue to Blood $AUC_{0.4h}$ Ratios of Total Radioactivity, as Determined by Radioluminography of Whole-Body Sections of Tissues in the Male Pigmented Long Evans Rats After a Single Oral Administration of ^{14}C -RPV Base at 40 mg/kg

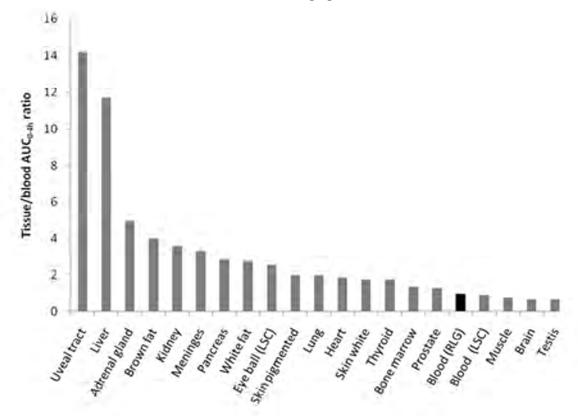
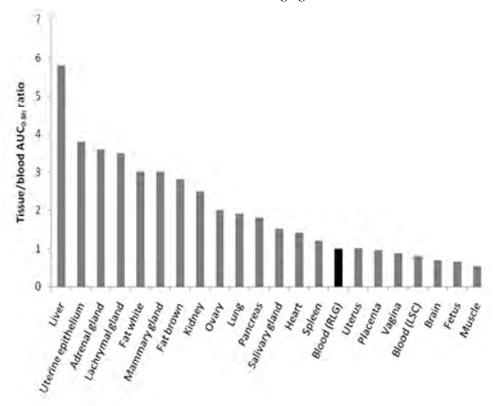



Figure 5: Tissue to Blood AUC_{0-8h} Ratios of Total Radioactivity, as Determined by Radioluminography of Whole-Body Sections of Tissues in the Pregnant Female Sprague-Dawley Rats After a Single Oral Administration of ¹⁴C-RPV Base at 40 mg/kg

4.1.2.2. Studies in Dogs

Rilpivirine concentrations were measured in some tissues collected during the 1- and 6-month toxicology studies in dogs. Plasma and adrenal glands were obtained from dogs (3 animals/sex/group) following a 1-month toxicity study (Mod4.2.3.2/TMC278-Exp.5650 and Mod2.6.5.5E). Plasma, adrenal gland and liver were also collected from dogs (3 animals/sex/group) following a 6-month study (Mod4.2.3.2/TMC278-NC115 [TOX6110] and Mod2.6.5.5F). In both studies, animals received RPV base (PEG400/CA (10%)) oral doses of 5, 10, and 40 mg/kg/day. Plasma and tissues were collected at autopsy on Day 28/29 and Day 56 (recovery period) in the 1-month study or on Day 93 and Day 184/185 in the 6-month study.

In both studies, the adrenal gland concentrations were higher than the corresponding plasma concentrations with mean tissue-to-plasma concentration ratios ranging from 1.3 to 8.1. After 1 month of recovery, however, the adrenal gland levels as well as the plasma levels decreased below the limit of quantification. In the liver, RPV concentrations were also higher than in plasma, with tissues to plasma concentration ratios ranging from 7.7 to 13. In the 6-month study, adrenal and liver tissue-to-plasma ratios were similar between Day 93 and Day 184/185 of the study.

4.2. Protein Binding and Distribution in Blood Cells

The plasma protein binding of RPV was studied in vitro by equilibrium dialysis. Plasma samples from male and female CD-1 mice, male and female Sprague-Dawley rats, female NZW rabbits, male beagle dogs and healthy male adult subjects were fortified with 3 H-RPV at concentrations ranging from 0.01 to 100 µg/mL (animals) and from 0.01 to 3.0 µg/mL (human) (Mod4.2.2.3/TMC278-NC112 [FK5273]). The distribution of RPV to various compartments of blood and the binding of RPV to purified human serum albumin and α_1 -acid glycoprotein were also studied (Mod2.6.5.6A). The distribution of 14 C-RPV in blood and the protein binding of 14 C-RPV in plasma were also investigated in samples from female guinea pigs at 2.5 and 8 µg/mL and from female monkeys at 2.5 and 5 µg/mL (Mod4.2.2.3/TMC278-NC332 [FK6820]) (Mod2.6.5.6B). In addition, the protein binding of unlabeled RPV was determined in plasma samples from male and female CD-1 mice, male and female Sprague-Dawley rats, male beagle dogs and healthy male subjects at concentrations of 0.03, 0.3 or 1 µg/mL (animals) and 0.01, 0.03, 0.1, 0.3, 1 or 3 µg/mL (human) (Mod4.2.2.3/TMC278-FK4217).

Rilpivirine was highly bound to plasma proteins in all species and the plasma protein binding was found to be concentration independent. Plasma protein binding values ranged between 99.08% and 99.97%. RPV was highly bound to human albumin (99.5% at a physiological concentration of 4.3% and irrespective of the RPV concentration) and to a much lesser extent to α_1 -acid glycoprotein (48.8% at a physiological concentration of 0.07% and an RPV concentration of 1 μ g/mL). The rank order of blood to plasma concentration ratio in all species was monkey >dog >rat >man >guinea pig >rabbit >mouse and ranged from 0.96 to 0.58. In all species, irrespective of the concentration, a very limited percentage of RPV distributed to the plasma water compartment and the values ranged from 0.06 to 0.5%. In guinea pig, male and female rats, male dog, monkey and man, the percentage of RPV distributed to plasma proteins ranged from 61.8 to 94.1%, and the percentage of RPV distributed to blood cells ranged from 5.8 to 37.6%. In mouse and rabbit, RPV distributed almost completely to plasma proteins (see Table 12).

The protein binding results of unlabeled RPV were in line with the ones obtained with radiolabeled compound at the same range of concentrations. No data were obtained at 0.01 and $0.03 \,\mu\text{g/mL}$ due to the fact that concentrations were below the limit of quantification.

Table 12: Plasma Protein Binding and Blood Distribution of RPV at 1 μ g/mL (Various Species) or 2.5 μ g/mL (Guinea pig and Monkey)

	Mouse		Rat		Guinea pig	Rabbit	Dog	Monkey	Human
	M	F	M	F	F	F	M	F	M
Plasma protein binding (%)	99.93	99.94	99.84	99.86	99.87	99.97	99.3	99.14	99.67
							5		
Free drug (%)	0.07	0.06	0.16	0.14	0.13	0.03	0.66	0.86	0.33
Blood to plasma ratio	0.60	0.58	0.67	0.67	0.64	0.61	0.68	0.96	0.66
Distribution to									
Plasma water (%)	0.07	0.07	0.15	0.14	0.11	0.03	0.50	0.53	0.20
Plasma proteins (%)	100	>100	93.0	94.1	84.7	>100	73.4	61.8	78.1
Blood cells (%)	<0	<0	6.8	5.8	15.2	<0	26.2	37.6	21.7

4.3. Placental Transfer

The placental transfer of RPV was studied in pregnant Sprague-Dawley rats, by QWBA, after a single oral dose (gavage) of $^{14}\text{C-RPV}$ base in PEG400/CA (10%), at 40 mg/kg (Mod4.2.2.3/TMC278-NC109 [FK4950] and Mod2.6.5.5D). The AUC_{0-8h} values in the placenta and in whole fetuses were 0.95- and 0.64-fold the AUC_{0-8h} value of maternal blood, respectively. This suggests that the placenta is only a partial barrier for RPV and its metabolites.

5. METABOLISM

In vivo and *in vitro* metabolism studies with RPV, as well as the enzymes involved in the metabolism of RPV in the human hepatocytes and enzyme induction and inhibition studies have been conducted to support the registration of oral RPV (EDURANT®) submission. Relevant studies that support the RPV LA MAA are rediscussed below.

5.1. Chemical Structures and Quantities of Metabolites in Biological Samples

5.1.1. Studies in Mice

Male and female CD-1 mice were dosed orally, by gavage, with a single dose of ¹⁴C-RPV base in PEG400/CA (10%) at 20 or 320 mg/kg (Mod4.2.2.4/TMC278-NC190 [FK5621]) (Mod2.6.5.9A). Plasma samples were collected up to 24 hours after dosing and urine and feces samples up to 96 hours after dosing. Radioactivity was determined by scintillation counting and samples were analyzed by radio-HPLC. Plasma concentrations of RPV were measured by LC-MS/MS and the metabolite profiling and identification were done by radio-HPLC and LC-MS/MS analyses.

After oral administration of ¹⁴C-RPV base, 87% to 96% of the TR was eliminated in feces and 1.8% to 4.2% was excreted in urine. Unchanged RPV accounted for 7.9-8.8% and 33-34% of the administered dose in the overall pooled 0-48-hour feces at 20 and 320 mg/kg, respectively. Renal elimination was limited, only traces of unchanged RPV were excreted in urine (0.02-0.63% of the dose) at the two dose levels.

Rilpivirine was extensively metabolized in the mouse, as a large number of metabolites were detected (Figure 6). Metabolic pathways included oxidative pathways (aliphatic and aromatic hydroxylation) and glutathione conjugation, followed by secondary metabolism (metabolism of the glutathione conjugate, glucuronidation, dehydration).

In feces, by far the predominant metabolite fraction was composed of M41 (hydroxy metabolite of S-methyl conjugate of RPV) and M42 (aromatic hydroxylation at the 5-position of the pyrimidinyl moiety), accounting for 18-26% of the 20 mg/kg dose and for 9-13% of the 320 mg/kg dose. In this fraction, M42 was the most abundant metabolite for both genders and at the two dose levels, estimated at about 14% and 17% of the 20 mg/kg dose, and at 5.9% and 8.0% of the 320 mg/kg dose in male and female mice, respectively. The cysteinyl conjugates (M13 co-eluted with M14) and the mercapturic acids (M17 co-eluted with M18) accounted for 6.2-9.2% of the dose in total (two dose levels, both genders). M24 (hydroxylation on the cyanoethenyl moiety) co-eluted with M25 (oxidation followed by glucuronidation of RPV) and

accounted for less than 3.4% in total (two dose levels, both genders). M30 (carboxylic acid metabolite on the cyanoethenyl moiety) accounted for about 1.6-3.1% of the 20-mg/kg dose and about 1.2-1.5% of the 320-mg/kg dose. Several minor metabolites in both male and female mice were present: M38 (hydroxylation of RPV) and M43 (Z isomer of RPV) that co-eluted with M45 (S-methyl conjugate) accounted for less than 2.2%. M21 (hydroxylated methyl sulphonyl conjugate) and M33 (hydroxylation at the methyl group of RPV) accounted for less than 1.4%. M27 (tricyclic metabolite) co-eluted with M28 (tricyclic metabolite of S-methyl conjugate of RPV) and M29 (sulphoxidation of M45), and M47 (dimer) accounted for less than 0.8%. M35 and M46 (unknown structures) accounted for less than 0.7%.

In urine, M25 (oxidation in combination with glucuronidation) was the most abundant metabolite at both dose levels and accounted for 0.4-1.6% of the dose. M13, M14, M17 and M18 were more formed in female mice than in male mice and accounted for 1.2% and 1.1% of the dose in females (at 20 and 320 mg/kg, respectively) and for 0.54% and 0.27% of the dose in males (at 20 and 320 mg/kg, respectively). M42 was also excreted in urine (0.06-0.37% of the dose).

In plasma, unchanged RPV was by far the main circulating compound at both dose levels. At all time points, M33 (hydroxymethyl-RPV) was the most abundant plasma metabolite, it accounted for 1.5-6.6% of the plasma radioactivity. Other metabolites (M13 co-eluted with M14, M27, M30 and M36) accounted for less than 1.3% of the sample radioactivity. Traces of several other metabolites (M17, M18, M31 (hydroxyl metabolite on the cyanoethenyl moiety), M42 and M43) were detected.

The metabolite profile of RPV was qualitatively comparable in male and female mice.

5.1.2. Studies in Rats

5.1.2.1. Single Dose Administration

Male and female Sprague-Dawley rats were dosed orally, by gavage, with a single dose of ¹⁴C-RPV base in PEG400/CA (10%) at 40 mg/kg (Mod4.2.2.4/TMC278-NC113 [FK4933]) (Mod2.6.5.9B). Plasma samples were collected up to 24 hours after dosing and urine and feces samples up to 96 hours after dosing. Plasma concentrations of RPV were measured by LC-MS/MS. The biliary metabolite profile of RPV was also investigated in male Sprague-Dawley rats after a single dose of ¹⁴C-RPV base in PEG400/CA (10%) at 40 mg/kg (Mod4.2.2.4/TMC278-NC145 [FK5525]) (Mod2.6.5.9C). In both studies, the TR was measured by scintillation counting. Metabolite profiles were determined by reversed-phase radio-HPLC and identification of the metabolites was carried out using co-chromatography with synthesized metabolites, enzymatic hydrolysis and LC-MS/MS analysis.

After oral administration of ¹⁴C-RPV base, the radioactivity was predominantly excreted in feces (93% of the dose) and 0.45% (males) to 1.8% (females) was excreted in urine. Unchanged RPV accounted for 47% and 43% of the administered dose in the overall pooled 0-48-hour feces in males and females, respectively. Urinary excretion of unchanged RPV was negligible.

Rilpivirine was metabolized to a moderate extent. Metabolic pathways included oxidative pathways (aliphatic and aromatic hydroxylation), glutathione conjugation and metabolites derived thereof (Figure 6).

In feces, dimerization of a thiol intermediate resulting from glutathione conjugation (M47), was the most predominant metabolic pathway in male and female rats (4.0% and 3.8% of the dose, respectively). M41/M42 and M43/M45, which co-eluted pairwise, resulted from hydroxylation, isomerization, or glutathione conjugation and accounted on average for 2.4% to 3.6% of the dose in both genders. A variety of minor metabolites (M21, M24/M27/M28/M29, M33, M38 and M46) were also observed in rat feces; each represented less than 2% of the administered dose. M30 accounted for 0.47% and 0.05% of the dose in male and female rats, respectively.

In urine, only the mercapturic acids (M17 and M18) were detected and accounted for 1.1% and 0.45% in female rats and for 0.02% and 0.03% of the dose in male rats, respectively. Several unknown metabolites were also present in urine but accounted in total for <0.4% of the dose.

In plasma, unchanged RPV accounted for the largest fraction of the circulating radioactivity. Only two minor metabolites, M12, a cysteinylglycine-S-conjugate, which co-eluted with M14, a cysteinyl-S-conjugate, were present in plasma. They accounted for 4-14% of the plasma radioactivity in total, at all time points.

The metabolic profile of RPV is qualitatively comparable in male and female rats.

In bile, the amount of radioactivity excreted within 24 hours after a dose of ¹⁴C-RPV base was rather low i.e. 18% and 25% of the radioactive dose, in restrained and nonrestrained rats, respectively. The percentage of unchanged RPV excreted in the bile during this time period was negligible (~0.2%). The most important biotransformation pathway involved conjugation of glutathione to RPV to form M10 followed by formation of the cysteinylglycine-S-conjugate M12 and the cysteine-S-conjugate M14. They accounted for 6.4% in total. From this pathway, other metabolites were generated. The most abundant ones were M9 (thiol glucuronide conjugate) and M18 (mercapturic acid S-conjugate of RPV) and each accounted for less than 2.8%. The minor one was M1 (oxidation and glucuronidation of M14) and accounted for 0.63%. Other minor metabolites were M25 (1.4%) and M30 (0.4%) (see Mod2.6.5.11C).

5.1.2.2. Multiple Dose Administration

In an attempt to understand the time-dependent decrease in exposure in male rats in the carcinogenicity study, the metabolic profiles of plasma samples obtained after oral administration of RPV at 1500 mg/kg/day in male and female rats were assessed by liquid chromatography with ultraviolet detector and LC/MS (Mod4.2.3.4.1/TMC278-NC123 [TOX7221]), (Mod4.2.2.4/TMC278-NC290 [FK6376]) (see Section 3.3).

In all samples, unchanged RPV was by far the major circulating compound. The comparison of the plasma profiles from male and female rats at Day 1, Week 27 and Week 39 did not show a relevant increase in metabolites after repeated administration.

5.1.3. Studies in Dogs

Male beagle dogs were dosed orally with a single dose of ¹⁴C-RPV base in PEG400/CA (10%) at 5 mg/kg (Mod4.2.2.4/TMC278-NC114 [FK5143]) (Mod2.6.5.9D). Plasma, urine and feces were collected up to 168 hours (one week) after dosing. Plasma concentrations of RPV were measured by LC-MS/MS. Radioactivity levels were determined by LSC and metabolite profiles were investigated by radio-HPLC and LC-MS/MS.

After oral administration of ¹⁴C-RPV base radioactivity was excreted predominantly in feces (95% of the dose), while a very low amount of radioactivity was excreted in urine (1.7% of the dose). Unchanged drug represented 45% of the administered dose in the overall pooled 0-72-hour feces. Unchanged RPV was not detected in urine.

RPV was not extensively metabolized in dogs. The most important biotransformation pathway of RPV in dogs was oxidation at various positions of the molecule. In addition, but less significant, direct N-glucuronidation of RPV and further metabolism of the oxidized metabolites via dehydration (ring closure), glucuronidation, and sulfation occurred (Figure 6). The most abundant fecal metabolites included M33 (hydroxymethyl-RPV), M42 (hydroxyl metabolite at the 5-position of the pyrimidinyl moiety of RPV), and M44 (monooxygenated-RPV) and represented 8.7%, 5.3% and 4.3% of the dose, respectively. In addition, M30 (carboxylic acid) and M48 (unknown), which co-eluted, represented 3.1% of the dose. Other minor fecal metabolites (M23 co-eluted with M27, M37, M40, M46, and M49) were also detected and individually these metabolites did not represent more than 2% of the administered dose.

In urine, several minor metabolites (M3, M12, M14, M19, M25, M30, and M36) were identified, none of which represented more than 0.08% of the radioactive dose.

In plasma, unchanged RPV was the only radioactive component detected. Minor metabolites that were present in trace amounts and were detected only by LC-MS included M15 (*N*-glucuronide), M19 (glucuronide), M27, M30 and M33.

5.1.4. Studies in Humans

Six healthy male subjects received a single oral dose of 150 mg ¹⁴C-RPV base (administered as a PEG400 formulation) (Mod4.2.2.4/TMC278-NC157 [FK5344]) (Mod2.6.5.9E). Urine and plasma were collected for up to one week after dosing, feces for up to two weeks after dosing. Plasma concentrations of RPV were measured by LC-MS/MS. Radioactivity levels were determined by LSC. Metabolite profiles were determined by reversed-phase radio-HPLC and identification of the metabolites was carried out using co-chromatography with synthesized metabolites, LC-MS/MS and nuclear magnetic resonance (NMR) analysis. In plasma, the more sensitive method liquid chromatography-accurate radioisotope counting was used for metabolite profiles.

After oral administration radioactivity was mainly excreted in feces (85% of the dose over the 14-day period) while in urine a low amount of radioactivity was excreted (6.1% of the dose over the 7-day period). Unchanged RPV represented on average 26% of the administered dose in feces. Unchanged RPV was not detected in urine.

Rilpivirine was extensively metabolized. The most important biotransformation pathway of RPV was oxidation. The most abundant fecal metabolite was M42 which accounted on average for 16% of the dose. M33 (hydroxymethyl-RPV) accounted for 3.0% of the administered dose, M30 (carboxylic acid derivative) for 2.7% and a metabolite of unknown structure (M35) accounted for 2.2% of the administered dose. Some minor metabolites resulting from further biotransformation of M33 (M27, M11 and M23) were also detected (each <1.6%).

In urine, apart from M30 (0.03%), metabolites were phase II metabolites (glucuronides (0.9% of the administered dose) or glutathione-derived (1.2% of the administered dose) conjugates).

In plasma unchanged drug accounted for the major part of the TR. Several minor metabolites were detected namely, the glucuronide of RPV (M15), the tricyclic metabolite (M27), and hydroxymethyl-RPV (M33), others (glucuronide of hydroxymethyl-RPV, and of hydroxylated RPV) were only present in trace amounts.

In general, all identified metabolites in human matrices were also detected in at least 1 animal species (see Figure 6).

Identification and estimation of the abundance of circulating metabolites of RPV were determined in pooled plasma (n=6/timepoint) from male and female healthy subjects received repeat once daily oral doses of RPV at 75 and 300 mg collected on Day 1 and 11 (i.e. at steady-state) at pre-dose (only on Day 1), 0.5, 3, 6, 12 and 24 h. (Mod4.2.2.4/1646_0027483 [FK10104] and Mod2.6.5.9F). HPLC conditions were identical to those used in the human excretion mass balance study discussed above.

Rilpivirine was by far the major circulating entity in plasma at all time points for both dose groups on Day 1 and 11. M15 (N-glucuronide of RPV), M27 (tricyclic metabolite), M30 (loss of cyanide and carboxylic acid formation), M33 (hydroxymethyl-RPV) and M43 (cis RPV) were identified as the most important circulating metabolites on Day 1 and 11. Seven additional minor RPV metabolites have been identified. In addition, the most relevant metabolites detected in this study were already detected in previous studies in human or in animals. Metabolites of RPV at steady-state showed a pharmacokinetic profile comparable in shape to that of the parent drug. At the 75 mg dose, the increase in exposure of metabolites between Day 1 and Day 11 was in the same order of magnitude as for RPV. Rilpivirine has an increase in exposure by a factor of 2.45. For the 300 mg dose, a similar exposure between Day 1 and 11 was found for the metabolites M15, M30, M33 and M43. M27 had a slightly higher increase of exposure of 1.68 between Day 1 and 11. Rilpivirine had an increase of exposure of 2.10 between Day 1 and 11. The estimated abundance (AUC) of all metabolites on Day 11 was similar or higher in the 75 mg dose group compared to the 300 mg dose group except for metabolite M43 of which the estimated abundance (AUC) was slightly higher in the 300 mg dose group.

In summary, no disproportionate increase in exposure of the relevant metabolites were observed after repeated dosing for 11 days at 75 and 300 mg, compared to RPV exposure. In addition, the concentrations of all metabolites were approximately similar at Day 11 between the 2 doses.

The antiviral activities of M33 and M42 were tested on a panel of wild-type and mutant HIV-1 virus strains to determine their in vitro antiviral activity. The 50% effective concentration values (EC₅₀) for the wild-type virus were 0.4 nM for M33, 18 nM for M42 and 0.5 nM for RPV.

5.1.5. Metabolite Plasma Profile of Rilpivirine Across Species

In a pilot study the comparative metabolite profile of RPV was investigated in mouse, rat, rabbit, dog and human plasma after single and/or repeated oral administration of cold RPV base (Mod4.2.2.4/TMC278-NC155 [BA45]). A modified LC-MS/MS method was used for the quantification (when the authentic substance was available) and comparative metabolite profiling, by analytical responses, of RPV.

In mouse plasma after single dose administration of RPV base at 2000 mg/kg (micronucleus test) only one metabolite (a metabolite with a molecular mass 18 higher) was detected. In rat plasma after single and repeated administration of RPV base the cysteinyl glycine conjugate, the cysteine conjugate, the N-acetyl-cysteine conjugate and a metabolite with a molecular mass 18 higher were detected. In rabbit plasma after repeated oral administration of RPV one metabolite with a molecular mass 18 amu higher and traces of N-glucuronide were detected. No metabolites were found in dog plasma. In human plasma after single and repeated administration of RPV base, N-glucuronide (probably M15), cysteinyl glycine (probably M12) and cysteine conjugates (probably M14) and an unidentified metabolite at that time (probably M27) were detected.

5.2. Possible Metabolic Pathways

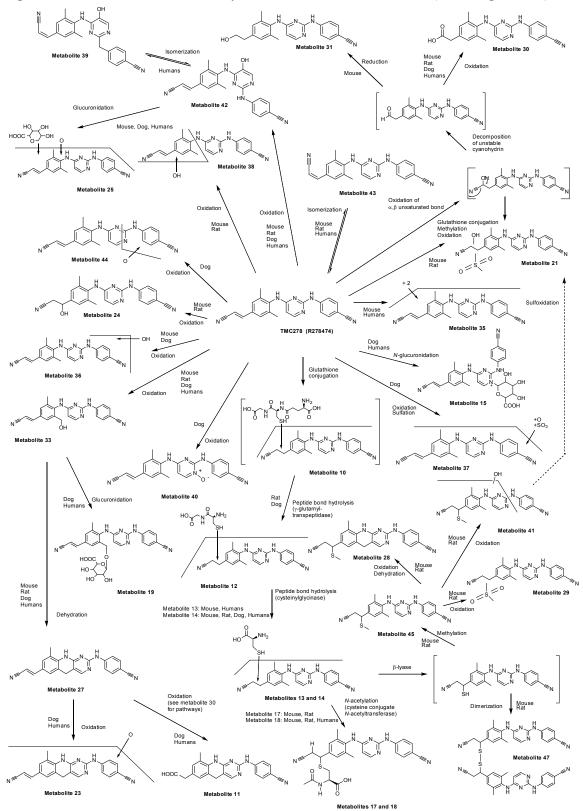

A number of RPV metabolites was identified in the in vivo studies in mice (Mod4.2.2.4/TMC278-NC190 [FK5621]), rats (Mod4.2.2.4/TMC278-NC113 [FK4933]), dogs (Mod4.2.2.4/TMC278-NC114 [FK5143]) and humans (Mod4.2.2.4/TMC278-NC157 [FK5344]) (Mod2.6.5.9A, Mod2.6.5.9B, Mod2.6.5.9D and Mod2.6.5.9E). The structures of these metabolites and the in vivo metabolic pathways are represented in Figure 6. Rilpivirine is metabolized via Phase I and Phase II reactions and the most important pathways are hydroxylation and glutathione conjugation. The contribution of the different metabolic pathways to the overall disposition of RPV is represented in Table 13.

Table 13: Total Percentage of the Administered Dose Metabolized per Major Pathways in Man and its Corresponding Percentages in Mice, Rats and Dogs After Oral Administration of ¹⁴C-RPV

Matabalitas	M	ice	Rats	Dogs	Man
Metabolites	20 mg/kg	320 mg/kg	40 mg/kg	5 mg/kg	150 mg
5-Hydroxyl RPV at the pyrimidinyl moiety (M42)	18 – 26 ^a	$9.2 - 13^a$	2.8-3.6 ^b	5.3	16
Hydroxymethyl of RPV (M33)	0.5 - 0.7	1.3 – 1.0	0.54-0.54	8.7 (traces in plasma)	3.0 (seen in plasma)
Carboxylic acid metabolite of the cyanoethenyl moiety (M30)	1.6 – 3.1	1.5 – 1.2	0.47 - 0.05	3.1°	2.7
Unknown (M35)	< 0.2	< 0.2	-	-	2.2
Tricyclic metabolite (M27) and carboxylic metabolite of M27 (M11)	0.3 - <0.2 ^d	<0.2 – 0.1 ^d	0.99–1.60 ^f	3.1 ^g (traces of M27 in plasma)	2.2 (M27 seen in plasma)
Glutathione-derived conjugates (M13, M14, and M18)	9.6 – 7.9 ^e	8.7 – 7.3 °	0.03 - 0.46 ⁱ	< 0.08 h	1.2
Unchanged compound	8.8 - 7.9	33 – 34	47 – 43	45	26
N-glucuronide of RPV (M15)	-	-	-	traces in plasma	0.6 (seen in plasma)

^a Co-eluted with M41, M42 was estimated at 13.9-16.6% (20 mg/kg) and at 5.9-8.0% (320 mg/kg); ^b Co-eluted with M41; ^c Co-eluted with M48; ^d Co-eluted with M28 and M29; ^e includes M17; ^f Co-eluted with M24, M28 and M29; ^g Including M23; ^h Each of them; ⁱ M14 co-eluted with M12; In mice and rats, the first number is male data

Figure 6: In Vivo Metabolic Pathways of RPV in Animals and Humans (Excluding Rat Bile)

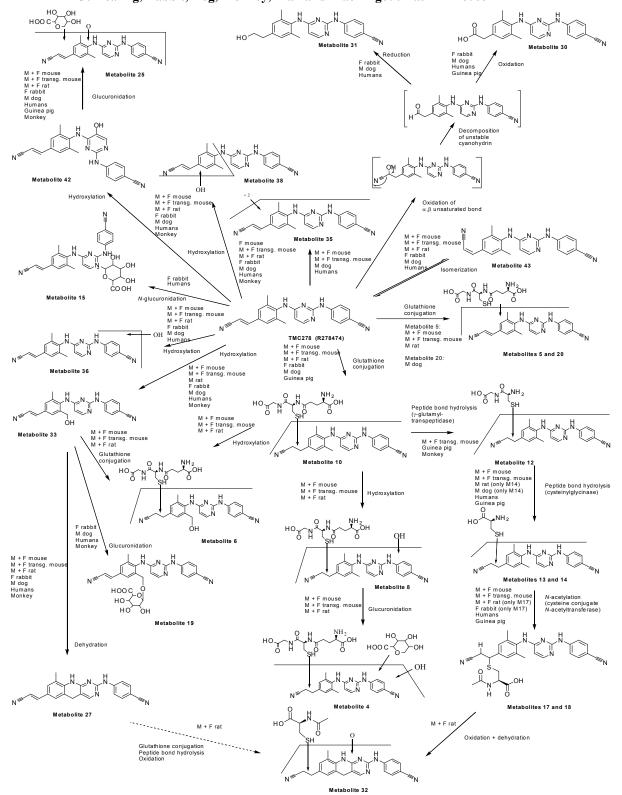
5.3. Presystemic Metabolism (Glycemic Index/Hepatic First-Pass Effects)

Across species, the first-pass effect on RPV is limited and appears to be higher in mice and in rats than in dogs.

5.4. In Vitro Metabolism, Including P450 Studies

5.4.1. In Vitro Metabolic Pathways

The in vitro metabolism of ¹⁴C-RPV was studied in hepatocytes (suspensions and primary cultures) and liver subcellular fractions (microsomes and 12,000 x g supernatant fractions) of male and female Swiss albino mice, male and female black agouti ras H2 microinjected mice, male and female Sprague-Dawley rats, female NZW rabbits, male beagle dogs and man (Mod4.2.2.4/TMC278-NC102 [FK4728]) (Mod2.6.5.10A). In addition, in vitro metabolism was also studied in hepatocyte primary cultures and 12,000 x g liver supernatant fractions from female Dunking Hartley guinea pigs and female or male cynomolgus monkeys (Mod4.2.2.4/TMC278-NC333 [FK6818]) (Mod2.6.5.10B). Rilpivirine (5 µM) was incubated in the above systems at 37°C for various time periods. Incubates were analyzed for metabolites by radio-HPLC. Co-chromatography, enzyme hydrolysis, LC-MS/MS and NMR techniques were used for the identification of metabolites.


In each species, a large number of metabolites was detected (see Figure 7). Overall, RPV was metabolized via different metabolic pathways including aromatic and aliphatic hydroxylation, glutathione conjugation, N-glucuronidation, CN- release followed by reduction/oxidation, and isomerization. Aromatic hydroxylation at the pyrimidinyl moiety (M42) subsequently followed by glucuronidation (M25) was an important metabolic pathway in all the species, and it was the most important in vitro biotransformation route in human, dog and rabbit. Aliphatic hydroxylation at one of the methyl groups of the cyanoethenyl-2,6-dimethylphenyl moiety (M33) subsequently followed by dehydration to form a tricyclic metabolite (M27), proved to be an important metabolic pathway in human, monkey and rabbit, but was less important in the other animal species. The combination of aliphatic hydroxylation with glutathione conjugation (M6) occurred in the mouse strains and in male and female rats, but not in the other species. Aliphatic hydroxylation in combination with glucuronidation (M19), on the contrary, was observed in rabbit, dog, monkey and human, but not in mouse, rat and guinea pig. Glutathione conjugation subsequently followed by conversions leading to mercapturic acid metabolites (M17 and M18) was a main metabolic route in mouse, rat and guinea pig. In the other species, the mercapturic acid biosynthesis route proved to be a minor pathway, and not all intermediary metabolites were detected. Hydroxylation of the glutathione conjugate (M8), subsequently followed by glucuronidation was also solely observed in mouse and rat. The release of the CN- group followed by reduction/oxidation, resulting in the formation of an alcohol metabolite (M31) and a carboxylic acid metabolite (M30), was a minor metabolic pathway in rabbit, guinea pig, dog and human, and could not be detected in mouse, rat and monkey. N-glucuronidation at the pyrimidinyl moiety of RPV (M15) was an important biotransformation pathway in rabbit and could also be detected in human but not in the other species.

RPV Long-Acting

All identified RPV metabolites that were detected in human in vitro systems were also detected in at least one animal species.

In a previous in vitro metabolism study with cold RPV (Mod4.2.2.4/TMC278-FK4152), glutathione conjugation of RPV was identified as the most important metabolic pathway in man and rodents. This was not confirmed in the in vitro study with ¹⁴C-RPV and in vivo where hydroxylation was the most important metabolic pathway in man.

Figure 7: In Vitro Metabolic Pathways of RPV in the Liver of Swiss Albino Mouse, Sprague-Dawley Rat, Guinea Pig, Rabbit, Dog, Monkey, Man and Black Agouti ras H2 Mouse

5.4.2. Isozymes Involved in the Metabolism of Rilpivirine in Human Liver

5.4.2.1. CYP450 Isozymes Involved in Rilpivirine Metabolism

The in vitro metabolism of ¹⁴C-RPV was studied in HLM in the presence of a nicotinamide adenine dinucleotide phosphate (NADPH)-generating system (Mod4.2.2.4/TMC278-NC141 [FK5300]) (Mod2.6.5.10C). The CYP reaction phenotyping of RPV metabolism was performed by different approaches including effect of CYP diagnostic inhibitors on RPV metabolism, metabolism in expressed CYP systems (*E. coli* cells and Supersomes®) and correlation analysis of metabolism rate in a panel of 10 batches of characterized HLM. Incubations were conducted at various RPV concentrations (0.5-50 μM) for 15 minutes with a protein concentration of 0.25 mg/mL. In a preceding nonradiolabeled pilot metabolism study, the identification of CYP isoenzymes was based on inhibitor and metabolism experiments with heterologous expression systems (Mod4.2.2.4/TMC278-FK4151).

In the radiolabeled study, one primary RPV metabolite, M42, and 4 minor metabolites i.e. M33, M27 and the co-eluting metabolites M35 and M36 were formed. The apparent Michaelis-Menten constant substrate concentration (K_m) and maximum rate achieved (V_{max}) values for the metabolism of RPV in HLM were 4.17 µM and 381 pmol/mg/min, respectively. The use of different CYP diagnostic inhibitors showed that RPV metabolism was markedly inhibited by the different CYP3A diagnostic inhibitors. Formation of M33 was moderately inhibited with the CYP2C8/9/10 inhibitor sulphaphenazole. Metabolism experiments in expressed CYP450 E. coli and Supersomes® systems clearly indicated the involvement of CYP3A isoforms and to some extent of the CYP1A2 isoform. Correlation analysis showed involvement of CYP3A and CYP2C19 in the formation of several metabolites, though for CYP2C19 this was not confirmed in the other phenotyping experiments. CYP1A2 might also play a role in the formation of M33. During some of the experiments in this study, the recovery of the TR was around 70% in the presence of NADPH and cofactor. Addition of glutathione to the incubation mixture resulted in a 50% decrease of bound radioactivity. This suggests that glutathione was able to scavenge hypothetical reactive intermediates. Comparison of the metabolic profile of RPV after incubation in HLM in the absence and presence of glutathione confirmed the formation of several glutathione conjugates.

In conclusion, overall RPV metabolism as well as formation of all its metabolites were mainly catalyzed by CYP3A4. Additionally, it was observed that formation of certain metabolites could also be catalyzed to a lesser extent by CYP2C19, CYP1A2 and CYP2C8/9/10.

In the nonradiolabeled metabolism study, CYP3A4 was clearly involved in the metabolism of RPV based on both inhibition and metabolism data in heterologous expression systems. Metabolism experiments with heterologous expression systems also indicated the possible involvement of CYP1A1, CYP1B1, CYP2C18 and CYP3A5 in the metabolism of RPV.

In an earlier study, using cold compound, a K_m value of 4.94 μM and a V_{max} value of 0.84 nmol/mg/min was calculated. Based on these kinetic parameters, a human in vivo intrinsic Cl of 1410 L/h and a hepatic clearance of 0.042 L/h/kg were predicted (Mod4.2.2.4/TMC278-FK4288).

5.4.2.2. GST Isoforms Involved in RPV Metabolism

The identification of the glutathione S-transferase (GST) isoforms (alpha, mu and pi) involved in the metabolism of $^{14}\text{C-RPV}$ was studied in vitro using heterologous expressed GST (Mod4.2.2.4/TMC278-FK4789). $^{14}\text{C-RPV}$ was tested at 5 and 200 μ M using reduced glutathione (GSH, 1 mM) as co-substrate. In addition, incubations were performed in the absence of GST to estimate the amount of non-enzymatic conjugation.

Conjugation with glutathione was more dependent on the mu than the pi isoform of GST, although both isoforms were involved.

5.5. Enzyme Induction and Inhibition

5.5.1. In Vitro Study Measuring CYP Activity and CYP Messenger Ribonucleic Acid (MRNA) Induction in Human Hepatocytes

The potential of RPV to induce CYP450 activities was determined in primary cultures from cryopreserved human hepatocytes originating from 3 different donors and compared to the data obtained with the positive controls omeprazole, rifampicin and ethanol (Mod4.2.2.4/TMC278-NC186 [FK5720]) (Mod2.6.5.12A). Cells were treated for 2 consecutive days either with vehicle (dimethyl sulfoxide (DMSO)), with RPV (2.5, 10 and 25 μM) or with the CYP inducers, i.e. omeprazole (CYP1A2), rifampicin (CYP2B6/2C19/3A4) or ethanol (CYP2E1). Induction of CYP activities (CYP1A2, CYP2B6, CYP2C19, CYP2E1 and CYP3A4) was assessed at the end of the 48-hour treatment period, using corresponding probe substrates (phenacetin (CYP1A2), Smephenytoin (CYP2B6 and CYP2C19), chlorzoxazone (CYP2E1) and testosterone (CYP3A4)). LC-MS/MS was used to measure the products of the probe substrates in order to determine the CYP activity of the hepatocytes. In addition, induction of CYP activities was also determined by measurement of mRNA expression levels by TaqMan real-time reverse transcription-polymerase chain reaction.

Most of the batches responded well to the treatment of positive inducers in all assays, except for the CYP2E1 assay. However, the inhibition control (positive control + 25 μ M RPV) revealed that RPV seemed to mask the induction of all investigated CYPs. Based on the observed fold-changes of mRNA expression and fold-induction of CYP activities, it can be concluded that RPV might be a very weak inducer of CYP1A2 (6-fold less than omeprazole) and CYP2B6 (4.5-fold less than rifampicin) in human hepatocytes. In addition, the results indicate that RPV appears to be a moderate inducer of CYP2C19 (1.4-fold less than rifampicin) and CYP3A4 (2-fold less than rifampicin) in human hepatocytes. No conclusion could be drawn for CYP2E1.

5.5.2. In Vitro Study Measuring GST Activity Induction in Human Hepatocytes

The potential of RPV to induce GST was evaluated in one batch of primary human hepatocytes in the presence of 3 concentrations of RPV (1, 10, and 30 μ M), incubated for 3 consecutive days (Mod4.2.2.4/TMC278-FK4824).

RPV had a low or no effect on GST activity or GST-alpha and GST-mu immunoreactive protein levels when compared with enzyme rates or levels observed in hepatocytes treated with the

vehicle control DMSO. However, the positive controls (phenobarbital, rifampin or 2,3,7,8-tetrachlorodibenzo-p-dioxin) did not result in induction of GST in human hepatocytes and therefore no conclusions can be drawn on the inducing properties of RPV on the GST activity and expression from this study.

5.5.3. Ex-vivo Studies Measuring Enzyme Activities in Mouse, Rat and Dog Liver

Rilpivirine in aqueous hydroxypropyl-methylcellulose (HPMC) (0.5%) was administered for 3 months to male and female CD-1 mice at doses of 20, 80 and 320 mg/kg/day (Mod4.2.2.4/TMC278-NC192 [FK5563]) (Mod2.6.5.12B). Rilpivirine base in PEG400/CA (10%) was administered to male and female Sprague-Dawley rats at doses of 40, 120 and 400 mg/kg/day and to male and female beagle dogs at doses of 5, 10 and 40 mg/kg/day for 6 months (Mod4.2.2.4/TMC278-NC193 [FK5564]), (Mod4.2.2.4/TMC278-NC140 [FK5518]) (Mod2.6.5.12C and Mod2.6.5.12D).

To examine the effect of RPV on some hepatic enzyme activities, microsomal fractions of livers from the above mentioned RPV treated animals were assayed for protein and total CYP content, and for the activities of 7-ethoxyresorufin O-deethylase, 7-pentoxyresorufin O-depentylase, 4-nitrophenol hydroxylase, testosterone 6β-hydroxylase and lauric acid 12-hydroxylase. These enzyme activities are well known markers for the induction of CYP1A, CYP2B, CYP2E, CYP3A and CYP4A forms, respectively. Microsomes were also assayed for lauric acid 11-hydroxylase activity, which is largely catalyzed by CYP2E1 and for thyroxine UDP-GT activity. Additionally, liver cytosolic fractions were assayed for protein content and GST activity towards 1-chloro-2, 4 dinitrobenzene as a substrate. In addition, in rats, the effect of RPV on some hepatic enzyme activities were also examined in liver samples from a 2-week study (RPV base in PEG400/CA (10%) at 40, 120 and 400 mg/kg/day) (Mod4.2.2.4/TMC278-FK4247). In this study, the liver microsomes were assayed for protein and for 7-ethoxyresorufin *O*-deethylase (CYP1A1, CYP1A2), 7-pentoxyresorufin-dealkylase (CYP2B), aniline hydroxylase (CYP2E1), *N*-ethyl morphine *N*-demethylase (CYP3A1, CYP3A2), lauric acid hydroxylase (CYP4A1) and thyroxine (T4) glucuronosyltransferase activities.

In mice, RPV was an inducer of the CYP4A forms in both male and female animals (up to 25-and 20-fold, respectively) (see Table 14). Some induction was also seen with the CYP3A forms (up to 1.7-fold in both males and females). RPV treatment induced UDP-GT activity in male and female mice (up to 2.1- and 2.3-fold, respectively) and decreased GST activity in male mice to 44% at 320 mg/kg/day.

In rats, RPV was an inducer of CYP4A forms in male rats (4.7-fold) whereas in female rats RPV was an inducer of CYP3A forms (6-fold) and possibly also of CYP2B and CYP4A forms (see Table 14). Rilpivirine treatment had some effect on UDP-GT activity in male rats (induction of 1.3-fold only at high dose level) and on GST activity in female rats (induction of 1.5-fold). In the 2-week study, the results were similar.

In dogs, treatment with RPV did not result in any induction of CYP1A1, CYP2B, CYP2E, and CYP4A, UDP-GT or GST activity. Rilpivirine produced some decrease in microsomal CYP3A-

dependent testosterone 6β -hydroxylase activity but this effect was confined to the two highest dose levels and was not dose-dependent (see Table 14).

Table 14: Percentage of Testosterone 6β-hydroxylase, Lauric Acid 12-hydroxylase and UDP-GT Activities Relative to Control Values in Hepatic Microsomal Fractions of CD-1 Mouse, Sprague-Dawley Rat and Beagle Dog After Repeated Administration of RPV or RPV Base

Species	Dose (mg/kg/day)	Testosterone 6β- hydroxylase (CYP3A)		Lauric acid 12-hydroxylase (CYP4A)		Thyroxine UDP glucuronosyltransferase (UDP-GT)	
		Male	Female	Male	Female	Male	Female
Mouse	20	111	153**	147*	126	108	138*
(Mod4.2.2.4/TMC278-	80	156***	174***	525***	521***	150**	164***
NC192 [FK5563])	320	174***	175***	2499***	1966***	210***	229***
Rat	40	95	120	140	75	65**	127
(Mod4.2.2.4/TMC278-	120	125	300***	262**	93	77*	98
NC193 [FK5564])	400	120	600***	466***	127*	125*	134
Dog	5	8	5	10	00	8	32
(Mod4.2.2.4/TMC278-	10	57	**	10	02	7	15
NC140 [FK5518])	40	74	4*	1	13	6	58

^{*} p<0.05; ** p<0.01; *** p<0.001

5.5.4. In Vitro Inhibition of Human CYP450 Enzymes by Rilpivirine

Rilpivirine was tested for its inhibitory effect on the metabolism of various human CYP450 probe substrates to gain information about the possibility of clinically relevant interactions with other drugs (Mod4.2.2.4/TMC278-FK4123), (Mod4.2.2.4/TMC278-NC283 [FK6443]). Incubations with P450 probe substrates, selective towards CYP1A2, CYP2A6, CYP2C8/9/10, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP4A and CYP3A4/5 were performed in HLM in the absence and presence of RPV at 8 different concentrations ranging between 0.03 and 400 μ M (Table 15).

Table 15: Interaction of RPV With Human CYP450 in Vitro

Substrate	CYP involved	IC ₅₀ -value (μM)
Phenacetin	CYP1A2	34.0
Coumarin	CYP2A6	>100 (15.7) ^a
Tolbutamide	CYP2C8/9/10	3.99
Dextromethorphan	CYP2D6	3.88
Bufuralol	CYP2D6	12.0
Testosterone	CYP3A4	6.29
Cyclosporin A	CYP3A4	16.8
Midazolam	CYP3A4/5	4.20
	CYP3A4/ 5	18.3
Lauric acid	CYP4A	>100 (15.9) ^a
	CYP2E1	9.79

^a % inhibition at 100 μM

Under these conditions, RPV was a potent inhibitor of CYP2C19 and CYP2E1. CYP2C19 activity was blocked 70% at a concentration of $0.06 \,\mu\text{M}$ ($0.02 \,\mu\text{g/mL}$) and 86% of CYP2E1 activity was inhibited at a concentration of $0.03 \,\mu\text{M}$ ($0.01 \,\mu\text{g/mL}$). However, an in vitro study with cultured hepatocytes (see Section 5.5.1) indicated a moderate induction of CYP2C19 by

RPV. For CYP2E1, there were some discrepancies in this in vitro study: Rilpivirine seemed to be a strong inhibitor of CYP2E1 with chlorzoxazone as a substrate and not with lauric acid as a substrate. However, in the in vitro drug-drug interaction study (see Section 7.2), no interaction was observed between RPV and chlorzoxazone. Therefore, as they were not confirmed by subsequent studies, the inhibition of CYP2C19 and CYP2E1 by RPV are considered not relevant. For the other CYPs, taking into account a mean C_{max} value of about 0.13 μ g/mL for oral administration of RPV and 0.14 μ g/mL for IM administration of RPV LA in human at steady-state, inhibition in vivo is unlikely.

Inhibition of CYP2C8-mediated paclitaxel 6α -hydroxylation and CYP2C9-mediated S-warfarin-7-hydroxylation by RPV (0.1 - 300 or 200 μ M, respectively) was also investigated in HLM (Mod4.2.2.4/TMC278-NC283 [FK6443]). RPV is an inhibitor of CYP2C8 and CYP2C9 with a K_i of 10 and 1.7 μ M, respectively. Taking into account a mean C_{max} value of about 0.13 or 0.14 μ g/mL for RPV after oral or IM in human, inhibition of CYP2C8 and CYP2C9 by RPV is not expected.

Furthermore, MBI of CYP2C9 by RPV $(0.1\text{-}100~\mu\text{M})$ was investigated in HLM with tolbutamide as a probe substrate (Mod4.2.2.4/1646_0030536 [FK10162] and Mod2.6.5.12E). Tienilic acid was used as positive reference inhibitor. The MBI potential was evaluated as the % decrease in CYP2C9 activity in the presence of NADPH regenerating system (NRS) relative to samples without NRS, after 20-fold dilution. A decrease in CYP activity with pre-incubation (PI) + NRS compared to PI – NRS is regarded as potential MBI involvement.

Inhibition data up to 3 μ M demonstrated only a small decrease in CYP2C9 activity during PI with NRS versus without NRS, and the annual percentage rate of charge of 288 indicated only a limited MBI potential. From 10 μ M RPV onwards, CYP2C9 activity decreased similarly after PI of HLM with RPV both with and without NRS. This means that from 10 μ M RPV onwards there is no additional effect due to MBI of RPV on top of the % effect already seen due to reversible CYP2C9 inhibition and/or due to direct CYP2C9 inactivation without metabolic activation. The clinical relevance of these findings should always be considered in the context of expected free RPV concentrations. Therefore, although in a clinical setting the low-end concentrations (C_{max} = 0.13 or 0.14 μ g/mL at steady-state) are probably the most relevant, the limited MBI of CYP2C9 is unlikely to have clinical relevance at therapeutic doses of RPV.

5.5.5. Effect of Rilpivirine on Adrenal Gland

The effect of RPV on cortisol biosynthesis in dog adrenal cortex cell-free extracts was determined (Mod4.2.2.4/TMC278-FK4790) (see also Mod2.6.6/Section 8.3).

Rilpivirine at a nominal concentration of 75 μ M (27.75 μ g/mL) caused 39% inhibition of the metabolism of pregnenolone compared to control. A concentration-dependent increase in progesterone and 17 α -hydroxyprogesterone concentrations was noted concomitant with decreases of 11-deoxycorticosterone, 11-deoxycortisol, and corticosterone concentrations.

6. EXCRETION

Excretion studies after oral administration of ¹⁴C-RPV in mice, rats, dogs, and humans have been conducted to support the registration of oral RPV (EDURANT®) submission. These studies that support the RPV LA MAA are rediscussed below.

6.1. Routes and Extent of Excretion

The excretion of RPV was studied after single oral administration of ¹⁴C-RPV base in male and female CD-1 mice at 20 and 320 mg/kg (Mod4.2.2.4/TMC278-NC190 [FK5621]), in Sprague-Dawley rats at 40 mg/kg (Mod4.2.2.4/TMC278-NC113 [FK4933]), (Mod4.2.2.4/TMC278-NC145 [FK5525]) and in male beagle dogs at 5 mg/kg (Mod4.2.2.4/TMC278-NC114 [FK5143]) (Mod2.6.5.9A, Mod2.6.5.9B, Mod2.6.5.9C and Mod2.6.5.9D). Healthy male subjects were dosed orally with 150 mg ¹⁴C-RPV base (Mod4.2.2.4/TMC278-NC157 [FK5344]) (Mod2.6.5.9E). Urine and feces samples were collected up to 96 hours after dosing in rodents, up to 168 hours after dosing in dogs and humans (only urine) and up to 336 hours in humans (only feces). TR was measured by scintillation counting.

In rodents, the TR was rapidly excreted with 90% to 94% (at 20 mg/kg) and 69% to 74% (at 320 mg/kg) of the radioactive dose eliminated in mice and 79% to 84% eliminated in rats within the first 24 hours after dosing. In dogs, excretion was relatively slow with 54% of the radioactive dose eliminated within the first 24 hours. In mice, rats and dogs, the predominant route of excretion of ¹⁴C-RPV was via the feces. The majority of the TR was eliminated in feces as unchanged RPV in mice (33-34% at 320 mg/kg), in rats (43-47%) and in dogs (43%) at 48 hours after dosing. Only, in mice at 20 mg/kg, one metabolite M42 was the most abundant in feces. Renal excretion was very limited (0.45 to 4.2% of the radioactivity dose) in all animal species and the amount of unchanged RPV in urine was negligible. The excretion was virtually complete at 96 hours after dosing in rodents and at 168 hours after dosing in dogs (Table 16). In a biliary excretion study in male Sprague-Dawley rats, the amount of radioactivity excreted in bile within 24 hours after dosing was rather low, only 18% and 25% of the administered radioactivity, in restrained and nonrestrained animals, respectively. The amount of unchanged RPV excreted in bile during this time period was negligible (about 0.2%). The biliary excretion study demonstrated that the major part of unchanged RPV excreted in feces in rats had not been absorbed.

The excretion of RPV in humans was similar to that seen in the nonclinical species. 85% of the dose was excreted in feces and excretion was virtually complete at 336 hours after dosing. Unchanged RPV represented on average 26% of the administered dose in feces. In humans, the amount of TR recovered in urine was somewhat higher (6.1% of the administered dose over the 7-day period) than in animals. Unchanged RPV in urine was negligible.

% of		Mouse				Rat		Human
administered	20 m	ıg/kg	320 ı	ng/kg	40 n	ng/kg	5 mg/kg	150 mg
dose	Male	Female	Male	Female	Male	Female	Male	Male
Urine	3.51	4.19	1.84	3.62	0.45	1.77	1.73	6.13
Feces	87.8	87.1	95.8	88.8	93.3	92.6	94.7	85.1
Cage washings	3.61	3.79	1.18	3.37	0.12	0.68	0.38	-
Total Recovered	94.9	95.1	98.9	95.8	93.9	95.1	96.8	91.2ª

Table 16: Urinary and Fecal Excretion of the Radioactivity Following a Single Oral Dose of ¹⁴C-RPV Base in Mouse and Rat at 96 Hours After Dosing and in Dog and Human at 168 Hours After Dosing

6.2. Excretion in Milk

No studies have been conducted to assess directly the excretion of RPV into milk. In the QWBA study in pregnant Sprague-Dawley rats (see Section 4.1.1.1), some radioactivity was seen in the mammary glands (tissue/blood AUC_{0-8h} ratio = 3), which indicates the potential for excretion of RPV-related radioactivity via the milk.

In a dose range finding study for a pre- and postnatal developmental study (Mod4.2.3.5.3/TMC278-NC168 [TOX6847]) it was found that pups were exposed to RPV through the milk of the dams dosed with RPV (40, 120 and 400 mg/kg/day). On Day 7 of lactation, exposure (AUC_{0-24h}) in pups was 0.62 and 0.74 μ g.h/mL at 40 mg/kg, 0.94 and 0.91 μ g.h/mL at 120 mg/kg and 1.9 and 1.8 μ g.h/mL at 400 mg/kg in males and females, respectively. Exposure in pups dosed through milk on Day 7 of lactation was approximately 20-to 35-fold lower than in pups directly dosed by oral gavage on Day 25 of age.

7. PHARMACOKINETIC DRUG INTERACTIONS

7.1. Transporter Studies

The inhibition of transport of the OCT2 substrate ¹⁴C-metformin by RPV was evaluated in CHO cells stably transfected with complementary deoxyribonucleic acid (cDNA) encoding for this transporter (Mod4.2.2.6/1646_0025128 [FK10042] and Mod2.6.5.15A). Quinidine and cimetidine were used as positive control inhibitors. Transport, and inhibition thereof, was tested in the presence of 1% bovine serum albumin (BSA).

The IC₅₀ value for inhibition of OCT2 by RPV was $5.46 \mu M (2.0 \mu g/mL)$.

The inhibition of transport of the MATE-1 and MATE-2K substrate ¹⁴C-TEA by RPV was evaluated in CHO cells stably transfected with cDNA encoding for this transporter (Mod4.2.2.6/1646_0035314 [FK10420] and Mod2.6.5.15B). Quinidine and pyrimethamine were used as positive control inhibitors. Transport, and inhibition thereof, was tested in the presence of 1% BSA.

The uptake of 14 C-TEA was inhibited by RPV with an IC₅₀ value of 7.51 μ M (2.75 μ g/mL) for MATE-1 and of <0.05 μ M (<0.018 μ g/mL) for MATE-2K. In conclusion, the effect of RPV on

^a Expressed as percent of the administered dose in the 0-168h urine and 0-336h feces

MATE-1 is unlikely to be clinically relevant, but it cannot be excluded that RPV would inhibit MATE-2K at clinically relevant concentrations.

In the Nonclinical Overview (Mod2.4/Sec3.7.1 and 5.2) these results are compared to the clinical data.

7.2. Drug-Drug Interactions

The in vitro interaction of RPV with the metabolism of sertraline (substrate of multiple CYPs, Monoamine oxidase and UDP-GT), paroxetine (CYP2D6), clarithromycin (CYP3A4), sildenafil (CYP3A4), omeprazole (CYP2C19 and CYP3A4), chlorzoxazone (CYP2E1), 17α-ethinylestradiol (phase II metabolism), S-mephenytoin (CYP2C19) and norethindrone (different isoenzymes) was investigated in a pooled batch of HLM and the same was done for abacavir (alcohol dehydrogenase) in a pooled batch of human liver cytosol (Mod4.2.2.6/TMC278-NC194 (FK5568]) (Mod2.6.5.15C).

Rilpivirine seemed to have a significant inhibitory effect (IC₅₀ <5 μ M) on the metabolism of clarithromycin, sildenafil, S-mephenytoin and norethindrone and a moderate effect (5 μ M <IC₅₀ <10 μ M) on sertraline, paroxetine and 17 α -ethinylestradiol. Omeprazole metabolism was only poorly inhibited by RPV, displaying an IC₅₀-value of 12 μ M. RPV has under these conditions no measurable effect on the metabolism of abacavir or chlorzoxazone, as metabolite formation of the latter compounds was not inhibited (IC₅₀ >30 μ M).

These in vitro data indicate a possible effect of RPV on the in vivo metabolism of clarithromycin, sildenafil, S-mephenytoin, and norethindrone and also albeit somewhat less likely, with sertraline, paroxetine and 17α -ethinylestradiol. No inhibition is expected for omeprazole, abacavir, and chlorzoxazone.

In the Nonclinical Overview (Mod2.4/Sec3.5) these results are compared to the clinical data.

7.3. Combination of RPV LA With CAB LA in Rats

The pharmacokinetics of RPV was determined following single IM administration at 60 mg/kg (0.2 mL/kg) of RPV LA (G001) alone or in combination with a LA injectable suspension of GSK1265744A (CAB) at 10 mg/kg (0.05 mL/kg) in male Sprague-Dawley rats with a follow-up of 2 months (Mod4.2.2.6/1955_0018187 [FK7565] and Mod2.6.5.15D). The plasma concentrations of RPV were comparable for the 2 groups. Initial release was quick for both groups, with peak concentrations that were reached within 2-6 h after administration. After the peak, the levels showed a biphasic decline consisting of a quick decline during up to 2 days after dose administration, followed by a slower decrease up to the last sampling point, 2 months after dose administration. The mean C_{max} and $AUC_{0-1444h\ or\ 2months}$ values of RPV were similar between the 2 groups (Table 17).

Table 17: Mean (n=3) Pharmacokinetic Parameters of RPV in Male Rats After Single IM Administration at 60 mg/kg, Dosed Alone as RPV LA (G001) in Combination with GSK1265744A (CAB) at 10 mg/kg

Dose (mg/kg)	C _{max} (μg/mL)	t _{max} (h)	AUC _{0-1444h} (μg.h/mL)	AUC _{0-∞} (μg.h/mL)
60 (RPV LA)	0.11	4.7	23	26
60 (RPV LA) + 10 (CAB)	0.11	2.0	24	27

8. OTHER PHARMACOKINETIC STUDIES

8.1. After Administration of Other non-G001 Rilpivirine LA Formulations

8.1.1. Studies in Mice

A single SC administration of 25 mg/mL RPV LA in P338 (3.8 mg/mL) at 2.5, 5, 10 and 20 mg/kg or in Vitamin E-D- α -tocopheryl polyethyleneglycol 1000 succinate (Vit E-TPGS) at 20 mg/kg was given to male and female Swiss mice (Mod4.2.3.7.7/TMC278-NC196 [TOX7354]), followed by a period of 4 and 18 days. At 20 mg/kg of RPV LA in P338, C_{max} and AUC $_{0-\infty}$ values of RPV were 1.6 μ g/mL and 60 μ g.h/mL in males and 2.2 μ g/mL and 74 μ g.h/mL in females, respectively. AUC $_{0-\infty}$ values increased in a fairly dose-proportional fashion. The exposure to RPV (both C_{max} and AUC) was slightly higher in females than in males.

Eighteen days post-dosing, the concentrations of RPV in the spleen and thymus were below the quantification limit ($<0.017~\mu g/g$) in both sexes and at all dose levels studied (Mod2.6.5.16A). On the other hand, after RPV LA in P338, the skin concentrations of RPV at the injection site were high and amounted to 0.033, 0.16, 0.11 and 67 $\mu g/g$ in male mice and to 0.68, 0.53, 0.57 and 48 $\mu g/g$ in female mice at 2.5, 5, 10 and 20 mg/kg, respectively. Taking into account the high variability, the concentrations of RPV at the injection site were much higher than those in plasma. At 20 mg/kg the skin-to-plasma ratio was on average 1599, an indication that a substantial part of the compound remained at the injection site.

8.1.2. Studies in Rats

In male Sprague-Dawley rats (Mod4.2.3.7.7/TMC278-NC244 [TOX7896]), after single IM or SC administration of F004 (100 mg RPV base/mL and 25 mg/mL of P338) at doses of 5 and 20 mg/kg with an 8-week follow-up period, RPV plasma concentrations increased up to 7 h post-dose and declined thereafter (slightly faster after IM than after SC administration). Mean C_{max} values of RPV were approximately 2-fold higher after IM than after SC administration, but mean $AUC_{0\text{-day}56}$ values were comparable for the 2 routes (15 versus 16 μ g.h/mL for IM and SC at 20 mg/kg, respectively). A dose-proportional increase in $AUC_{0\text{-day}56}$ and a less than dose-proportional increase in C_{max} were observed.

After a follow-up period of 8 weeks, mean concentrations of RPV in thymus and spleen were below the detection limit (0.005 μ g/g) (Mod2.6.5.16B). Mean concentrations of RPV in muscle at the injection site (IM) amounted to on average 2.0 μ g/g and 8.3 μ g/g at 5 and 20 mg/kg, respectively.

8.1.3. Studies in Rabbits

In female NZW rabbits (Mod4.2.2.7/TMC278-NC356 [FK6993] and Mod2.6.5.16C), after single IM administration, the pharmacokinetics of F004 at 50 mg/kg was compared with 300 mg/mL RPV LA in PS80 (F006) at 150 mg/kg after a 1-month follow-up period. The release profile of F004 was different from that of F006, particularly for the first phase of the plasma concentration-time profile. Dosing of F004 led to a rapid onset of drug availability with t_{max} between 8 and 24 h post-dose, while dosing of F006 resulted in a gradual release until Day 14. Plasma C_{max} and AUC_{0-day36} values of RPV were 7.5 μ g/mL and 1423 μ g.h/mL after 50 mg/kg of F004 and 5.8 μ g/mL and 2786 μ g.h/mL at 150 mg/kg of F006, respectively.

8.1.4. Studies in Dogs

In a first study (Mod4.2.2.7/Innovation-NC114 [FK5458]) in male beagle dogs (n=2), a suspension of RPV base or RPV.HCl at 25 mg/mL in P338 at 10 mg/mL was administered IM at 5 mg eq./kg (Mod2.6.5.16D). IM administration of RPV LA resulted in a rapid onset of drug release over a period of 2 days, with mean RPV C_{max} values of 0.17 μ g/mL observed within 48 h. Thereafter plasma concentrations slowly declined to undetectable concentrations from 3 months (Day 94) onwards after dosing. The mean AUC_{0-3months} value was 39 μ g.h/mL. Such an initial drug release was not observed after IM dosing of RPV.HCl, where C_{max} values of 0.095 μ g/mL were reached at 48 h after dosing, and after which concentrations remained constant for about 10 days. Thereafter plasma concentrations declined slowly. AUC_{0-3months} values were 34 μ g.h/mL.

In addition, selected tissues (liver, muscle [at the injection and non-injection site], adrenal gland, abdominal fat, spleen, lymph nodes [iliac, popliteal, auxiliary, mandibulary], skin and thymus) were collected on Days 94 and 184 at necropsy of each animal. In addition, at Day 29, biopsies of iliac and popliteal lymph nodes were performed. The RPV concentrations were measured in all these tissues. After IM administration of RPV LA at 5 mg/kg in P338 (25 mg/mL) at Day 29, high concentrations of RPV were found in the iliac (8.6-30 μ g/g) and popliteal (4.6-8.4 μ g/g) lymph nodes adjacent to the injection site, being 100 times higher than those in plasma. Three and six months after dosing, concentrations in these adjacent lymph nodes decreased to concentrations similar to those observed in more distant lymphoid tissues and lymph nodes (0.01-0.03 μ g/g). The concentrations in tissues (adrenal gland, abdominal fat, liver, muscle, skin, spleen, thymus and several lymph nodes) sampled at sacrifice (3 or 6 months post-dose) ranged between 0.010 and 0.085 μ g/g at 3 months post-dose, and between 0.06 and 0.031 μ g/g at 6 months post-dose, demonstrating a decrease between the 2 sacrifice time points.

In a second study (Mod4.2.2.7/TMC278-NC238 [FK5998] and Mod2.6.5.16E), 5 mg/kg of RPV (25 mg/mL) formulated in P338 (3.7 mg/mL) was given IM or SC to male beagle dogs with a follow-up of 6 months. Similar concentration-time profiles were observed as described for the first study. C_{max} and $AUC_{0\text{-}6\text{months}}$ values of RPV after IM dosing were 0.62 $\mu g/mL$ and 23 $\mu g.h/mL$, respectively.

In male and female beagle dogs (Mod4.2.3.7.7/TMC278-NC234 [TOX7781] and Mod2.6.5.16F), F004 at a single dose of 200 and 400 mg/animal was given as 2 subsequent IM injections separated by 24 h, followed by a 3-month follow-up period. In general, exposure to

RPV (both C_{max} and $AUC_{0-1 \text{or 3 month}}$) showed an increase proportional with dose in the dose range 200-400 mg/animal and there were no overall gender differences noted. $AUC_{0-1 \text{month}}$ values in males and females dosed at 400 mg/animal were 188 and 204 $\mu g.h/mL$, while $AUC_{0-3 \text{months}}$ values were 281 and 265 $\mu g.h/mL$, respectively.

In addition, selected tissues (brain, spleen, thymus, testis) were collected on Days 29/30 and 92/93 at necropsy. After IM administration at 200 or 400 mg/animal at Day29/30 and Day 92/93, the mean RPV tissue-to-plasma concentration ratios in males and females ranged between 1.5 and 2.3 in brain, 2.8 and 2.9 in spleen and 1.8 and 6.0 in thymus. In testes, the tissue-to-plasma concentration ratios ranged between 0.54 and 0.88 in males.

In another study, single SC dosing of RPV LA at 5 or 20 mg/kg, formulated in Vit-E-TPGS, was performed in male beagle dogs (Mod4.2.2.7/TMC278-NC203 [FK5821] and Mod2.6.5.16G). Suspensions containing RPV at 25 mg/mL with a particle size of 400 nm and at 100 mg/mL with particle sizes of 400 nm or 800 nm were administered. Taking into consideration the interindividual variability in plasma concentrations, the release profiles were very similar between the 3 treatment groups. Furthermore, the exposures as well as the plasma profiles were hardly influenced by changing the size of the particles from 400 to 800 nm at 20 mg/kg. $AUC_{0-3months}$ values were 14, 38 and 30 μ g.h/mL after 5 mg/kg (particle size of 400 nm), 20 mg/kg with particle sizes of 400 nm or 800 nm, respectively.

In addition, selected tissues (adrenal gland, abdominal fat, liver, axillary and mandibular lymph node, muscle, skin (injection and non-injection sites), spleen, thymus) were collected on Day 93 at necropsy for each group. The concentrations of RPV in skin at the injection site were very high (> 500.000 times higher than those in plasma) 3-months after administration, indicating that a substantial part of the compound remained at the injection site after SC administration. The highest tissue-to-plasma RPV concentration ratios were obtained in the auxiliary lymph node (10-206), liver (12-15), abdominal fat (9-12), and skin (6.3-11) at non-injection site. For adrenal gland, mandibular lymph node, muscle, spleen and thymus, the mean tissue-to-plasma ratios ranged from about 1.6 to 8.

8.1.5. Studies in Minipigs

In male Göttingen minipigs, the pharmacokinetics of RPV LA (F004) at a single IM dose of 400 mg (~20 mg/kg) was compared with 300 mg/mL RPV LA in PS80 (F006) at a single IM dose of 450 mg (~22.5 mg/kg). A 1- and 3-month follow-up period was included (Mod4.2.2.7/TMC278-NC295 [FK6407] and Mod2.6.5.16H). The plasma profiles were different particularly during the first month. A faster increase in plasma concentrations was seen with F004 ($t_{max} = 8h$) than with F006 ($t_{max} = 160$ -360 h). Furthermore, mean C_{max} and $AUC_{0-3months}$ values of RPV were about 2.3-times higher with F004 than with F006 with C_{max} values of 0.049 versus 0.015 µg/mL and $AUC_{0-3months}$ values 20 and 8.7 µg.h/mL, respectively.

In male Göttingen minipigs, after IM administration, the pharmacokinetics of 100 and 200 mg/mL RPV LA (P338) at doses of 200 and 400 mg (\sim 20 and 40 mg/kg) was compared with 100, 200, 250 and 300 mg/mL RPV LA (PS80) at 200, 400, 500 and 600 mg (\sim 20, 40, 50 and 60 mg/kg). A 1-month follow-up period was included (Mod4.2.2.7/TMC278-NC344 [FK7034] and Mod2.6.5.16I). At a dose of 400 mg, the mean AUC_{0-1month} value of RPV was 15 μ g.h/mL

when RPV LA was formulated in P338 and was 9.8 μg.h/mL when RPV LA was formulated in PS80. When comparing plasma profiles (100 and 200 mg/mL) between the 2 formulations, different plasma profiles were observed from the start of dosing until 144 h (6 days) post-dose. Plasma concentrations for the P338 formulations (100 and 200 mg/mL) increased up to 6 h, declined from 6 to 72 h and then remained fairly constant from 72 to 648 h. Plasma concentrations for the PS80 formulations (100-300 mg/mL) dropped almost immediately (t_{max} = 0.5-2 h) after dosing, increased slowly up to 144 h and then remained fairly constant until 27 days. Higher mean AUC_{0-1month} values (approximately 30 to 50%) were obtained for the P338 formulations, compared to the same concentration of PS80 formulations.

Toxicokinetics was also determined in a 39-week (with 13-week interim kill) IM study in minipigs. The test article was administered at 75 mg/kg on Days 1, 30, 60 and 90, and at 600 mg/animal on Days 120, 150, 180, 210, 240 and 270. In addition, injections were performed at 300 mg/animal on Days 120, 150, 180 and 210. On Day 93 (i.e. after the 4th dose administration) an interim sacrifice was performed involving half of the number of animals of each sex in each group. The other animals were maintained in the study for another 6 months (Mod4.2.3.7.7/TMC278-NC296 (TOX8580) and Mod2.6.5.16J).

C_{max} and AUC values of RPV were comparable to somewhat higher after repeated dosing on Day 60/240 than after single dosing on Day 1. C_{max} and AUC were comparable to somewhat higher in females than in males after single and repeated dosing. At Day 240, AUC_{day240-269} values were 43 μg.h/mL in males and 35 μg.h/mL in females.

8.2. Rilpivirine Impurity related substance D*

Some in vitro or in vivo studies were performed focusing on the minted substance Dgenotoxic impurity of RPV.

8.2.1. In Vitro Metabolism Study

The in vitro metabolism of ¹⁴C-related withstance Dr (JNJ-19376123), a genotoxic impurity of RPV, was explored in rat and human liver subcellular fractions (microsomes and S9 supernatant) and in rat and human hepatocytes (Mod4.2.2.7/2683_0038991 [FK10250]). In subcellular liver fractions of rat and human, the major metabolites of related withstance Dr originated from oxidation and release of thiocyanate (SCN-). In hepatocytes, direct sulfate conjugation was by far the major metabolite in the rat and was one of the major metabolites in human. The metabolic pathways that have been detected in vitro in rat and human liver models represent the major in vivo clearance pathways in the rat, viz. sulfate conjugation and loss of the CN- function, which gets further metabolized to SCN-. It is thus most likely that also in human this impurity is efficiently cleared via metabolic degradation.

8.2.2. In Vivo Metabolism Studies

The pharmacokinetics of RPV and its genotoxic impurity (material substance) was determined in male rats 1 week after dosing (Mod4.2.2.7/2683_0038991 [FK10250]). The rats were administered a single IM injection of RPV LA with spiked levels of related substance DAT 60 mg RPV/rat and 925 ppm related substance of (original batch contained 1-2 ppm related substance). Plasma concentrations of related substance of tweether than the rate of the related substance of the relat

but could be measured up to 24 h (n=1), 52 h (n=2) or 100 h (n=1) after dosing. C_{max} value was reached at 2 h after dosing (first sampling time point). AUC_{0-24 h} value of value of NOW as only about 0.1% compared to the AUC_{0-24 h} value of RPV.

Following a single IM injection of RPV LA (G001) at 60 mg/rat with spiked levels of ¹⁴C-paperal and scale (185 µg/rat) (Mod4.2.2.7/2683_0039002 [FK10345]), about 44% of the administered radioactive dose was excreted via urine within 96 h (of which 68% was excreted within 0-7 h) and about 22% was excreted via feces (of which 59% was excreted within the first 24 h). A small amount of the radioactive dose was present in the muscle of the injection site (1.4%), but 28% of the radioactivity was still present in the carcass (n=2) at 96 h after dosing. The total recovery of the administered radioactivity was 96% (n=2). TR in plasma decreased very slowly as a function of time. The plasma metabolism profiles of the radioactivity showed that the total amount of the radioactivity was predominantly accounted for by SCN-.

The plasma concentration of reached levels of only 0.1% of the C_{max} ($t_{max} = 0.5$ h) after 24 h.

In urine, most of the administered radioactivity excreted (21% of the dose) was the sulfate metabolite. About 9% of the administered radioactivity was SCN- and only 0.65% of the dose was identified as the impurity parak area and a collection interval (0-7 h). In feces, 2.6% of the dose was the impurity parak area and 1.2% of the dose was SCN- (0-24 h) and in later time intervals, hardly any parak area and appearance of the dose was SCN- or other entities could be detected.

In conclusion, in rat, repeated and that the main metabolite pathways were sulfate conjugation and loss of the CN- function.

8.3. **Poloxamer 338**

Some studies were conducted after measuring in plasma or other matrices P338, excipient of the G001 formulation.

8.3.1. Pharmacokinetic Studies

The plasma concentrations of P338, were measured after a single oral administration of P338 (solution in water) at 1600 mg/kg to female Sprague-Dawley rats and to female NZW rabbits, using the same experimental conditions as the GLP embryo-fetal development studies (Mod4.2.3.7.7/TMC278-NC348 [TOX9680] and Mod4.2.3.7.7/TMC278-NC347 [TOX9679]). The plasma concentrations of P338 were below the quantification limit in all samples, i.e., below 0.1 μg/mL (Mod4.2.2.7/FK13157) in female rats. In female rabbits, some variabilities were observed in the plasma profiles (Mod4.2.2.7/FK13159 and Mod2.6.5.16K). In general, P338 concentrations were quantifiable, i.e., above the LLOQ of 0.075 μg/mL, starting from 2 h to 8 h. C_{max} values were reached between 48 to 72 h after dosing, followed by a mono-phasic declined. Concentrations were still above the LLOQ at 336 h in 3 rabbits (Table 18).

In female Göttingen minipigs, after single IM administration of RPV LA (G001) at 600 mg using the same experimental conditions as in the 9-month GLP study (Mod4.2.3.2/TMC278-NC349 [TOX9517]), concentrations of P338, were measured (Mod4.2.2.7/FK13161 and Mod2.6.5.16L).

The corresponding dose of P338 was 100 mg (4.6 mg/kg). The time to reach peak plasma concentration of P338 ranged from 24 h to 72 h. P338 concentrations were still above the limit of quantification (0.375 μ g/mL) at 672 h after injection. The minipig plasma pharmacokinetic parameters of P338 are described in Table 18.

P338 plasma concentrations were also measured in human samples from a clinical study (Mod5.3.1.2/TMC278LAHTX1001) in healthy volunteers after single IM administration of RPV LA (G001; 2-mL injection). Pharmacokinetic parameters of P338 were determined in human plasma (Mod4.2.2.7/FK13131 and Mod2.6.5.16M). C_{max} values were reached within 48 h to 72 h, followed by an initial fast decrease until 672 h and a slower decrease afterwards, with concentrations still detected up to 4032 h after injection.

Table 18: Mean Pharmacokinetic Parameters of P338 After Single Oral or Intramuscular Administration of P338

Species	Route	Dose of P338	Number per group/ Sex	C _{max} (μg/mL)	t _{max} ^a (h)	t _{last} (h)	AUC _{0-tlast} (μg.h/mL)
Rabbit	oro1	1600 mg/kg	1/E	4/F 0.42 48	10	24	4.1
Kabbit	abbit oral	1600 mg/kg	4/ Г		40	264-336	69
Minipig	IM	100 mg	4/F	52.3	24	24	841
Millipig	11V1	100 mg	4/Γ	32.3	24	672	13,600
						24	34
Human IM	I 100 mg	6	3.91	48	336	580	
						672	717

^a Median value

F: female; IM: intramuscular

A pharmacokinetic study was conducted after single IM injection of P338 in male rats (n=3) at 10 mg/kg (Mod4.2.2.7/FK13409 and Mod2.6.5.16N). P338 concentrations were measured in plasma, liver, kidney, feces and urine. The samples were collected up to Day 22. The LLOQ in plasma, liver, kidney, feces, and urine were 0.2 μ g/mL, 5 μ g/g, 1 μ g/g and 0.5 μ g/mL, respectively.

The C_{max} of P338 (61 µg/mL) was achieved at 7 h and the corresponding $AUC_{0-529h~(\sim 22~days)}$ was equal to 2170 µg.h/mL. The tissue-to-plasma AUC_{0-529h} ratios were 1.1 in kidneys and 5 in the liver. In urine, 9.41% of the dose was excreted as unchanged P338 in the 0-144h interval. Since all concentrations were below quantification limit in feces, only $\sim 10\%$ of the administered dose was eliminated at the end of the experiment, and via the urine. At the last time point 529h after dosing, P338 is still detected in plasma, liver and kidney, showing the slow elimination of P338 in rats.

8.3.2. Toxicokinetic Studies

8.3.2.1. Rats

A non-GLP, single and repeat-dose IM toxicity/toxicokinetic study was conducted after administration of P338 in female Sprague-Dawley rats (4/group), followed by a 1-month follow-up period (Mod4.2.3.7.7/TOX13295 and Mod2.6.5.16O). P338 (25 or 50 mg/mL as a sterile

aqueous solution) was administered at 5 mg/kg on Day 0 in the single dose phase, and at 5, 10 mg/kg/day on Days 0, 3, 6 and 9, and at 2x5 mg/kg/dose on Days 0 and 7 in the repeat-dose phase. A GLP combined male and female fertility and embryo-fetal toxicity study was conducted in rats after IM administration of P338 (Mod4.2.3.7.7/TOX13391 and Mod2.6.5.16P). P338 was administered every 3 days at 2.5, 5 and 10 mg/kg from 28 days before mating up to 3 days before necropsy (at least 21 administrations) and from 14 days before mating to gestation day (GD) 15 (at least 11 administration). A GLP peri- and postnatal development study was conducted in rats after IM administration of P338 (Mod.4.2.3.3.7/TOX13546 and Mod2.6.5.16Q). P338 was administered every 3 days at 2.5, 5 and 10 mg/kg/dose, to female Sprague-Dawley rats at G6 till weaning (13 administrations). The toxicokinetic parameters of P338 are described in Table 19.

In general, exposure (C_{max} and AUC_{0-72h}) values of P338 increased less than dose-proportional or close to dose-proportional. Comparing the first and last day of dosing, C_{max} and AUC_{0-72h} values were similar or slightly higher (up to 1.6-fold) after repeated IM administration every 3 days or every week. No clear difference in exposure (C_{max} and AUC_{0-72h}) was seen between males and females.

The exposure (C_{max} and AUC_{0-72h}) values of P338 was similar after the single dose of 10 mg/kg every 3 days compared to 2x5 mg/kg every week.

Table 19: Mean Toxicokinetic Parameters of P338 After Intramuscular Administration of P338 in Rats

Study	Dose of P338 (mg/kg)	Number per group/ Sex	Day	C _{max} (μg/mL)	t _{max} ^a (h)	t _{last} (h)	AUC _{0-tlast} (μg.h/mL)
	5	4/F	0	25	3-7	72	679
	3	4/Γ	U	23	3-7	∞	810
			0	25	7	72	705
	5	4.75		23	,	∞	752
	every	4/F	9	38	2-7	72 168	987
	3 Days		_	_	_	288 (12 days)	1170 3235 ^b
						72	1570
Mod4.2.3.7.7/	10		0	49	7-12	<u>~</u>	1690
TOX13295	every	4/F	9	65	7-12	72	1950
	3 Days		9	65	7-12	168	2390
			-	-	-	288 (12 days)	7063 ^b
			0	49	7-12	72	1470
	10 (2x5)	4.75			,	∞ 70	1770
	every	4/F	7	57	7	72 168	1550
	week						1790 3737 ^{b,c}
			- (1 St .1)	-	-	336 (14 days)	
	2.5	2/14	0 (1 st dose)	-	-		-
	every	3/M	54 (19 th dose)	10	7	72	386
	3 Days		<u>-</u>	-	-	1512 (63 days)	7870 ^b
		3/F	0 (1 st dose)	-	-	-	-
			30 (GD 15)	-	-	-	-
	_	2/M	0 (1st dose)	29	7	72	746
	5	3/M	54 (19th dose)	23	7	72 1512 (63 days)	825 16,000 ^b
Mod4.2.3.7.7/	every 3 Days		0 (1st dose)	18	4.5	72	503
TOX13391	J Days	3/F	30 (GD 15)	17	7	72	491
		3/1	- -	-	-	792 (33 days)	4960 ^b
			0 (1st dose)	33	7	72	944
		3/M	54 (19th dose)	34	7	72	1480
	10	3/111	34 (19th dose)			1512 (63 days)	26,000 ^b
	every		- 0 (1 (1)	- 26	- 4.5	72	
	3 Days		0 (1st dose)	26	4.5		666
		3/F	30 (GD 15)	26	7	72	879
			-	-	-	792 (33 days)	6220 ^b
	2.5		0 (GD6)	-	-	-	-
	every 3 Days	3/F	30 (LD17)	7.8	7	72	260
	5		0 (GD6)	14	7	72	413
Mod4.2.3.7.7/	every	3/F	30 (LD17)	14	39.5 ^a (7-72)	72	686
TOX13546	3 Days		-	-	-	792 (33 days)	4860
	10		0 (GD6)	26	7	72	807
	every	3/F	30 (LD17)	25	7	72	990
	3 Days	J/1		_	_	792 (33 days)	8410

^a Median value; ^b AUC_{0-cumulativetlast} corresponds to the AUC during the overall experiment; ^c n=3 -: no toxicokinetic evaluation possible; F: female; M: male; GD: gestation day; LD: lactation day

8.3.2.1. Rabbits

A non-GLP, single and repeat-dose IM toxicity/toxicokinetic study was conducted in female NZW rabbits (4/group), followed by a 1-month follow-up period (Mod4.2.3.7.7/TOX13296 and Mod2.6.5.16R). P338 (as a sterile aqueous solution) was administered at 5 mg/kg on Day 0 in the single dose phase, and at 2.5 and 5 mg/kg on Days 0 and 7 and at 2.5 mg/kg on Days 0, 4 and 8 in the repeat-dose phase. A GLP embryo-fetal toxicity study of P338 was conducted in female rabbits after IM administration of P338 (Mod4.2.3.7.7/TOX13376 and Mod2.6.5.16S). P338 was administered at 2.5 and 5 mg/kg on GD 6 and GD 12. The toxicokinetic parameters of P338 are described in Table 20.

In general, exposure (C_{max} and $AUC_{0-tlast}$) values of P338 increased in close to dose-proportional. Comparing the first and last day of dosing, C_{max} and AUC_{0-72h} values were similar or slightly higher (up to 1.4-fold) after repeated IM administration every 4 or 6 days or every week.

Table 20: Mean Toxicokinetic Parameters of P338 After Intramuscular Administration of P338 in Rabbits

Study	Dose of P338 (mg/kg)	Number per group/ Sex	Day	C _{max} (μg/mL)	t _{max} ^a (h)	t _{last} (h)	AUC _{0-tlast} (μg.h/mL)
	_					96	2760
	5 SD	4/F	0	50	24	168	3290
	SD					∞	3740
			0	20	12.24	96	1140
	2.5 RD every		0	20	12-24	∞	1330
		4/F	8	27	12-24	96	1620
	4 Days		8	21	12-24	168	1970
			-	-	-	288 (12 days)	4137 b
Mod4.2.3.7.7/ TOX13296 RD ev				0 30		96	1580
	2.5		0		7-24	96-168	1860
	RD every	4/F				∞	2070
	week	4/ F	7 28 12-24 96	96	1650		
	WCCK	3CK	,	26	12-24	168	2010
			-	-	=	336 (14 days)	4423 ^b
				49	12-24	96	2800
	5		0			168	3350
	RD every	4/F				∞	3610
	week	4/1	7	55	24	96	3180
	WCCK		,	33	24	168	3880
			-	-	=	336 (14 days)	7228 ^b
	2.5		0 (GD 6)	24	24	144	1490
Mod4.2.3.7.7/ TOX13376	RD every	4/F	6 (GD 12)	25	24	144	1330
	week			-	-	288 (12 days)	2820 b
	5		0 (GD 6)	40	24	144	2410
	RD every	4/F	6 (GD 12)	49	24	144	2670
	week		-	-	-	288 (12 days)	5080 b

^a Median value; ^b AUC_{0-cumulativetlast} corresponds to the AUC during the overall experiment

^{-:} no toxicokinetic evaluation possible; F: female; GD: gestation day; IM: intramuscular; SD: single dose; RD: repeat-dose

9. DISCUSSION AND CONCLUSIONS

9.1. Rilpivirine LA

In rabbits and minipigs, after a single IM administration of RPV LA as the P338-containing formulation (G001), the RPV release was fast, after which mean plasma concentrations declined, remained fairly constant thereafter and were still quantifiable after 3 months. After a follow up of 3 months, the F_{abs} is 67% in rabbits at 150 mg/kg and ranges between 35 and 62% in minipigs at 600 mg, indicating the release from the depot was still incomplete after 3 months.

Several studies were performed in rabbits and minipigs, mainly comparing different formulations containing P338 to the G001 formulation. No relevant changes in plasma profiles across studies were observed.

After repeated oral administration of RPV in various animal species used in the toxicology studies compared to IM administration of RPV LA in patients, the highest C_{max} ratio (animal/human) of RPV was around 406 in female mice and 252 in male mice, 82 in female rats and 39 male rats, 123 in pregnant rabbits, 33 in dogs, and 2 in female monkeys. The highest AUC_{0-day28} ratio (animal/human) of RPV was around 258 in female mice, 170 in male mice, 82 in female rats, 25 in male rats, 78 in pregnant rabbits, 22 in dogs, and 2 in female monkeys. After IM administration of RPV LA in minipigs and dogs compared to IM administration of RPV LA in patients, the C_{max} ratios (animal/human) of RPV were around 2 and 10 and AUC_{0-day28} (animal/human) ratios were around 0.6 and 5, respectively.

In rabbits, at the administration site after a single IM administration of RPV LA (150 mg/kg; G001) at the end of a 1-month follow-up period, the RPV concentrations were high (1456-fold) compared those in the contralateral side. In the lymph nodes, the RPV concentrations were similar between the injection and contralateral site except for one rabbit for which higher concentrations were seen in the accessory popliteal lymph nodes of the injection side. In rats, after a single IM administration of RPV LA (60 mg/kg; G001), the highest exposures of RPV were measured in the left popliteal and medial iliac lymph nodes adjacent to the injection site with tissue/plasma AUC_{0-day42} ratios of 12,203 and 2256, respectively. In the contralateral right popliteal and medial iliac lymph nodes, the tissue/plasma AUC_{0-day42} ratios were 6.7 and 2.6, respectively. In the kidney, adrenal glands, lungs, liver, and pancreas, the tissue/plasma AUC_{0-day42} ratios were 3.7, 3.2, 1.5, 1.5 and 1.2, respectively. The tissue/plasma AUC_{0-day42} ratios were lower than 1 in brain (0.4), heart (0.8), spleen (0.97) and thymus (0.87).

In rats, following single IM administration at 60 mg/kg of RPV LA (G001) alone or in combination with a LA injectable suspension of GSK1265744A (CAB) at 10 mg/kg, the plasma concentrations of RPV were comparable for the 2 groups and the mean C_{max} and $AUC_{0-1444h \text{ or } 2months}$ values of RPV were similar.

In addition, other studies were performed after administration of RPV LA at lower concentration of RPV containing P338 or with PS80 after IM or SC in different species. A faster increase of the RPV concentrations were observed after administration of a P338 containing formulation compared to a PS80 containing formulation.

Few studies were performed in rats on the in vitro metabolism or in vivo after single IM injection of parallel and parallel and that the main metabolite pathways are sulfate conjugation and loss of the CN- function. Some pharmacokinetic and toxicokinetic studies were conducted after oral or IM administration of P338 in rats, rabbits and after IM administration of RPV LA in minipigs. Measurement of P338 was also performed in plasma samples from a clinical study (Mod5.3.1.2/TMC278LAHTX1001) after single IM administration of RPV LA (300 mg/mL in 50 mg/mL P338; 2-mL injection). After oral administration in rats and rabbits, no or very limited absorption of P388 was observed. After IM administration of P338 or RPV LA (G001) in rabbits, minipigs and human, the P338 release was fast, after which plasma concentrations declined, remained fairly constant thereafter and were still quantifiable after at least 672 h.

9.2. From RPV oral (EDURANT®)

In rats, tissue distribution of ¹⁴C-RPV and its metabolites after single oral dose was rapid and extensive. The highest concentrations of radioactivity were measured in the liver, adrenal gland, brown fat and kidney. There was no evidence of undue retention and there were no indications of irreversible binding of RPV and its metabolites to melanin. In pregnant rats, there was distribution of ¹⁴C-RPV to the placenta and the fetus. TR exposure values in the placenta and in whole fetus were 0.94- and 0.64-fold those of maternal blood, respectively.

Rilpivirine is highly bound to plasma proteins and this is independent of the concentration and species. In the various animal species and human, plasma protein binding ranged from 99.08% to 99.97%. Rilpivirine is highly bound to human albumin and to a much lesser extent to α_1 -acid glycoprotein. The distribution of RPV to red blood cells is limited in all species.

Some differences were seen in clearance across species. In rats, Cl_b of RPV is moderate whereas in rabbits, dogs and monkeys it is low compared to the hepatic blood flow. The Vd_{ss} was larger in rats, dogs and monkeys and very low in rabbits.

Rilpivirine is metabolized by Phase I and Phase II pathways including aromatic and aliphatic hydroxylation, glutathione conjugation, N-glucuronidation and CN- split-off followed by reduction/oxidation, whether or not in combination with secondary pathways such as glucuronidation, dehydration and catabolism of the glutathione conjugate. In mice, oxidation of RPV and to a lesser extent glutathione conjugation were the predominant pathways. In rats, the glutathione conjugation pathway was the predominant pathway whereas in dog and man, oxidation of RPV was the predominant one. No unique human metabolites were observed. In plasma of animals and human, unchanged RPV was more abundant than any metabolite. After repeated oral administration of RPV for 11 days in healthy subjects at 75 and 300 mg q.d, there was no disproportionate increase in exposure of any of the relevant metabolites compared to the parent compound exposure.

In all animal species and human, the predominant route of excretion was via feces (>85%). Renal excretion of TR was very limited (0.45% to 6.1% of the dose) in all animal species and human and the amount of unchanged RPV in urine was negligible. In rats, biliary excretion was limited

(18%-25% of the dose) and the amount of unchanged RPV in bile was negligible. In rats, there was indication that RPV was excreted in milk.

In vitro, the CYP3A4 isoenzyme plays a major role in the biotransformation of RPV. Rilpivirine might be a very weak inducer of CYP1A2 and CYP2B6 and a moderate inducer of CYP2C19 and CYP3A4. Ex-vivo induction studies in rodents showed that RPV is an inducer of the CYP3A-family (up to 1.7-fold in mice at 320 mg/kg and up to 6-fold in rats at 400 mg/kg) and CYP4A-family (up to 25-fold in mice and up to 4.7-fold in rats). Additionally, RPV induced UDP-GT activity in mice (up to 2.3-fold at 320 mg/kg) and to a lesser extent in rats (up to 1.3-fold only at 400 mg/kg in males). In dogs, treatment with RPV did not result in any enzyme induction.

Rilpivirine is an inhibitor of CYP2C8 ($K_i = 10\mu M$) and CYP2C9 ($K_i = 1.7 \mu M$) in vitro whereas no inhibition is expected in vivo. In HLM, the limited MBI of CYP2C9 is unlikely to have clinical relevance at the appearance of RPV.

Rilpivirine was shown to have P-gp inhibitor properties with an apparent IC₅₀ value of 9.2 μ M (3.4 μ g/mL). Inhibition of the OCT2 transporter by RPV was evaluated in vitro. The in vitro IC₅₀ for inhibition of OCT2 by RPV was 5.46 μ M (2.0 μ g/mL). The inhibition of MATE-mediated transport by RPV was investigated in vitro in CHO cells overexpressing MATE-1 and MATE-2K. The uptake of ¹⁴C-TEA was inhibited by Rilpivirine with an IC₅₀ value of 7.51 μ M (2.75 μ g/mL) for MATE-1 and of <0.05 μ M (<0.018 μ g/mL) for MATE-2K. In conclusion, the effect of RPV on MATE-1 is unlikely to be clinically relevant, but it cannot be excluded that RPV would inhibit MATE-2K at clinically relevant concentrations.

10. TABLES AND FIGURES

Supplemental tables and figures are included at appropriate points throughout the summary within the text; additional information is provided within the Pharmacokinetic Tabulated Summaries, located in Mod2.6.5.

11. LIST OF LITERATURE CITATIONS

- 1. Bioanalytical Method Validation, Guidance for Industry. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine, 2018.
- 2. Guideline on Bioanalytical Method Validation. EMEA, 21 July 2011.

Janssen Research & Development

Pharmacokinetics Tabulated Summary

MODULE 2.6.5

Rilpivirine Long-Acting

Issue Date: July 3, 2019

Document No.: EDMS-ERI-167266903

Confidentiality Statement

The information in this document contains trade secrets and commercial information that are privileged or confidential and may not be disclosed unless such disclosure is required by applicable law or regulations. In any event, persons to whom the information is disclosed must be informed that the information is *privileged* or *confidential* and may not be further disclosed by them. These restrictions on disclosure will apply equally to *all* future information supplied to you that is indicated as *privileged* or *confidential*.

2.6.5.1 **Pharmacokinetics: Overview**

				Test Article: rilpivirine/rilpivirine LA, P338		
Type of Study	Test System	Route (Vehicle/Formulation)	GLP	Test Facility	Study No. Location in CTD	
Analytical Methods	SPF Sprague- Dawley rat	oral ¹⁴ C-RPV	No	Janssen R&D	R278474-FK4686/ 4.2.2.1	
	Mouse EDTA plasma	In vitro RPV	No	Janssen R&D	R278474-FK4240/ 4.2.2.1	
	Rat EDTA plasma	In vitro RPV	No	Janssen R&D	R278474-FK4170/ 4.2.2.1	
	Rabbit EDTA plasma	In vitro RPV	No	Janssen R&D	R278474-BA104/ 4.2.2.1	
	Dog EDTA plasma	In vitro RPV	No	Janssen R&D	R278474-FK4169/ 4.2.2.1	
	Minipig EDTA plasma	In vitro RPV	No	Janssen R&D	TMC278-NC298 (BA1061)/ 4.2.2.1	
	Cynomolgus EDTA plasma	In vitro RPV	No	Janssen R&D	TMC278-NC273 (BA1062)/ 4.2.2.1	
	Rat plasma	In vitro P338	Yes	UK	BA13148 (304191)/ 4.2.2.1	
	Rabbit plasma	In vitro P338	Yes	, UK	BA13146 (304196)/ 4.2.2.1	

(Continued)

				Test Article: rilpivi	rine/rilpivirine LA, P338
		Route	GLP	-	Study No.
Type of Study	Test System	(Vehicle/Formulation)		Test Facility	Location in CTD
Absorption Absorption- Tissue Distribution- Single dose + 1-month follow up	NZW rabbit	IM (0.5 mL/kg) Formulation A: P338 nanosuspension (G001) Formulation B: P338 nanosuspension (old API batch) Formulation C: P338 nanosuspension (3-fold diluted G001)	No	Janssen R&D	2683_14278 (FK7491)/ 4.2.2.2
Absorption- Single dose + 3-month follow up	NZW rabbit	IM (0.5 mL/kg) Formulation B: P338 nanosuspension freshly milled to smaller d ₅₀ Formulation C: P338 nanosuspension (fresh G001 at 5°C) Formulation D: P338 nanosuspension (aged G001 at 40°C) Formulation E: P338, nanosuspension freshly milled to edge of specification	No	Janssen R&D	2683_14279 (FK7521)/ 4.2.2.2
Absorption – Single dose + 3-week follow-up	NZW rabbit	IM (0.5 mL/kg; G001) Nanosuspensions with different particle sizes	No	Janssen R&D	FK12066/ 4.2.2.2
4-week RD toxicity + 2-week recovery	Beagle dog	IM injection RPV (G001) 150mg (0.5mL) 1200mg (4x1mL)	Yes		TOX10759/ Mod4.2.3.2
Absorption- Single dose + 3-month follow-up	Göttingen minipig	IM injection (2 mL) P338 (G001) P338/Na-deoxycholate P338/PE PEG350 P338/DOSS [Nanosuspension]	No	Janssen R&D	TMC278-NC359 (TOX9403)/ 4.2.3.6

(Continued)

2.6.5.1 Pharmacokinetics: Overview

				Test Article: rilpivi	rine/rilpivirine LA, P338
Type of Study	Test System	Route (Vehicle/Formulation)	GLP	Test Facility	Study No. Location in CTD
Absorption (Continued)	•	,		<u> </u>	
Absorption- Single dose + 1-month follow-up	Göttingen minipig	IM (2 mL) Formulation A: P338 nanosuspension (G001) Formulation B: P338 nanosuspension (old API batch) Formulation C: P338 nanosuspension (3-fold diluted G001)	No	Janssen R&D	2683_14277 (FK7490)/ 4.2.2.2
Absorption- Single dose + 3-month follow-up	Göttingen minipig	IV (1 mL/kg) or IM (2 mL) Formulation A: 20% Captisol (for IV dosing) Formulation B: P338 nanosuspension freshly milled to smaller d ₅₀ Formulation C: P338 nanosuspension (fresh G001 at 5°C) Formulation D: P338 nanosuspension (aged G001 at 40°C) Formulation E: P338, nanosuspension freshly milled to edge of specification	No	Janssen R&D	2683_14125 (FK7520)/ 4.2.2.2
Absorption- Single dose + 3-month follow-up	Göttingen minipig	IM (2mL) Nanosuspensions A = control (G001) B = with sodium metabisulfite C = low PVP concentration D = high PVP concentration	No	Janssen R&D	2683_0040908 (FK10294)/ 4.2.2.2
Absorption- 6-Week Repeat Dose	Göttingen minipig	IM injection (2 mL) Negative control V1 = P338 (50 mg/mL) V2 = P338 (160 mg/mL)] Formulation A: nanosuspension containing 300 mg/mL RPV LA in 50 mg/mL P338 (= G001)	Yes	Janssen R&D	TMC278-NC368 (TOX9508)/ 4.2.3.2
Absorption- 9-Months Repeat Dose	Göttingen minipig	IM injection (2 mL) Control solution Vehicle: P338 Formulation A: nanosuspension containing 300 mg/mL RPV LA in 50 mg/mL P338 (= G001)	Yes	Janssen R&D	TMC278-NC349 (TOX9517)/ 4.2.3.2 (Continued)

1

				Test Article: rilpiv	irine/rilpivirine LA, P338
	m . a .	Route	GLP		Study No.
Type of Study	Test System	(Vehicle/Formulation)		Test Facility	Location in CTD
Absorption (Continued) Absorption- Single dose	NZW rabbit	IV	No	Janssen R&D	TMC278-FK4293/
Distribution		Base in PEG400/sterile water (25%)			4.2.2.2
Absorption- Tissue Distribution- Single dose + 1-month follow up	Sprague Dawley rat	IM (0.20 mL/kg) G001	No	Janssen R&D	ADME_58575 4.2.2.3
Absorption- Tissue Distribution- Single dose + 1-month follow up	NZW rabbit	IM (0.5 mL/kg) Formulation A: P338 nanosuspension (G001) Formulation B: P338 nanosuspension (old API batch) Formulation C: P338 nanosuspension (3-fold diluted G001)	No	Janssen R&D	2683_14278 (FK7491)/ 4.2.2.2
Tissue Distribution (Single dose)	Rat/ pigmented Long Evans	Oral/Gavage (¹⁴ C-RPV in PEG400/CA (10%))	No	Janssen R&D	TMC278-NC108 (FK4951)/ 4.2.2.3
Tissue Distribution (Single dose)	Pregnant rat/ Sprague Dawley	Oral/Gavage (¹⁴ C-RPV in PEG400/CA (10%))	No	Janssen R&D	TMC278-NC109 (FK4950)/ 4.2.2.3
Absorption, Single Dose	Rat/ Sprague Dawley	Intravenous (base in PEG400/sterile water (25%) Oral/Gavage (base in PEG400 or PEG400/CA (10%))	No	J&J PRD	TMC278-FK4195/ 4.2.2.3
Tissue Distribution (Repeat dose)	Dog/ beagle	Oral/Gavage (base in PEG400/CA (10%))	Yes	Janssen R&D	TMC278-Exp.5650/ 4.2.3.2
Tissue Distribution (Repeat dose)	Dog/ beagle	Oral/Gavage (base in PEG400/CA (10%))	Yes	Janssen R&D	TMC278-NC115 (TOX6110)/ 4.2.3.2
Protein Binding Blood Distribution	Mouse, rat, rabbit, dog, human	In vitro (³H-RPV)	No	Janssen R&D	TMC278-NC112 (FK5273)/ 4.2.2.3

5

		D. 4.	CLP	l est Article: rilpivi	rine/rilpivirine LA, P338
Type of Study	Test System	Route (Vehicle/Formulation)	GLP	Test Facility	Study No. Location in CTD
Distribution (Continued)	rest system	(remeder of mulation)		1 cot 1 acmity	Location in C1D
Protein Binding Blood Distribution	Guinea pig, monkey	In vitro (¹⁴ C-RPV)	No	Janssen R&D	TMC278-NC332 (FK6820)/ 4.2.2.3
Protein Binding	Mouse, rat, dog, human	In vitro (unlabeled RPV)	No	Janssen R&D	TMC278-FK4217/ 4.2.2.3
Metabolism					T) (C0T) \(\) (C10)
Metabolism Excretion (Single dose)	Mouse/ CD-1	Oral/Gavage (¹⁴ C-RPV in PEG400/CA (10%)	No	Janssen R&D	TMC278-NC190 (FK5621)/ 4.2.2.4
Metabolism Excretion (Single dose)	Rat/ Sprague Dawley	Oral/Gavage (14C-RPV in PEG400/CA (10%)	No	Janssen R&D	TMC278-NC113 (FK4933)/ 4.2.2.4
Metabolism Excretion in Bile (Single dose)	Rat/ Sprague Dawley	Oral/Gavage (14C-RPV in PEG400/CA (10%)	No	Janssen R&D	TMC278-NC145 (FK5525)/ 4.2.2.4
Metabolism (Repeated dose)	Rat/ Sprague Dawley	Oral/Gavage (HCl salt in HPMC (0.5%))	No	Janssen R&D	TMC278-NC123 (TOX7221)/ 4.2.3.4.1 - TMC278-NC290 (FK6376)/ 4.2.2.4
Metabolism (Single dose)	Dog/ beagle	Oral/Capsule (14C-RPV in PEG400/CA (10%)	No	Janssen R&D	TMC278-NC114 (FK5143)/ 4.2.2.4
Metabolism (Single dose)	Human	Oral/Gavage (¹⁴ C-RPV in PEG400)	No	Janssen R&D	TMC278-NC157 (FK5344)/ 4.2.2.4
Metabolism In vitro	Human	In vitro: (RPV)	No	Janssen R&D	1646_0027483 (FK10104)/ 4.2.2.4

				Test Article: rilpivirine/rilpivirine LA, P338	
T	Total Control	Route	GLP	T E	Study No.
Type of Study Metabolism In vitro (Continued)	Test System	(Vehicle/Formulation)		Test Facility	Location in CTD
Metabolism In vitro	Mouse, rat, rabbit, dog, human	In vitro: (Plasma samples from different studies)	No	Janssen R&D	TMC278-NC155 (BA45)/ 4.2.2.4
Metabolism In vitro	Mouse, rat, rabbit, dog, human	In vitro: hepatocytes, subcellular liver fractions (14C-RPV)	No	Janssen R&D	TMC278-NC102 (FK4728)/ 4.2.2.4
Metabolism In vitro	Guinea pig, monkey	In vitro: hepatocytes, subcellular liver fractions (14C-RPV)	No	Janssen R&D	TMC278-NC333 (FK6818)/ 4.2.2.4
Metabolism In vitro	Mouse, rat, rabbit, dog, human	In vitro: hepatocytes, subcellular liver fractions (RPV)	No	Janssen R&D	TMC278-FK4152/ 4.2.2.4
Metabolism In vitro	Human	In vitro: human liver microsomes, E. coli expressed CYP isoforms, supersomes	No	Janssen R&D	TMC278-NC141 (FK5300)/ 4.2.2.4
Metabolism In vitro	Human	In vitro: HLM, E. Coli expressed CYP isoforms (RPV)	No	Janssen R&D	TMC278-FK4151/ 4.2.2.4
Metabolism In vitro	Human	In vitro: HLM (RPV)	No	Janssen R&D	TMC278-FK4288/ 4.2.2.4
Metabolism In vitro		In vitro: heterologous expressed GST isoforms (14C-RPV)	No	Janssen R&D	TMC278-FK4789/ 4.2.2.4
Induction/Inhibition Induction	Human	In vitro: cryopreserved human hepatocytes (CYP activity and mRNA level)	No	Janssen R&D	TMC278-NC186 (FK5720)/ 4.2.2.4
Induction	Human	In vitro: human hepatocytes (GST activity)	No		TMC278-FK4824/ 4.2.2.4

7

				Test Article: rilpivirine/rilpivirine LA, P338	
Type of Study	Test System	Route (Vehicle/Formulation)	GLP	Test Facility	Study No. Location in CTD
Induction/Inhibition (Continued) Metabolism Induction/Inhibition (3 months)	Mouse/ CD-1	Ex vivo: hepatic microsomes	Yes	Test Facinity	TMC278-NC192 (FK5563)/ 4.2.2.4
Metabolism Induction/Inhibition (6 months)	Rat/ Sprague Dawley	Ex vivo: hepatic microsomes	Yes		TMC278-NC193 (FK5564)/ 4.2.2.4
Metabolism Induction/Inhibition (6 months)	Dog/ beagle	Ex vivo: hepatic microsomes	Yes		TMC278-NC140 (FK5518)/ 4.2.2.4
Metabolism Induction/Inhibition (2 weeks)	Rat/Sprague Dawley	Ex vivo: hepatic microsomes	No	Janssen R&D	TMC278-FK4247/ 4.2.2.4
In Vitro Inhibition	HLM	In vitro CYP1A2, CYP2A6, CYP2C8,9,10, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5 and CYP4A	No	Janssen R&D	TMC278-FK4123/ 4.2.2.4
In Vitro Inhibition	HLM	In Vitro CYP2C8 and CYP2C9-mediated	No	Janssen R&D	TMC278-NC283 (FK6443)/ 4.2.2.4
Inhibition	HLM	In vitro: MBI of CYP2C9 by TMC278	No	Janssen R&D	1646_0030536 (FK10162)/ 4.2.2.4
Effect Adrenal Gland	Dog	In vitro: adrenal cortex cell-free extracts	No	Janssen R&D	TMC278-FK4790/ 4.2.2.4

(Continued)

				Test Article: rilpivirine/rilpivirine LA, P338	
Type of Study	Test System	Route (Vehicle/Formulation)	GLP	Test Facility	Study No. Location in CTD
Pharmacokinetic Drug Interactions Inhibition of transport OCT2 substrate	CHO cell lines	In vitro: ¹⁴ C-metformin by RPV	No	Janssen R&D	1646_0025128 (FK10042)/ 4.2.2.6
Inhibition of transport of the MATE-1 and MATE-2K substrate	CHO cells	In vitro: ¹⁴ C-tetra ethyl ammonium by RPV	No	Janssen R&D	1646_0035314 (FK10420)/ 4.2.2.6
Drug-drug Interactions	Human	In vitro: human liver microsomes	No	Janssen R&D	TMC278-NC194 (FK5568)/ 4.2.2.6
Pharmacokinetics of RPV and/or cabotegravir	Sprague Dawley rat	IM RPV (fresh clinical G001 batch) with or without cabotegravir (200 mg/mL GSK1265744LAP injectable suspension)	No	Janssen R&D	1955_0018187 (FK7565)/ Mod4.2.2.6
Other Absorption- Tissue Distribution- Single dose + 4- or 18-days follow-up	Albino Swiss mouse	SC injection V1 = P338 V2 = RPV LA (Vit E-TPGS)	No	Janssen R&D	TMC278-NC196 (TOX7354)/ 4.2.3.7.7
Absorption- Tissue Distribution- Single dose + 8-week follow-up	Sprague-Dawley rat	SC (0.2 mL) or IM (0.2 mL) or IV (1 mL) injection SC or IM: RPV LA with P338 (non-G001) IV: PEG 400/25% sterile water	No	Janssen R&D	TMC278-NC244 (TOX7896)/ 4.2.3.7.7
Absorption- Single dose + 1-month follow up	NZW rabbit	IM (0.5 mL or 2x0.16 mL) P338 nanosuspension of RPV (F004) PS80 nanosuspension of RPV (F006)	No	Janssen R&D	TMC278-NC356 (FK6993)/ 4.2.2.7
Absorption- Tissue Distribution- Single dose + 6-month follow-up	Beagle dog	IM or SC (0.2 mL/kg) Group A (IM) and C (SC): P338 nanosuspension (for RPV; non-G001) Group B (IM): P338 nanosuspension (for HCl salt of RPV)	No	Janssen R&D	Innovation-NC114 (FK5458)/ 4.2.2.7

2.6.5.1 Pharmacokinetics: Overview (Continued)

				Test Article: rilpivirine/rilpivirine LA, P3			
Type of Study	Test System	Route (Vehicle/Formulation)	GLP	Test Facility	Study No. Location in CTD		
Other (Continued) Absorption- Single dose + 6-month follow-up	Beagle dog	IV (1.25 mg/mL): 75% PEG400/25% sterile water solution of RPV SC or IM: nanosuspension of RPV in Pluronic F108 (25 mg/mL; non-G001)	No	Janssen R&D	TMC278-NC238 (FK5998)/ 4.2.2.7		
Absorption- Tissue Distribution- Single dose + 3-month follow-up	Beagle dog	SC or IM injection (1 mL) F004 formulation	Yes	Janssen R&D	TMC278-NC234 (TOX7781)/ 4.2.3.7.7		
Absorption- Tissue Distribution- Single dose + 3-month follow-up	Beagle dog	SC (0.1 mL/kg/site) RPV LA (Vit-E TPGS)	No	Janssen R&D	TMC278-NC203 (FK5821)/ 4.2.2.7		
Absorption- Single dose + 3-month follow-up	Göttingen minipig	IM RPV LA F006 (1 x 1.5mL) RPV LA F004 (4 x 1 mL)	No	-	TMC278-NC295 (FK6407)/ 4.2.2.7		
Absorption- Single dose + 1-month follow-up	Göttingen minipig	IM (2 mL) RPV LA (P338 (non G001) or PS80)	No	-	TMC278-NC344 (FK7034)/ 4.2.2.7		
13/39-week toxicity (monthly doses)	Göttingen Minipig	IM (2 mL) RPV LA (P338 (non G001) or PS80)	Yes	France	TMC278-NC296 (TOX8580))/ 4.2.3.7.7		
Absorption – Single dose + 1-week follow-up ^a	Sprague-Dawley rat	IM Nanosuspension; MartaAr àr an & ADE	No	Janssen R&D	2683_0038991 (FK10250)/ 4.2.2.7		
Excretion – Single dose ^a	Sprague-Dawley rat	Nanosuspension; 14C-1/am-àA-à-ca) & ADE	No	Janssen R&D	2683_0039002 (FK10345)/ 4.2.2.7		

(Continued)

2.6.5.1 Pharmacokinetics: Overview (Continued)

				Test Article: ril	pivirine/rilpivirine LA, P338
	T	Route	GLP		Study No.
Type of Study	Test System	(Vehicle/Formulation)		Test Facility	Location in CTD
Other (Continued) Single-Dose	NZW rabbit	Oral gavage of P338 demineralised water [aqueous solution]	Yes	Janssen R&D	TMC278-NC348 (TOX9680)/ 4.2.3.7.7
Single-Dose	Sprague-Dawley rat	Oral gavage of P338 demineralised water [aqueous solution]	Yes	Janssen R&D	TMC278_NC347 (TOX9679)/ 4.2.3.7.7
Single-Dose	Sprague-Dawley rat	Oral P338 + demineralized water	No	Janssen R&D	FK13157/ 4.2.2.7
Single-Dose	NZW rabbit	Oral P338 + demineralized water ^b	No	Janssen R&D	FK13159/ 4.2.2.7
Absorption- 9-Months Repeat Dose	Göttingen minipig	IM injection (2 mL) Control solution Vehicle: P338	Yes	Janssen R&D	TMC278-NC349 (TOX9517)/ 4.2.3.2
Single-Dose	Göttingen minipig	IM P338 and RPV LA	No	Janssen R&D	FK13161/ 4.2.2.7
Single-Dose	Human plasma	IM P338 and RPV LA	No	Janssen R&D	FK13131/ 4.2.2.7
Single-Dose	Sprague-Dawley rat	IM P338 ^b	No	Janssen R&D	FK13409/ 4.2.2.7
SD + RD followed by 1-month follow-up	Sprague-Dawley rat	IM P338 ^b	No	Janssen R&D	TOX13295/ 4.2.3.7.7

(Continued)

TOX13376/

4.2.3.7.7

2.6.5.1 Pharmacokinetics: Overview (Continued)

				Test Article: ril	pivirine/rilpivirine LA, P338
Type of Study	Test System	Route (Vehicle/Formulation)	GLP	Test Facility	Study No. Location in CTD
Other (Continued) Embryo-fetal toxicity (Seg I & II)	Sprague-Dawley rat	IM P338 ^b	Yes	France	TOX13391/ 4.2.3.7.7
Pre-and Postnatal Development	Sprague-Dawley rat	IM (bolus) P338 ^b	Yes	France	TOX13546/ 4.2.3.7.7
SD + RD followed by a 1-month follow- up	NZW rabbit	IM P338 (sterile aqueous solution) ^b	No	Janssen R&D	TOX13296/ 4.2.3.7.7

IΜ

P338 (sterile aqueous solution)^b

Yes

France

NZW rabbit

Embryo-fetal toxicity (Seg II)

API = active pharmaceutical ingredient; CA = citric acid; CHO: Chinese hamster ovary; sulfosuccinate; d₅₀ = diameter 50; EDTA = ethylenediaminetetraacetic acid; F004 = clinical formulation containing 100 mg/mL TMC278 LA in P338; F006 = clinical formulation containing 300 mg/mL TMC278 LA in P338; HCl = hydrogen chloride; HLM = human liver microsomes; IM = IM = intramuscular; IV = intravenous; LA = long acting; MATE = multidrug and toxic extrusion; MBI = mechanism based inhibition; mRNA = messenger ribonucleic acid; NZW = New Zealand white; OCT-2 = organic cation transporter 2; PE = phosphatidylethanolamine PEG = polyethylene glycol; PVP = polyvinylpyrrolidone; P338 = Poloxamer 338 (Pluronics F108); PS80 = polysorbate 80; RPV = rilpivirine; RD = repeated-dose; R&D = Research and Development; SC = subcutaneous; SD = single-dose; TPGS = D-α-Tocopheryl Polyethylene glycol 1000 Succinate; V = vehicle; Vit E = vitamin E

Note: The available studies of RPV after administration of RPV LA are listed. In addition, all the relevant nonclinical pharmacokinetic studies of RPV on distribution, metabolism and excretion performed for the EDURANT[®] submission (i.e., oral tablet) are also included. In addition, supportive poloxamer studies were conducted as well and are included in the file.

^a For these studies, no individual tabulated summaries are prepared since these studies do not deal with RPV but with its genotoxic impurity instance or

b In these studies poloxamer was studied

2.6.5.2 Analytical Methods and Validation Reports

Test Article: rilpivirine/rilpivirine LA

The bioanalytical methods to support the toxicokinetic and pharmacokinetic program of Rilpivirine, as well as the use of radio-labeled RPV (¹⁴C and ³H) and the radiochemical methods, have been described in Mod2.6.4/Sec2.

2.6.5.3A Pharmacokinetics: Absorption after a Single Intramuscular Dose in Rabbits

			Test Article: rilpivirine LA			
Study No.	2683 14278 (FK7491)					
Location in CTD		4.2.2.2				
Species		New Zealand white rabbit				
Feeding Condition		Fed				
Vehicle/Formulation	Formulation A: nanosus	spension containing 300 mg/mL RPV LA in 5	50 mg/mL P338 buffer			
		$(= \underline{G001} \text{ formulation})$				
		containing 300 mg/mL RPV LA (old API ba				
	<u>Formulation C</u> : 3-fold dilution of clinical bat	tch G001 containing 100 mg/mL RPV LA in	16.7 mg/mL P338, glucose, NaH ₂ PO, citric			
		acid, NaOH buffer				
Route		IM (0.5 mL/kg)				
Gender (M/F)/Number of Animals		Female/3 per group				
Compound		RPV LA				
Dose		Formulation A and B: 150 mg/kg				
		Formulation C: 50 mg/kg				
Follow-up period		1 month				
Sample		plasma				
Analyte		RPV (TMC278)				
Assay		LC-MS/MS				
Pharmacokinetic Parameters	Formulation A (G001): 150 mg/kg	Formulation B: 150 mg/kg	Formulation C: 50 mg/kg			
C_{max} (ng/mL)	4550	5490	3307			
$t_{max}(h)$	84	124	90			
AUC _{0-864h (~1 month}) (ng.h/mL)	2,383,421	2,639,606	1,150,113			
AUC _{0-∞} (ng.h/mL)	3,138,909	3,519,438	1,292,412			

API = active pharmaceutical ingredient; G001 = final clinical formulation; IM = intramuscular; LA = long acting; LC-MS/MS = liquid chromatography coupled to tandem mass spectroscopy; P338 = poloxamer 338; RPV LA = rilpivirine long acting (TMC278 base)

2.6.5.3B Pharmacokinetics: Absorption after a Single Intramuscular Dose in Rabbits

				Test Article: rilpivirine LA			
Study No.		2683_14279	(FK7521)				
Location in CTD		4.2.2.2					
Species	New Zealand white rabbit						
Feeding Condition		Fed					
Vehicle/Formulation	<u>Formulation</u>	B: nanosuspension containing 300 mg	mL RPV LA, fresh batch milled	l to smaller d50			
	<u>Formulation C</u> :	nanosuspension containing 300 mg/mI	RPV LA, fresh clinical batch C	<u>6001</u> stored at 5 °C			
	Formulation D: 1	nanosuspension containing 300 mg/mL	RPV LA, aged clinical batch G	001 stored at 40 °C			
	Formulation E: na	anosuspension containing 300 mg/mL	RPV LA, fresh batch milled to e	edge of specification			
Route		IM (0.5 m	L/kg)				
Gender (M/F)/Number of Animals		Female/3 pe	er group	_			
Compound		RPV I	$\bot A$				
Dose		150 mg	/kg				
Follow-up period		3-mor	ıth				
Sample		plasm	na				
Analyte	RPV (TMC278)						
Assay	HPLC-MS/MS						
Pharmacokinetic Parameters	Formulation B	Formulation C (G001)	Formulation D	Formulation E			
C_{max} (ng/mL)	11,287	6453	3903	5030			
$t_{max}(h)$	12.7	78.3	221	12.7			
AUC _{0-day} 99 (3 months) (ng.h/mL)	3,401,630	3,561,529	3,073,349	3,484,029			

AUC_{0-dav99 (3 months)} (ng.h/mL) 3,401,630 3,561,529 3,073,349 3,484,029

G001 = final clinical formulation; HPLC-MS/MS = high performance liquid chromatography coupled to tandem mass spectroscopy; IM = intramuscular; LA = long acting; P338 = poloxamer 338; RPV LA = rilpivirine long acting (TMC278 base)

2.6.5.3C Pharmacokinetics: Absorption after a Single IM Dose in Rabbits

			Test Article: rilpivirine LA			
Study No.		FK12066				
Location in CTD		4.2.2.2				
Species		New Zealand white Rabbit				
Feeding Condition		Fed				
Vehicle/Formulation	RPV LA 30	00 mg/mL in poloxamer 338 50 mg/mL (G001	formulation)			
	with Formulation A: smaller particle s	size, close to target; Formulation B: target; For	mulation E: aged at higher temperature			
Route		IM (0.5 mL/kg)				
Gender (M/F)/Number of Animals		Female/6 per group				
Compound		RPV LA				
Dose		150 mg/kg				
Follow up period		3 weeks				
Sample		plasma				
Analyte		RPV (TMC278)				
Assay		HPLC-MS/MS				
Pharmacokinetic Parameters	Formulation A	Formulation B	Formulation E			
$C_{max}1$ (ng/mL)	10,200	6210	35,400			
$T_{max}1^a$ (h)	7-24 7-24 24					
$C_{max}2 (ng/mL)$	7840 6300 5390					
$T_{max}2^a$ (h)	53-341	53-221	221-341			
AUC_{0-533h} (3 weeks) (ng·h/mL)	3,080,000	2,400,000	2,120,000			

^a Median (Min – Max)

F = female; G001 = final clinical formulation; HPLC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; IM = intramuscular; NA = Not available; NZW = New Zealand White; RPV LA = rilpivirine long acting (TMC278 base)

101,399^b

152,243

2.6.5.3D Pharmacokinetics: Absorption after a Single Intramuscular Dose in Minipig

95,131

Test Article: rilpivirine LA Study No. TMC278-NC359 (TOX9403) **Location in CTD** 4.2.3.6 Göttingen minipig Species **Feeding Condition** Fed Group A: nanosuspension containing 200 mg/mL RPV LA in 50 mg/mL P338 Vehicle/Formulation Group B: nanosuspension containing 300 mg/mL RPV LA in 50 mg/mL P338 (= G001) Group D: nanosuspension containing 200 mg/mL RPV LA in 50 mg/mL P338 + 2 mg/mL Na-deoxycholate Group E: nanosuspension containing 300 mg/mL RPV LA in 50 mg/mL P338 + 2 mg/mL Na-deoxycholate Group F: nanosuspension containing 300 mg/mL RPV LA in 50 mg/mL P338 + 1.5 mg/mL PE PEG350 Group G: nanosuspension containing 300 mg/mL RPV LA in 50 mg/mL P338 + 2 mg/mL DOSS Route IM (2 mL) Gender (M/F)/Number of Animals Male/3 per group RPV LA Compound Group A and D: 400 mg Dose Group B, E and F: 600 mg Follow-up period 3-month Sample plasma RPV (TMC278) Analyte HPLC-MS/MS Assay **Pharmacokinetic Parameters** Group A **Group B (G001)** Group D Group E Group F Group G Dose (mg) 400 600 400 600 600 600 317 2245 1781 1079 465 681 C_{max} (ng/mL) t_{max} (h) 4.3 100.3a 2.2 2.3 4.0 2.7 AUC_{0-dav29} (ng.h/mL) 42,918 77,473 31,369 34,398^b 66,845 45,118

AUC_{0-dav86} (ng.h/mL)

68,970

100,614

152,011

a Individual t_{max} values: 2.0, 6.0 and 293.0 h

b n = 2

DOSS = dioctyl sodium sulfosuccinate; G001 = final clinical formulation; HPLC-MS/MS = high performance liquid chromatography coupled to tandem mass spectroscopy; IM = intramuscular; LA = long acting; P338 = poloxamer 338; PE = phosphatidylethanolamine; PEG = polyethylene glycol; RPV LA = rilpivirine long acting (TMC278 base)

2.6.5.3E Pharmacokinetics: Absorption after a Single Intramuscular Dose in Minipigs

			Test Article: rilpivirine LA			
Study No.	2683_14277 (FK7490)					
Location in CTD		4.2.2.2				
Species		Göttingen minipig				
Feeding Condition		Fed				
Vehicle/Formulation	<u>Formulation A</u> : nanosus	pension containing 300 mg/mL RPV LA in 5	50 mg/mL P338 buffer			
		$(= \underline{G001} \text{ formulation})$				
	<u>Formulation B</u> : nanosuspension	containing 300 mg/mL RPV LA (old API ba	tch) in 50 mg/mL P338 buffer			
	Formulation C: 3-fold dilution of clinical bate	h G001 containing 100 mg/mL RPV LA in 1	6.7 mg/mL P338, glucose, NaH2PO0, citric			
		acid, NaOH buffer				
Route		IM (2 mL)				
Gender (M/F)/Number of Animals		Male/3 per group				
Compound		RPV LA				
Dose		Formulation A and B: 600 mg				
		Formulation C: 200 mg				
Follow-up period		1 month				
Sample		plasma				
Analyte		RPV (TMC278)				
Assay		LC-MS/MS				
Pharmacokinetic Parameters	Formulation A (G001): 600 mg	Formulation B: 600 mg	Formulation C: 200 mg			
C_{max} (ng/mL)	73.8	75.0	51.8			
$t_{max}(h)$	3.67	3.67	2.00			
AUC _{0-696h(~1 month)} (ng.h/mL)	10,160	12,919	4319			
AUC _{0-∞} (ng.h/mL)	10,293	14,634	5009			

G001 = final clinical formulation; IM = intramuscular; LA = long acting; P338 = poloxamer 338; LC-MS/MS = liquid chromatography coupled to tandem mass spectroscopy; RPV LA = rilpivirine long acting (TMC278 base)

2.6.5.3F Pharmacokinetics: Absorption after a Single Intravenous or Intramuscular Dose in Minipigs

Test Article: rilpivirine LA Study No. 2683 14125 (FK7520) **Location in CTD** 4.2.2.2 Göttingen minipig Species **Feeding Condition** Fed Formulation A: 2 mg/mL RPV LA solution in 20% Captisol at pH 3.68 Vehicle/Formulation Formulation B: nanosuspension containing 300 mg/mL RPV LA, fresh batch milled to smaller d50 Formulation C: nanosuspension containing 300 mg/mL RPV LA, fresh clinical batch G001 stored at 5 °C Formulation D: nanosuspension containing 300 mg/mL RPV LA, aged clinical batch G001 stored at 40 °C Formulation E: nanosuspension containing 300 mg/mL RPV LA, fresh batch milled to edge of specification Formulation A: slow bolus IV (1 mL/kg) Route Formulation B, C, D, E: IM (2 mL) Male/ (IV: 4; IM: 3 per group) Gender (M/F)/Number of Animals Compound RPV LA IV: 2 mg/kg Dose IM: 600 mg Sample plasma RPV (TMC278) Analyte HPLC-MS/MS Assav **Pharmacokinetic Parameters** Formulation A: Formulation B: Formulation C Formulation D Formulation E (G001)2 mg/mL IV 600 mg IM 600 mg IM 600 mg IM 600 mg IM C_0 (ng/mL) 1701 8 $t_{1/2}$ (h) 2974 AUC_{0-48h} (ng.h/mL) $AUC_{0-\infty}$ (ng.h/mL) 2797 $CL_n (mL/h/kg)$ 753 Vd_{SS} (mL/kg) 4.904 708 234 92.2 164 C_{max} (ng/mL) 3.33 3.83 2.67 10.00 t_{max} (h) 58,022 24,806 24,769 24,815 AUC_{0-dav106} (ng.h/mL)

G001 = final clinical formulation; HPLC-MS/MS = high performance liquid chromatography coupled to tandem mass spectroscopy; IM = intramuscular; IV = intravenous; LA = long acting; RPV LA = rilpivirine long acting (TMC278 base)

2.6.5.3G Pharmacokinetics: Absorption after a Single IM Dose in Minipigs

I CSL	Δ	ticle:	 IJΙ	/ 11	HIL	1//

	Test Attere: Inpivitine Ex
Study No.	2683_0040908 (FK10294)
Location in CTD	4.2.2.2
Species	Minipig (Gottingen)
Feeding Condition	Fed
Vehicle/Formulation	Formulation A: nanosuspension containing 300 mg/mL RPV LA in 50 mg/mL P338 buffer
	$(= \underline{G001}$ formulation)
	Formulation B: nanosuspension containing 300 mg/mL RPV LA with sodium metabisulfite containing formulation
	Formulation C: nanosuspension containing 300 mg/mL RPV LA, lyo formulation with low PVP concentration
	Formulation D: nanosuspension containing 300 mg/mL RPV LA, lyo formulation with high PVP concentration
Route	IM (2 mL)
Sample	Plasma
Assay	HPLC-MS/MS
LLOQ	1.00 ng/mL
Compound	RPV (TMC278)
Dose	600 mg

Dosc		000	, 1115	
Gender (M/F)/Number of Animals	<u>M</u> :3	<u>M</u> :3	<u>M</u> :3	<u>M</u> :3
Pharmacokinetic Parameters	Formulation A (G001)	Formulation B	Formulation C	Formulation D
C _{max} (ng/mL)	120	19.9	38.6	19.8
$T_{max}(h)$	0.5-24	6-24	6-384	24
AUC _{0-day 85 (~3} months) (ng·h/mL)	15,662	12,580	15,623	9131
Frel (vs A; AUC _{0-day 85})	-	80	100	58

G001 = final clinical formulation; HPLC-MS/MS = high performance liquid chromatography coupled to tandem mass spectrometry; IM = intramuscular; LLOQ = lower limit of quantification; M = male; NA = Not available; PVP = polyvinylpyrrolidone; RPV LA = rilpivirine long acting (TMC278 base)

2.6.5.4A Pharmacokinetics: Absorption after Repeated Intramuscular Doses in Dogs

					Te	st Article: rilpivirine LA	
Study No.		TOX10759					
Location in CTD		4.2.3.2					
Species				Beagle dog			
Feeding Condition				Fed			
Vehicle/Formulation			(Control: G002, 0 mg/mL			
		Dose gro	ups: nanosuspension cont	aining 300 mg/mL RPV L	A in 50 mg/mL P338 (= $\underline{G0}$	<u>001</u>)	
Route			IM (0.5 mL [1	50 mg]; 4 mL [control and	1200 mg])		
Gender (M/F)/Number of Animals			M	ale /Female; 5/sex/group			
Compound				RPV LA			
Duration of Dosing			Dosing on Days 1 an	d 15, followed by a 2-wee	k recovery period		
Sample				Plasma			
Analyte				RPV (TMC278)			
Assay				LC-MS/MS			
Dose (mg/dog)	0 (Co	ntrol)	1	50	12	000	
Pharmacokinetic Parameters							
Sex	M	\mathbf{F}	\mathbf{M}	F	M	F	
Day 1							
C_{max} (ng/mL)	-	-	116	245	1220	1220	
$t_{max}(h)$	-	-	264	24	24	24	
AUC_{0-336h} (ng.h/mL)	-	-	28,800	45,700	218,000	204,000	
Day 15	-	-					
C_{max} (ng/mL)	-	-	177	394	1440	1230	
$t_{max}(h)$	-	-	24	24	24	24	
AUC_{0-264h} (ng.h/mL)	-	-	34,500	48,500	217,000	206,000	
AUC _{0-600h}	-	-	63,400	94,200	435,000	410,000	

F = female; IM = intramuscular; LA = long acting; LC-MS/MS = liquid chromatography coupled to tandem mass spectrometry; M = male; RPV LA = rilpivirine long acting (TMC278 base)

G001 = final clinical formulation; G002 = control

2.6.5.4B Pharmacokinetics: Absorption after Repeated Intramuscular Doses in Minipigs

	Test Article: rilpivirine LA					
Study No.	TMC278-NC368 (TOX9508)					
Location in CTD	4.2.3.2					
Species	Göttingen minipig					
Feeding Condition			ed			
Vehicle/Formulation		Group C (control): 5	0 mg/mL P338 buffer			
	Group V1: 50 mg/mL P338					
		Group V2: 16	0 mg/mL P338			
	Group A	: nanosuspension containing 300 m	ng/mL RPV LA in 50 mg/mL P338	$(= \underline{G001})$		
Route	_	IM (2 mL)			
Gender (M/F)/Number of Animals		Male /Femal	e; 3/sex/group			
Compound		RPY	V LA			
Dose (mg/injection)		600 mg	/injection			
Duration of Dosing	Dos	sing on Days 0, 14, 28 and 42 (tern	ninal kill 3 or 4 days after last inject	tion)		
Sample		Pla	sma			
Analyte		RPV (T	MC278)			
Assay		LC-N	IS/MS			
Pharmacokinetic Parameters	Day 0 (after	r single dose)	Day 28 (aft	er 3 rd dose)		
Sex	M	F	M	F		
C_{max} (ng/mL)	580	1004	715	1232		
$\mathbf{t}_{\max}\left(\mathbf{h}\right)$	4.33	5.33	5.00	4.33		
AUC _{0-336h} (ng.h/mL)	18,378	33,153	51,359	52,751		
G001 = final clinical formulation; IM = intramu	scular; LA = long acting; LC-l	$MS/MS = liquid \overline{chromatography}$	coupled to tandem mass spectrome	etry; P338 = poloxamer 338; V=		

G001 = final clinical formulation; IM = intramuscular; LA = long acting; LC-MS/MS = liquid chromatography coupled to tandem mass spectrometry; P338 = poloxamer 338; V = vehicle; RPV LA = rilpivirine long acting (TMC278 base)

2.6.5.4C Pharmacokinetics: Absorption after Repeated Intramuscular Doses in Minipigs

	Test Article: ril								
Study No.	TMC278-NC349 (TOX9517)								
Location in CTD	4.2.3.2								
Species	Göttingen minipig								
Feeding Condition		F	ed						
Vehicle/Formulation		Group C (control): 5	0 mg/mL P338 buffer						
		Group V: 50	mg/mL P338						
	Group A	: nanosuspension containing 300 m	ng/mL RPV LA in 50 mg/mL P338	$(= \underline{G001})$					
Route		IM (2	2 mL)						
Gender (M/F)/Number of Animals		Male /Female	e (3/sex/group)						
Compound		RPV	/ LA						
Dose (mg/injection)			injection						
Duration of Dosing	once mont	thly (dosing on Days 0, 28, 56, 84,	112, 140, 168, 196, 224 and 252) for	or 9 months					
		(terminal kill 6 or 7 da	ays after last injection)						
Sample		Pla	sma						
Analyte		RPV (T	MC278)						
Assay		LC-M	IS/MS						
Pharmacokinetic Parameters	Day 0 (after	single dosing)	Day	224					
Sex	M	F	M	F					
C_{max} (ng/mL)	189	637	349	402					
$t_{max}(h)$	7.0	4.3	6.0	26.0					
AUC _{0-672h} (ng.h/mL)	20,696	34,964	50,071	44,342					

G001 = final clinical formulation; IM = intramuscular; LA = long acting; LC-MS/MS = liquid chromatography coupled to tandem mass spectrometry; P338 = poloxamer 338; RPV LA = rilpivirine long acting (TMC278 base); V = vehicle

2.6.5.5A Pharmacokinetics: Organ Distribution in Rat

			Test Article: rilpivirine LA
Study No.		ADME_58575	
Location in CTD		4.2.2.3	
Species		Sprague-Dawley rat	
Feeding Condition		Fed	
Vehicle/Formulation	RPV LA	300 mg/mL in Poloxamer 338 50 mg/mL (G001 fo	rmulation)
Route		Intramuscular	
Gender (M/F)/Number of Animals		M/3 or 6 per timepoint	
Dose		Group 1: 60 mg/kg – Group 2: 120 mg/kg	
Duration of Dosing		Single dose	
Sampling Times (h)		24, 72, 168, 504 and 1008 h post-dosing	
Dose (mg/kg)		60^{a}	<u>120^b</u>
	Full profiles	Selected time points only (24, 72, 168, 504 and 1008 h)	Full profiles
C_{max} (ng/mL)	76.5 (±61.1)	57.1 (±32.3)	93.9
$t_{max}(h)$	15.5 [4, 24]	24 [24, 24]	24
t _{1/2} (h)	$679 (\pm 248)$	NC	920
AUC_{0-24h} (ng·h/mL)	$1340 (\pm 944)$	685 (± 387)	1610
$AUC_{0-1008h}$ ($\sim Day 42$) (ng·h/mL)	$19,100 (\pm 5680)$	18,200 (± 5160)	41,500
$AUC_{0-\infty}$ (ng·h/mL)	$25,700 (\pm NA)^{c}$	NC	68,500

(Continued)

2.6.5.5A Pharmacokinetics: Organ Distribution in Rat (Continued)

Test Article: rilpivirine LA

Sampling Times (h)		Group 1: 60mg/kg		
Tissues/Organs	Mean C_{max} tissue (μg/mL or μg/g)	Mean AUC _{0-1008h} (-Day 42) $(\mu g \cdot h/mL \text{ or } \mu g \cdot h/g)$	Mean tissue: plasma AUC _{0-1008h (~Day 42)} ratio (-)	Mean tissue: blood AUC _{0-1008h (~Day 42)} ratio
Plasma	0.13	23.7	1.0	1.6
Blood	0.061	15.1	0.64	1.0
Adrenal gland, left	0.16	73.5	3.2	4.9
Brain	0.023	6.59 ^d	0.29	0.44
Eye, left	BQL	NC	NC	NC
Heart	0.046	15.7 ^d	0.69	1.0
Kidney, left	0.16	84.8	3.7	5.6
Liver	0.069	32.2^{d}	1.4	2.1
Lung	0.075	33.9	1.5	2.2
Medial iliac lymph node, left	409	51,200	2256	3391
Medial iliac lymph node, right	0.088	58.2	2.6	3.9
Pancreas	0.058	28.1	1.2	1.9
Popliteal lymph node, left	1100	277,000	12,203	18,344
Popliteal lymph node, right	1.2	153	6.7	10
Spleen	0.048	22.1	0.97	1.5
Thymus	0.094	19.7	0.87	1.3
Thyroid gland, left	0.050	NC	NC	NC

^a NCA of individual full plasma concentration-time profiles and individual plasma concentration-time profiles using selected 24, 72, 168, 504 and 1008h time points only; mean of n = 6 (\pm SD), except for T_{max}: median [min, max]

b NCA of mean pooled plasma concentration-time profiles

^c Mean of two individual values. The extrapolation for the calculation of the AUC∞ exceeded 25% in 4 out of 6 animals and were, therefore, excluded from the mean calculation

^d Extrapolated values as a result of mean BQL tissue concentrations, with mean BQL value equated to zero

BQL = Below Quantification Limit varying between <8.93 ng/g and <10.0 ng/g; G001 = final clinical formulation; LA= long acting; M = male; NC = Not calculated; RPV LA = rilpivirine long-acting (TMC278 base)

Lymph nodes, popliteal

Lymph nodes, mandibular

2.6.5.5B Pharmacokinetics: Organ Distribution in Rabbit

2.87

	rilpivirine I	

2.44 0.693

	i est Article. Imprim										
Study No.		2683 14278 (FK7491)									
Location in CTD	4.2.2.2										
Species		New Zealand white rabbit									
Feeding Condition			F	ed							
Vehicle/Formulation	<u>Formulati</u>	on A: nanosuspension of	containing 300 mg/mL	RPV LA in 50 mg/mL	P338 buffer (= <u>G001</u> fo	rmulation)					
				nL RPV LA (old API ba	, .						
	Formulation C: 3-fe	old dilution of clinical b	atch G001 containing 1	.00 mg/mL RPV LA in	16.7 mg/mL P338, glue	cose, NaH2PO, citric					
			,	OH buffer							
Route				M							
Compound				V LA							
Duration of Dosing			Ç	e dose							
Dose				and B: 150 mg/kg							
				C: 50 mg/kg							
Dosing period				e dose							
Gender (M/F)/Number of Animals				per group							
Analyte			· ·	MC278)							
Assay				MS/MS							
Sampling Time Tissues), at 1-month post-dosir	-						
Concentration (µg/mL or g))		<u>nal A1</u>		<u>1al A2</u>		nal A3					
Plasma	1.29 1.50 1.49										
Administration side	no	yes	no	yes	no	yes					
Administration site	2.58	5,000	6.37	5,340	2.1	5,830					
Lymph nodes, accessory axillary	0.656	0.373	-	0.53	0.565	-					
Lymph nodes, medial iliac	0.599	0.839	0.648	1.15	0.524	0.489					

API = active pharmaceutical ingredient; G001 = final clinical formulation; IM = intramuscular; LA = long acting; LC-MS/MS = liquid chromatography coupled to tandem mass spectroscopy; P338 = poloxamer 338; RPV LA = rilpivirine long-acting (TMC278 base); - = not applicable

0.385

0.996

0.339

0.623

36.5

2.6.5.5C Pharmacokinetics: Organ Distribution in Rat

Study No.	TMC278-NC108 (FK4951)										
Location in CTD	4.2.2.3										
Species		Rat (pigmented Long Evans)									
Feeding Condition					Not fa	asted					
Vehicle/Formulation				R	PV base in PEO	G400/CA (10)%)				
Route					Oral (g	avage)					
Gender (M/F)/Number of Animals					M	/5					
Dose (mg/kg)					40						
Radionuclide					¹⁴ C-F	RPV					
Specific Activity (kBq/mg)					23	3					
Sampling Times (h)	1		4		24	4	90	5	33	36	
Tissues/Organs	Conc.	Tissue/	Conc.	Tissue/	Conc.	Tissue/	Conc.	Tissue/	Conc.	Tissue/	
	(μg eq./g)	Blood	(μg eq./g)	Blood	(μg eq./g)	Blood	(μg eq./g)	Blood	(μg eq./g)	Blood	
Adrenal gland	3.29	4.64	7.93	5.13	1.21	8.66	0.351	6.15	BLQ	-	
Blood (LSC)	0.710	1.00	1.34	0.867	0.139	1.00	0.057	1.00	0.026	1.00	
Blood (RLG)	0.708	1.00	1.55	1.00	BLQ	-	BLQ	-	BLQ	-	
Bone	BLQ	-	0.348	0.225	BLQ	-	BLQ	-	BLQ	-	
Bone marrow	1.10	1.55	2.00	1.29	BLQ	-	BLQ	-	BLQ	-	
Brain	0.506	0.715	0.981	0.634	BLQ	-	BLQ	-	BLQ	-	
Brown fat	2.95	4.17	6.00	3.88	BLQ	-	BLQ	-	BLQ	-	
Eye ball (LSC)	0.967	1.37	5.08	3.29	3.73	26.8	1.78	31.2	1.03	39.8	
Heart	1.42	2.00	2.77	1.79	BLQ	-	BLQ	-	BLQ	-	
Kidney	2.78	3.93	5.27	3.41	0.707	5.07	BLQ	-	BLQ	-	
Liver	9.52	13.4	16.6	10.7	2.28	16.4	0.390	6.82	BLQ	-	
Lung	1.03	1.45	3.54	2.29	BLQ	-	BLQ	-	BLQ	-	
Meninges	1.84	2.60	5.80	3.75	1.73	12.4	1.57	27.5	1.21	46.6	
Muscle	0.555	0.783	1.23	0.792	BLQ	-	BLQ	-	BLQ	-	
Pancreas	2.20	3.11	4.23	2.73	BLQ	-	BLQ	-	BLQ	-	
Prostate	0.865	1.22	2.07	1.34	BLQ	-	BLQ	-	BLQ	-	
Skin pigmented	0.915	1.29	3.73	2.41	1.60	11.5	1.67	29.3	0.657	-	
Skin white	1.10	1.55	2.93	1.89	0.761	5.47	0.470	8.24	BLQ	-	
Spleen	NA	-	4.18	2.70	BLQ	-	BLQ	-	BLQ	-	
Testis	0.306	0.433	1.25	0.807	BLQ	-	BLQ	-	BLQ	-	
Thyroid	1.58	2.23	2.26	1.46	BLQ	-	BLQ	-	BLQ	-	
Uveal tract	5.45	7.70	28.2	18.2	38.3	275	10.9	191	6.86	265	
White fat	0.945	1.33	5.63	3.64	BLQ	-	BLQ	-	BLQ	-	
Additional Information						lood total rad	dioactivity level	s as determi	ned with RLG	till 4 hours	
	after dosing a	after dosing and as determined with LSC from 24 hours onwards.									

27

2.6.5.5C Pharmacokinetics: Organ Distribution in Rat (Continued)

Test Article: rilpivirine

Sampling Times (h)	1, 4, 24	, 96 and 336
Tissues/Organs	AUC_{0-4h} (µg.h/g)	Tissue/Blood AUC _{0-4h} ratio
Adrenal gland	18.5 (140 ^a)	$4.95 (6.76^{b})$
Blood (LSC)	3.43°	0.92
Blood (RLG)	3.74	1.00
Bone	NC^d	-
Bone marrow	5.20	1.39
Brain	2.48	0.66
Brown fat	14.9	3.98
Eye ball (LSC)	9.55 (616 ^e)	$2.55 (20.5^{\rm f})$
Heart	6.98	1.87
Kidney	13.5 (58.9 ^g)	3.61 (4.21 ^h)
Liver	43.9 (265 ^a)	$11.7 (12.8^{b})$
Lung	7.38	1.97
Meninges	12.4 (530°)	$3.32(17.6^{\rm f})$
Muscle	2.95	0.79
Pancreas	10.7	2.86
Prostate	4.83	1.29
Skin pigmented	7.42 (436 ^e)	$1.98 (14.5^{\rm f})$
Skin white	6.59 (82.2 ^a)	$1.76(3.97^{b})$
Spleen	- -	- -
Testis	2.48	0.66
Thyroid	6.55	1.75
Uveal tract	53.2 (4380°)	$14.2 (146^{\rm f})$
White fat	10.3	2.75

white Tata a AUC_{0-96h} b Calculated with AUC_{0-96h} c AUC_{0-24h} = 14.0 μ g.h/g, AUC_{0-96h} = 20.7 μ g.h/g and AUC_{0-336h} = 30.1 μ g.h/g d NC: not calculated, too limited data

e AUC_{0-336h} f Calculated with AUC_{0-336h}

g AUC_{0-24h}

h Calculated with AUC_{0-24h}

^{- =} not applicable; BLQ = below limit of quantification; CA = citric acid; LSC = liquid scintillation counting; M = male; NA = not analyzed; PEG400 = polyethylene glycol 400; RLG

⁼ radioluminography; RPV: rilpivirine

2.6.5.5D Pharmacokinetics: Organ Distribution in Rat

				Test Article: rilpivirine				
Study No.		TMC278-N	C109 (FK4950)					
Location in CTD		4.	2.2.3					
Species		Rat (Sprague I	Dawley, pregnant)					
Feeding Condition		Not	fasted					
Vehicle/Formulation		RPV base in Pl	EG400/CA (10%)					
Route		Oral (gavage)					
Gender (M/F)/Number of Animals]	F/ 4					
Dose (mg/kg)			40					
Radionuclide		$^{14}\mathrm{C}$	-RPV					
Specific Activity (kBq/mg)		233						
Sampling Times (h)	1	4	8	24				
T'	C T' /DL 1	C /DL 1	C /Dl 1	C /DL				

Sampling Times (h)		1		4		8	24		
Tissues/Organs	Conc.	Tissue/Blood	Conc.	Tissue/Blood	Conc.	Tissue/Blood	Conc.	Tissue/Blood	
	(μg eq./g)		(μg eq./g)		(μg eq./g)		(μg eq./g)		
Adrenal gland	4.52	3.59	9.76	3.47	7.37	4.05	1.75	17.0	
Blood (LSC)	1.01	0.802	2.32	0.83	1.40	0.769	0.102	1.00	
Blood (RLG)	1.26	1.00	2.81	1.00	1.82	1.00	BLQ	-	
Brain	0.849	0.674	1.92	0.683	1.24	0.681	BLQ	-	
Fat brown	3.55	2.82	7.29	2.59	6.22	3.42	BLQ	-	
Fat white	1.37	1.09	8.18	2.91	8.12	4.46	BLQ	-	
Fetus	0.627	0.498	1.87	0.665	1.19	0.654	BLQ	-	
Heart	1.85	1.47	3.76	1.34	2.73	1.50	BLQ	-	
Kidney	3.91	3.10	5.78	2.06	5.76	3.17	0.582	5.70	
Lachrymal gland	3.87	3.07	9.56 ^a	3.40	7.48	4.11	BLQ	-	
Liver	7.73	6.14	14.4	5.13	13.3	7.31	0.800	7.84	
Lung	2.42	1.92	5.19	1.85	3.46	1.90	BLQ	-	
Mammary gland	2.46	1.95	7.70	2.74	7.72	4.24	0.400	3.92	
Muscle	0.643	0.510	1.39	0.495	1.14	0.626	BLQ	-	
Ovary	NA^b	-	5.90	2.10	4.03	2.21	BLQ	-	
Pancreas	2.59	2.06	4.34	1.54	4.08	2.24	BLQ	-	
Placenta	1.10	0.87	2.63	0.936	1.88	1.03	BLQ	-	
Salivary gland	1.96	1.56	4.00	1.42	2.94	1.62	BLQ	-	
Spleen	1.84	1.46	2.82	1.00	2.37	1.30	BLQ	-	
Uterine epithelium	1.49	1.18	10.6	3.77	10.6	5.82	5.51	54.0	
Uterus	1.18 ^a	0.937	2.63 ^a	0.936	2.36	1.30	0.303^{c}	3.00	
Vagina	0.857	0.680	2.36	0.840	1.95	1.07	0.249^{a}	2.44	

Additional Information

Tissue/ blood concentration ratios were calculated preferably with blood total radioactivity levels as determined with RLG till 8 hours after dosing and as determined with LSC at 24 hours.

(Continued)

2.6.5.5D Pharmacokinetics: Organ Distribution in Rat (Continued)

Test Article: rilpivirine

Sampling Times (h)	1, 4,	8 and 24
Tissues/Organs	AUC_{0-8h} (µg.eq.h/g)	Tissue/Blood AUC _{0-8h} ratio
Adrenal gland	57.7 (120 ^d)	$3.6 (5.8^{\rm f})$
Blood (LSC)	$12.8 (20.7^{d})$	0.81
Blood (RLG)	15.9	1.0
Brain	10.8	0.68
Fat brown	45.0	2.8
Fat white	47.6	3.0
Fetus	10.1	0.64
Heart	22.2	1.4
Kidney	39.6 (75.7 ^d)	$2.5 (3.7^{\rm f})$
Lachrymal gland	56.0	3.5
Liver	92.3 (163 ^d)	$5.8 (7.9^{\rm f})$
Lung	29.7	1.9
Mammary gland	47.3 (86.9 ^d)	$3.0 (4.2^{f})$
Muscle	8.41	0.53
Ovary	31.4 ^e	2.0
Pancreas	28.5	1.8
Placenta	15.1	0.95
Salivary gland	23.7	1.5
Spleen	18.3	1.2
Ûterine epithelium	61.2 (186 ^d)	$3.8~(9.0^{\rm f})$
Uterus	$16.3 (32.3^{d})$	$1.0 (1.6^{\circ})$
Vagina	$13.9 (27.1^{\circ})$	$0.87(1.3^{\circ})$

a n=2

b NA = not analyzed due to flare effect of the high radioactive concentration in the formulation in stomach

c n=1

d AUCo 241

^e AUC was calculated with concentration versus time data at 4 and 8 hours. For this tissue, no data were available at 1-hour post dose

^f AUC_{0-24h} ratio calculated with blood (LSC) = 20.7 μ g eq.h/g

^{- =} not applicable; BLQ = below limit of quantification (0.196 μg eq./g); CA = citric acid; F = female; LSC = liquid scintillation counting; PEG400 = polyethylene glycol 400; RLG = radioluminography; RPV = rilpivirine

2.6.5.5E Pharmacokinetics: Organ Distribution in Rat

					Test Article: rilpivirine							
Study No.		TMC278-FK4195										
Location in CTD		4.2.2.3										
Species		Rat (Sprague-Dawley)										
Feeding Condition			-									
Vehicle/Formulation		RPV	base in PEG400/CA (1	0%)								
Sample			plasma									
Analyte			RPV (TMC278)									
Assay			LC-MS/MS									
Vehicle/Formulation	RPV base in	RPV base in PEG400]	RPV base in PEG400/CA (109	%)							
	PEG400/sterile water											
	(25%)											
Route	IV (slow bolus	Oral (gavage)		Oral (gavage)								
	injection)											
Gender (M/F)/Number of Animals	<u>M/3</u>	<u>F/3</u>	<u>M/3</u>	$\frac{F/3}{160}$	<u>M/3</u>							
Dose (mg/kg/day)	4	40	40		400							
Concentration (mg/mL)	2	4	4	16	40							
Pharmacokinetic Parameters												
C_{max} (ng/mL)	5.3 ^a	1.3	1.7	3.3	6.6							
$t_{max}(h)$	NA	1.0	1.0	8.0	8.0							
AUC (ng.h/mL)	3.1	9.8	12	48	64							
(Time for calculation –h)	$(0-\infty)$	$(0-\infty)$	$(0-\infty)$	$(0-\infty)$	$(0-\infty)$							
$\mathbf{t}_{1/2}\left(\mathbf{h}\right)$	4.4	2.8	4.6	5.7	3.2							
(Time for calculation –h)	(8-24)	(8-24)	(8-24)	(8-24)	(8-24)							
Bioavailability (Fabs %)	NA	32	39	39	21							
Clearance (L/h/kg)	1.3	NA	NA	NA	NA							
Vd _{ss} (L/kg)	4.1	NA	NA	NA	NA							
Additional Information		e 7 min (iv only), 20 min, 1, 3, 8										
		adrenal gland, brain, liver and m										
		to 60 min after administration.										
	concentration (AUC0-24	h) ratios were 3.4, 2.7, 0.49 and	0.45 for liver, adrenal	gland, brain and muscle, respe	ectively.							

^aC₀ extrapolated value at 0 h.

 $[\]overrightarrow{CA}$ = citric acid; LC-MS/MS = liquid chromatography with tandem mass spectrometry; NA = not applicable; PEG400 = polyethylene glycol 400; \overrightarrow{Vd}_{ss} = volume of distribution at steady state

2.6.5.5F Pharmacokinetics: Organ Distribution in Dog

										,	Test Article	e: rilpivirine
Study No.		TMC278-Exp.5650										
Location in CTD		4.2.3.2										
Species		Dog (beagle)										
Feeding Condition		Not fasted										
Vehicle/Formulation					RPV	base in PE	G400/CA (1	10%)				
Route						Oral (g	gavage)					
Sample						pla	sma					
Analyte						RPV (T	MC278)					
Assay						LC-N	IS/MS					
Gender (M/F)/Number of Animals	M	[/3	F	//3	N	<u>[/3</u>	F	<u>/3</u>	N	1/3	F	7/3
Dose (mg/kg/day)			<u>5</u>		10			<u>40</u>				
Duration of Dosing (day)	1	28	1	28	1	28	1	28	1	28	1	28
Pharmacokinetic Parameters												
C_{max} (ng/mL)	939	1465	1345	1985	1311	5620	1304	2519	2791	11632	2432	9543
$t_{\text{max}}(h)$	3.0	2.0	3.0	11	6.0	8.0	2.0	5.0	19	5.0	12	8.0
AUC (ng.h/mL)	13,374 ^a	27,110	18,628	36,791	21,977 ^a	102,621	14,059 ^a	46,570	51,188 ^a	204,202	$40,036^{a}$	160,201
(Time for calculation -h)	(0-24)	(0-24)	$(0-\infty)$	(0-24)	(0-24)	(0-24)	(0-24)	(0-24)	(0-24)	(0-24)	(0-24)	(0-24)
$t_{1/2}(h)$	33	29	11	181	28	33	21	43	21	48	17	50
(Time for calculation –h)	(8-24)	(8-24)	(8-24)	(8-24)	(8-24)	(8-24)	(8-24)	(8-24)	(8-24)	(8-24)	(8-24)	(8-24)
Plasma (ng/mL)		1085		1927		2497		2484		4137		3589
Adrenal gland (ng/g)		1875		2583		4787		5525		14,746		6033
Tissue to plasma ratio		1.7		1.3		1.9		2.2		3.6		1.7
Additional Information	The samp	ling times v	were 0, 0.5,	1, 2, 4, 8 ar	nd 24 h after	dosing on	Day 1 and D	ay 28. On	Day 30, 31,	35, 44, 49 a	and 56 at 8:0	00.
					an through l							
	The TMC278 levels were measured in the adrenal gland and plasma at autopsy.											

a $AUC_{0-\infty}$ extrapolation > 45%. CA = citric acid; LC-MS/MS = liquid chromatography with tandem mass spectrometry; PEG400 = polyethylene glycol.

2.6.5.5G Pharmacokinetics: Organ Distribution in Dog

					r	Test Article: rilpivirine					
Study No.			TMC278-NC	115 (TOX6110)							
Location in CTD			4.2	2.3.2							
Species			Dog (beagle)							
Feeding Condition				fasted							
Vehicle/Formulation		RPV base in PEG400/CA (10%)									
Route		Oral (gavage)									
Sample				ısma							
Analyte				TMC278)							
Assay			LC-M	MS/MS							
Pharmacokinetic Parameters											
Dose (mg/kg)		<u>5</u>	<u>1</u>	<u>10</u>		<u>40</u>					
No. of Animals	<u>M:6</u>	<u>F:6</u> <u>F:3</u>	<u>M:6</u> <u>M:3</u>	<u>F:6</u> <u>F:3</u>	<u>M:6</u>	<u>F:6</u> <u>F:3</u>					
Toxicokinetics:	<u>M:3</u>	<u>F:3</u>	<u>M:3</u>	<u>F:3</u>	<u>M:3</u>	<u>F:3</u>					
Day 0											
C_{max} (ng/mL)	1028	702	1288	1234	1483	818					
$t_{max}(h)$	2.0	2.3	6.0	2.7	12	9.3					
AUC_{0-24h} (ng.h/mL)	10,587	9179	21,786	20,002	22,584	10,173					
Day 85											
C_{max} (ng/mL)	1390	1132	2009	2193	2492	3101					
$t_{max}(h)$	2.3	3.3	2.3	2.0	2.0	2.7					
AUC _{0-24h} (ng.h/mL)	21,261	17,591	27,789	27,222	41,306	51,454					
Day 176											
C_{max} (ng/mL)	1512	1376	1951	1933	3948	2875					
t _{max} (h)	1.7	1.7	4.0	4.0	2.7	2.0					
AUC _{0-24h} (ng.h/mL)	21,101	17,352	25,821	31,912	68,263	43,089					

(Continued)

2.6.5.5G Pharmacokinetics: Organ Distribution in Dog (Continued)

					ŗ	Fest Article: rilpivirine
Pharmacokinetic Parameters						
Dose (mg/kg)	<u>5</u>	1	1	10	4	40
Gender (M/F)/Number of Animals	<u>M:6</u>			<u>F:6</u>	<u>M:6</u>	<u>F:6</u>
Toxicokinetics:	<u>M:3</u>	<u>F:3</u>	<u>M:3</u>	<u>F:3</u>	<u>M:3</u>	<u>F:3</u>
Tissue concentration (ng/g)						
Liver						
- Day 92	10,885	7795	22,450	15,950	50,650	40,500
- Day 183 or 184	10,127	7427	13,897	12,247	25,157	25,167
Adrenal						
- Day 92	5460	3250	18,550	8080	35,300	30,150
- Day 183 or 184	5950	2360	6127	4273	17,673	15,427
Plasma (ng/ml)						
- Day 92	1347	603	2303	1751	6547	4072
- Day 183 or 184	1143	582	1310	1009	2615	2688

Additional Information

6 months repeated-dose toxicity with a 3-month interim kill.

The sampling times were 0, 1, 2, 4, 8 and 24 h after dosing at Day 1, Day 86 and Day 177.

The TMC278 levels were measured in the liver, adrenal gland and plasma at autopsy at Day 93 and Day 184(males)/185(females). Tissue to plasma ratios for the liver were 8.1/8.9 and 13/13 at 5 mg/kg, 9.7/11 and 9.1/12 at 10 mg/kg and 7.7/9.6 and 9.9/9.4 at 40 mg/kg in males and females on Day93/Day184 or 185, respectively. Tissue to plasma ratios for the adrenal gland were 4.1/5.2 and 5.4/4.1 at 5 mg/kg, 8.1/4.7 and 4.6/4.2 at 10 mg/kg and 5.4/6.8 and 7.4/5.7 at 40 mg/kg in males and females on Day93/Day184 or 185, respectively.

CA = citric acid; LC-MS/MS = liquid chromatography with tandem mass spectrometry; ND = not determined; PEG400 = polyethylene glycol

2.6.5.6A Pharmacokinetics: Plasma Protein Binding and Blood Distribution

												Test	Article:	rilpivirine
Study No.		TMC278–NC112 (FK5273)												
Location in CTD							4.2	.2.3						
Method	The pla	sma prote	in binding	of RPV	was studie	ed by equi	ilibrium di	ialysis of	plasma sa	mples aft	er fortifica	ation with	³ H-labele	ed RPV.
	Plasma	Plasma was subjected to equilibrium dialysis against a 0.067 M phosphate buffer, pH 7.17, at 37°C for 3 hours. Concentration of												
		³ H-RPV in dialysis compartments was determined by liquid scintillation counting. The binding of RPV to purified human serum												
	albumir	albumin and α_1 -acid glycoprotein was also investigated by equilibrium dialysis. In blood distribution studies, samples of whole												
									juid scinti				•	
Species	Swiss	CD-1	Swiss	CD-1	Spr	ague	Spra	ague	New Z	Cealand	Beagl	e Dog ^b	Hur	nan ^b
	Mo	use ^a	Mo	use ^a	Dawle	ey Rat ^a	Dawle	ey Rat ^a	White	Rabbit ^b	(M	ale)	(M	ale)
	(M	(Male) (Female)		(M	ale)	(Fen	nale)	(Fer	nale)					
Parameters Measured														
Concentration Tested in Plasma (µg/mL)	0.01	0.01-100 0.01-100		0.01	-100	0.01	-100	0.01	-100	0.01-100		0.01-3		
Plasma Bound % at 1 μg/mL ^c	99	.93	99	.94	99.84		99.86		99	.97	99	.35	99	.67
Concentration Tested in Blood (µg/mL)	0.1	1	0.1	1	0.1	1	0.1	1	0.1	1	0.1	1	0.1	1
Blood-to-Plasma Ratio	0.60	0.60	0.58	0.58	0.69	0.67	0.67	0.67	0.61	0.61	0.69	0.68	0.67	0.66
Distribution to: Plasma Water (%)	0.12	0.07	0.06	0.07	0.16	0.15	0.13	0.14	0.02	0.03	0.5	0.5	0.3	0.2
Plasma Proteins (%)	101	100	102	103	90.5	93.0	94.1	94.1	102	103	72.6	73.4	77.3	78.1
Blood Cells (%)	-0.9	-0.2	-1.7	-3.0	9.3	6.8	5.8	5.8	-1.8	-2.8	26.9	26.2	22.4	21.7
Hematocrit (%)	4	0	4	-1	3	88	3	88	3	8	5	51	4	8
Additional Information	Prelimi	nary studi	es evaluat	ed: (a) le	ngth of tin	ne needed	to reach	equilibriu	m in the d	ialysis ce	lls (3 hou	s was dee	med suffi	cient);
	(b) the e	effect of p	H (as pH	increased	from 5.1	to 8.4, the	e percenta	ge bound	increased	from 99.	59 to 99.8	0, so pH	was standa	ardized
									n (at physi					
									ween 25.9					

RPV = rilpivirine

a For rat and mouse, each value represents a mean of 4 observations (2 pools x 2)
 b For rabbit, dog and man, each value represents a mean of 10 observations (5 individual samples x 2)
 c Over the concentration range tested the fraction bound to plasma remained nearly the same

2.6.5.6B Pharmacokinetics: Plasma Protein Binding and Blood Distribution

				Test Article: rilpivirine							
Study No.	TMC278–NC332 (FK6820)										
Location in CTD		4.2.2.3									
Method			ialysis of plasma samples after for								
			hosphate buffer, pH 7.17, at 37°C								
	ents was determined by liquid scir	ntillation counting. In blood distrib	oution studies, samples of whole								
	blood were combusted in an oxi	dizer and 14CO2 captured and cou	nted by liquid scintillation.								
Species	Dunkin Hartl	ey Guinea Pig	Cynomolg	us Monkey							
Parameters Measured											
Concentration Tested in Plasma (µg/mL)	2.5	8	2.5	5							
Plasma Bound %	99.87	99.87	99.14	99.08							
Concentration Tested in Blood (µg/mL)	2.5	8	2.5	5							
Blood-to-Plasma Ratio	0.64	0.63	0.96	0.94							
Distribution to: Plasma Water (%)	0.11	0.11	0.53	0.59							
Plasma Proteins (%)	84.71	85.23	61.84	63.46							
Blood Cells (%)	15.18	14.66	37.63	35.96							
Hematocrit (%)	4	-6	4	40							
Additional Information	-										

RPV = rilpivirine

2.6.5.7A Pharmacokinetics: Study in Pregnant or Nursing Rats

Test Article: rilpivirine/rilpivirine LA

Not Applicable

2.6.5.8 Pharmacokinetics: Other Distribution Study

Test Article: rilpivirine/rilpivirine LA

No other distribution studies have been performed.

2.6.5.9A Pharmacokinetics: Metabolism In Vivo in Mice

	Test Article: rilpiviri
Study No.	TMC278-NC190 (FK5621)
Location in CTD	4.2.2.4
Species	Mouse (CD-1)
Gender (M/F)/Number of Animals	M12/F12 (plasma profile) - M12/F12 (excretion mass balance)
Feeding Condition	Not fasted
Vehicle/Formulation	PEG400/CA (10%)
Route	Oral
Dose of RPV base (mg/kg)	20 and 320
Radionuclide	¹⁴ C
Specific Activity (kBq/mg)	345 and 23

Dose (mg/kg)			2	0			32	20	
Sample		Uı	rine	Fecal	Extract	U	rine	Fecal	Extract
		Male	Female	Male	Female	Male	Female	Male	Female
Time (h)		0-24	0-24	0-48	0-48	0-24	0-24	0-48	0-48
	ed Radioactivity in Excreta	2.82	3.46	64.05	65.38	1.27	2.88	75.2	71.3
Parent (UD)		0.63	0.08	8.2	7.8	0.11	0.02	33	34
M13	Cysteine-S-conjugate	0.14	0.39			0.09	0.31		
M14	Cysteinyl-S-conjugate	0.08	0.58			0.06	0.55		
M13+M14				5.0	4.4			5.1	2.8
M17	Mercapturic acid conjugate	0.19	0.15			0.08	0.14		
M18	Mercapturic acid conjugate	0.13	0.07			0.04	0.10		
M17+M18				4.2	2.3			3.3	3.4
M21	Hydroxylated sulfonyl conjugate			1.4	1.0			0.7	0.3
M25	Oxidation combined with	0.42	1.6			0.42	1.6		
	glucuronidation								
M24+M25	Hydroxylation on the			3.4	2.7			1.6	1.6
	cyanoethenyl moiety, Oxidation								
	combined with glucuronidation								
M27+M28+M29	Dehydration of M33; Aliphatic			0.3	< 0.2			< 0.2	0.1
	hydroxylation and dehydration of								
	M45; Sulphoxidation of M45								
M30	Carboxylic acid metabolite			1.6	3.1			1.5	1.2
M33	Aliphatic hydroxylation			0.5	0.7			1.3	1.0
M35	Unknown structure			< 0.2	< 0.2			< 0.2	< 0.2
M38	Hydroxylation			1.4	1.4			1.0	0.8
M41+M42 ^a	Hydroxylation of M45; Aromatic			18	26			9.2	13
	hydroxylation								
M42	Aromatic hydroxylation	0.37	0.20			0.11	0.06		
M43+M45	Z-isomerization, S-Methyl			2.2	1.8			1.3	1.2
	conjugate								

(Continued)

2.6.5.9A Pharmacokinetics: Metabolism In Vivo in Mice (Continued)

Test Article: rilpivirine	,
---------------------------	---

Dose (mg/kg)				2	20					32	20		
Sample		Urine Fecal Extract					act	ct Urine				Fecal Extract	
		Male		Female	Male		Female	Male		Female	Male	:	Female
Time (h)		0-24		0-24	0-48		0-48	0-24		0-24	0-48		0-48
% of Administ	ered Radioactivity in Excreta	2.82		3.46	64.05		65.38	1.27		2.88	75.2		71.3
M46	Unknown structure				0.5		0.7				0.5		0.6
M47	Dimerization				0.3		< 0.2				0.8		0.2
Sample							Pla	sma					
		Male			Female	<u>, </u>		Male			Female		
Time (h)		1	3	8	1	3	8	1	3	8	1	3	8
% of Plasma ra	adioactivity	11.1 ^b	6.85 ^b	9.46 ^b	8.28 ^b	5.70^{b}	12.5 ^b	30.7^{b}	26.3 ^b	42.5^{b}	26.8 ^b	32.2^{b}	49.4 ^b
Parent (UD)		105	98	97	99	97	95	93	86	95	95	95	91
M13+M14	Cysteine-S-conjugate; Cysteinyl-S-conjugate	0.5	0.5	0.6	0.5	<0.4	0.6	< 0.8	0.9	1.0	<1.2	1.8	< 0.8
M27	Dehydration of M33	0.6	0.8	0.8	0.6	0.9	0.6	< 0.8	1.2	< 0.8	<1.2	< 0.7	< 0.8
M30	Carboxylic acid metabolite	0.6	0.5	0.6	0.7	0.8	1.0	< 0.8	0.9	1.4	<1.2	1.3	1.5
M33	Aliphatic hydroxylation	4.5	3.1	3.5	3.4	6.6	4.3	2.7	2.1	1.5	2.8	4.1	2.2
M36	Hydroxylation of RPV	0.3	0.8	0.4	0.6	1.3	0.5	< 0.8	< 0.9	< 0.8	1.2	< 0.7	< 0.8

Additional Information

96 h after administration of RPV, 88% and 87% of the dose was excreted in feces and 3.5% and 4.2% in urine at 20 mg/kg and 96% and 89% of the dose was excreted in feces and 1.84% and 3.6% in urine at 320 mg/kg, in males and females, respectively. Over the 4-day collection period, more than 95% of the administered dose was recovered.

CA = citric acid; F = female; M = male; PEG400 = polyethylene glycol; UD = unchanged drug; RPV = rilpivirine

^a Metabolite fraction mainly composed of M42, estimated at about 14% and 17% of the 20 mg/kg dose, and at 5.9% and 8.0% of the 320 mg/kg dose in male and female mice, respectively.

b Total radioactivity levels in μg-eq./mL.

2.6.5.9B Pharmacokinetics: Metabolism In Vivo in Rats

			Test Article:	rilpivirine
Study No.		TMC278-NC113 (FK4	1933)	
Location in CTD		4.2.2.4	,	
Species		Rat (Sprague Dawle	ey)	
Gender (M/F)/Number of Animals		M12/F12 (plasma profile) – M5/F5 (exc	cretion mass balance)	
Feeding Condition		Not fasted		
Vehicle/Formulation		PEG400/CA (10%)	
Route		Oral		
Dose of RPV base (mg/kg)		40		
Radionuclide		¹⁴ C		
Specific Activity (kBq/mg base eq.)		37		
Sample	Urina	Facal Extract	Plasma	

Sample		U	rine	Fecal	Extract	Plasma					
		Male	Female	Male	Female		Male			Female	
Time (h)		0-24	0-24	0-48	0-48	1	4	8	1	4	8
% of Admini	istered Radioactivity in Excreta or μg-eq./mL in	0.39^{a}	1.6 ^a	74 ^a	65 ^a	1.4	1.1	0.88	4.0	3.7	2.0
Plasma											
Parent (UD)		n.d.	0.01	47	43	$60^{\rm b}$	72 ^b	71 ^b	83 ^b	78 ^b	64 ^b
M12+M14	Cysteinylglycine-S-conjugate; Cysteinyl-S-conjugate	n.d.	n.d.	n.d.	n.d.	7.0°	3.8°	5.6°	14 ^c	13°	10 ^c
M17	Mercapturic acid conjugate	0.02	1.1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M18	Mercapturic acid conjugate	0.03	0.45	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M21	Hydroxylated sulfonyl conjugate	n.d.	n.d.	0.20	0.44	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M24+M27+	Hydroxylation on cyanoethenyl moiety;	n.d.	n.d.	0.99^{d}	1.6 ^d	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M28+M29	Dehydration of M33; Aliphatic hydroxylation and dehydration of M45; Oxidation of M45										
M30	Carboxylic acid metabolite	n.d.	n.d.	0.47	0.05	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M33	Aliphatic hydroxylation	n.d.	n.d.	0.54	0.54	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M38	Hydroxylation	n.d.	n.d.	0.70	0.82	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M41+M42	Hydroxylation of M45; Aromatic hydroxylation	n.d.	n.d.	$2.8^{\rm e}$	$3.6^{\rm e}$	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M43+M45	Isomerization; S-Methyl conjugate	n.d.	n.d.	$2.4^{\rm f}$	2.9^{f}	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M46	Unknown	n.d.	n.d.	0.99	0.92	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M47	Dimerization	n.d.	n.d.	4.0	3.8	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

Additional Information

96 h after administration of RPV, 93% of the dose was excreted in feces and 0.45% and 1.8% in urine in males and females, respectively. Over the 4-day collection period, 94% and 95% of the administered dose was recovered in males and females, respectively.

Percentage of administered dose.

Percentage of injected sample radioactivity.

Sum of % of administered dose of M12 and M14, which co-eluted together in rat plasma samples.

Sum of % of administered dose of M24, M27, M28 and M29, which co-eluted together in rat feces samples.

Sum of % of administered dose of M41 and M42, which co-eluted together in rat feces samples.

Sum of % of administered dose of M43 and M45, which co-eluted together in rat feces samples.

CA = citric acid; F = female; M = male; n.d. = Not detected by radiometric detector; PEG400 = polyethylene glycol; UD = unchanged drug; RPV = rilpivirine

Pharmacokinetics: Metabolism In Vivo in Rats (Biliary Excretion) 2.6.5.9C

				Test Article: rilpivirine
Study No.			TMC278-NC145 (FK5	525)
Location in C	CTD		4.2.2.4	·
Species			Rat (Sprague Dawle	y)
Gender (M/F)/Number of Animals		M/3 (restrained); M/3 (non-r	
Feeding Con-	dition		Not fasted	
Vehicle/Forn	nulation		PEG400/CA (10%)	
Route			Oral	
Dose of RPV	base (mg/kg)		40	
Radionuclide			¹⁴ C	
Specific Activ	vity (kBq/mg)		37	
Sample		Bile (R	estrained Rats)	Bile (Non-Restrained Rats)
Time (h)			0-24	0-24
% of Admini	stered Radioactivity in Bile		18 ^a	25
Metabolite C	ode	Metabolite Profile - %	Dose Radioactivity in 0-24 h	Samples Not Profiled
			Bile	
Parent (UD)			0.19	
M1	Glucuronidation and oxidation of M14		0.63	
M9	Thiol glucuronide conjugate		2.8	
M10+M12+	Cysteinylglycine-S-conjugate; Cysteinyl-S-		6.4	
M14	conjugate			
M18	Mercapturic acid conjugate		2.7	
M25	Oxidation combined with glucuronidation		1.4	
M30	Carboxylic acid metabolite		0.4	
		Sum	14 ^a	

The calculated total % dose value (14%) varies from the actual value (18%) due to an error arising from integration of noise in a radiochromatogram.

CA = citric acid; M = male; PEG 400 = polyethylene glycol; UD = unchanged drug

2.6.5.9D Pharmacokinetics: Metabolism In Vivo in Dogs

									Т	est Article:	rilpivirine
Study No.					TMC27	'8-NC114 (I	FK5143)				
Location in	CTD					4.2.2.4					
Species]	Dog (beagle	e)				
Gender (M/I	F)/Number of Animals					3M					
Feeding Con						Fed					
Vehicle/Form	nulation				PEC	G400/CA (1	0%)				
Route					O	ral (Capsu	le)				
	base (mg/kg)					.5					
Radionuclid	~					¹⁴ C					
Specific Acti	vity (kBq/mg)					99					
Sample		Urine	Feces				Plasma	(mean)			
Time (h)		0-168h	0-72	0.25	0.5	1	2	4	6	8	24
	istered Radioactivity in Excreta or μg-eq./mL in	1.73	81	0.06	0.21	0.37	0.57	0.65	0.54	0.46	0.40
Plasma											
	ole Results: % Dose Recovered	0-24 h	0-72 h	Pooled	plasma ^a	1h		4h		8h	
Parent (UD)		n.d	45			94		73		91	
M11	Carboxylic acid metabolite on the cyanoethenyl moiety of M27	n.d	0.98			n.d.		n.d.		n.d.	
M23+M27	Monooxy-M27; Tricyclic metabolite, originating from oxidation and dehydration most probably of M33	n.d	2.1			n.d.		n.d.		n.d.	
M30+M48	Carboxylic acid metabolite; Unknown	0.03, n.d.	3.1			n.d.		n.d.		n.d.	
M33	Aliphatic hydroxylation	n.d	8.7			n.d.		n.d.		n.d.	
M37	Sulfate conjugate of monooxygenated-RPV	n.d	0.31			n.d.		n.d.		n.d.	
M40	N-oxide-RPV	n.d	0.50			n.d.		n.d.		n.d.	
M42	Aromatic hydroxylation	n.d	5.3			n.d.		n.d.		n.d.	
M44	Monooxygenated RPV	n.d	4.3			n.d.		n.d.		n.d.	
M46	Unknown structure	n.d	0.09			n.d.		n.d.		n.d.	
M49	Unknown structure	n.d	1.4			n.d.		n.d.		n.d.	

Additional Information

In urine, minor metabolites (M3, M12, M14, M19, M25 and M36) were detected which accounted for less than 0.08% of the dose. In plasma, minor metabolites were present in trace amounts and included M15, M19, M27, M30, and M33.

168 h after administration of RPV, 95% and 1.7% of the administered dose was excreted in feces and urine, respectively. Over the 7-day collection period, 97% of the administered dose was recovered.

CA = citric acid; M = male; n.d. = Not detected by radiometric detector; PEG 400 = polyethylene glycol; UD = unchanged drug; RPV = rilpivirine

^a Percentage of injected sample radioactivity.

2.6.5.9E Pharmacokinetics: Metabolism In Vivo in Humans

								Test Ar	ticle: rilpivirin				
Study No.				TMC	278-NC157 (FK	(5344) <mark>/TMC27</mark> 8	3-C119						
Location in CTD					4.2	.2.4							
Species					Male S	ubjects							
Gender (M/F)/Number of Subjects			6M										
Feeding Condition			Fed (Breakfast)										
Vehicle/Formulation			PEG400 (25 mg/mL)										
Route					0	ral							
Dose of RPV bas	se (mg)					50							
Radionuclide					14	\mathbf{C}							
Specific Activity	(kBq/mg)				11	1.8							
Sample		Urine	Feces	es Plasma Total Radioactivity (% of Sample Radioactivity in Plasma)									
Time (h)		0-168h	0-168h	1h	2h	4h	8h	12h	24h				
% of Administer	ed Radioactivity or Conc. (μg-	6.13	76	0.40	0.57	0.77	0.56	0.36	0.32				
eq./mL)													
Average Sample Results: % Dose Recovered			Selection of Samples	1h	2h	4h	8h	12h	24h				
Parent (UD)		Traces	25.5	58.8	55.7	65.7	47.2	45.7	44.1				
M3	Unknown structure		0.3										
M11	Carboxylic Acid Metabolite of M27		1.6										
M13+M14 and M18	Glycine conjugates of RPV; mercapturic acid conjugate of RPV	1.2											
M15	N-Glucuronide of RPV	0.6		4.2	4.1	5.3	8.7	9.5	6.2				
M19	Glucuronide of M33	0.3											
M23	Oxidized Metabolite of M27		0.7										
M25	Glucuronide of M42	0.6											
M27	Tricyclic Metabolite		0.6	6.6	6.6	9.7	6.5	5.7	8.0				
M30	Carboxylic Acid Metabolite	0.03	2.7										
M33	Hydroxymethyl RPV		3.0	LOQ	1.8	2.9	3.4	3.5	5.1				
M35	Unknown structure		2.2	- \									
M39	Cis 5-Hydroxy Pyrimidinyl (Cis of M42)		0.4										
M42	5-Hydroxyl Pyrimidinyl		16.1										
M43	Cis RPV		0.6										
M46	Unknown structure		0.5										

Additional Information

168 h after administration of RPV, 76% and 6.1% of the administered dose was excreted in feces and urine, respectively. Over the 14-day collection period, 91% of the administered dose was recovered.

LOQ = Below the limit of quantification; M = male; PEG 400 = polyethylene glycol; UD = unchanged drug; RPV = rilpivirine

2.6.5.9F Pharmacokinetics: Metabolism In Vivo in human plasma

											Tes	t Article: 1	rilpivirine	
Study No.	•					16	46_00274	83 (FK101	04)					
Location	in CTD	4.2.2.4												
Species						I	Iuman Pla	sma (M&)	F)					
Route		Oral LC/UV/MS Plasma samples (pooled; n=6) DAY 1												
Analysis														
Sample														
Dose of R	PV base (mg q.d.)	75 mg						300 mg						
Time (h)		0	0.5	3	6	12	24	0	0.5	3	6	12	24	
RPV*		≤1.13	6.82	238	214	117	103	NQ	21.5	679	629	324	298	
M15**	N-glucuronide at the N1-position of the pyrimidinyl moiety of RPV	LOD	0.26	17.9	24.9	18.2	14.1	LOD	0.42	20.6	23.5	18.2	12.6	
M27 ⁺	Tricyclic metabolite	0.10	0.12	7.96	11.7	8.24	9.78	0.07	0.20	11.4	14.8	10.3	11.9	
$X1^+$	M30 + 2O-2H	LOD	0.01	LOD	0.01	0.02	0.04	LOD	LOD	0.002	0.004	0.01	0.03	
$X2^{+}$	UD + O + Glucuronide	LOD	LOD	0.02	0.02	0.01	0.02	LOD	LOD	0.03	0.02	0.02	0.02	
$M19^{+}$	Glucuronide of M33	LOD	LOD	0.08	0.12	0.10	0.07	LOD	LOD	0.10	0.13	0.10	0.06	
$M25^{+}$	Glucuronide of M42	LOD	0.01	0.27	0.19	0.09	0.11	LOD	0.03	0.42	0.25	0.12	0.14	
M30 ⁺	Loss of cyanide and carboxylic acid formation	LOD	0.04	2.13	1.74	0.92	1.02	LOD	0.08	3.04	2.18	1.09	1.27	
$X4^{+}$	UD + 2O-2H	LOD	LOD	LOD	LOD	0.02	0.03	LOD	LOD	0.03	0.04	0.03	0.03	
M33 ⁺	Hydroxymethyl RPV (R419763)	LOD	LOD	0.61	0.86	0.59	0.64	LOD	0.01	0.87	0.94	0.59	0.62	
$M36^{+}$	UD + O	0.01	LOD	0.53	0.43	0.22	0.17	LOD	0.01	0.69	0.54	0.26	0.20	
$M38^{+}$	UD + O	LOD	LOD	0.09	0.09	0.05	0.05	LOD	LOD	0.16	0.15	0.07	0.06	
$M43^{+}$	Cis RPV	0.09	0.20	3.29	4.68	2.05	2.72	0.03	0.73	10.9	12.6	4.79	7.27	

(Continued)

2.6.5.9F Pharmacokinetics: Metabolism In Vivo in human plasma (Continued)

Test Article: rilpivirine

						DA	Y 11				
Dose of R	PV base (mg q.d.)			75 mg					300 mg		
Time (h)		0.5	3	6	12	24	0.5	3	6	12	24
RPV*		247	459	449	307	320	529	1302	1183	715	696
M15**	N-glucuronide at the N1-position of the pyrimidinyl moiety of RPV	28.3	38.4	39.0	28.2	21.5	19.1	21.6	22.0	18.1	10.5
$M27^{+}$	Tricyclic metabolite	31.0	33.2	32.3	22.6	28.1	26.2	25.8	22.7	16.4	18.7
$X1^{+}$	M30 + 2O-2H	0.33	0.31	0.30	0.24	0.32	0.27	0.21	0.25	0.19	0.18
$X2^+$	UD + O + Glucuronide	0.05	0.06	0.07	0.04	0.05	0.04	0.04	0.05	0.03	0.03
$M19^{+}$	Glucuronide of M33	0.17	0.19	0.21	0.18	0.10	0.08	0.12	0.14	0.12	0.05
M25 ⁺	Glucuronide of M42	0.24	0.44	0.40	0.21	0.29	0.27	0.50	0.39	0.20	0.25
M30 ⁺	Loss of cyanide and carboxylic acid formation	1.85	3.44	3.00	1.67	1.99	2.09	3.41	2.87	1.38	1.74
$X4^{+}$	UD + 2O-2H	0.15	0.15	0.16	0.08	0.14	0.13	0.16	0.18	0.08	0.14
M33 ⁺	Hydroxymethyl RPV (R419763)	0.96	1.43	1.44	0.95	1.03	0.72	1.18	0.92	0.61	0.65
$M36^{+}$	UD + O	0.30	0.55	0.53	0.38	0.33	0.24	0.54	0.43	0.18	0.21
$M38^{+}$	UD + O	0.09	0.21	0.18	0.10	0.09	0.13	0.26	0.24	0.10	0.11
$M43^{+}$	Cis RPV	3.74	4.91	5.23	3.09	4.72	5.58	8.96	6.68	5.10	6.23

^{*}Mean data for RPV obtained using a validated LC/MS/MS method

^{**}LC/UV data were used, assuming the LC/UV response for M15 and RPV was similar. Knowing the LC/UV peak area for RPV and the corresponding concentration determined by a validated LC/MS/MS method, the concentration of M15 was estimated using a rule of three

⁺ LC/MS data were used, assuming the LC/MS response for these metabolites and RPV were similar. Knowing the LC/MS peak are for RPV and the corresponding concentration determined by a validated LC/MS/MS method, the estimated concentration of metabolites was calculated using a rule of three.

F = female; LC/UV/MS = liquid chromatography coupled to tandem mass spectrometry and UV detection; LOD = limit of detection; M = Male; NQ = Not quantifiable (<1 ng/mL); RPV = rilpivirine

2.6.5.10A Pharmacokinetics: Metabolism In Vitro

Test A	Article:	rilj	pivirin	e

Study No. Location in CTD							TM		C102 (FK4	728)						•
Type of Study	In vitro	matabalia	sm of RPV	in hanatac	outes and	liver cube	allular frac			ecies and	l in man					
Methodology			was incuba									c) and wit	a liwar gub	aallular f	rootions	
Methodology			12,000 x g													n d
			were used					naryzeu o	y radio-rii	LC. C0-	cinomatog	iapily, cliz	yme nyur	Jiysis, LC	-1V15/1V15 a	.11 u
	INIVIK te		Percentage					ınahanga	d compos	ınd and i	te metabo	litos				
Study System	Mor		, Swiss alb				e, Swiss al				ack Agout		Mou	so (fomal	le, black A	gouti
Study System	WIU	use (iliaie	, SWISS AIL	ilio)	MIOU	ise (ieiliai	c, Swiss ai	Dilloj	Mouse	(iliaie, bi	ack Agout	1145112)	Mou	,	sH2)	goun
Metabolites	SK	PCK	12,000g	MICR	SK	PCK	12,000g	MICR	SK	PCK	12,000g	MICR	SK	PCK	12,000g	MICR
Parent (UD)	11.8	3.9	57.1	85.3	3.2	4.4	71.9	81.6	13.1	3.9	49.1	72.4	6.1	1.9	57.7	77.3
2	-	0.5	-	0.6	-	0.7	-	1.0	-	-	-	0.9	-	-	0.7	0.6
3	0.6	1.0	-	-	1.0	0.6	-	-	-	-	-	-	-	-	-	-
4+5	4.1	2.0	-	0.5	7.2	5.2	-	-	6.6	4.6	0.7	-	8.6	4.6	0.6	-
6	4.8	2.9	0.7	-	3.5	2.2	-	0.7	8.2	3.1	0.8	-	4.1	3.6	0.7	-
7	2.8	1.4	1.1	-	1.0	-	0.6	-	-	-	-	-	-	-	-	-
8	1.8	2.9	1.4	-	3.3	6.7	0.8	-	3.0	3.5	2.3	-	4.5	5.3	4.0	-
10	61.9	49.7	35.9	-	7.6	12.6	17.1	-	-	-	-	-	-	-	-	-
10 (+12* or +14**)									28.3	43.9	36.0^{*}	-	15.0**	36.4	23.8^{*}	-
13	-	-	-	0.9	-	-	-	1.3	-	-	3.3	0.8	-	-	0.7	0.5
14	-	18.4	-	-	6.0	9.2	-	-	5.3	18.0	-	-	-	15.3	-	-
17	1.5	5.3	-	0.7	3.2	8.9	-	-	5.2	7.9	-	0.9	5.7	6.7	-	0.6
18	-	10.5	-	-	3.0	0.6	-	-	-	11.1	-	-	-	5.2	-	-
22	-	-	0.9	2.4	-	-	0.6	3.9	-	-	-	5.5	-	-	-	3.2
25	13.3	7.3	-	-	49.3	46.9	-	-	25.5	6.5	-	-	45.2	23.7	-	-
27	1.8	-	0.9	1.1	-	-	1.1	2.5	2.2	1.0	0.8	2.4	1.2	-	1.3	2.0
33	0.8	-	0.9	2.2	1.8	-	1.2	2.8	2.4	-	0.8	2.6	3.5	-	1.5	1.9
35+36	0.9	-	0.7	2.6	1.8	-	1.2	4.1	1.4	-	0.5	1.9	1.8	-	2.3	2.9
38	-	-	-	-	0.9	0.7	0.8	0.6	-	-	0.6	-	-	-	1.3	-
42	-	0.5	1.3	1.4	0.9	1.6	5.4	2.2	-	0.7	2.9	2.1	0.9	0.7	9.6	1.5
43	0.9	1.5	0.8	0.5	-	-	1.6	0.4	0.7	0.7	1.9	0.9	0.4	-	2.7	0.4
Sum	107.0	107.8	101.7	98.2	93.7	100.3	102.3	101.1	101.9	104.9	99.7	90.4	97.0	103.4	106.9	90.9

2.6.5.10A Pharmacokinetics: Metabolism In Vitro (Continued)

Study No.									TMC		C102 (FI	(4728)							rticle: r	
Location in CTD											2.2.4									
Type of Study								ubcellul												
Methodology																h liver su				
										lyzed b	y radio-I	HPLC. C	o-chro	matogra	phy, enz	yme hyd	rolysis,	LC-MS	MS and	d
	NMR	techniq						etabolite												
			Perc	entage o	of inject	ted sam	ple radi	oactivity	y for ur	ichange	ed comp	ound an	d its m	etabolit	tes					
Study System	R	Rat (male, Sprague- Rat (female, Sprague-								abbit (fe	emale, N	lew	D	og (ma	le, Beag	le)		M	lan	
			wley)				wley)				land)									
Metabolites	SK	PCK	12,000g	MICR	SK	PCK	12,000g	MICR	SK	PCK	12,000g	MICR	SK	PCK	12,000g	gMICR	SK	PCK	12,000g	g MICF
Parent (UD)	59.5	8.2	42.2	90.2	47.7	18.2	64.0	96.4	20.2	1.0	28.7	87.4	72.3	25.4	91.5	90.7	75.8	23.1	34.8	43.5
2	_	-	_	_	-	-	_	_	1.3	_	1.3	_	_	0.9	-	-	_	_	4.8	1.6
3	_	_	_	_	-	_	_	_	0.8	_	1.1	_	_	0.5	_	_	0.2	1.5	_	_
4	0.6	2.1	_	_	0.3	1.4		_	_	_	_	_	_	-	_	_	_	_	_	_
5	_	_	5.4	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6	0.5	1.0	3.5	_	-	0.5	0.6	_	_	-	_	-	_	-	-	-	_	-	_	-
7	-	-	-	-	-	-	_	_	1.5	0.7	3.9	-	0.7	2.0	-	-	0.4	1.8	2.3	1.3
8	0.5	1.6	4.3	-	0.7	2.1	1.5	-				-	-	-	-	-	-	-	-	-
10	35.6	56.4	40.7	-	46.7	58.7	25.7	-	3.8	3.0	2.1	1.0	1.2	6.4	1.4	-	-	-	-	-
13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.2	4.8	-	-
14	-	5.6	-	-	-	-	-	-	-	-	-	-	1.5	4.2	-	-	1.5	4.9	-	-
15	-	-	-	-	-	-	-	-	15.8	11.3	-	-	-	-	-	-	1.1	4.6	-	-
17	0.8	7.1	0.6	1.1	3.2	22.5	-	-	5.3	8.8	-	-	-	-	-	-	0.5	6.8	-	-
18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.7	-	-
19	-	-	-	-	-	-	-	-	7.6	11.9	4.8	1.3	3.7	9.4	-	-	0.2	2.1	-	-
20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.5	0.9	-	-	-	-
22	-	-	-	-	-	-	0.4	0.7	-	-	-	-	-	-	-	-	-	-	3.6	7.8
25	0.8	1.1	-	-	1.7	3.5	-	-	38.8	46.2	5.4	-	8.6	22.0	-	-	11.8	31.0	-	-
26	-	-	-	-	-	-	-	-	-	-	-	-	2.6	6.7	-	-	-	-	-	-
27	0.4	0.7	0.9	0.7	0.6	-	-	-	-	-	11.8	0.4	-	-	2.0	0.8	2.4	7.2	5.6	4.9

2.6.5.10A Pharmacokinetics: Metabolism In Vitro (Continued)

Test Article: rilpivirine

Study No.		TMC278-NC102 (FK4728) 4.2.2.4																		
Location in CTD																				
Type of Study	In vitr	o metal	oolism o	f RPV in	hepato	cytes an	d liver s	ubcellula	ar fracti	ons in d	ifferent	species a	and in m	an.						
Methodology	¹⁴ C-R	PV (5 μ	M) was	incubate	d for va	rious tir	ne perio	ds with l	nepatoc	vtes (su	spensior	is and pr	imary c	ultures)	and with	liver si	ıbcellula	r fracti	ons	
S.															phy, enzy					d
				_	•			etabolite		.,	, 14410 1	20. 0			. p.1.j, v 112.j	1110 1190	11017515,	20 1.11	5, 1, 10 u 11	-
			Perc	entage o	of inject	ed sam	ple radi	oactivity	for un	change	d comp	ound an	d its m	etaboli	tes					
Study System	Ra		e, Sprag			t (femal	e, Sprag			bbit (fe	male, N				le, Beagle	e)		M	lan	
		Da	wley)			Dav	vley)				land)									
Metabolites	SK	PCK	12,000	g MICR	SK	PCK	12,000g	MICR	SK	PCK	12,000g	MICR	SK	PCK	12,000g	MICR	SK	PCK	12,000g	, MIC
30+31	_	_	_	_	_	_	_	_	_	_	4.6	1.2	_	_	0.5+0.8	_	0.9***	1.6*	3.6	0.5**
32	_	1.3	_	-	_	6.1	-	-	-	_	_	-	_	-	-	_	_	_	_	_
33	_	-	1.0	1.1	-	-	-	-	-	-	4.6	1.2	-	-	2.3	1.0	1.4	1.1	2.5	2.9
34	-	-	-	-	-	-	-	-	-	-	-	-	1.7	6.0	-	-	-	-	-	-
35+36	_	-	-	-	-	-	-	-	-	-	-	-	-	1.3	0.5	1.2	0.4		9.8	7.9
36	-	-	1.1	2.1	-	-	0.5	1.2	2.5		6.0	1.4	-	-	-	-	-	-	-	-
38	-	_	0.7	2.0	-	-	-	0.5	-	-	6.9	0.4	-	-	0.6	-	-	-	3.8	-
42	-	-	1.1	2.0	-	-	1.2	1.1	-	-	5.1	0.8	1.7	2.6	3.5	1.2	0.5	1.0	6.6	6.0
43	2.8	-	3.8	0.9	2.0	0.8	3.8	1.4	-	-	1.2	1.4	-	0.6	0.9	0.9	1.8	0.6	Trace	-
Sum	101.5	85.1	105.3	101.4	102.9	113.8	97.7	101.3	97.6	82.9	87.5	96.5	94.0	88.0	105.0	96.7	100.9	93.6	73.8	76.4

^{- =} not detected; 12,000g = 12,000 x g supernatant fractions; HPLC = high performance liquid chromatography; LC-MS/MS = liquid chromatography with tandem mass spectrometry; MICR = microsomes; NMR = nuclear magnetic resonance; PCK = primary culture; SK = suspension culture; UD = unchanged drug; RPV = rilpivirine

^{*} The figures represent the sum of the % of M10 and M12

^{**} The figures represent the sum of the % of M10 and M14

^{***} Figure represents only M30

2.6.5.10B Pharmacokinetics: Metabolism In Vitro

	Test Article: rilpivirine
Study No.	TMC278-NC333 (FK6818)
Location in CTD	4.2.2.4
Type of study	In vitro metabolism of RPV in hepatocytes (primary cell cultures) and 12000 x g liver supernatant fractions of monkey
· ·	and Guinea pigs.
Methodology	¹⁴ C-RPV (5 μM) was incubated with hepatocytes (primary cultures) for approximately 24 hours and with liver subcellular
	fractions (12,000 x g supernatant fractions) for 120 minutes. Samples were analyzed by radio-HPLC and metabolites
	identified by LC-MS/MS.

Percentage of injected sample radioactivity for unchanged compound and its metabolites Study System Markov (resp. Markov (resp													
Study System	Guinea pig (femal	e, Dunking Hartley)	Monkey (male,	Monkey (female,									
			Cynomolgus)	Cynomolgus)									
Metabolites	PCK	12,000g	PCK	12,000g									
Parent (UD)	2.5	30.9	9.1	12.6									
M10	ND	55.0	ND	ND									
M12	45.8	ND	10.7	ND									
M13+M14	19.1	ND	ND	ND									
M17+M18	11.1	ND	ND	ND									
M19	ND	ND	7.4	ND									
M22	ND	ND	ND	8.3									
M25	7.1	ND	53.5	ND									
M27	ND	ND	ND	10.6									
M30	2.6	2.8	ND	ND									
M33	ND	ND	ND	12.7									
M38	ND	ND	ND	9.2									
M42	ND	ND	ND	9.4									
Sum	88.2	88.7	80.6	62.7									

12,000g = 12,000 x g supernatant fractions; HPLC = high performance liquid chromatography; LC-MS/MS = liquid chromatography with tandem mass spectrometry; ND = not detected; PCK = primary culture; UD = unchanged drug; RPV = rilpivirine

2.6.5.10C Pharmacokinetics: Metabolism In Vitro

	Test Article: rilpivirine
Study No.	TMC278-NC141 (FK5300)
Location in CTD	4.2.2.4
Type of study	Enzyme kinetics of RPV metabolism in human liver microsomes.
Method	¹⁴ C-RPV was incubated at various concentrations in human liver microsomes for 15 minutes at a protein concentration of
	0.25 mg/ml. The amount of unchanged RPV remained in the samples was determined by radio-HPLC and the % metabolized (substrate
	turnover rate) was calculated. The kinetic parameters were calculated by a Michaelis-Menten equation using validated Winnonlin
	software (Pharsight, Winnonlin 4.0.1).
Results	
I. Protein concentration: 0.25 mg/ml	
Substrate Conc. (µM)	Product rate (pmol/mg/min) ^a
0.5	32.2, 36.8, 28.5
1	60.7, 57.2, 56.2
3	146, 124, 150
5	206, 222, 248
7.5	281, 199, 205
10	327, 420, 223
15	287, 299, 231
20	270, 308, 350
30	317, 341, 429
50	356, 396, 222
K _m (± std error)	$4.17 (\pm 1.06) \mu\text{M}$
V _{max} (± std error)	381 (± 26) pmol/min/mg protein

2.6.5.10C Pharmacokinetics: Metabolism In Vitro (Continued)

					7	Γest Article: rilpivirine							
Study No.			TMC278-NC	C141 (FK5300)									
Location in CTD			4.2	.2.4									
Type of study	CYP reaction phenotypi	ing – Effect of diagnos	stic CYP inhibitors on	the metabolism of RP	V								
Method	Inhibition of the metabo	olism of RPV in huma	n liver microsomes by	diagnostic inhibitors v	was carried out with 14C-R	CPV (5 μM) for 15							
					metabolites (M27, M33, I								
					obtained for each inhibito								
	control incubate (withou					•							
Results		,	•										
% Inhibition of Metabolism ^c													
Diagnostic Inhibitor	CYP P450 Form	Overall ^d	M27 ^d	M33 ^d	M35+M36 ^b	M42 ^{b,c}							
Furafylline (10 μM)	CYP1A2	-10.9	-10.9	-13.9	66.7	-22.3							
Coumarin (100 µM)	CYP2A6	-9.3	-25.0	-44.4	75.0	-13.4							
Sulphaphenazole (10 μM)	CYP2C8/9/10	-3.0	0.0	30.6	86.1	-25.1							
Quinidine (10 µM)	CYP2D6	4.4	1.56	-5.56	69.4	-3.24							
4-methylpyrazole (20 μM)	CYP2E1	-6.5	1.56	-8.33	63.9	-21.1							
Ticlopidine (5 μM)	CYP2C19/D6	-3.1	-2.94	-27.8	25.0	-7.91							
Ketoconazole (1 μM)	CYP3A4	107	100	100	100	100							
Troleandomycin (200 μM)	CYP3A4	107	100	100	100	100							
Clarithromycin (15 µM)	CYP3A	57.2	45.3	38.9	58.3	57.1							
Ritonavir (0.15 μM)	CYP3A	91.3	100	100	100	80.2							
1-aminobenzotriazole	CYP P450	104	100	100	100	100							

2.6.5.10C Pharmacokinetics: Metabolism In Vitro (Continued)

								Test A	Article: rilpivirine				
Study No.				TMC	278-NC141 (FI	K5300)							
Location in CTD					4.2.2.4								
Type of study	CYP reaction	phenotyping –	Metabolism of	14 C-RPV in <i>E. c</i>	oli expressed C	YP isoforms.							
Method	The metabolis	m of RPV in E	. coli expressed	CYP systems (prepared in-hou	se) was carried	out with 14C-RPV	7 (5 μM) for	60 minutes at a				
	The metabolism of RPV in <i>E. coli</i> expressed CYP systems (prepared in-house) was carried out with ¹⁴ C-RPV (5 μM) for 60 minutes at a CYP P450 concentration of 100 pmol/ml of incubation. The amounts of unchanged RPV and its metabolites (M50, M2, M22 ^b , M27,												
							ts mean \pm S.D of						
Results		-		•		•							
Cytochrome P-450 Form	Overall %			Product fo	rmation rate (pmol/min. 100	pmol P450)						
(100 pmol/ml)	Metabolism ^e	M50	M2	M22	M27	M33	M35+M36	M51	M42				
CYP1A2	1.40 ± 0.26	-	-	-	-	-	-	-	-				
CYP2A6	1.07 ± 1.44	-	-	-	-	-	-	-	-				
CYP2B6	1.30 ± 1.76	-	-	-	-	-	-	-	-				
CYP2C8	0.43 ± 0.38	-	-	-	-	-	-	-	-				
CYP2C9	0.47 ± 0.42	-	-	-	-	-	-	-	-				
CYP2C19	0.37 ± 0.32	-	-	-	-	-	-	-	-				
CYP2D6	1.07 ± 1.85	-	-	-	-	-	-	-	-				
CYP2E1	0.00 ± 0.00	-	-	-	-	-	-	-	-				
CYP3A4	86.87 ± 1.40	4.11 ± 0.35	9.03 ± 0.71	15.6 ± 1.30	2.58 ± 0.95	3.00 ± 0.58	20.4 ± 2.95	-	6.28 ± 0.75				
CYP3A5	0.53 ± 0.68	-	-	-	-	-	-	-	0.31 ± 0.34				

CYP3A5

CYP3A7

2.6.5.10C Pharmacokinetics: Metabolism In Vitro (Continued)

 28.3 ± 2.7

 26.3 ± 2.3

 0.61 ± 0.21

								Test A	Article: rilpivirine				
Study No.				TMC	278-NC141 (FI	K5300)							
Location in CTD					4.2.2.4	•							
Type of study	CYP reaction	phenotyping –	Metabolism of	¹⁴ C-RPV in CY	P isoforms (Sup	ersomes®).							
Method	concentration	of 100 pmol/m	l of incubation.	The amounts of	unchanged RP	V and its metab	C-RPV (5 μ M) for olites (M52, M2, μ m ± S.D of three o	M22 ^b , M27,	, M33 ^b ,				
Results													
Cytochrome P-450 Form	Overall	Overall Product formation rate (pmol/min. 100 pmol P450)											
(100 pmol/ml)	Metabolisme	M52	M2	M22	M27	M33	M35+M36	M51	M42				
CYP1A2	1.17 ± 0.64	-	-	-	-	-	-	-	-				
CYP2A6	0.37 ± 0.32	-	-	-	-	-	-	-	-				
CYP2B6	0.50 ± 0.44	-	-	-	-	-	-	-	-				
CYP2C8	0.00 ± 0.00	-	-	-	-	-	-	-	-				
CYP2C9	0.43 ± 0.38	-	-	-	-	-	-	-	-				
CYP2C19	0.43 ± 0.40	-	-	-	-	-	-	-	-				
CYP2D6	2.37 ± 2.45	-	-	-	-	-	-	-	-				
CYP2E1	0.23 ± 0.40	-	-	-	-	-	-	-	-				
CYP3A4	39.5 ± 2.1	0.97 ± 0.84	4.44 ± 0.86	3.39 ± 0.32	4.14 ± 0.68	4.00 ± 0.46	7.72 ± 1.73	-	5.19 ± 1.13				

 5.00 ± 0.52

 3.50 ± 1.39

 0.25 ± 0.43

 5.08 ± 0.36

 4.33 ± 1.15

 2.56 ± 0.21

 6.14 ± 0.60

 2.61 ± 0.91

 1.64 ± 0.21

 1.17 ± 0.14

 6.39 ± 0.59 (Continued)

 3.81 ± 1.14

2.6.5.10C **Pharmacokinetics: Metabolism In Vitro (Continued)**

Test .	A rtic	e• ri	lnix	ririn	6
I CSt	XI UC	10. 11.	thi A	11 111	·

Study No.	TMC278-NC141 (FK5300)									
Location in CTD	4.2.2.4									
Type of study	CYP reaction phenotyping – Correlation analysis of RPV metabolites with CYP activities.									
Methodology				panel of 10 human liver mi						
				and the time of incubation v						
				36^{b} and M42 b) were detern						
				vere correlated (pair-wise) v	with the CYP isoform					
	dependent enzyme activit	ies of corresponding ba	atches of human liver m	icrosomes.						
Results										
	Overall RPV		RPV metabolite cor	relation coefficient (r²)						
Enzyme activities (CYP isoform)	metabolism									
	Correlation (r ²)	M27	M33	M35 + M36	M42					
7-ethoxyresorufine <i>O</i> -deethylase (1A2)	0.119	-0.050	0.523	0.093	0.073					
Phenacetin <i>O</i> -deethylase (1A2)	0.052	-0.186	0.347	0.102	0.047					
Coumarin 7-hydroxylase (2A6)	-0.071	0.055	-0.297	0.201	-0.080					
Taxol 6-α-hydroxylase (2C8)	-0.437	-0.613	-0.324	-0.660	-0.289					
Tolbutamide methyl hydroxylase (2C9, 10)	-0.711	-0.842	-0.530	-0.468	-0.608					
S-mephenytoin 4-hydroxylase (2C19)	0.748	0.704	0.878	0.107	0.790					
Dextromethorphan <i>O</i> -demethylase (2D6)	-0.413	-0.538	-0.310	-0.611	-0.306					
Bufuralol hydroxylase (2D6)	-0.442	-0.578	-0.348	-0.659	-0.325					
Chlorozoxazone 6-hydroxylase (2E1)	0.030	-0.098	-0.303	-0.389	0.215					
Lauric acid ω-1 hydroxylase (2E1)	-0.543	-0.709	-0.393	-0.450	-0.424					
Testosterone 6-β-hydroxylase (3A4)	0.819	0.749	0.485	-0.003	0.881					
Cyclosporine oxidase (3A)	0.716	0.744	0.336	0.015	0.746					
Taxol 3'- hydroxylase (3A4)	0.889	0.938	0.503	0.383	0.872					
Midazolam 4-hydroxylase (3A4/A5)	0.864	0.817	0.611	0.055	0.876					
Midazolam 1'- hydroxylase (3A5/A4)	0.577	0.594	0.329	-0.310	0.638					
Lauric acid ω- hydroxylase (4A)	-0.001	-0.207	-0.185	-0.499	0.173					

Triplicate value is used in the determination of K_m and V_{max} Major metabolite in human liver microsomes (> 5 % of the sample radioactivity)

^c Calculated from control incubation (without inhibitor); higher the positive value and higher the extent of inhibition

d Negative values indicates higher % product formation in test sample compared to the control. This was more prominent with the minor metabolites. For all qualitative purposes, all negative values were considered as no inhibition

e Overall % metabolism of RPV calculated from % drug that remained in the sample at the end of the incubation

CYP = cytochrome P450; HPLC = high performance liquid chromatography; S.D. = standard deviation; K_m = substrate concentration; V_{max} = maximum rate achieved; - No measurable product observed in radio-HPLC profile (LLOQ = 211 dpm)

Bolded numbers = Positive correlations higher than 0.500; RPV = rilpivirine

2.6.5.11A Pharmacokinetics: Metabolism in Vivo – Proposed Metabolic Pathway in Mice

Test Article: rilpivirine
90 (FK5621)^a

Study No.	TMC278–NC190 (FK5621) ^a
Location in CTD	4.2.2.4
Species	Mouse
N [#]	Metabolite 30 Metabolite 31
N>	Metabolites 17, 18 Metabolites 17, 18 Oxidation Reduction OGluc
	N-acetylation N-acetylation Nethylation Oxidation Nethylation Oxidation Nethylation Oxidation Nethylation Oxidation Oxidation Nethylation Oxidation
	N Metabolite 13, 14 N Metabolite 38, 14 N Metabolite 38
	H ₂ N—OH β-lyase Z-isomer of TMC278 Glutathione Oxidation Oxidati
	Isomerization Oxidation OXIDATI
	dimerization Methylation Oxidation O
	Metabolite 45 Oxidation N Metabolite 42
	Metabolite 47 N Oxidation Oxidation Oxidation
	Dehydration
	Metabolite 29
30 51 1 10	N Metabolite 27 S Metabolite 41

^a See Tabulated Summary 2.6.5.9A

2.6.5.11B Pharmacokinetics: Metabolism in Vivo – Proposed Metabolic Pathway in Rats

	Test Article: rilpivirii
Study No.	TMC278–NC113 (FK4933) ^a
Location in CTD	4.2.2.4
Species	Rat
	Metabolite 17, 18 Metabolite 17, 18 Metabolite 17, 18 Metabolite 17, 18 Metabolite 18 Metabolite 18 Metabolite 38 Oxidation Oxidation
	N TMC278 (R278474)
	dimerization Methylation Methylation Methylation N Metabolite 45 Metabolite 45 Metabolite 33 Oxidation
	Metabolite 47 N Oxidation Oxidation Oxidation Dehydration Oxidation
	Metabolite 29 Metabolite 29 Metabolite 28 Metabolite 41

^a See Tabulated Summary 2.6.5.9B

2.6.5.11C Pharmacokinetics: Metabolism in Vivo – Proposed Metabolic Pathway in Rat Bile

		Test Article: rilpivirine
Study No.	TMC278–NC145 (FK5525) ^a	
Location in CT		
Species	Rat	
	decomposition of cyanohydrin N M30	
	Oxidation of alpha, beta unsaturated bond Oxidation of alpha, beta unsaturated bond M25	ic
	glucuronidation	
	γ-glutamyl-transpeptidase M10 glutathion conjugation N N Oxidation N N N N N N N N N N N N N	
	TMC278 M42	
	M12 HS O OH OH OH OH OH NI	N -
	cysteinylglycinase cysteine conjugate ß-lyase glucuronidation	J
		Gluc
	HS M14 N-acetylation (cysteine conjugate N-acetyltransferase) N H OH (R378523) N SH M9	

^a See Tabulated Summary 2.6.5.9C

Pharmacokinetics: Metabolism in Vivo – Proposed Metabolic Pathway in Dogs 2.6.5.11D

Test Article: rilpivirine TMC278-NC114 (FK5143)^a Study No. **Location in CTD** 4.2.2.4 Species Dog (beagle) decomposition_ oxidation cyanohydrin M 30 oxidation of α,β unsaturated bond M 40 M15 oxidation N-glucuroridation M12 γ-glutamyl-transpeptidase M 25 M44 glucuronidation cysteinylglycinase oxidation glutathion γ-Ģlu conjugation oxidation M 42 Cys-SR Gly TMC278 M14 HOOC oxidation oxidation oxidation oxidation M 11 (see metabolite 30 for pathways) dehydration sulfation M 33 όн M36 oxidation M 27 + SO₃ glucuronidation M 37 M 23

он **М 19**

^a See Tabulated Summary 2.6.5.9D

2.6.5.11E Pharmacokinetics: Metabolism in Vivo – Proposed Metabolic Pathway in Humans

Test Article: rilpivirine TMC278-NC157 (FK5344)^a Study No. 4.2.2.4 **Location in CTD** Species Human decomposition_ of oxidation cyanohydrin metabolite 30 oxidation of α,β unsaturated bond HÓ γ-glutamylmetabolite 15 metabolite 25 γ-Glu transpeptidase glucuronidation Cys-SR Cys-SR N-glucuronidation Gly Gly oxidation glutathion cysteinylglycinase conjugation metabolite 42 **TMC278** HOOC oxidation metabolite 11 oxidation (see metabolite 30 metabolites 13, 14 dehydration HS. for pathways) *N*-acetylation H_2N (cysteine conjugate OH metabolite 33 *N*-acetyltransferase) N (R419763) metabolite 27 oxidation glucuronidation metabolite 18 (R378523) metabolite 23 OH metabolite 19

TMC278: RPV

^a See Tabulated Summary 2.6.5.9E

Study No.

Rifampicin (50 µM)

Ethanol (100 mM)

Omeprazole (25 µM)

Additional Information

2.6.5.12A Pharmacokinetics: Induction/Inhibition in Human

Test Article: rilpivirine

54.88

NA

NA

Location in CTD	4.2.2.4									
Type of Study	An in vitro study to assess the potential of RPV to induce CYP enzyme activities in cryopreserved human hepatocytes									
Method	After establishment of the hepatocyte cultures, human hepatocytes were treated either with vehicle (DMSO), with various									
	concentrations of RPV or	with the positive control co	ompounds, omeprazole, rifan	npicin, or ethanol for 48 h.	At the end of the treatment					
	period, induction of CYP	activities (CYP1A2, CYP2	B6, CYP2C19, CYP2E1, CY	P3A4) was measured based	d on the probe substrate					
	metabolism. Mean fold in	duction of the different CY	P-isoforms in cryopreserved	human hepatocytes treated	with RPV and positive					
	controls was expressed ag	gainst the vehicle control. In	addition, induction of CYP	activities was also determin	ned by measurement of					
	mRNA expression levels	by TaqMan real-time RT-P	CR. In total, three different is	ndividual batches of cryopr	eserved human					
	hepatocytes were used in	this study. The results are ta	abulated in the table below a	nd each value is mean of the	ree observations.					
Test Condition		Mean fol	d induction in enzyme acti	vity levels						
	CYP1A2	CYP2B6	CYP2C19	CYP2E1	CYP3A4					
Control (Vehicle)	1.00	1.00	1.00	1.00	1.00					
RPV (2.5 μM)	1.06	1.28	1.44 1.20	0.98 1.37 0.93	0.24					
RPV (10 μM)	0.62	0.71			0.04					
RPV (25 μM)	0.51	0.58	1.25		0.05					
Rifampicin (50 μM)	NA	2.60	3.07	NA	14.43					
Rifampicin (50 μ M) + RPV (25 μ M) ^a	NA	0.43	0.28	NA	0.10					
Omeprazole (25 μM)	4.95	NA	NA	NA	NA					
Omeprazole $(25 \mu M) + RPV (25 \mu M)^a$	2.35	NA	NA	NA	NA					
Ethanol (100 mM)	NA	NA	NA	1.24	NA					
Ethanol (100 mM) + RPV $(25 \mu M)^a$	NA	NA	NA	0.76	NA					
Test Condition		Mean fol	d change in mRNA express	sion levels						
	CYP1A2	CYP2B6	CYP2C19	CYP2E1	CYP3A4					
Control (Vehicle)	1.00	1.00	1.00	1.00	1.00					
RPV (2.5 μM)	2.55	2.89	1.19	0.81	27.12					
RPV (10 μM)	3.17	2.96	1.12	0. 56	25.95					
RPV (25 μM)	3.58	1.18	0.60	1.12	5.08					

TMC278-NC186 (FK5720)

1.69

NA

NA

NA

NA

1.01

NA

15.07

NA

CYP = cytochrome 450; DMSO = dimethylsulfoxide; mRNA = messenger ribonucleic acid; NA = not applicable; RT-PCR = reverse transcriptase-polymerase chain reaction; RPV = rilpivirine

6.80

NA

NA

^a Inhibition control to investigate interference of RPV with measurement of CYP activities

Pharmacokinetics: Induction/Inhibition in Mice 2.6.5.12B

	Test Article: rilpivirine
TMC278-NC192 (FK5563)	<u>. </u>
1221	

Study No. Location in CTD	TMC278-NC192 (FK5563) 4.2.2.4									
Type of Study Method	Possible induction and/or inhibition of drug metabolizing enzymes by RPV evaluated ex vivo in liver microsomes. Microsomal fractions of livers from RPV HCl treated animals were isolated. Swiss albino CD1 mice were treated with 0 (HPMC, vehicle), 20, 80 and 320 mg.base eq./kg/day RPV for three months. Liver microsomal fractions were analyzed for total cytochrome P450 (CYP) content and for the enzyme activities shown below. Liver cytosolic fractions were analyzed and GSH S-transferase activity towards CDNB as substrate. Results are presented for groups of 5 mouse liver pools, each prepared from the livers of 2 mice.									
Results		ehicle only)			RPV (mg.ba	se.eq/kg/day)				
Results	Control (vi	enicle only)	2	20	8	30	32	20		
Gender (M/F)	M	F	M	F	M	F	M	F		
Microsomal protein ^a	17	16	18	16	19*	19**	25***	23***		
CYP content ^b	1.2	0.83	1.2	0.99^{*}	1.4*	1.0**	1.6***	1.2***		
7-Ethoxyresorufin O-deethylase (CYP1A) ^c	315	223	378	284	362	322**	273	187		
7-Pentoxyresorufin O-depentylase	86	150	103	168	92	191**	88	135		
(CYP2B) ^c					- **					
4-Nitrophenol hydroxylase (CYP2E) ^d	1.9	2.4	2.1	2.3	2.3**	2.6	1.8	2.1		
Testosterone 6β-hydroxylase (CYP3A) ^d	2.7	2.1	3.0	3.2**	4.2***	3.6***	4.7***	3.6***		
Lauric acid 11-hydroxylase ^d	1.1	1.2	1.1	1.4	1.4	2.6***	3.4***	4.3***		
Lauric acid 12-hydroxylase (CYP4A) ^d	0.83	1.5	1.2*	1.9	4.4***	7.8***	21***	30***		
UDPglucuronosyltransferase (substrate	16	11	17	16 [*]	23**	19***	33***	26***		
thyroxine) ^c	0.7	106	0.2	102	0.7	100	11.5**	122***		
Cytosolic protein ^a CSH S transferaça (substrata CDNP) ^c	97 8.1	106 2.0	93 8.1	102 2.3	97 6.3*	108 2.2	115** 3.6***	133*** 1.7		
GSH S-transferase (substrate CDNB) ^c Additional Information		antly different from			ale ale ale	2.2	3.0	1./		
a II : (1:	varaes significa	unitry difficient from	in control arc.	, 10.05, p 10.0	71, p \ 0.001					

CDNB = 1-chloro2,4-dinitrobenzene; CYP = cytochrome 450; F = female; GSH = glutathione; HPMC = hydroxypropyl methylcellulose; M = male; UDP = uridine diphosphate; RPV = rilpivirine

a Units: mg protein/g liver
b Units: nmol/mg protein
c Units: pmol/min/mg protein
d Units: nmol/min/mg protein

^e Units : μmol/min/mg protein

2.6.5.12C Pharmacokinetics: Induction/Inhibition in Rats

Test Article: rilpivirin	e
--------------------------	---

Study No.	TMC278-NC193 (FK5564)									
Location in CTD	4.2.2.4									
Type of Study	Possible induction and/or inhibition of drug metabolizing enzymes by RPV evaluated ex vivo in liver microsomes									
Method	Microsomal fra	ctions of livers fro	om RPV base tre	ated animals were	isolated. Spragu	e Dawley rats wer	e treated with 0 (100 mg/ml		
	citric acid in PE	G400, vehicle), 4	0, 120 and 400 n	ng/kg/day RPV fo	r 6 months. Live	r microsomal frac	tion were analyze	d for protein		
	and GSH S-tran	sferase activity to	wards CDNB as	substrate. Results	are presented for	r groups of 5 rats.	-	-		
D 1/2	G + 1/	1:1 1)			RPV (m	g/kg/day)				
Results	Control (ve	ehicle only)	4	40		20	400			
Gender (M/F)	M	F	M	F	M	F	M	F		
Microsomal protein ^a	61	45	65	45	66	47	72**	54***		
CYP content ^b	0.84	0.56	0.83	0.56	0.81	0.63^{*}	0.87	0.69^{***}		
7-Ethoxyresorufin O-deethylase (CYP1A) ^c	28	24	24	26	21	32^{*}	18*	29		
7-Pentoxyresorufin O-depentylase	50	11	43	11	52	14*	37	13*		
(CYP2B) ^c										
4-Nitrophenol hydroxylase (CYP2E) ^d	0.64	0.73	0.62	0.69	0.60	0.77	0.46^{*}	0.69		
Testosterone 6β-hydroxylase (CYP3A) ^d	0.64	0.05	0.61	0.06	0.80	0.15***	0.77	0.30***		
Lauric acid 11-hydroxylase ^d	0.42	0.34	0.47	0.30	0.57^{*}	0.37	0.77***	0.42^{*}		
Lauric acid 12-hydroxylase (CYP4A) ^d	0.47	0.44	0.66	0.33	1.2**	0.41	2.2***	0.56^{*}		
UDPglucuronosyltransferase (substrate	5.7	5.6	3.7**	7.1	4.4*	5.5	7.1*	7.5		
thyroxine) ^c										
Cytosolic protein ^a	130	12	132	112***	132	111***	134	117*		
GSH S-transferase ^e	2.6	1.2	2.5	1.7*	2.4	1.6	2.3	1.9**		
Additional Information	Values significa	antly different from	m control are: * p	p < 0.05; ** $p < 0.0$	1; *** p < 0.001	•	_			

CDNB = 1-chloro2,4-dinitrobenzene; CYP = cytochrome 450; F = female; GSH = glutathione; HPMC = hydroxypropyl methylcellulose; M = male; UDP = uridine diphosphate; RPV = rilpivirine

a Units: mg protein/g liver
b Units: nmol/mg protein
c Units: pmol/min/mg protein
d Units: nmol/min/mg protein

e Units : μmol/min/mg protein

Pharmacokinetics: Induction/Inhibition in Dogs 2.6.5.12D

				Test Article: rilpivirine						
Study No.	TMC278-NC140 (FK5518)									
Location in CTD	4.2.2.4									
Type of Study	Possible induction and/or inhibition of drug metabolizing enzymes by RPV evaluated ex vivo in liver microsomes									
Method	Microsomal and cytosolic fractions of livers from RPV base treated animals were isolated. Male and female Beagle dogs were treated									
	with 0 (citric acid (100 mg/ml) in PE	EG400, vehicle solution) 5, 10	and 40 mg/kg/day RPV for six month	hs. Liver microsomes were						
	analysed for protein and total cytoch									
	analyzed for protein content and GSI	H S-transferase activity. Group	ps of 2 male and 2 female control and	d RPV treated beagle dogs were						
	combined for statistical analysis of d	lata.								
Results	Control (vohiala anly)		RPV (mg/kg/day)							
Results	Control (vehicle only)	5	10	40						
Microsomal protein ^a	40.7	42.3	44.4	43.2						
CYP content ^b	0.72	0.72	0.75	0.70						
7-Ethoxyresorufin O-deethylase (CYP1A) ^c	183	169	217	162						
7-Pentoxyresorufin O-depentylase	76	84	96	87						
(CYP2B) ^c										
4-Nitrophenol hydroxylase (CYP2E) ^d	0.50	0.59	0.53	0.51						
Testosterone 6β-hydroxylase (CYP3A) ^d	0.58	0.49	0.33**	0.43*						
Lauric acid 11-hydroxylase ^d	0.21	0.22	0.22	0.22						
Lauric acid 12-hydroxylase (CYP4A) ^d	0.83	0.83	0.85	0.94						
UDPglucuronosyltransferase (substrate	2.8	2.3	2.1	1.9						
thyroxine) ^c										
Cytosolic protein ^a	128	129	124	124						
GSH S-transferase (substrate CDNB) ^e	1.24	1.02	1.04	1.00						
Additional Information	Values significantly different from c	ontrol are: $p < 0.05$; $p < 0.05$.01							

CDNB = 1-chloro2,4-dinitrobenzene; CYP = cytochrome 450; GSH = glutathione; UDP = uridine diphosphate; RPV = rilpivirine

Additional Information

a Units: mg protein/g liver
b Units: nmol/mg protein
c Units: pmol/min/mg protein
d Units: nmol/min/mg protein

e Units : μmol/min/mg protein

2.6.5.12E Pharmacokinetics: Induction/Inhibition in human liver microsomes

							Test Article	rilpivirine				
Study No.		1646_0030536 (FK10162)										
Location in CTD		4.2.2.4										
Type of Study	Mechanism base	Mechanism based inhibition (MBI) potential of RPV towards CYP2C9 activity was investigated in human liver microsomes.										
Method	The MBI was evaluated as the % decrease in CYP2C9 activity in the presence of NADPH regenerating system (NRS) relative to samples without NRS, after 15 min incubation.											
				RPV			Tienilic acid					
			(0.	1-100µM during PI)		(0.005-5µM during PI)						
			•			Ref	erence inhibitor					
CYP involved	Substrate	CYP activity	% Total	% Mechanism based	APR	% Total Inactivation	% Mechanism	APR				
			Inactivation	effect		at 100 µM (+NRS)	based effect					
			at 100 µM	at 100 μM			at 5 μM					
			(+NRS)	(-NRS versus + NRS)			(-NRS versus + NRS)					
CYP2C9	Tolbutamide	4-methyl hydroxylation	80.8	1.40	288	70.2	50.9	37.1				

APR = apparent partition ratio; MBI = Mechanism based inhibition; NRS = NADPH regenerating system; PI = pre-incubation; RPV = rilpivirine

2.6.5.13 Pharmacokinetics: Excretion

Test Article: rilpivirine

The excretion study results in mice, rats, dogs and humans are described in the Tabulated Summaries 2.6.5.9A, 2.6.5.9B, 2.6.5.9D and 2.6.5.9E, respectively.

2.6.5.14 Pharmacokinetics: Excretion into Bile

Test Article: rilpivirine

The excretion study results in rats are described in the Tabulated Summary 2.6.5.9C.

2.6.5.15A Pharmacokinetics: Drug-Drug Interactions

									Test	t Article: rilpivirine
Study No.		1646 0025128 (FK10042)								
Location in CTD:				_	4.2.2.6	·				
Type of Study:	Inhibition of tran	sport of a protot	ypical substrate of	OCT2 (14C	C-metforn	nin)				
Method	CHO-cell lines s	tably transfected	with OCT2 (SLC	22A2) and	parental o	cells. Untra	nsfected CF	IO cells v	vere used a	s controls (CHO-
	Parent). Transpo	ort and inhibition	were tested in the	presence of	f 1% BSA	A .				
Uptake of metformin in CHO-parental cells	$4.56 \pm 1.24 \mathrm{p}$	mol/mg/min								_
Update of metformin in CHO-OCT2 cells	$352 \pm 25 \text{ pn}$	nol/mg/min								
(without inhibitor										
	IC_{50} (μM) Max. inhibition (%)					At conc. (µM)				
	Substrate	Inhibitor	Protein	avg	±	sd	avg	±	sd	
	Metformin	RPV	1% BSA	5.46	±	0.50	90.6	±	0.6	50

BSA = bovine serum albumin; CHO = Chinese hamster ovary; OCT = organic cation transporter; RPV: rilpivirine

2.6.5.15B Pharmacokinetics: Drug-Drug Interactions

Test Article: rilpivirine

	1 est in tietes in priving
Study No.	1646_0035314 (FK10420)
Location in CTD:	4.2.2.6
Type of Study:	Inhibition of MATE-1 (SLC47A1) and MATE-2K (SLC47A2) by RPV
Method	CHO cell lines stably transfected with MATE-1 (SLC47A1) and MATE-2K (SLC47A2), and parental cell lines. The inhibition by RPV of MATE-1 and MATE-2K transport was investigated in transfected CHO cells in the presence of 1% BSA.

		CHO-parent				CHO-MATE-1	
	average (pmol/mg protein.min)		<u>st.dev</u> (pmol/mg protein.min)	<u>average</u> (pmol/mg protein.min)		<u>st.dev</u> (pmol/mg protein.min)	Maximal activity (%)
TEA (MATE-1 and MATE-2K substrate)	1.85	±	0.12	43.7	±	2.72	100
$TEA + 0.05 \mu M RPV$	2.58	土	1.26	50.1	±	4.98	114
$TEA + 0.03 \mu M RPV$	3.51	±	1.89	38.9	±	3.19	84.7
$TEA + 1.5 \mu M RPV$	2.20	土	0.43	40.4	±	5.38	89.5
TEA + 10 μM RPV	1.91	土	0.29	19.7	±	1.26	42.4
TEA + 50 μM RPV	1.91	±	0.71	6.60	±	2.13	11.2
TEA + 1 μM Quininidine	2.09	±	0.57	34.8	±	3.73	78.3
TEA + 50 μM Quininidine	2.69	±	0.58	10.1	±	2.45	17.6
		CHO-parent			C	HO-MATE-2K	
	average (pmol/mg protein.min)		st.dev (pmol/mg protein.min)	<u>average</u> (pmol/mg protein.min)		<u>st.dev</u> (pmol/mg protein.min)	Maximal activity (%)
TEA	1.31	±	0.53	7.47	±	0.34	100
TEA + $0.05 \mu M RPV$	1.83	±	0.18	3.98	±	0.91	35.0
$TEA + 0.3 \mu M RPV$	1.31	±	0.53	3.61	±	0.51	37.4
$TEA + 1.5 \mu M RPV$	1.38	±	0.35	3.35	\pm	0.73	32.1
$TEA + 10 \mu M RPV$	1.13	±	0.44	2.75	±	0.43	26.4
$TEA + 50 \mu M RPV$	1.72	±	0.17	1.91	±	0.05	3.1
TEA + 0.03 μM Pyrimethamine	1.22	±	0.1	3.50	±	0.51	37.0
TEA + 3 μM Pyrimethamine	1.34	±	0.39	2.44	±	0.40	17.8

Additional Information: quinidine and pyrimethamine are positive control inhibitors

BSA = bovine serum albumin; CHO = Chinese hamster ovary; MATE= Multi-antimicrobial extrusion protein; TEA = Tetra Ethyl Ammonium; RPV = rilpivirine

2.6.5.15C Pharmacokinetics: Drug-Drug Interactions

Test Article: rilpivirine

Study No.	TMC278-NC194 (FK5568)								
Location in CTD	4.2.2.6								
Type of Study	Inhibition of metabolism by RPV of interacting drugs was investigated								
Method	The interaction of RPV v	The interaction of RPV with the metabolism of interacting drugs was investigated in a pooled batch of human liver microsome							
	inhibitory potential of R	PV on the overall metabolism a	nd/or the formation	n of their major metabolites is show	n. The IC ₅₀ -values				
		on in μM or μg-base-eq/mL of							
	IC ₅₀ (95% con	fidence interval)		Positive control					
Interacting drugs	μМ	μg-base-eq/mL	μМ	Inhibitor	% Inhibition				
S-mephenytoin ^a	1.3° (0.74 - 1.8)	0.46 ^a (0.27 - 0.65)	1	3-benzyl-phenobarbital	81				
Sildenafil	1.4 (-0.13 - 3.0)	0.53 (-0.047 - 1.1)	1	ketoconazole	125				
Clarithromycin	2.0 (0.042 - 4.0)	0.74 (0.015 - 1.46)	1	ketoconazole	93				
Norethindron	3.9 (2.6 - 5.3)	1.44 (0.93 - 1.95)	1	ketoconazole	84				
Sertraline	5.2 (-3.1 - 14)	1.9 (-1.1 - 4.9)	10^{3}	1-aminobenzotriazole	167 ^b				
Paroxetine	6.6 (-1.2 - 14)	2.4 (-0.42 - 5.3)	3	quinidine	91				
17α-Ethinyloestradiol ^c	6.5° (4.2 - 8.7)	$2.4^{\circ} (1.5 - 3.2)$	1	ketoconazole	56/59 ^d				
Omeprazole	12.0 (7.0 - 17)	4.4 (2.6 - 6.2)	1/1	3-benzyl-pheno-	92				
•				barbital/ketoconazole					
Abacavir ^{e,f}	>30 ^f	>11 ^f	600	4-methylpyrazole	95				
Chlorzoxazone ^g	>30 ^g	>11 ^g	100	diethyldithiocarbamate	-184 ^h				

Additional Information

RPV = rilpivirine

^a As determined by the formation of the 4-hydroxy metabolite only.

^b This inhibition is not significantly different from the boiled fraction.

^c As determined by the formation of a hydroxy metabolite.

^d 56 / 59 % inhibition of metabolism of unchanged drug and inhibition of formation of a hydroxy metabolite, respectively.

^e Tested in cytosol fractions, not in microsomes.

f As determined by disappearance from the unchanged abacavir, as well as the formation of its carboxylic acid metabolite.

^g As determined by disappearance from the unchanged chlorzoxazone, as well as the formation of its 6-hydroxy metabolite.

^h No inhibition was observed.

2.6.5.15D Pharmacokinetics: Drug-Drug Interactions

		Test Article: rilpivirine
Study No.	1955_001	18187 (FK7565)
Location in CTD		4.2.2.6
Species	Rat Crl:C	CD(SD) IGS (M)
Feeding Condition		Fed
Sample		Plasma
Analyte	RPV	(TMC278)
Assay	HPI	LC-MS/MS
LLOQ	10	00 ng/mL
Vehicle/Formulation	RPV LA: 300 mg/mL RPV nanosuspension (C	G001 batch); GSK1265744LAP injectable suspension
Dose	60 mg/kg RPV LA alone or in com	bination with 10 mg/kg GSK1265744LAP
Duration of Dosing	Sir	ngle-Dose
Route	IM (RPV LA: 0.2 mL/kg;	GSK 1265744LAP: 0.05 mL/kg)
Study Design	RPV was given as single agent or combined with GSK126574	4A, and a third group (GSK1265744LAP only) was included as well
	RPV (60 mg/kg)	RPV (60 mg/kg) + GSK1265744LAP (10 mg/kg)
Pharmacokinetic Parameters		
C_{max} (ng/mL)	112	108
$T_{max}(h)$	4.67	2
AUC _{0-1444h or 0-2 months} (ng·h/mL)	23,225	24,105
AUC _{0-∞} (ng.h/mL)	25,640	26,870

Additional Information: GSK1265744LAP is a long acting injectable suspension, that was combined in this study with RPV LA;

HPLC-MS/MS = high-performance liquid chromatography with mass spectrometry; IM = Intramuscular; LLOQ = lower limit of quantification; M = male; RPV = rilpivirine

2.6.5.16A Pharmacokinetics: Other – Pharmacokinetics and Organ Distribution in Mice

									Test Article:	rilpivirine LA
Study No.				7	TMC278-NC1	96 (TOX735	4)			
Location in CTD	4.2.3.7.7									
Species		Albino Swiss mouse								
Feeding Condition					_	ed				
Vehicle/Formulation				ocrystal susper						
			V2 = r	nanocrystal su				E-TPGS		
Route				SC	(varying from		./kg)			
Compound						/ LA				
Dose (mg/kg)), 20 (in V1)				
						(in V2)				
Dosing period							rvation period			
Gender (M/F)/Number of Animals				Male/Fem	ale/(6/sex/veh		dose group)			
Analyte						PV				
Assay					LC-M	IS/MS				
Plasma										
	2.5 mg/	kg in V1	5 mg/k	kg in V1	10 mg/l	kg in V1	20 mg/l	kg in V1	20 mg/kg in V2	
	M	F	M	F	M	F	M	F	M	F
C_{max} (ng/mL)	708	1020	635	2040	1430	2770	1610	2160	962	2850
$t_{max}(h)$	2.2	1.0	4.0	2.0	4.0	4.0	2.0	4.0	4.0	2.0
$AUC_{0-\infty}$ (ng.h/mL)	9330	10,700	16,800	22,600	34,000	41,800	60,300	74,200	44,900	65,400
Sampling Times					Dag	y 18				
Tissues/Organs (μg/g)	2.5 mg	/kg (V1)	5 mg/l	kg (V1)	10 mg/	kg (V1)	20 mg/	kg (V1)	20 mg/	/kg (V2)
MALES										
Spleen		.005		.005		005		00795		00825
Thymus		.005		.005		005		0168	<0.	0129
Skin	0.0)332	0.163	(23.9^{a})	0.114 66.9 (2,096)		(2,096)	56.1 ((1,453)	
FEMALES										
Spleen	<0	.005	<0.	.005	<0.	005	< 0.011	$3(0.16^{a})$	< 0.0067	75 (0.15 ^a)
Thymus	<0	.005	<0.	.005	<0.	005		00985	< 0.0095	(0.22^{a})
Skin	0.	675	0.5	526	0.569	(48.7^{a})	47.9 ((1,769)	26.4	(1,078)

 $^{^{}a}$ n = 1

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; F = female; LA = long acting; LC-MS/MS = liquid chromatography coupled to tandem mass spectroscopy; M = male; P338 = poloxamer 338; RPV = rilpivirine (TMC278 base); SC = subcutaneous; $t_{max} =$ time to reach the maximum plasma concentration; V = vehicle; Vit E-TPGS = Vitamin E D- α -Tocopheryl Polyethyleneglycol 1000 Succinate

^{() =} tissue/plasma ratio

2.6.5.16B Pharmacokinetics: Other – Pharmacokinetics and Organ Distribution in Rat

Test Article: rilpivirine LA

Group F: 20 mg/kg

IM

< 0.005

<0.005 8.34^{a}

 $< 0.002^{b}$

					Test Article: rılpıvırıne LA				
Study No.		TMC278-NC244 (TOX7896)							
Location in CTD		4.2.3.7.7							
Species			Sprague-Dawley rat						
Feeding Condition			Fed						
Vehicle/Formulation	Forr	nulation B, D, E and F: nai	nosuspension containing 25 of	or 100 mg/mL RPV LA in I	2338				
		Formulation A: RPV at 1.2	25 mg/mL as a 75% PEG400	/25% sterile water solution					
Route		G	roup B and D: SC (0.2 mL/k	g)					
		C	Group E and F: IM (0.2 mL/k	g)					
		Group A	: IV $(1 \text{ mL/kg}) \rightarrow \text{no distrib}$	ution data					
Compound			RPV LA						
Dose (mg/kg)			SC and IM: 5 and 20						
			IV: 1.25 mg/kg						
Dosing period		Single-dose,	followed by an 8-week obser	vation period					
Gender (M/F)/Number of Animals			Male; 6 per group						
Analyte			RPV						
Assay			LC-MS/MS						
Plasma			Day 0						
	Group A: 1.25 mg/kg	Group B: 5 mg/kg	Group D: 20 mg/kg	Group E: 5 mg/kg	Group F: 20 mg/kg				
	IV	\mathbf{SC}	\mathbf{SC}	IM	IM				
C_{max} (ng/mL)	1120°	42.0	72.9	70.6	158				
$t_{max}(h)$	-	3	7	7	7				
AUC _{0-56days} (ng.h/mL)	1230 °	3540	15,500	3840	15,300				
$\mathbf{F_{abs}}$	-	72	79	78	78				

Day 56 Group D: 20 mg/kg

SC

 $< 0.005^{b}$

< 0.005

102

< 0.002b

Group E: 5 mg/kg

IM

< 0.005

< 0.005

1.98

 $< 0.004^{b}$

Remark: n = 6 for thymus, spleen and plasma and n = 3 for skin at injection site

Thymus

Spleen

Muscle

Plasma

Sampling Times

Tissues/Organs (μg/g or μg/mL)

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; F_{abs} = absolute bioavailability; IM = intramuscular; IV = intravenous; LA = long acting; LC-MS/MS = liquid chromatography coupled to tandem mass spectroscopy; P338 = poloxamer 338; RPV = rilpivirine (TMC278 base); SC = subcutaneous; t_{max} = time to reach the maximum plasma concentration

Group B: 5 mg/kg

SC

< 0.005

< 0.005

 $< 0.00819^{b}$

< 0.002

n = 1

b Median value

 $^{^{}c} \ \ C_{0}$ (ng/mL) and $AUC_{0\text{-}inf}$ (ng.h/mL) for Group A

2.6.5.16C Pharmacokinetics: Other- Pharmacokinetics in Rabbit

			Test Article: rilpivirine LA
Study No.		TMC278-NC356 (FK6993)	
Location in CTD		4.2.2.7	
Species		New Zealand White Rabbit	
Feeding Condition		Fed	
Vehicle/Formulation	Formulation A	A – surfactant: Poloxamer 338 (Batch ID:	(reference))
	Formu	lation B – surfactant: Tween/Lipoid (Batch ID:	
Route		IM	
Compound		RPV LA	
Dosing period		Single-dose with a 1-month follow-up period	
Gender (M/F)/Number of Animals		Female; 3 per group	
Analyte		RPV	
Assay		LC-MS/MS, HPLC-MS/MS	
Pharmacokinetic Parameters			_
Formulation	F004	F006	F006
Dose (mg/kg)	50	150	150
Dose volume (mL/kg)	0.5	0.5	$3 \times 0.16 = 0.5$
C _{max} (ng/mL)	7547	5763	4877
t _{max} (h)	18.67	348	348
AUC _{0-852h(day36)} (ng.h/mL)	1,423,661	2,786,141	2,469,268
AUC _{0-∞} (ng.h/mL)	1,663,280	3,583,889 ^a	3,452,088 ^b

n=1

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; (HP)LC-MS/MS = (high performance) liquid chromatography coupled to tandem mass spectrometry; IM = intramuscular; LA = long acting; RPV LA = rilpivirine long-acting (TMC278 base); t_{max} = time to reach the maximum plasma concentration

n=2

2.6.5.16D Pharmacokinetics: Other – Pharmacokinetics and Organ Distribution in Dog

					7	Γest Article: rilpivirine				
Study No.			Innovation-NC	C114 (FK5458)						
Location in CTD	4.2.2.7									
Species		Beagle dog								
Feeding Condition				vernight						
Vehicle/Formulation		Group A (IM) and C	(SC): 10 mg/mL P338 i	nanosuspension (for R	PV base at 25 mg/mL)					
		Group B (IM): 10 mg	g/mL P338 nanosuspen	sion (for HCl salt of T	MC278 at 25 mg/mL)					
Route			IM or SC (0.1 mL/k	g/site, ie 0.2 mL/kg)						
Compound			TMC278 base of	or TMC278.HCl						
Dose (mg/kg)			5 m	g/kg						
Dosing period			Single-dose with a 6-n	nonth follow-up period	1					
Gender (M/F)/Number of Animals			Male/2 p							
Analyte			RI	Ργ						
Assay			LC-M	IS/MS						
Plasma	Gr	oup A	Gro	up B	Gro					
C_{max} (ng/mL)		173	95			3.4				
$t_{max}(h)$		24	4	8	144					
AUC _{0-13 days} (ng.h/mL)		7,000	18,000		8400					
AUC _{0-29 days} (ng.h/mL)	33	3,900	25,400		16,300					
AUC _{0-92 days (3months)} (ng.h/mL)	39	9,400	33,	600	24,400					
AUC _{0-120 days} (ng.h/mL)	41,40	00 (n=1)	29,100) (n=1)	28,100 (n=1)					
AUC _{0-184 days} (ng.h/mL)		-	31,800) (n=1)	30,700 (n=1)					
Sampling Times		Day 2	9 (only iliac and poplit	eal lymph nodes), 94 a	and 184					
Tissues/Organs (μg/g or μg/mL)		Day 94			Day 184					
	Group A	Group B	Group C	Group A	Group B	Group C				
Plasma	< 0.001	0.0024	0.0033	< 0.001	0.0019	0.0013				
Liver	0.021	0.052 (21)	0.046 (14)	0.012	0.034 (18)	0.031 (24)				
Muscle (injection site)	142	176 (72,727)	0.47 (144)	11.5	83.1 (44,919)	0.048 (38)				
Muscle (non-injection site)	0.085	0.082 (34)	0.019 (5.7)	< 0.005	0.021 (12)	< 0.005 (NC)				
Adrenal gland	0.0098	0.023 (9.3)	0.022 (6.9)	< 0.005	0.012 (6.3)	0.012 (9.5)				
Abdominal fat	0.027	0.059 (24)	0.049 (15)	0.011	0.023 (13)	0.022 (17)				
Spleen	< 0.005	0.016 (6.7)	0.010 (3.0)	< 0.005	0.0078 (4.2)	0.0071 (5.5)				
Iliac lymph node	0.015	0.14 (59)	0.017 (5.2)	0.011	0.012 (6.3)	0.0099 (7.7)				
Popliteal lymph node	0.014	0.056 (23)	0.027 (8.2)	0.031	0.012 (6.4)	0.0055 (4.3)				
Auxiliary lymph node	0.026	0.023 (10)	0.022 (6.8)	0.012	< 0.005 (NC)	0.0086 (6.7)				
Mandibular lymph node	0.010	0.024(10)	0.013 (4.0)	0.0069	0.011 (5.9)	0.0078 (6.1)				
Skin (injection site)	0.017	1.14 (471)	223 (68,615)	0.0095	0.022 (12)	143 (111,719)				
Skin (non-injection site)	0.012	0.034 (14)	0.024 (7.4)	0.0067	0.022 (12)	0.013 (10)				
Thymus	0.015	0.083 (34)	0.044 (13)	0.0072	0.024 (13)	0.020 (16)				

2.6.5.16D Pharmacokinetics: Other – Pharmacokinetics and Organ Distribution in Dog (Continued)

Test Article: rilpivirine

Sampling Times		Day 29	(only iliac and poplite	eal lymph nodes), 94 ar	nd 184			
Tissues/Organs (μg/g)		Iliac lymph node			Popliteal lymph node			
Treatment/Dog	Day 29	Day 94	Day 184	Day 29	Day 94	Day 184		
A/1	8.57	0.015		4.57	0.014			
A/2	29.5		0.011	8.42		0.031		
B/1	0.46	0.14		0.063	0.056			
B/2	0.19		0.012	0.045		0.012		
C/1	0.016	0.017		0.054	0.027			
C/2	0.11		0.010	0.082		0.0055		
Single Cell Suspensions on Day 94 (ng/g)		Iliac lymph node			Thymus			

Single Cell Suspensions on Day 94 (ng/g)	Iliac lymph node	Thymus
A/1	1.14	<1.0
B /1	<1.0	<1.0
C/1	<1.0	<1.0

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; IM = intramuscular; LC-MS/MS = liquid chromatography coupled to tandem mass spectroscopy; NC = not calculated; P338 = poloxamer 338; RPV LA = rilpivirine long-acting (TMC278 base); SC = subcutaneous; t_{max} = time to reach the maximum plasma concentration

^{() =} tissue to plasma ratio; for Group A = not calculated since plasma concentrations were below the lower limit of quantification (<1.00 ng/mL)

2.6.5.16E Pharmacokinetics: Other- Pharmacokinetics in Dog

			Test Article: rilpivirine LA					
Study No.		TMC278-NC238 (FK5998)						
Location in CTD	4.2.2.7							
Species		Beagle Dog						
Feeding Condition		Fed						
Vehicle/Formulation		% PEG400/25 % sterile water solution of RPV						
		of RPV LA in Pluronics F108 (3.7 mg/mL) at 2						
	Formulation C: Nanosuspension	of RPV LA in Pluronics F108 (3.7 mg/mL) at 2	25 mg/mL (particle size: 200 nm)					
Route		Formulation A: IV (1 mL/kg)						
	Fo	ormulation B: IM (0.1 mL/kg/site, ie 0.2 mL/kg	g)					
	Fo	ormulation C: SC (0.1 mL/kg/site, ie 0.2 mL/kg	g)					
Compound		RPV LA						
Dose		Formulation A: 1.25 mg/kg						
		Formulation B and C: 5 mg/kg						
Dosing Period		Single dose with a 6-month follow-up period						
Sample		Plasma						
Analyte		RPV						
Assay		LC-MS/MS						
Pharmacokinetic Parameters	Formulation A: 1.25 mg/kg IV	Formulation B: 5 mg/kg IM	Formulation C: 5 mg/kg SC					
Gender (M/F)/Number of Animals	<u>M</u> : 6	<u>M</u> : 3	<u>M</u> : 3					
C_0 (ng/mL)	570	-	-					
C_{max} (ng/mL)	-	619	31.4					
t _{1/2, 24-96h} (h)	15	-	-					
$t_{max}(h)$	-	0.5	288					
AUC_{0-92d} (ng.h/mL)	6210	23,200	17,800					
$AUC_{0-176d (6 months)} (ng.h/mL)$		23,200	19,700					
F _{abs}	-	102	88					

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; F_{abs} = absolute bioavailability; IM = intramuscular; M = male; IV = intravenous; PEG = polyethylene glycol; SC = subcutaneous; t_{max} = time to reach the maximum plasma concentration

RPV LA = rilpivirine long-acting (TMC278 base)

2.6.5.16F Pharmacokinetics: Pharmacokinetics and Organ Distribution in Dog

							Test Arti	cle: rilpivirine LA
Study No.				TMC278-NC2	34 (TOX7781)			
Location in CTD	4.2.3.7.7							
Species				Beag	le dog			
Feeding Condition				-	ed			
Vehicle/Formulation			(Group V: P338 in	pyrogen free water	er		
		Other g	groups: nanosuspe	ension containing	100 mg/mL RPV	LA in P338 (25 t	mg/mL)	
Route				Froup V: SC and I	M (1 mL/injection	n)		
			(Groups A and D: S	SC (1 mL/injection	n)		
			(Groups B and E: I	M (1 mL/injection	n)		
Frequency of dosing				Groups A and	B: 1 injection			
					d E: 2 injections			
Compound				RPV	/ LA			
Dose (mg/kg)				200 or 400 mg	/total dose/dog			
Dosing period				Singl	e dose			
Gender (M/F)/Number of Animals				Male + Femal	e/ 6/sex/group			
Analyte				R	PV			
Assay				LC-M	IS/MS			
Plasma				After 1 month	of single dosing			
			taneous			<u>Intram</u>	uscular	
Dose (mg)	20	00	4	00		00	400	
Sex	M	F	M	F	N		\mathbf{F}	M
C_{max} (ng/mL)	119	185	210	210	2290	2170	2300	6190
$t_{max}(h)$	280	220	440	450	0.33	4.6	17	8.3
AUC_{0-696h} (ng.h/mL)	56,800	70,600	105,000	109,000	117,000	109,000	188,000	204,000
Plasma				After 3 months	of single dosing			
			<u>taneous</u>				uscular	
Dose (mg)	20	00	4	00	20			00
Sex	M	F	M	F	M	F	M	F
$C_{max} (ng/mL)$	107	191	222	225	2130	1440	2170	5260
$t_{max}(h)$	360	250	300	480	0.33	0.55	17	16
$AUC_{0-2040h}$ (ng.h/mL)	97,800	134,000	219,000	234,000	148,000	121,000	281,000	265,000
								(Continued)

2.6.5.16F Pharmacokinetics: Pharmacokinetics and Organ Distribution in Dog (Continued)

Test Article: rilpivirine L	A
------------------------------------	---

Study No.	TMC278-NC234 (TOX7781)							
Location in CTD	4.2.3.7.7							
Sampling Time	Day 29/30							
Tissues/Organs (ng/mL or ng/g)	<u>Subcutaneous</u>				<u>Intramuscular</u>			
Dose (mg)	200 400		00	200		400		
Sex	M	F	M	F	M	F	M	F
Brain	169 (1.8)	131 (1.8)	694 (1.9)	430 (1.9)	115 (1.5)	112 (1.8)	261 (1.6)	263 (2.2)
Spleen	189 (2.0)	145 (2.0)	569 (2.7)	536 (2.5)	133 (1.8)	142 (2.3)	347 (2.2)	311 (2.6)
Thymus	576 (6.0)	285 (3.9)	606 (2.9)	1204 (5.0)	234 (3.2)	353 (5.7)	634 (4.0)	676 (6.0)
Testis	59.0 (0.63)	-	143 (0.69)	-	44.0 (0.57)	-	82.0 (0.54)	-
Plasma	95.2	71.8	209	227	74.5	61.2	158	118
Sampling Time	Day 92/93							
Tissues/Organs (ng/mL or ng/g)	<u>Subcutaneous</u>		Intramuscular					
Dose (mg)	200 400		200		400			
Sex	M	\mathbf{F}	M	\mathbf{F}	M	F	M	F
Brain	29.2 (1.9)	42.1 (1.6)	84.0 (1.7)	55.8 (1.6)	18.1 (2.0)	19.3 (1.9)	46.6 (2.3)	33.4 (1.6)
Spleen	36.2 (2.5)	49.5 (1.9)	113 (2.3)	67.5 (1.9)	23.8 (2.7)	22.1 (2.2)	63.5 (2.9)	46.1 (2.3)
Thymus	84.2 (5.9)	105 (4.0)	173 (3.5)	101 (2.9)	34.4 (3.8)	27.4 (2.8)	76.0 (3.9)	109 (4.9)
Testis	12.1 (0.80)	<u>-</u>	34.0 (0.69)	-	$6.42^{a}(0.64)$	-	18.3 (0.88)	-
Plasma	15.2	26.8	48.4	36.0	9.18	10.1	22.1	20.3

a median

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; F = female; IM = intramuscular; LA = long acting; LC-MS/MS = liquid chromatography coupled to tandem mass spectroscopy; M = male; P338 = poloxamer 338; RPV LA = rilpivirine long-acting (TMC278 base); SC = single dose; t_{max} = time to reach the maximum plasma concentration; V = vehicle

⁽⁾_tissue/plasma ratio's

2.6.5.16G Pharmacokinetics: Pharmacokinetics and Organ Distribution in Dog

			Test Article: rilpivirine LA			
Study No.	TMC278-NC203 (FK5821)					
Location in CTD	4.2.2.7					
Species		Beagle dog				
Feeding Condition	Fed					
Vehicle/Formulation	Treatment A: nanosuspension containing 125 mg/mL RPV LA in Vit E-TPGS at 25 mg/mL with particle size of 400 nm					
	Treatment B: nanosuspension containing 125 mg/mL RPV LA in Vit E-TPGS at 100 mg/mL with particle size of 400 mg/mL with partic					
	Treatment C: nanosuspension contain	eatment C: nanosuspension containing 125 mg/mL RPV LA in Vit E-TPGS at 100 mg/mL with particle size of 800 nm				
Route		SC (0.1 mL/kg/site, ie 0.2 mL/kg)				
Compound		RPV LA				
Dose (mg/kg)	Treatment A: 5 mg/kg					
	Treatment B and C: 20 mg/kg					
Dosing period	Single dose with 3-month follow-up period					
Gender (M/F)/Number of Animals	Male/3 per group					
Analyte	RPV					
Assay	LC-MS/MS					
Plasma	Group A: 5 mg/kg	Group B: 20 mg/kg	Group C: 20 mg/kg			
C_{max} (ng/mL)	19.6	39.4	38.8			
$t_{max}(h)$	256	408	528			
AUC _{0-92davs} (ng.h/mL)	14,400	38,200	29,600			
Sampling Time		Day 93				
Tissues/Organs (ng/mL or ng/g)	Group A: 5 mg/kg	Group B: 20 mg/kg	Group C: 20 mg/kg			
Adrenal gland	$9.06^{a}(3.9)$	60.6 (6.0)	25.7 (4.7)			
Abdominal fat	21.4 (9.1)	96.2 (10)	63.8 (12)			
Liver	30.4 (13)	117 (12)	83.5 (15)			
Axillary lymph node	159 (68)	2080 (206)	54.3 (10)			
Mandibular lymph node	$6.16^{a}(2.6)$	73.6 (7.3)	16.8 (3.1)			
Muscle	$6.08^{a}(2.6)$	16.0 (1.6)	10.9 (2.0)			
Skin (injection site)	2,553,333 (>1,000,000)	6,436,667 (>500,000)	5,796,667 (>1,000,000)			
Skin (non-injection site)	26.3 ^b (11)	63.8 (6.3)	61.9 (11)			
Spleen	$6.52^{b}(2.8)$	22.1 (2.2)	18.0 (3.3)			
Thymus	8.85 (3.8)	77.2 (7.6)	36.2 (6.7)			
Plasma	2.34	10.1	5.44			

a Median valueb n = 2

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; LA = long acting; LC-MS/MS = liquid chromatography coupled to tandem mass spectroscopy; RPV LA = rilpivirine long-acting (TMC278 base); SC = single dose; t_{max} = time to reach the maximum plasma concentration; Vit E-TPGS = Vitamin E D- α -Tocopheryl Polyethyleneglycol 1000 Succinate

⁽⁾ tissue/plasma ratio's

Study No.

Species

Route Compound Dose

Location in CTD

Feeding Condition Vehicle/Formulation Test Article: rilpivirine LA

2.6.5.16H **Pharmacokinetics: Other- Pharmacokinetics in Minipig**

TMC278-NC295 (FK6407)
4.2.2.7
Göttingen Minipig
Fed
Formulation A: 300 mg/mL RPV LA injectable suspension in P338 (25 mg/mL; F006) (1 x 1.5 mL)
Formulation B: 300 mg/mL RPV LA injectable suspension in P338 (25 mg/mL; F006) (1 x 1.5 mL)
Formulation C: 100 mg/mL RPV LA injectable suspension in P338 (25 mg/mL; F004) (4 x 1 mL)
IM
RPV LA
Formulation A and B: 450 mg
Formulation C: 400 mg

Single dose **Dosing Period** Follow-up period Formulation A: 1-month Formulations B and C: 3 months Plasma

Sample RPV Analyte LC-MS/MS Assay

Pharmacokinetic Parameters	Formulation A: 450 mg	Formulation B: 450 mg	Formulation C: 400 mg
Gender (M/F)/Number of Animals	<u>M</u> : 2	<u>M</u> : 2	<u>M</u> : 2
C_{max} (ng/mL)	16.7	15.3	49.4
$t_{max}(h)$	300	264	8.0
AUC _{0-696h} (ng.h/mL)	7485	5279	13,886
AUC _{0-2040h (~3 months}) (ng.h/mL)	-	8716	19,632
$AUC_{0-\infty}$ (ng.h/mL)	_a	9926	28,656 ^b

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; IM = intramuscular; LA: long-acting; LC-MS/MS: liquid chromatography coupled to tandem mass spectrometry; P338 = poloxamer 338 = JNJ-46360418-AAA; RPV LA = rilpivirine long-acting (TMC278 base); t_{max} = time to reach the maximum plasma concentration

^a Not calculated because of increasing plasma concentrations

 $^{^{}b} n = 1$

2.6.5.16l Pharmacokinetics: Other- Pharmacokinetics in Minipig

I CSL	Δ	ticle:	 IJΙ	/ 11	HIL	1//

Study No.	TMC278-NC344 (FK7034)					
Location in CTD	4.2.2.7					
Species			Göttinge	n Minipig		
Feeding Condition			F	ed		
Vehicle/Formulation			P338 c	or PS80		
Route			IM (2	2 mL)		
Compound			RPV	/ LA		
Dosing Period	Single dose					
Sample			Pla	sma		
Analyte			R	PV		
Assay	LC-MS/MS					
Pharmacokinetic Parameters						
Dose (mg)	400 (P338) 200 (P338) 600 (PS80) 500 (PS80) 400 (PS80) 200 (PS80)					
Gender (M/F)/Number of Animals	M/3 M/3 M/3 M/3 M/3					
C_{max} (ng/mL)	97.97 49.57 33.80 29.87 30.53 13.40					
$t_{max}(h)^a$	6.0 4.0 384 144 312 144					
AUC _{0-648h} (ng.h/mL)	14,461	5717	11,335	8148	9777	4309

^a Median value

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; IM = intramuscular; LA = long-acting; LC-MS/MS = liquid chromatography coupled to tandem mass spectrometry; M = male; P338 = poloxamer 338 = JNJ-46360418-AAA; PS80 = polysorbate 80; RPV LA = rilpivirine long-acting (TMC278 base); t_{max} = time to reach the maximum plasma concentration

2.6.5.16J Pharmacokinetics: Other- Pharmacokinetics in Minipig

		Test Article: F3	
Study No.	TMC278-NC296 (TOX8580)		
Location in CTD	4.2.2.7		
Species	Gött	tingen Minipig	
Feeding Condition		Fed	
Vehicle/Formulation		PS80	
Route		IM	
Compound		RPV LA	
Dosing Period	1:	3/39 weeks	
Sample		plasma	
Assay		LC-MS/MS	
Pharmacokinetic Parameters			
Dose (mg/kg)	75		
Gender (M/F)/Number of Animals	<u>M</u> : 6	<u>F</u> : 6	
Day 1 (1st administration)			
C_{max} (ng/mL)	34.4	74.9	
AUC _{day1-30} (ng.h/mL)	10058	26,484	
$AUC_{0-\infty}$ (ng.h/mL)	16,943 ^a	33,720 ^b	
D60 (3 th administration)			
C_{max} (ng/mL)	52.7 ^a 105 ^a		
AUC _{Dav60-89} (ng.h/mL)	20,620 ^a 25,951 ^a		
Day 240 (9 th - last administration)			
C_{max} (ng/mL)	108 ^a	105 ^a	
AUC _{day240-269} (ng.h/mL)	43,410 ^a	35,474 ^a	

 $[\]begin{array}{ll}
a & n = 3 \\
b & n = 4
\end{array}$

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; IM = Intramuscular; LC-MS/MS = liquid chromatography coupled to tandem mass spectrometry; NZW = New Zealand White; P338 = poloxamer 338

2.6.5.16K Pharmacokinetics: Other- Pharmacokinetics in Rabbit

Test Article: P338

		1 cst 111 ticic. 1 330
Study No.	FK13159	
Location in CTD	4.2.2.7	
Species	NZW Rabbit	_
Feeding Condition	Fed	
Vehicle/Formulation	P338 + demineralized water	
Route	Oral	
Compound	P338	
Dosing Period	Single dose	
Sample	plasma	
Assay	(HP)LC-MS/MS	
Pharmacokinetic Parameters		
Dose (mg/kg)	1600	
Gender (M/F)/Number of Animals	<u>F</u> :4	
C_{max} (ng/mL)	417	
$t_{max}(h)^{a}$	48.00 (48.00 – 72.00)	
$t_{last}(h)^a$	336 (264 – 336)	
AUC_{0-24h} (ng.h/mL)	4100	
AUC _{last} (ng.h/mL)	68,900	

^a Median value (min-max)

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; F= female; (HP)LC-MS/MS = (high performance) liquid chromatography coupled to tandem mass spectrometry; NZW = New Zealand White; P338 = poloxamer 338; t_{max} = time to reach the maximum plasma concentration

2.6.5.16L Pharmacokinetics: Other- Pharmacokinetics in Minipig

Test Article: P338

		Test Article: P338
FK13161		
	4.2.2.7	
Göttingen Minipig		
	Fed	
	RPV LA	
	IM	
	P338 and RPV	
Single dose		
Plasma		
(HP)LC-MS/MS		
P338	RPV	_
100	600	
<u>F: 4</u>	<u>F: 4</u>	
$5\overline{2,300}$ 32.2		
24 (24 – 72)	16(4-336)	
841,000	406	
13,600,000	6070	
	100 <u>F: 4</u> 52,300 24 (24 – 72) 841,000	### Access ### Ac

^a Median value (min-max)

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; F = female; (HP)LC-MS/MS = (high performance) liquid chromatography coupled to tandem mass spectrometry; LA = long-acting; P338 = Poloxamer 338; RPV = rilpivirine; $t_{max} = female$ time to reach the maximum plasma concentration

2.6.5.16M Pharmacokinetics: Other- Pharmacokinetics in Human plasma

Test.	Artic	le: P	338
-------	-------	-------	-----

Study No.	E1712121
	FK13131
Location in CTD	4.2.2.7
Species	Human plasma
Feeding Condition	Fed
Vehicle/Formulation RPV LA	+ demineralized water
Route	IM
Compound	P338
Dosing Period	Single dose
Sample	Plasma
Assay	HP)LC-MS/MS
Pharmacokinetic Parameters	
Dose (mg)	100
Gender (M/F)/Number of Animals	6 subjects
C_{max} (ng/mL)	3907
$t_{max}(h)^a$	48 (48-72)
$t_{last}(\mathbf{h})^a$	024 (672 – 4032)
AUC _{0-24h} (ng.h/mL)	34,202
AUC _{0-336h} (ng.h/mL)	580,175
AUC _{0-672h} (ng.h/mL)	717,091
$t_{1/2}$	8499

^a median value (min-max)

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; (HP)LC-MS/MS = (high performance) liquid chromatography coupled to tandem mass spectrometry; IM = intramuscular; LA = long-acting; RPV = rilpivirine; t_{max} = time to reach the maximum plasma concentration; $t_{1/2}$: half-life

2.6.5.16N Pharmacokinetics: Other- Pharmacokinetics in Rat

T 4	Article:	D220
DCT.	A PTICIO	· P448
1 (31	AI UUU.	. 1 226

				restricter.
Study No.	FK13409			
Location in CTD	4.2.2.7			
Species		Sprague-I	Dawley Rat	
Feeding Condition		F	ed	
Vehicle/Formulation		P3	338	
Route		Ι	M	
Compound		P3	338	
Dosing Period			e dose	
Sample		Plasma, liver and kids	ney tissue, urine, feces	
Assay	(HP)LC-MS/MS			
Pharmacokinetic Parameters	Plasma	Kidney left	Kidney right	Liver
Dose (mg/kg)	10	10	10	10
Gender (M/F)/Number of Animals	M:1	M:1	M:1	M:1
C_{max} (ng/mL)	61,300	7930	7300	37,900
$t_{max}(h)^a$	7.00(7.00 - 7.00)	24.00(24.00 - 24.00)	24.00(24.00 - 24.00)	72.00(72.00 - 72.00)
$\mathbf{t_{last}}^{\mathbf{a}}$	529 (529 – 529)	529 (529 – 529)	529 (529 – 529)	529 (529 – 529)
AUC_{0-24h} (ng.h/mL)	1,130,000	95,200	87,600	315,000
AUC_{0-72h} (ng.h/mL)	1,710,000	427,000	412,000	1,860,000
AUC_last(ng.h/mL)	2,170,000	2,280,000	2,290,000	10,900,000
$\mathbf{t}_{1/2}\left(\mathbf{h}\right)$	210	620	870	170

Mean cumulative amount excreted into urine and cumulative % dose excreted as unchanged drug in urine

Time h	Cumulative amount Excreted (ug)	Cumulative % dose excreted As unchanged drug into urine
0-8h	98.32	2.54
0-24h	269.20	6.94
0-48h	331.40	8.54
0-72h	341.01	8.79
0-96h	352.38	9.09
0-120h	358.47	9.24
0-144h	365.07	9.41

All concentration of P338 in feces were below the quantification limit (limit of quantification = $1 \mu g/g$)

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; (HP)LC-MS/MS = (high performance) liquid chromatography coupled to tandem mass spectrometry; IM = Intramuscular; M = male; P338 = poloxamer 338; t_{max} = time to reach the maximum plasma concentration; $t_{1/2}$: half-life

^a Median value (min-max)

2.6.5.160 Pharmacokinetics: Other- Pharmacokinetics in Rat

				Test Article: P338	
Study No.	TOX13295				
Location in CTD	4.2.3.7.7				
Species		Spra	ague-Dawley Rat		
Feeding Condition			Fed		
Vehicle/Formulation			P338		
Route			IM		
Compound			P338		
Dosing Period	Sin	gle dose/Repeated dose (every th	ree days or every week with a	1-month follow-up	
Sample			Plasma	•	
Assay			LC-MS/MS		
Pharmacokinetic Parameters					
	SD		RD		
Dose (mg/kg)	5	5	10	10 (2 sites of injection at 5 mg/kg)	
Gender (M/F)/Number of Animals	<u>F</u> :4	<u>F</u> :4	<u>F</u> :4	<u>F</u> :4	
1 st dose	<u>—</u>	-	_	-	
C_{max} (ng/mL)	24,500	24,600	49,200	48,700	
t _{max} (h)	3 - 7	7	7 - 12	7 - 12	
t _{last} (h)	96 - 168	72	72	96 - 168	
AUC_{0-72h} (ng.h/mL)	679,000	705,000	1,570,000	1,470,000	
2 nd dose					
C_{max} (ng/mL)		38,400	67,100		
$t_{max}(h)$		2 - 7	7		
AUC_{0-72h} (ng.h/mL)		872,000	1,760,000		
3th dose					
C_{max} (ng/mL)		20,800	58,400		
$t_{max}(h)$		7	7		
AUC_{0-72h} (ng.h/mL)		673,000	1,790,000		
Last dose					
C_{max} (ng/mL)		38,000	64,500	57,400	
$t_{max}(h)$		2 - 7	7 - 12	7	
$t_{last}(h)$		336 - 456	456	96 - 336	
AUC_{0-72h} (ng.h/mL)		987,000	1,950,000	1,550,000	
AUC _{0-168h} (ng.h/mL)		1,170,000	2,390,000	1,790,000 ^a	

^a AUC was extrapolated for one rat

AUC = area under the plasma concentration versus time curve; C_{max} = maximum plasma concentration; F = female; IM = Intramuscular; LC-MS/MS = liquid chromatography coupled to tandem mass spectrometry; RD = repeated dose; SD = single-dose; P338 = poloxamer 338; t_{max} = time to reach the maximum plasma concentration

2.6.5.16P Pharmacokinetics: Other- Pharmacokinetics in Rat

						Test Article: P33	
Study No.	TOX13391						
Location in CTD	4.2.3.7.7						
Species	Sprague-Dawley Rat						
Feeding Condition	Fed						
Vehicle/Formulation	Sterile aqueous solution containing Glucose (anhydrous), Citric acid monohydrate, Sodium dihydrogen phosphate monohydrate, NaOl						
	until pH = 7.0 ± 0.1 in water for injection / Solution						
Route	IM Page						
Compound	P338 M: one administration every three days from 28 days before mating, throughout mating and up to 3 days before necropsy (21						
Dosing Period	M: one adminis	tration every three days			ng and up to 3 days before	ore necropsy (21	
	administrations)						
	F: one administration every three days from 14 days before mating, throughout mating and throughout organogenesis (last administration on G15 for the applicable females – 11 to 15 administrations depending to the day of mating)						
	adminis	stration on G15 for the a			lepending to the day of	mating)	
Sample				sma 4C/MC			
Assay			LC-N	IS/MS			
Pharmacokinetic Parameters	2	5		5	1	0	
Dose (mg/kg)		.5	5		1		
Gender (M/F)/Number of Animals	<u>M</u> : 3	<u>F</u> : 3	<u>M</u> : 3	<u>F</u> : 3	<u>M</u> : 3	<u>F</u> : 3	
ost dose			20.200	10 200	22 100	25 (00	
C_{max} (ng/mL)	-	-	29,200	18,300	33,100	25,600	
t _{max} (h)	-	-	746,000	$4.5(2-7)^a$	7	4.5 (2-7) ^a	
AUC _{0-72h} (ng.h/mL)	-	-	746,000	503,000 477,000 ^b	944,000	666,000	
AUC _{inf} (ng.h/mL) th dose	-	-	NA	4//,000	NA	$775,000^{b}$	
	$8860^{\rm b}$	10,800	19,900	14,100	28,900	27,800	
C_{max} (ng/mL)	7 ^b	10,800 7	19,900 7	7	28,900 7	27,800 7	
$t_{max}(h)$	276 ^b	333,000	,	•	,	•	
AUC _{0-72h} (ng.h/mL) th dose (M)/G3 (F)	276	333,000	555,000	437,000	922,000	779,000	
C _{max} (ng/mL)	14,100	_	24,000	13,800 ^b	37,400	4380	
t_{max} (h)	7	-	24,000 7	7 ^b	37,400 7	$7(0-7)^{a}$	
AUC _{0-72h} (ng.h/mL)	456,000	-	742,000	412,000 ^b	1,360,000	192,000	
10 th dose (M)/G9 (F)	750,000	-	742,000	712,000	1,500,000	172,000	
C _{max} (ng/mL)	8030	_	22,600	16,000 ^b	39,600	9040	
t_{max} (h)	7	_	7	7 ^b	7	7	
AUC _{0-72h} (ng.h/mL)	300,000		716,000	439,000 ^b	1,410,000	378,000	

(Continued)

2.6.5.16P Pharmacokinetics: Other- Pharmacokinetics in Rat (Continued)

Test Article: P338

						1 est Al title. 1 336	
Study No.	TOX13391						
Location in CTD	4.2.3.7.7						
Pharmacokinetic Parameters							
Dose (mg/kg)	2	.5	5		10		
Gender (M/F)/Number of Animals	<u>M</u> : 3	<u>F</u> : 3	<u>M</u> : 3	<u>F</u> : 3	<u>M</u> : 3	<u>F</u> : 3	
13 th dose (M)/G15 (F)							
C_{max} (ng/mL)	11,300	-	25,900	16,700	19,800	26,200	
$t_{max}(h)$	7	-	7	7	$7(0-7)^{a}$	7	
AUC_{0-72h} (ng.h/mL)	401,000	-	990,000	491,000	838,000	879,000	
16 th dose							
C_{max} (ng/mL)	14,500		15,800		39,000		
$t_{max}(h)$	7		7				
AUC_{0-72h} (ng.h/mL)	492,000	729,000 1,540,000					
19 th dose							
C_{max} (ng/mL)	10,100		23,300		34,100		
$t_{max}(h)$	7		7		7		
AUC_{0-72h} (ng.h/mL)	386,000		825,000		1480,000		
AUC 0-cummulative tlast (ng.h/mL)	7,870,000	3,660,000	16,000,000	4,960,000	26,000,000	6,220,000	

^a median range; ^b based on a single animal

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; F = female; IM = Intramuscular; LC-MS/MS = liquid chromatography coupled to tandem mass spectrometry; M = male; NA = not applicable; P338 = poloxamer P338 = poloxa

2.6.5.16Q Pharmacokinetics: Other- Pharmacokinetics in Rat - PPN

			Test Article: P33		
Study No.		TOX13546			
Location in CTD	4.2.3.7.7				
Species	Sprague-Dawley Rat				
Feeding Condition	Fed				
Vehicle/Formulation	Sterile aqueous solution containing Glucose (anhydrous), 1 mg/ml Citric acid monohydrate, 2 mg/ml Sodium dihydrogen phosphate monohydrate, NaOH until pH = 7.0 ± 0.1 in water for injection / Solution				
Route	•	IM			
Compound		P338			
Dosing Period	F: one administration every three days from GD6 to day before necropsy = LD20				
Sample	Plasma				
Pharmacokinetic Parameters					
Dose (mg/kg)	2.5	5	10		
Gender (M/F)/Number of Animals	<u>F</u> : 3	<u>F</u> : 3	<u>F</u> : 3		
GD6 - 1 st dose					
C_{max} (ng/mL)	n/c	14,200	26,400		
$t_{max}(h)$	n/c	7	7		
AUC _{0-72h} (ng.h/mL) ^a	n/c	414,000	807,000		
GD12 3 th dose					
C_{max} (ng/mL)	n/c	8780^{a}	2350		
$t_{max}(h)$	n/c	7^{a}	7		
$AUC_{0-72h} (ng.h/mL)^a$	n/c	$274,000^{a}$	684,000		
GD18 5 th dose					
C_{max} (ng/mL)	n/c	14,300	6870		
$t_{max}(h)$	n/c	7	7		
AUC_{0-72h} (ng.h/mL) ^a	n/c	470,000	301,000		
LD2 - 7 th dose					
C_{max} (ng/mL)	n/c	8840	21,900		
$t_{max}(h)$	n/c	7	7		
AUC_{0-72h} (ng.h/mL) ^a	n/c	318,000	766,000		

(Continued)

2.6.5.16Q Pharmacokinetics: Other- Pharmacokinetics in Rat – PPN (Continued)

Test Article: P338 Study No. TOX13546 **Location in CTD** 4.2.3.7.7 **Pharmacokinetic Parameters** 5 10 Dose (mg/kg) 2.5 Gender (M/F)/Number of Animals <u>F</u>: 3 <u>F</u>: 3 <u>F</u>: 3 LD8 - 9th dose 8180 C_{max} (ng/mL) n/c 18,300 t_{max} (h) n/c AUC_{0-72h} (ng.h/mL)^a 299,000 688,000 n/c LD17 - 12th dose C_{max} (ng/mL) 7,830 14,100 25,200 $t_{max}(h)$ 39.5 (7-72)^b AUC_{0-72h} (ng.h/mL)^a 260,000 686,000 990,000 $GD6 - L17^{b}$ AUC 0-cummulative tlast (ng.h/mL) 4,860,000 8,410,000 n/c

^a based on a single animal; ^b median range

b PN D4, 5, 20 and 21 (pups from treated dams): plasma concentrations of P338 were all below LLOQ

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; F = female; GD = gestation day; IM = Intramuscular; LC - MS/MS = liquid chromatography coupled to tandem mass spectrometry; LD = lactation day; n/c = could not be calculated; LLOQ = lower limit of quantification; PPN = pre- and postnatal development; P338 = poloxamer PN = pre- and postnatal development; PN = pre- and post

2.6.5.16R Pharmacokinetics: Other- Pharmacokinetics in Rabbit

				Test Article: P338		
Study No.		TOX	13296			
Location in CTD	4.2.3.7.7					
Species	New-Zealand White rabbit					
Feeding Condition	Fed					
Vehicle/Formulation	Sterile aqueous solution containing Glucose (anhydrous), Citric acid monohydrate Sodium dihydrogen phosphate monohydrate, NaOH					
	until pH = 7.0 ± 0.1					
Route	IM					
Compound	P338					
Dosing Period	Single dose/Repeated dose (every three days or every week with a 1-month follow-up					
Sample	Plasma					
Assay	LC-MS/MS					
Pharmacokinetic Parameters						
	SD		RD			
Dose (mg/kg)	5	2.5	2.5	5		
	D0	D 0, 4 and 8	D 0 and 7	D 0 and 7		
Gender (M/F)/Number of Animals	<u>F</u> :4	<u>F</u> :4	<u>F</u> :4	<u>F</u> :4		
1 st dose						
C_{max} (ng/mL)	50,200	19,700	30,000	48.900		
$t_{max}(h)$	24	12 - 24	7 - 24	12 - 24		
$t_{last}(h)$	168 - 336	96	96 – 168	168		
AUC_{0-96h} (ng.h/mL)	2,760,000	1,140,000	1,580,000	2,800,000		
AUC_{0-168h} (ng.h/mL)	3,290,000	1,140,000	1,860,000	3,350,000		
AUC _{0-inf} (ng.h/mL)	3,740,000	1,330,000	2,070,000	3,610,000		
2 nd dose						
C_{max} (ng/mL)		23,800				
$t_{max}(h)$		24				
AUC0-72h (ng.h/mL)		1,380,000				
Last dose						
C_{max} (ng/mL)		27,000	28,400	55,100		
$t_{max}(h)$		12 - 24	12 - 24	24		
$t_{last}(h)$		96 - 336	168 - 504	168 - 504		
AUC_{0-72h} (ng.h/mL)		1,620,000	1,650,000	3,180,000		
AUC_{0-168h} (ng.h/mL)		1,970,000	2,010,000	3,880,000		
AUC _{0-last} (ng.h/mL)		2,160,000	2,260,000	4,410,000		

a at 96h

AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; D = day; IM = Intramuscular; LC-MS/MS = liquid chromatography coupled to tandem mass spectrometry; NC = Not calculated; SD = single-dose; P338 = poloxamer 338; $t_{max} = time$ to reach the maximum plasma concentration

GD6

GD12

 C_{max} (ng/mL)

 C_{max} (ng/mL) t_{max} (h)

 $AUC_{(0-144h)}$ (ng.h/mL)

AUC_{0-144h} (ng.h/mL)

AUC_(0-cumulative tlast) (ng.h/mL)

t_{max} (h)

GD6 + GD12

40,400

24

2,410,000

49,200

24

2,670,000

5.080.000a

Test Article: P338

2.6.5.16S Pharmacokinetics: Other- Pharmacokinetics in Rabbit

Study No. TOX13376 **Location in CTD** 4.2.3.7.7 Species New-Zealand White rabbit **Feeding Condition** Fed Sterile aqueous solution containing Glucose (anhydrous), Citric acid monohydrate, Sodium dihydrogen phosphate monohydrate, NaOH Vehicle/Formulation until pH = 7.0 ± 0.1 in water for injection/ Solution Route IM P338 Compound **Dosing Period** GD 6 and GD 12 Sample Plasma LC-MS/MS Assav **Pharmacokinetic Parameters** 2.5 5.0 Dose (mg/kg) Gender (M/F)/Number of Animals <u>F</u>: 4 <u>F</u>: 4

^a $AUC_{(0-cumulative tlast)}$ is similar to $AUC_{(0-288h)}$. For animal 58 $AUC_{(0-288h)}$ also was used although for this animal $AUC_{(0-480h)}$ was available AUC = area under the plasma concentration versus time curve; C_{max} maximum plasma concentration; GD = gestation day; IM = Intramuscular; LA = long-acting; LC-MS/MS = liquid chromatography coupled to tandem mass spectrometry; P338 = poloxamer 338; t_{max} = time to reach the maximum plasma concentration

24,300

24

1,490,000

24.8

24

1,330,000

2,820,000