アドトラーザ皮下注 150 mgシリンジに 関する資料

本資料に記載された情報に係る権利及び内容についての責任は レオ ファーマ株式会社に帰属するものであり、当該情報を適正 使用以外の営利目的に利用することはできません。

レオ ファーマ株式会社

トラロキヌマブ(遺伝子組換え)

第1部(モジュール1)

申請書等行政情報及び添付文書に関する情報

1.5 起原又は発見の経緯及び開発の経緯

レオ ファーマ株式会社

目次

略号は	および用語一覧	3
1	起原又は発見の経緯及び開発の経緯	4
1.1	開発の経緯	
1.1.1	品質	5
1.1.2	非臨床試験	5
1.1.3	臨床試験	5
1.2	小児開発について	5
1.2.1	小児開発が必要と判断した理由	5
1.2.2	開発計画の概略	6
参考了	文献	10
	Panel 一覧	
Panel	1 トラロキヌマブの開発の経緯図	7
Panel	2 現時点における本剤の臨床開発計画	9

略号および用語一覧

記号	日本語	英語
AD	アトピー性皮膚炎	Atopic dermatitis
D2213C00001	第 2b 相用量設定試験	-
ECZTRA 1	AD 成人患者を対象としたトラロキ ヌマブ第3相単剤投与試験 (LP0162-1325)	-
ECZTRA 2	AD 成人患者を対象としたトラロキ ヌマブ第3相単剤投与試験 (LP0162-1326)	-
ECZTRA 3	AD 成人患者を対象としたトラロキ ヌマブの TCS 併用投与第 3 相試験 (LP0162-1339)	-
ECZTRA 6	AD 青少年患者を対象としたトラロ キヌマブ第 3 相試験 (LP0162-1334)	
ECZTEND	ECZTRA 試験に参加した AD 患者を 対象としたトラロキヌマブ第 3 相長 期延長試験(LP0162-1337)	-
ECZTRA 8	日本人の AD 成人患者を対象とした トラロキヌマブの TCS 併用投与第 3 相試験(LP0162-1343)	-
Ig	免疫グロブリン	Immunoglobulin
IL-13	インターロイキン - 13	Interleukin13
IL-13R	インターロイキン - 13 受容体	Interleukin13 receptor
Th2	2型ヘルパーT	T-helper type 2

1 起原又は発見の経緯及び開発の経緯

トラロキヌマブ(開発コード: CAT-354 および LP0162)は、完全ヒト免疫グロブリン(Ig)G4 モノクローナル抗体であり、サイトカインであるインターロイキン(IL)-13 と特異的に結合することでその受容体との相互作用を阻害する。すなわち、IL-13Rα1 および IL-13Rα2 に結合する IL-13 のエピトープにトラロキヌマブが結合することにより、IL-13 が IL-13Rα1 および IL-13Rα2 に結合することを阻害する。トラロキヌマブは、薬理学的には免疫調節薬の IL 阻害薬に分類される(Blanchard et al. 2005; May et al. 2012; Popovic et al. 2017; Thom and Minter 2012)。トラロキヌマブにより、アトピー性皮膚炎(AD)の主要な進行要因を特異的に阻害することで、ステロイド薬やカルシニューリン阻害薬などの非選択的免疫抑制剤で一般的に見られる副作用を起こすことなく、臨床的ベネフィットが得られるように開発された。

今般, AD を対象とした国際共同試験 5 試験 [D2213C00001 (日本人含む), ECZTRA 1 (日本人含む), 2, 3, ECZTEND 試験 (参加した日本人被験者の中間解析)] 及び ECZTRA 8 (国内試験) において、トラロキヌマブの AD に対する有効性および安全性が確認されたことから、予定する効能または効果を「既存治療で効果不十分なアトピー性皮膚炎」とし、承認申請することとした。なお、本邦で実施している ECZTRA 8 試験成績 (有効性および安全性) は、 である。トラロキヌマブは欧州経済領域および英国において、中等症から重症の AD の治療薬として承認されている。

AD は一般的な炎症性皮膚疾患であり、従来2型免疫(Th2 細胞)が関与する疾患と考えられてきた。近年、IL-13 が末梢での炎症を誘導する重要な2型サイトカインであると示唆されている。この概念は、AD の根本的な原因である炎症反応にも当てはまるとのエビデンスも増えている。IL-13 は局所的に過剰発現し、炎症性細胞の動員、皮膚微生物叢の変化、表皮バリア機能の低下などに大きな影響を与える(Bieber 2020)。したがって、IL-13 を標的として、2型炎症反応を低減し、AD の根本的な病態を治療することで皮膚のバリア機能を回復させ、炎症、痒み、および皮膚肥厚を軽減する可能性がある。

なお,一部の臨床試験では十分な患者説明及びトレーニングを実施した上で,自己または介助者 によるトラロキヌマブの在宅投与が行われた。

AD は従来から幼小児に多い疾患であるとされてきたが、2007 年に本邦で実施された多施設 横断全国調査によると、本症の受診患者の年齢分布は0~5歳および21~25歳をピークとする 二相性であることが示されており、幼小児の治療を効果的かつ安全に行う重要性があらためて確 認されている。

トラロキヌマブの開発プログラムとして、12 歳から 17 歳のアトピー性皮膚炎の青少年患者を対象とした治験(ECZTRA6 試験)があり、日本からも参画している。また、欧米での小児開発に関する当局との合意に基づき $2\sim12$ 歳の患者を対象とした治験が計画されている。さらに今後、低年齢(6ヶ月 ~2 歳未満)の患者を対象とした治験も実施を検討中である。

トラロキヌマブの投与は、 $1 \, \text{mL} \, プレフィルドシリンジ(トラロキヌマブ 150 \, mg を含有)を用い、初回投与では、負荷投与として <math>4 \, \text{回(トラロキヌマブとして } 600 \, \text{mg})$ 、以後 $2 \, \text{週毎に } 2 \, \text{回(ト$

ラロキヌマブとして 300 mg),皮下投与とする。そこで注射回数を減らし、患者の負担を軽減する 必要があると考えており、現在、

を検討中である。

1.1 開発の経緯

LEO Pharma 社及び Astra Zeneca 社は、20 年 月 日に契約を締結し、LEO Pharma 社は Tralokinumab のアトピー性皮膚炎及び皮膚科領域での適応症に関するグローバルライセンスを獲得した。アトピー性皮膚炎治療を目的とした国際共同後期第 II 相試験(D2213C00001)は日本人被験者を含んでおり、本邦ではアストラゼネカ株式会社により治験が完了された。

トラロキヌマブの開発の経緯を Panel 1 に示す。

1.1.1 品質

Module 2.3 に示す。

1.1.2 非臨床試験

Module 2.4 に示す。

1.1.3 臨床試験

AD の成人患者を対象としたトラロキヌマブ試験の本邦での承認申請を裏付ける臨床試験の概要を Module 2.5 セクション 1.6.3 に示す。

1.2 小児開発について

1.2.1 小児開発が必要と判断した理由

アトピー性皮膚炎は一般に乳幼児・小児期に発症し、加齢とともにその患者数は減少し、一部の患者が成人型アトピー性皮膚炎に移行すると考えられている。小児においては、アトピー性皮膚炎は、通常は軽度であるが、約 $10\sim30\%$ の小児では中等度から重度である (Ben-Gashir et al. 2004; Emerson et al. 1998; Silverberg et al. 2014)。

アトピー性皮膚炎は慢性疾患であり、有効かつ長期使用時に許容できる安全性プロファイルを有する治療選択肢は限られており、中等症から重症の治療は困難を極める。薬物治療アルゴリズムによると、中強度の抗炎症外用療法から始め、強度の外用療法へ進み、さらに全身性免疫調節療法に至る。アトピー性皮膚炎治療ガイドラインでは、小児に対しても基本的な治療方針は成人と変わらないとされているが、ステロイド薬の全身投与は、アトピー性皮膚炎の治療としては小児では推奨されていない。また、近年、経口 JAK 阻害剤が 12 歳以上の適応で承認されているが、重篤な感染症、帯状疱疹、静脈血栓塞栓症、消化管穿孔、肝機能障害、間質性肺炎、好中球数減少、リンパ球数減少、ヘモグロビン値減少、B型肝炎ウイルスの再活性化などが重要なリス

クとして特定されており(厚生労働省 令和3年a,令和3年b),経口JAK 阻害薬の長期使用による安全性についての知見は限定的である。経口シクロスポリン薬および現在アトピー性皮膚炎に使用可能な唯一の生物学的製剤であるデュピルマブ(デュピクセント皮下注300mgシリンジ/デュピクセント皮下注300mgペン)は、本邦において小児への適応を有していない(2022年10月現在)。アトピー性皮膚炎の根本的な原因を標的とし、忍容性に優れた長期的な疾患コントロールを可能とする治療オプションに対する医療ニーズは依然として存在する。

以上のことから、本邦においても、2~12 歳未満のアトピー性皮膚炎患者を対象とした本剤の有効性及び安全性を検討する国際共同試験(LP0162-1336)への参画を計画している。

1.2.2 開発計画の概略

小児 AD 患者を対象とした本剤の評価としては臨床試験 4 試験が計画されており、青少年患者を対象とした最初の試験は 20 年 月に完了している。また、米国および欧州では、成人 AD 患者に対する適応で本剤が承認された後、青少年患者への適応に関する変更申請を EMA(20 年 月 日)および FDA(20 年 月 日)に提出した。

- LP0162-1334 は無作為化,二重盲検,プラセボ対照,並行群間,多施設共同第3相試験で,全身療法が適用となる中等症から重症の青少年 AD 患者を対象として,トラロキヌマブ単剤療法の有効性,安全性および忍容性を評価した。この試験は20 年 月に完了した。
- LP0162-1335 は単盲検(観察者盲検),無作為化,並行群間,単剤療法第1相試験で, 全身療法が適用となる中等症から重症の児童 AD 患者(2~12歳未満)を対象として,本 剤を反復 SC 投与したときの PK プロファイルを確立し,児童における用量を決定する。 被験者の登録は,20 年 月に開始している。
- LP0162-1336 は、二重盲検、プラセボ対照、無作為化(2:1)、並行群間第3相試験で、 全身療法が適用となる中等症から重症の児童 AD 患者(2~12歳未満)を対象として、本 剤と TCS を併用したときの有効性および安全性を評価する。
- LP0162-1381 は、単群、非盲検、反復投与、単剤療法第2相試験で、全身療法が適用となる中等症から重症の乳幼児 AD 患者(6ヵ月~2歳未満)を対象として、本剤の有効性および安全性を評価する。

Panel 1 トラロキヌマブの開発の経緯図

試験	à	2001	2002	2002	2004	2005	2006	2007	2000	2000	2010	2011	2012	2012	2014	2015	2016	2017	2010	2010	2020	2021
安	<u> </u>	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
定	AZ/II																					
性																						
1-1-4																						
薬	副次的薬理試験																					
理	安全性薬理試験																					
1 3.	(毒性試験の一部として)																					
薬	分析方法及びバリデーション																					
物	吸収(薬理試験の一部として)																					
動	次状 (来生的歌の一間として)																					
態																						
,	反復投与毒性試験																					
毒	生殖発生毒性試験																					
性	局所刺激性試験																					·
	組織交差反応性試験:																					
	MI-CP224																					
	第1相試験 [評価]																					
m/A	CAT-354-0703																					
臨	第1相試験 [評価]																					
床	D2213C00001																					
	第 2b 相用量設定試験																					
	[評価]																					

試馬	ф	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
	ECZTRA 1 (LP0162-1325)																					
	第3相試験,国際共同																					
	[評価]																					_
	ECZTRA 2 (LP0162-1326)																					
	第3相試験,国際共同																					
	[評価]																					
	ECZTRA 3 (LP0162-1339)																					
	第3相試験,国際共同																					
	[評価]																					_
	ECZTEND (LP0162-1337)																					
	第3相試験,国際共同																					
	[評価]																					_
	ECZTRA 8 (LP0162-1343)																					
	第3相試験,日本																					
	[評価]																					

Panel 2 現時点における本剤の臨床開発計画

[2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
	Q1 Q2 Q3 Q4											
ECZTEND												
LP0162-1337: ECZTEND												
2mL Autoinjector formulation												
LP0162-1491: Autoinjector PK												
LP0162-1338: Autoinjector actual use												
Development plan for children												
LP016-1334: ECZTRA6 (12-17 years)												
LP01622-1335: PK 2-11 years												
LP0162-1336: Confirmatory 2-11 years												
LPO162-1381: PK 6months-2years												

Abbreviations: PK = pharmacokinetics

参考文献

Ben-Gashir MA, Seed PT, Hay RJ. Predictors of atopic dermatitis severity over time. J Am Acad Dermatol. 2004;50(3):349-356.

Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy. 2020;75(1):54-62.

Blanchard C, Mishra A, Saito-Akei H, Monk P, Anderson I, Rothenberg ME. Inhibition of human interleukin-13-induced respiratory and oesophageal inflammation by anti-human-interleukin-13 antibody (CAT-354). Clin Exp Allergy. 2005;35(8):1096-1103.

Emerson RM, Williams HC, Allen BR. Severity distribution of atopic dermatitis in the community and its relationship to secondary referral. Br J Dermatol. 1998;139(1):73-76.

May RD, Monk PD, Cohen ES, Manuel D, Dempsey F, Davis NH, Dodd AJ, Corkill DJ, Woods J, Joberty-Candotti C, et al. Preclinical development of CAT-354, an IL-13 neutralizing antibody, for the treatment of severe uncontrolled asthma. Br J Pharmacol. 2012;166(1):177-193.

Popovic B, Breed J, Rees DG, Gardener MJ, Vinall LM, Kemp B, Spooner J, Keen J, Minter R, Uddin F, et al. Structural characterisation reveals mechanism of IL-13-neutralising monoclonal antibody tralokinumab as inhibition of binding to IL-13R α 1 and IL-13R α 2. J Mol Biol. 2017;429(2):208-219.

Silverberg JI, Simpson EL. Associations of childhood eczema severity: a US population-based study. Dermatitis. 2014;25(3):107-114.

Thom G, Minter R. Optimization of CAT-354, a therapeutic antibody directed against interleukin-13, using ribosome display. Methods Mol Biol. 2012;805:393-401.

厚生労働省 最適使用推進ガイドライン ウパダシチニブ水和物 令和 3 年 8 月 https://www.pmda.go.jp/files/000243653.pdf

厚生労働省 最適使用推進ガイドライン バリシチニブ 令和 3 年 8 月 https://www.pmda.go.jp/files/000238112.pdf

Predictors of atopic dermatitis severity over time

Mohamed A. Ben-Gashir, MBBCh, Dip Derm, PhD, ^a Paul T. Seed, MSc, ^b and Roderick J. Hay, DM, FRCP, FRCPath ^c

London and Northern Ireland, United Kingdom

Background: Atopic dermatitis (AD) is a chronic relapsing disease that has increased in prevalence during the last 4 decades. However, little is known about factors that affect disease severity.

Methods: We carried out a longitudinal observational study that included children aged 5 to 10 years recruited from general practices in the United Kingdom. General practitioners identified potential patients and the United Kingdom diagnostic criteria for AD were used to verify the diagnosis in children. The scoring AD index was used to assess disease severity. In addition, information was obtained from parents at the first interview as to age of onset, social class, ethnic group, child's atopy, family history of atopy, and other potential risk factors using a 5-page piloted questionnaire. The aim was to document risk factors for AD severity over time by sequential repeated interview and clinical examination during a 2-year period. The scoring AD index was skewed to the right so nonparametric tests were used for statistical significance.

Results: In all, 137 children (65 boys [47%] and 72 girls) with AD were recruited and seen up to 4 times; 40 in March 1998, 104 in October 1998, 116 in March 1999, and 120 at the final visit in October 1999, giving our study an 88% follow-up rate. The severity scores were ranked into 3 categories (80% mild, 18% moderate, and 2% severe) according to suggested guidelines. From this population we were able to show that those with eczema that commenced during the first year of life, which was accompanied by asthma, hay fever, or both, and associated with living in an urban area, had more severe disease independent of other potential risk factors.

Conclusion: This study has systematically studied AD severity in a community-based design. Researchers and clinicians should be aware of those factors reported in our study as patients exposed to these factors may have a different disease outcome. Further studies on disease severity are needed. (J Am Acad Dermatol 2004;50:349-56.)

topic dermatitis (AD) is a chronic, itchy, relapsing disease.^{1,2} The prevalence has been shown to be increasing during the last 4 decades,^{3,4} but there is little known about those factors that may affect disease severity. More specifically AD severity has not been documented, in a systematic way, in a community setting where 75%

From the St John's Institute of Dermatology, St Thomas' Hospital, London,^a Public Health Sciences and Department of Obstetrics and Gynaecology, The Guy's Kings and St Thomas' School of Medicine (King's College, London), St Thomas' Hospital, London,^b and Queens University Belfast, Northern Ireland,^c United Kingdom.

Funding sources: None.

Conflicts of interest: None identified.

Accepted for publication September 10, 2003.

Reprint requests: Mohamed A. Ben-Gashir, MBBCh, Dip Derm, PhD, St John's Institute of Dermatology, St Thomas' Hospital, Lambeth Palace Rd, London SE1 7EH, UK. E-mail: mbengashir@doctors.org.uk.

0190-9622/\$30.00

© 2004 by the American Academy of Dermatology, Inc. doi:10.1016/j.jaad.2003.09.004

of skin problems are managed,⁵ because it is only in the last 12 years that dermatologists have developed standardized systems of severity assessment such as the scoring AD (SCORAD) index.⁶

The primary aim of this study was to investigate risk factors that may have an effect on disease severity over time (averaging disease severity over periods of time). The secondary aim of this study was to document the impact of AD on children's and family's quality of life at a point in time and during a period of time, and to investigate the relationship between disease severity and quality-of-life score, and this has been reported previously.^{7,8} This study was carried out in a primary care setting, where the vast majority of cases are managed.⁵

METHODS Ethical approval

The study had the ethical approval of St Thomas' Hospital Research Ethics Committee, London, United Kingdom, for the London-based population and of Dyfed Powys Research Ethics Committee for the mid-Wales population. Parents signed a consent form and they, and the children, had the right to withdraw from the study at any time.

Study design

A longitudinal study design was implemented. The sample included 2 populations recruited through general practices: inner-city South London (Lambeth, Southwark, Lewisham, and Greenwich); and rural mid-Wales (Rhayader, Caersws, and Newtown) in the United Kingdom. The first area surveyed, South London, had the highest population density whereas the second area, mid-Wales, had the lowest population density in the United Kingdom. The 3 practices in mid-Wales, United Kingdom, were in the middle of a rural area; those from the urban areas of mid-Wales were excluded from the mailing list according to population density. Interview and clinical examination of patients took place during the months of March 1998, October 1998, March 1999, and October 1999. The last follow-up period started in October 1999 at which time no new patients were examined.

Patients

General practitioners were told that access to patient notes was not required. Travel expenses were refunded but patients were not offered any payment for their participation. The list of potential patients included all patients 5 to 10 years old (date of birth: January 1, 1988-December 31, 1992) whose diagnosis was coded for eczema or dermatitis. Details of those receiving repeated prescriptions for emollients were used by some of the general practitioners to supplement the list of potential patients. After receiving the list of patients, all parents of children were sent 2 letters: 1 approved by their general practitioner asking for preliminary agreement to participate; and 1 from the investigator explaining the nature of the study along with a 1-page questionnaire about the United Kingdom diagnostic criteria² and a stamped (first-class) addressed envelope for the reply. The patients who responded but did not turn up for their recruitment appointments were excluded from the start.

Clinical examination and severity assessment of children's AD

The children's clinical examinations took place in March 1998, October 1998, March 1999, and October 1999. The same process was repeated every 6 months and up to 4 times for some patients. Children's and family's quality of life was assessed on 2 visits during 1999. Recruitment took place at all visits except the last, and details of the number of children recruited at each visit is shown in a previously published report.7,9

All children were examined while wearing their underpants only in the presence of an adult guardian. Children were free to refuse examination regardless of parental consent. A previously trained observer (M. A. B-G.) carried out the examination and severity assessments on each occasion using the SCORAD index.⁶ A locally constructed and piloted questionnaire was used to collect information about potential risk factors and confounders such as early onset, ethnic group, social class, other atopic diseases, and breast-feeding. This questionnaire was self-completed by the parents at the same time as the examination, during which parents were also asked to grade their children's eczema on a 0-to-10 scale (0 = no eczema and 10 = worst eczema child had ever had) when it first started and thereafter at each visit. The observer remained blinded to the results of these questionnaires.

Statistical analysis

Software (Epi-Info, Version 6.04b, Centers for Disease Control and Prevention, Atlanta, Ga; and Stata Statistical Software, Release 6.0, Stata Corp, College Station, Tex) was used for handling and analyzing the data. All missing values were excluded from the analysis. Statistical tests were carried out at the 5% level (95% confidence interval [CI] and P value). The main method of analysis was ordered logistic regression (LR).10 This is a development of LR, which, for instance, might use as outcome the odds of a patient having disease above a single predefined level of severity, and which would produce estimates in the form of odds ratios (OR). Ordered LR uses all possible break points to define severity, and combines the results to produce a single OR. It, therefore, avoids the problem of using a single arbitrary definition of severity. It is a nonparametric test, using all the information contained in the data; as such it is more powerful than LR.

Explanatory variables were age at onset, child's atopy, social class, area of residence, breast-feeding, family size, sex, birth weight, gestational age, child's age, and any atopic disease (hay fever, asthma, or eczema) in parents and siblings. Ethnic origin as an explanatory variable was reported previously.9 The dependent variables were the SCORAD index and parental severity assessment rated on a 0- to 10 scale.

Data analysis was carried out using software commands for repeated measures, the primary sampling unit being the patient. All values were used to produce appropriate estimates and the SEs then adjusted using the Huber sandwich estimator. 11,12 This approach ensures that all information is fully used, but that the SEs are appropriate. The net effect is a modest, but entirely appropriate, increase in power and decrease in SE. To confirm the robustness of the findings, the analysis was repeated in a number of ways for the one most important risk factor (onset during first year of life).

RESULTS General

A total of 377 children in both areas were contacted by mail but only 165 (44%) responded. From those who responded, 137 children were recruited at 1 of the first 3 visits; 82 (60%) and 55 (40%) children from the rural and urban areas, respectively, with a mean age of 8 years. In all, 42 (51%) children in the urban area and all children from the rural area were white.

In total 137 patients (65 boys [47%] and 72 girls) were recruited between March 1998 and March 1999 (40 [29%] in March 1998, 70 [51%] in October 1998, and 27 [20%] in March 1999). There was no new patient recruited at the final visit (October 1999), in which 120 children attended. After clinical examination and assessment of flexural dermatitis, 123 (90%) children fulfilled the United Kingdom diagnostic criteria for AD,2 and 14 (10%) children who did not fulfil the criteria were excluded from the analysis.

In all, 29 (21%) children attended the 4 visits, 84 (61%) attended the last 3 visits, and 106 (77%) were seen in both March 1999 and October 1999. By the end of the study, 17 (12%) children did not turn up for their last appointments and this led to an 88% follow-up rate. With this high follow-up rate, any potential substantial difference between these 2 groups would be less likely to have any significant effect on the outcome.

AD severity

The SCORAD index. When the total SCORAD score of each child from the 4 visits was considered, the minimum and maximum scores were 0 and 66, respectively. The mean score per visit is shown in Fig 1. The mean SCORAD score improved at the second (October 1998) and fourth (October 1999) visits, which took place in the fall 1 year apart, and deteriorated in March 1999. However, newly recruited patients, at the first 3 visits, may have contaminated the total mean SCO-RAD score.

It was important to look at each individual group of patients separately to evaluate if children recruited at different times had similar patterns compared with the total mean SCORAD score. Fig 1 shows that 29 children attending all 4 visits, 55 attending the last 3 visits but not the first, and 20 children attending only the last 2 visits had similar

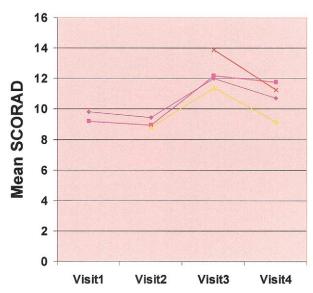


Fig 1. Mean scoring atopic dermatitis (SCORAD) score for each visit for total sample (purple diamond) and each subgroup. In all, 29 children attended all 4 visits (magenta square), 55 children attended last 3 visits (yellow triangle), and 20 children attended last 2 visits (orange x).

SCORAD patterns compared with the mean SCO-RAD score for the total number at each visit. It is, therefore, quite clear that the inclusion of new patients at visits 2 and 3 did not contaminate the data and the pattern of AD severity improved in October and worsened in March, and followed the same patterns for each of these subgroups and for the total sample.

Objective score. Objective scores (SCORAD-D) from the third visit were used to rank the severity distribution because no more new patients were recruited after that. The SCORAD-D was ranked into 3 categories (mild, moderate, and severe) according to guidelines suggested by Kunz et al.¹³ In all, 80% of patients were rated as having mild eczema (SCO-RAD-D \leq 15), 18% as moderate (SCORAD-D 16-40), and 2% as severe eczema (SCORAD-D > 40). There were no significant statistical differences in the SCO-RAD-D scores between visits (P = .74).

Parents grading of disease severity when AD first started and at each visit. The mean severity score at onset was 5.02 (SD 2.8, range: 0-10) and median was 5 (95% CI 4-5). The mean score at the final visit was 2.1 (SD 2.2) and median was 1 (95% CI 1-2), representing highly significant improvement in disease severity as rated by the parents (P < .001). It appears that parents had seen a significant improvement in their children's eczema severity between the time when the eczema first started and the date of the final visit.

Table I. Demographic distribution and severity scores per number of follow-up visits

	Number	of follow-u	p visits
Variables name	One (n = 20)	Two (n = 55)	Three (n = 29)
Age in y (mean)	8.0	7.1	7.5
Sex, male	40%	58%	41%
Mean			
SCORAD (SD)	13.9 (15.4)	8.8 (10)	9.2 (7.8)
SCORAD-D (SD)	9.3 (12.7)	6.6 (7.8)	
Subjective symptoms	4.7 (4.2)	2.2 (3.2)	3.8 (4.1)
(SD)			
Ethnic group			
White	13 (65%)	51 (93%)	15 (52%)
Black	4 (20%)	3 (5%)	9 (31%)
Other races	3 (15%)	1 (2%)	5 (17%)
Social class			
1	5 (15%)	8 (15%)	3 (10%)
II	5 (25%)	15 (27%)	5 (17%)
III-nonmanual	3 (15%)	12 (22%)	8 (28%)
III-manual	0	2 (4%)	0
IV	3 (15%)	9 (16%)	3 (10%)
V	1 (5%)	6 (11%)	0
Unemployed	5 (25%)	3 (5%)	10 (35%)
Area of residence			
Urban	18 (90%)	11 (10%)	29 (100%)
Rural	2 (10%)	44 (80%)	0

SCORAD, Scoring atopic dermatitis; SCORAD-D, objective SCORAD.

AD severity over time as the outcome

Fig 1 shows that there are 3 subgroups of children with similar severity changes over time. However, subanalysis of each group was carried out to evaluate if these children had a similar increased risk of severe disease over time or whether a substantial difference did exist.

Table I shows that the mean scores by SCORAD for those who attended 1 follow-up visit and who attended more than 1 follow-up visit are almost the same. Table I also shows that there were no substantial differences in the demographic characteristics of these groups, except for those who attended 3 follow-up visits, where there was more unemployment in the family. These patients were recruited from 1 practice in an urban area.

Subgroup analyses. Results were similar for all 3 subgroups (those with complete data from 2 visits, 3 visits, and all 4 visits). The 3 subgroups had a similar tendency to increased risk for severe disease with an OR of approximately 2 within the 95% CI of the total group without reaching statistical significance in the 2-visit subgroup. Although not significant, it was not possible to say that there was no association because this may present a type II error. This could have happened as a result

Table II. Risk for more severe disease (exposure onset during the first year and urban area) per each group of patients

Exposure (explanatory variable)	No. of children seen	OR	95% CI	P value
Onset during the first year	Total No. included	2.1	1.2-3.3	.006
ŕ	29 children who attended all 4 visits	2.56	1.03-6.33	.043
	55 children who attended the last 3 visits only	2.67	0.99-7.09	.05
	20 children who attended the last 2 visits only	1.3	0.34-5.2	.67
Urban area	Total No. included	1.87	1.12-3.11	.017
	55 children who attended the last 3 visits only	3.5	0.9-13.4	.06
	20 children who attended the last 2 visits only	1.2	0.3-4.3	.79

CI, Confidence interval; OR, odds ratio.

of the small number of patients included in the subanalysis, which was reflected by the relatively wider 95% CI (Table II). Urban area as an exposure has a similar outcome when the subanalysis was carried out (Table II). It should be explained that the 29 children attending all 4 visits were not included in this analysis because they were all recruited from the urban area, and not because they differed in other way from the other 2 subgroups.

With adjustments for a main effect of visit, there was no significant main effect of time (F3, 135 = 0.92, P = .43). With a visit onset interaction term, there was no significant main effect of time by onset interaction (F3, 135 = 0.45, P = .72).

It can be concluded from the results shown in Tables II and III and the subanalysis that these 3 subgroups and the total number included follow similar disease patterns over time. Therefore, the total number of observations per visit is a valid grouping and will be included in the longitudinal analysis controlling for each observation. In other words, the patient remained the unit of analysis and was not a duplicate number of observations.

Eczema starting during the first year of life

Parents of 93 (68%) children reported onset of eczema during the first year of life, 21 (16%) at the age of 2 years, 18 (13%) at 2 to 6 years, and 4 (3%) at 7 years or more. There was no marked sex difference in children whose eczema started during the first year of life (49 [53%] girls and 44 boys, P = .93).

The odds of having severe disease were almost 2 times greater in children with eczema that started during the first year of life before and after adjusting for potential confounders (Table III).

Child's atopy (asthma/hay fever)

In all, 62 (45%) and 59 (43%) children had a positive history of hay fever and asthma, respectively. In total, 87 (64%) children had a history of atopy before joining the study.

Child's hay fever. Children who had experienced hay fever were 2.5 times more likely to have severe AD than those who did not. Children with hay fever were still at higher risk of severe AD than those without hay fever when asthma was included with other potential confounders in the analysis (Table III).

Child's asthma. Children who had experienced asthma had more severe disease than those who had never had asthma. This became marginally statistically insignificant after adjusting for hay fever (Table III). If hay fever was not included among other potential confounders, children with AD who had asthma were still at a statistically significant high risk of having severe AD compared with those who had never had asthma (Table III).

Social class

Children were classified by the father's job on recruitment; the mother's job was used for single mothers or where the father was unemployed and she was employed. The social class ranking was formed according to the Registrar General classification.14 For 75 (55%) children parents were ranked in social classes I. II. and III-nonmanual: and 32 (23%) children in social classes III-manual, IV, and V. Parents of 30 (22%) children were unemployed, of these 27 (20%) children were from the urban area.

Children in social classes I and II were compared with those from other social classes. There was no significant difference in disease severity between children in social classes I and II, and those in other social classes (Table III).

Area of residence

The study included 2 populations from 2 different areas of residence (urban/rural) in the United Kingdom. Children with AD in the urban area had a significantly higher risk of severe disease than their

Table III. Odds ratio for severe atopic dermatitis before and after adjusting for potential confounders

Exposure (explanatory variable)	Adjustment	OR	95% CI	P value
	Nil	2.1	1.2-3.3	.006
Onset during the first year	For ethnic origin, social class, sex, child's age, family size, and urban area		1.2-3.2	.008
Child's hay fever	Nil	2.49	1.44-4.3	.001
	For ethnic origin, social class, sex, child's age, family size, urban area, and asthma	2.42	1.39-4.2	.002
Child's asthma	Nil	1.95	1.34-3.34	.016
	For hay fever	1.67	0.96-2.9	.07
	For ethnic origin, social class, sex, child's age, family size, and urban area	2.0	1.1-3.6	.021
Social class	Nil	1.02	0.57-1.8	.95
Area of residence	Nil	1.87	1.12-3.11	.017
	For ethnic origin, social class, sex, child's age, and family size	2.15	1.12-4.1	.021

Cl. Confidence interval: OR, odds ratio.

rural counterparts. This difference remained statistically significant after adjusting for potential confounders.

However, one should bear in mind an observer bias, as the investigator was aware where the children came from. To determine whether the patients from an urban area could have received a high score, the SCORAD index was excluded and parental global assessment of disease severity was used to investigate the effect of any potential bias on the outcome. The risk of severe disease in the urban group remained highly significant (OR = 2.78, 95% CI 1.65-4.69, P < .001).

Other factors

Other factors collected by piloted questionnaire that was self-completed by the parents at the time of examination such as breast-feeding, family size, sex, birth weight, gestational age, child's age, and any atopy (hay fever, asthma, or eczema) in parents and siblings had no significant association with disease severity.

DISCUSSION

General

This is the first time that AD severity has been studied systematically and longitudinally, using a valid instrument for severity assessment, in a primary care setting. We were able to show that: (1) children with AD whose eczema started during the first year of life were more likely to have severe disease than were those whose eczema started later; (2) a history of atopy (asthma, hay fever, or both) was associated with severe AD; and (3) children with AD who lived in an urban area were at increased risk of severe disease compared with their counterparts who lived in a rural environment. These data have been examined closely for selection, measurement, and information bias, and no substantial effect on the outcome was found.^{7,9}

Age at onset

Eczema starting during the first year of life was a predictor of more severe disease later in life. The exposure status regarding the age of onset in this study was not biased and was consistent with other data found in the literature in which most cases were found to occur during the first year of life.15 From another study with a similar distribution of disease onset, the majority starting during the first year of life, Queille-Roussel, Raynaud, and Saurat¹⁶ reported no association between age of onset and disease severity. The latter study recruited children from both inpatient and outpatient populations of a specialized pediatric dermatology unit and the investigator used a locally constructed system to assess disease severity. The dissimilarity in study design and severity assessment may explain the contrasting findings.

Eczema in the mother may be considered as a potential confounder; so is it appropriate to adjust for the mother's eczema? A mother with experience of eczema may recognize the disease sooner in her child than a mother without such experience, leading to earlier diagnosis. She may also assign a higher score to the same symptoms because she can imagine more easily what her child may be experiencing. Thus, eczema in the mother could be a true confounder if she had scored eczema severity. However, the outcome (SCORAD) consists of a maternal score (symptoms) and an observer's score (signs score). Therefore, the maternal eczema would not be independently related to disease severity in children. However, the child's eczema severity could be a consequence of the fact that the mother had eczema. The latter, therefore, is not a real confounding factor because it was not independently related to both the exposure (onset during the first year) and outcome (disease severity), and did not need adjustment. Onset of eczema during the first year of life was a predictor of severe disease, which may imply that factors acting in utero or during the first year of life had affected disease severity. Longer follow-up studies are needed to measure the association over a longer period, for example the effect on adult eczema and to answer the question: does this effect remain the same or does it change?

Child's atopy

We have shown that any atopic disease (asthma, hay fever, or both) in a child was significantly associated with more severe disease, with hay fever as the dominant significant effect. However, the risk of severe disease in children with asthma became marginally statistically insignificant (P = .071) after adjusting for hay fever, compared with those without asthma. This raises the question: is hay fever a true confounder? It is part of the exposure (atopy: eczema, hay fever, and asthma) and may be associated with the outcome (AD severity). Hay fever does not appear to be a true confounder because it forms part of the exposure and is not independently associated with the exposure. Therefore, an adjustment for hay fever cannot be justified, and asthma is likely to have had a real effect on disease severity. Our findings are in accordance with those of Musgrove and Morgan¹⁷ from a historic cohort study that showed that the persistence of eczema was greater in those who had asthma, hay fever, or both. Rystedt15 has found that associated allergic rhinitis, bronchial asthma, or both were unfavorable prognostic factors for healing of AD. The finding that hay fever had an independent effect on disease severity is in agreement with the findings of Rystedt¹³ that allergic rhinitis had the dominant effect of these 2 factors. However, she used the number of affected skin sites as a measure of dermatitis severity. Vickers¹⁸ has shown that the prognosis appeared to be slightly worse when the patient had classic bronchial asthma, but hay fever and urticaria, when present, did not influence the prognosis at 10 years of age. Most of these studies looked at the prognosis of AD using a completely different design and were mainly based in a hospital setting. Although these findings are in partial agreement with those of our study, direct comparison is not possible because of the differences in inclusion criteria and assessment of outcome.

Area of residence

We have shown that the risk of more severe disease was about 2 times higher in children with AD who live in an urban area compared with those who live in a rural environment. However, it was not possible to make the observer blind to the exposure, given the study design. This is unlikely to have affected the outcome because the risk remained significant even when 2 different types of severity assessment were used.

Potential reasons for this difference in disease severity might be the differences in air quality, or exposure to allergens or infection in the rural environment. Another factor could be the differences in the water supply between the 2 areas.¹⁹

Differences in ethnic background do not explain this disparity because when black children with AD were not included in the comparison between urban and rural areas, children living in the urban still had a higher risk of severe disease than their white counterparts.

Although Poysa et al20 reported an increased prevalence in the urban area, to our knowledge no one has reported an effect of the urban environment on AD severity, especially in a primary care setting. However, further studies that include information about water supply and air pollution may be needed before a valid explanation for this disparity can be achieved. Such a study should also be able to identify differences in exposure to allergens such as house dust mite and pollens that, therefore, might have an important implication on a better understanding of this disease.

Social class

Social class seems to have had no significant effect on disease severity. Although direct comparisons cannot be made, the social class distribution in this population was similar to that reported in the 1971 census in which the majority were in social classes III and IV.14 However, the overrepresentation of social classes I and II in the study population could be explained by the increased prevalence of AD among these classes.²¹ This suggests that the social classes in this population were representative and that exposure bias was less likely to have affected the results.

The strength of our study is in the methodology that has been implemented and can be summarized in the following points: (1) use of a valid and reliable scoring instrument, the SCORAD index; (2) previously trained observer to assess AD severity; (3) the assessment of AD severity by the same observer each time; (4) the observer remained blind to the outcome of interest except in urban area and in children with black skin; (5) high follow-up rate (88%); and (6) assessment over a period of time has circumvented the obstacle facing AD severity assessments because measurement at a single point in time does not truly reflect the disease status.

On the other hand, our study has its own limitation because of the low response rate at recruitment. This may have led to a selection bias that cannot be completely excluded, although it was less likely to have affected the outcome. Another limitation was the observer awareness of area of residency (urban/ rural) at the time of severity assessment because it was impossible to make the observer blind to this for obvious reasons.

Conclusion

There are a number of clinical implications resulting from this study. First, clinicians should be aware of these risk factors (early onset, child's atopic status, and residence in an urban area) as these children tend to have more severe AD. This may help them in the management of such cases and it may also explain differences in treatment responses. Second, it suggests that, in clinical trials, data for these patients should be analyzed separately. The observation that hay fever, asthma, or both were predictors of severe disease means that controlling for these factors and carrying out a subanalysis of the data may be advisable before concluding whether a particular drug is effective or not.

We thank the parents and children for helping with this study, and the following general practitioners and their staff for their help with this study: Drs J. Buchan, Z. Cassidy, C. Challacombe, S. Curson, K. Hopkinson, R. Kahdim, H. Lavender, C. MacCarthy, T. McVey, and S. Smith.

REFERENCES

- 1. Hanifin JM, Rajka J. Diagnostic features of atopic dermatitis. Acta Derm Venereol 1980;92(Suppl):44-7.
- 2. Williams HC, Burney PGJ, Pembroke AC, Hay RJ, on behalf of the UK diagnostic criteria for atopic dermatitis working party. Validation of the UK diagnostic criteria for atopic dermatitis in a population setting. Br J Dermatol 1996;135:12-7.
- 3. Taylor B, Wadsworth J, Wadsworth M, Peckham C. Changes in the reported prevalence of childhood eczema since the 1939-45 war. Lancet 1984;2:1255-7.
- 4. Williams HC. Is the prevalence of atopic dermatitis increasing? Clin Exp Dermatol 1992;17:385-91.
- 5. Harlow ED, Burton JL. What do general practitioners want from a dermatology department? Br J Dermatol 1996;134:313-8.
- 6. European Task Force on Atopic Dermatitis. Severity scoring of atopic dermatitis; the SCORAD index. Dermatology 1993;186:
- 7. Ben-Gashir MA, Seed PT, Hay RJ. Is family's quality of life and disease severity related in children with atopic dermatitis? J Eur Acad Dermatol 2002;16:455-62.
- 8. Ben-Gashir MA, Seed PT, Hay RJ. Quality of life and disease severity are correlated in children with atopic eczema. J Eur Acad Dermatol 2001;15(Suppl):111-2.
- 9. Ben-Gashir MA, Seed PT, Hay RJ. Reliance on erythema scores masks severe atopic dermatitis in black children compared to their white counterparts. Br J Dermatol 2002;147:920-5.
- 10. Anderson JA. Regression and ordered categorical variables (with discussion). R Stat Soc Series B. 1984;46:1-30.

- Huber PJ. The behaviour of maximum likelihood estimates under non-standard conditions. In: Proceedings of the Fifth Berkeley Symposium in Mathematical Statistics and Probability. Berkeley (CA): University of California Press; 1967. p. 221-33.
- 12. Rogers WH. Regression standard errors in clustered samples. Stata Techn Bull 1993;13:19-23.
- Kunz B, Oranje AP, Labreze L, Stalder JF, Ring J, Taieb A. Clinical validation and guidelines for the SCORAD index: consensus report of the European task force on atopic dermatitis. Dermatology 1997;195:10-9.
- 14. Leete R, Fox J. Registrar general's social classes: origin and uses. Popul Trends 1977;9:1-7.
- 15. Rystedt I. Long-term follow-up in atopic dermatitis. Acta Derm Venereol 1985;114(Suppl):117-20.
- 16. Queille-Roussel C, Raynaud F, Saurat J-H. A prospective comput-

- erized study of 500 cases of atopic dermatitis in childhood, l: initial analysis of 250 parameters. Acta Derm Venereol 1985; 114(Suppl):87-92.
- 17. Musgrove K, Morgan JK. Infantile eczema, a long-term follow-up study. Br J Dermatol 1976;95:365-72.
- 18. Vickers CHF. The natural history of atopic eczema. Acta Derm Venereol 1980;92(Suppl):113-5.
- McNally NJ, Williams HC, Smallman-Raynor M, Lewis S, Venn A, Britton J. Atopic eczema and domestic water hardness. Lancet 1998;352:527-31.
- 20. Poysa L, Korppi M, Pietikainen M, Remes K, Juntunen-Backman K. Asthma, allergic rhinitis and atopic eczema in Finnish children and adolescents. Allergy 1991;46:161-5.
- 21. Williams HC, Strachan DP, Hay RJ. Childhood eczema: disease of the advantaged? BMJ 1994;308:1132-5.

Severity distribution of atopic dermatitis in the community and its relationship to secondary referral

R.M.EMERSON, H.C.WILLIAMS AND B.R.ALLEN

Dermato-Epidemiology Research Unit, University Hospital, Queen's Medical Centre, Nottingham NG7 2UH, U.K. Accepted for publication 16 January 1998

Summary

Although atopic dermatitis is the most common inflammatory dermatosis affecting children, no previous studies have evaluated the relationship between disease severity and the referral pattern to secondary health care services. We carried out a cross-sectional survey of 1760 children aged 1-5 years selected from the age-sex registers of four urban and semiurban general practices in Nottingham. Atopic dermatitis was diagnosed by a dermatologist on the basis of symptoms and signs of a flexural itchy rash that had been present in the previous 12 months. The severity of atopic dermatitis was assessed clinically by the same dermatologist on the basis of reported symptoms over the previous 12 months and clinical signs, and was graded on a three-point scale as mild, moderate or severe. Information on the use of primary and secondary health care services was recorded at the time of the interview. The 1-year period prevalence of atopic dermatitis was 16.5% (95% confidence interval 14.7-18.2%). The severity distribution of atopic dermatitis was: mild 84% (n=242), moderate 14% (n=41) and severe 2% (n=7). Of those children with atopic dermatitis, 96% (n = 278) had consulted their general practitioner in the previous 12 months and 6% (n = 17) had been seen in secondary care. Overall, 4% (n=11) of those children with atopic dermatitis had a consultation with a dermatologist. Other sources of secondary care referral included the paediatric department (n = 2) and accident and emergency department (n = 6). Referral to secondary care was found to be positively related to disease severity, with referral occurring in 3% of mild cases, 15% of moderate cases and 43% of severe cases. Although the relative referral rate of mild and moderately severe disease was low, these cases were found to represent a significant proportion (82%) of the total numbers of children seen in secondary care. This study has shown that: (i) most cases of atopic dermatitis in the community are mild in severity; (ii) referral to secondary health care services by general practitioners is infrequent; (iii) disease severity is an important determinant of referral to secondary care; and (iv) any potential change in the referral pattern of mild/moderate cases of atopic dermatitis to secondary care is likely to produce a significant increase in workload for dermatology departments.

Morbidity statistics from general practice in 1991–92 show that 15% of the population consult their general practitioner for skin diseases. Of these skin diseases, atopic dermatitis is the most common disorder. Consultation rates are highest among children aged under 5 years, and these have doubled compared with a previous survey in 1981–82. In addition to more people seeking help, other research suggests that the disease prevalence of atopic dermatitis has increased over the past 30 years. ²

Despite the reported increase in the use of services in general practice, little is known about the effect of this on secondary health care services. Anecdotal reports from consultant dermatologists would suggest that there has been an increase in the number of new patient referrals with atopic dermatitis, but we lack any objective and comparative statistics to back this claim. We also have little knowledge about the reasons for referral to secondary health care. It seems plausible that disease severity is a major determinant of referral, yet no previous studies have evaluated this. In order to provide some baseline data for referral rates to specialists and to explore the association between disease severity and referral rates, we conducted a population-based study of pre-school children.

Subjects and methods

Sample selection

All children aged 1-5 years listed on the age-sex

73

registers of general practices in Nottingham were identified. Four practices were selected to provide a representative community population sample on the basis of urban/rural location, social class distribution, list size and accessibility. Each of the four practices had four full-time general practitioners with an average patient list size of 7700 per practice.

The parents of every child were sent a postal questionnaire. This included questions about reported doctor-diagnosed atopic dermatitis and screening questions for atopic dermatitis symptoms from the U.K. refinement of Hanifin and Rajka's diagnostic criteria.³ Those parents reporting a history of an itchy skin rash or of doctor-diagnosed atopic dermatitis were then selected for an interview and examination at their doctor's surgery or at their own home. Information was collected from identified cases in order to evaluate their use of primary and secondary health care services. The study was a part of a larger research project evaluating health care services for atopic dermatitis in the community.

Disease definition and severity

A clinical diagnosis of atopic dermatitis was made by a dermatologist based on the presence of symptoms and signs within the previous 12 months. These included a history of an itchy rash affecting the skin flexures, a history of dry skin and presence or absence of other atopic disease and examined signs in accordance with recommendations made in the U.K. refinement of diagnostic criteria for atopic dermatitis. Severity was determined based on a global assessment of severity according to the disease duration, intensity of clinical symptoms and clinical signs, including the extent of erythema, excoriation and lichenification The same dermatologist conducted each evaluation and was familiar with evaluating children in paediatric dermatology clinics.

Ethics approval and statistical analysis

The study received full ethical approval by the University Hospital, Queen's Medical Centre in Nottingham. Parental consent was obtained for the questionnaire and examination. In addition to written approval of the participating primary health care centre physicians, approval was also obtained by the Local Medical Committee representing general practitioners in the area. Results were expressed as proportions, with corresponding confidence intervals calculated using

the microcomputer package Confidence Interval Analysis. 4

Results

Prevalence estimation and severity distribution

The overall response to the first questionnaire after three mailings was 86.5% (1523 of 1760). This group comprised 95% white caucasian children in an approximately equal sex distribution (male-female = 1:1) and the following social class distribution:⁵ I (5.6%), II (14.8%), IIIa (10.5%), IIIb (18.7%), IV (16.3%) and V (34.8%). The social class and sex distribution of those children with diagnosed atopic dermatitis was very similar to those of the base population. The 12-month period prevalence of atopic eczema was 16.5% (290 of 1760), with a 95% confidence interval of 14.7-18.2%. Prevalence varied according to age, with a higher prevalence observed in younger children: 22% in children aged 1-2 years (67 of 304); 19% in children aged 2-3 years (79 of 426), 13% in children aged 3-4 years (52 of 389); and 15% in children aged 4-5 years (97 of 632). The observed variation was statistically significant using the χ^2 test for linear trend (P < 0.05). The overall severity distribution of atopic dermatitis was: mild 84% (n = 242), moderate 14% (n = 41) and severe 2% (n = 7).

Referral to secondary health care services

The overall referral rate to secondary care was 6% (17 of 290), with most children having been seen in the past 12 months (n = 16). This corresponded to 96% (278 of 290) having attended for one or more consultations with their general practitioner in the previous 12 months. Secondary health care services used by children included hospital dermatologists (n = 11), private dermatologists (n=4), paediatricians (n=2) and accident and emergency staff (n = 6). Overall, 4% (11 of 290) of children had seen a dermatologist. Of the 11 children seen by a National Health Service dermatologist, four had also been seen privately by the same or a different dermatologist. Both children seen by a paediatrician were reported to suffer from coexistent asthma and atopic dermatitis. They are included in the study because advice on the management of atopic dermatitis was obtained. All referrals to the accident and emergency department were initiated by the parents or families of children with atopic dermatitis. No significant differences were observed in the referral

© 1998 British Association of Dermatologists, British Journal of Dermatology, 139, 73-76

rate between each of the practices involved in the study. When participating general practitioners were asked whether or not they thought they should refer more children, almost all of them indicated that hospital waiting list times for appointments were a major deterrent to referral.

The relationship between disease severity and referral to secondary health care services

The likelihood of referral to secondary health care services was found to increase with increasing disease severity (Table 1). In relative terms, the referral rate of children with mild (3%) and moderate disease (15%) was much lower than that for children with severe disease (43%). Although the relative referral rate of children with mild and moderate disease is low, Table 1 shows that they represent a large proportion of the total number of children referred to secondary care. Severe cases represent only 18% of the total number of children seen in secondary care. Many families of referred children with mild/moderate disease expressed great satisfaction from a specialist consultation about diagnosis, treatment, diet, preventive measures and more detailed information.

Discussion

The main findings in this study are that secondary referral of pre-school children with atopic dermatitis is generally low, that disease severity is a significant factor influencing referral and that mild to moderate cases amount for a large proportion of those who are eventually seen in secondary care.

Overall, 6% of children with atopic dermatitis were seen either by a dermatologist or paediatrician or in the accident and emergency department. Four per cent of children with atopic dermatitis were referred directly to a dermatologist by a general practitioner. Studies on referral rates for other diseases indicate that 6–8% of all

consultations in general practice result in a referral to out-patients. 6 Given that almost all children with atopic dermatitis had consulted their general practitioner on one or more occasions in the previous 12 months, the observed referral rate would seem to be quite low. One possible explanation might be that some of the general practitioners in this study may have had a particularly high threshold for referral. However, no significant differences in referral rates were observed between general practitioners or individual practices, and their referral rates for other conditions were similar to other general practitioners in the Nottingham area. The reason for this low referral rate is unknown, although waiting list times for a hospital appointment and the relapsing and remitting nature of atopic dermatitis may have been contributing factors.

The main factor evaluated in this study in relation to referral was disease severity. We were able to demonstrate that increasing disease severity is associated with an increasing referral rate to secondary care services. Only 3% of children with mild atopic dermatitis were referred compared with 43% of those with severe disease. We acknowledge that disease severity is an important but not the only factor influencing referral. Other factors may include the need for confirmation of diagnosis, treatment, education and advice on how to use treatments prescribed.⁷

When evaluating the effect of disease severity on referral to secondary care services, it is the absolute numbers of children referred rather than the relative referral rate that is of more importance. Even low rates of referral of children with mild disease results in a significant number being seen in secondary care, simply because children with mild disease vastly outnumber those with severe disease. In this study population, mild and moderate cases represented 82% of the total number of referred patients. This is important, as any factors influencing referral rates of mild or moderately severe cases to secondary care will have a dramatic effect on hospital workload. This may apply to new

Table 1. Increase in referral rate in relation to disease severity

Disease severity	Number of referred children	Severity of base population	Referral rate (%)	Proportion of total referred (%)
Mild	8	242	3	47
Moderate	6	41	15	35
Severe	3	7	43^{a}	18
Total	17	290		

 $^{^{}a}\chi^{2}$ test for linear trend = 23.9 (P < 0.01).

© 1998 British Association of Dermatologists, British Journal of Dermatology, 139, 73-76

treatments, guidelines for management in primary care or changing public opinion about the perceived need for dermatology services for atopic dermatitis. Health care professionals need to be aware of these issues before introducing changes that could alter the current balance of referrals across the primary—secondary care interface.

Acknowledgments

We thank the four general practices in Nottingham, and Novartis for supporting a grant towards this research project. This work was presented at the annual meeting of the British Association of Dermatologists in July 1997.

References

- 1 RCGP, OPCS, DHSS. Morbidity Statistics from General Practice: Fourth National Study 1991–92. Series MB5 No. 3. London: HMSO, 1995.
- 2 Williams HC. Is the prevalence of atopic dermatitis increasing? *Clin Exp Dermatol* 1992; 17: 385–91.
- 3 Williams HC, Burney PGJ, Pembroke AC *et al.* The U.K. Working Party's diagnostic criteria for atopic dermatitis. III. Independent hospital validation. *Br J Dermatol* 1993; **131**: 406–16.
- 4 Gardner MJ, Gardner SB, Winter PD. *Confidence Interval Analysis*. London: British Medical Journal Publications, 1991.
- 5 OPCS. Standard Occupational Classification, Vols 1 and 2. London: HMSO, 1990.
- 6 Acheson D. Variations in hospital referrals. In: Health, Education and General Practice (Smith GT, ed.). London: Office of Health Economics, 1985
- 7 Long CC, Funnell CM, Collard R, Finlay AY. What do members of the National Eczema Society really want? Clin Exp Dermatol 1993; 18: 516–22

Dermatitis. Author manuscript; available in PMC 2015 May 01.

Published in final edited form as:

Dermatitis. 2014; 25(3): 107-114. doi:10.1097/DER.000000000000034.

Associations of childhood eczema severity: A US population based study

Jonathan I. Silverberg, MD, PhD, MPH¹ and Eric L. Simpson, MD, MCR²

- ¹ Departments of Dermatology, Preventive Medicine and Medical Social Sciences, Northwestern University, Chicago, IL 60611, USA
- ² Department of Dermatology, Oregon Health & Sciences University, Portland, OR, 97239, USA

Abstract

Little is known about predictors of eczema severity in the US population. We sought to determine the distribution and associations of childhood eczema severity in the US. We analyzed data from the 2007 National Survey of Children's Health, a prospective questionnaire-based study of a nationally representative sample of 91,642 children (0-17yr). The prevalence of childhood eczema was 12.97% (95% confidence interval [95% CI]=12.42-13.53); 67.0% (95% CI: 64.8-69.2) had mild, 26.0% (95% CI: 23.9-28.1) moderate and 7.0% (95% CI: 5.8-8.3) severe disease. There was significant statewide-variation of the distribution of eczema severity (Rao-Scott chi square, P=0.004), with highest rates of severe disease in Northeastern and Midwestern states. In univariate models, eczema severity was increased with older age, African-American and Hispanic race/ ethnicity, lower household income, oldest child in the family, home with a single mother, lower paternal/maternal education level, maternal general health, maternal/paternal emotional health, dilapidated housing and garbage on the streets. In multivariate survey logistic regression models using stepwise and backward selection, moderate-severe eczema was associated with older age, lower household income and fair or poor maternal health, but inversely associated with birthplace outside the US. These data indicate that environmental and/or lifestyle factors play an important role in eczema severity.

Keywords

eczema; atopic dermatitis; eczema severity; epidemiology; race; ethnicity; socioeconomic status

Introduction

Atopic dermatitis (AD) or eczema is a chronic inflammatory disorder of the skin that poses a significant public health burden. Several recent studies shed light on the epidemiology of

Corresponding author and reprint requests: Jonathan I. Silverberg, MD, PhD, MPH Northwestern University Department of Dermatology Suite 1400 680 Lake Shore Drive Chicago, IL 60611 JonathanISilverberg@Gmail.com Tel: 312-503-4985 Fax: 312-908-9588.

Statistical analysis: JI Silverberg Conflicts of Interest: None reported. Financial Disclosure: None reported.

eczema in the US. A study of 102,353 children from the 2003 National Survey of Children's Health (NSCH) found that the US prevalence of childhood eczema is 10.7% ¹. A study of 27,157 adults from the 2010 National Health Interview Survey found a 10.2% prevalence of eczema ². While these studies help to define the disease prevalence, little is known about the distribution of disease severity in this population.

While factors such as ethnicity, urban living ¹, and climatic factors ³ are known to influence disease risk, it is unclear what role factors such as these may play in determining disease severity. Mutations in the skin barrier gene filaggrin, while playing an important role in disease risk, have inconsistently been linked to disease severity ⁴⁻¹⁰. Understanding the factors driving disease severity is important, as our previous work and the work of others revealed that disease severity directly correlates with the future risk for developing allergic comorbidities and asthma ^{11, 12}. Additionally, children with severe disease are more likely to have a protracted disease course and a significantly worse quality of life compared to those with more mild disease ¹¹. Understanding the distribution and risk factors for disease severity may help identify opportunities to intervene in the hopes of improving the overall disease course. We aimed to determine the distribution and associated factors of childhood eczema severity in the US using a large population-based cross-sectional database.

Methods

National Survey of children's Health (NSCH)

We used data from the 2007-2008 NSCH survey of 91,642 households, which was designed to estimate the prevalence of various child health issues. NSCH was sponsored by the Maternal and Child Health Bureau and the U.S. Department of Health and Human Services with a goal of >1,700 households per state. The National Center for Health Statistics conducted the study using the State and Local Area Integrated Telephone Survey program. The telephone numbers were chosen at random, followed by identification of the households with one or more children under the age of 18 and caregiver interview. Interviews were conducted in English, Spanish, and 4 Asian languages. Subsequently, caregivers were interviewed about a randomly selected child. The survey results were weighted by the NSCH to represent the population of non-institutionalized children nationally and in each state. Using the data from U.S. Bureau of the Census, sample weights were created that factored age, sex, race/ethnicity, household size, and educational attainment of the most educated household member using a multi-stage area probability sampling design by NSCH. These sample weights are needed to provide nationally representative prevalence estimates for each state's population of non-institutionalized children less than 18 years of age as previously described ¹³. All frequency data are presented as raw values, whereas prevalence estimates presented reflect this complex weighting. The National Center for Health Statistics of Center for Diseases Control and Prevention oversaw sampling and telephone interviews. Approval by the institutional review board was waived.

Eczema prevalence and severity

Eczema and skin allergy prevalence was determined using the NSCH question, "During the past 12 months, have you been told by a doctor or other health professional that (child) had

eczema or any kind of skin allergy?" This is referred to as eczema throughout the manuscript. Since this question assessed healthcare diagnosed eczema, we excluded all subjects who responded "no" or "don't know" to the question, "During the past 12 months, did (child) see a doctor, nurse, or other health care professional for any kind of medical care, including sick-child care, well-child check-ups, physical exams, and hospitalizations?" There were 91,642 children in the cohort; 79,667 of them had healthcare interaction in the previous year and were included in the final analysis. Severity of eczema was determined using the NSCH question, "Would you describe (child's) eczema or skin allergy as mild, moderate, or severe?" Responses were encoded as an ordinal variable, where 1=mild, 2=moderate and 3=severe.

Associations with eczema

A number of associations with eczema severity were examined, including age, sex, race/ethnicity, household income, family structure and size, highest level of maternal and paternal education, maternal and paternal birthplace, overall and mental health, primary language spoken in home, birthplace in the US, residence in a metropolitan area, smokers living in the home, smoking in the home, dilapidated housing, presence of garbage on the street, parks and sidewalks in the neighborhood. These covariates were selected for analysis based on a priori hypotheses and from the results of previous studies ^{1, 2, 14}.

Data processing and statistical methods

All data processing and statistical analyses were performed in SAS version 9.2. Analyses of survey responses were performed using SURVEY procedures. Univariate associations were tested by Rao-Scott chi-square tests (SURVEYFREQ). Multivariate logistic regression models were constructed with eczema severity dichotomized into moderate-severe vs. mild (SURVEYLOGISTIC). Models included predictors from bivariate analysis with P-values <0.05. This approach was used over ordinal logistic regressions because the data did not meet the proportional odds assumption (Score test, P <0.01) and for parsimony. All variables were tested in the model using backward and stepwise selection with the same results. There were no differences between these approaches. Significant explanatory variables included in the final models are presented. Adjusted odds ratios and 95% confidence intervals (95% CI) were estimated for each covariate. Complete data analysis was performed, i.e. subjects with missing data were excluded.

Correction for multiple dependent tests (k=27) was performed by minimizing the false discovery rate with the approach of Benjamini and Hochberg 15 and yielded a critical P-value of 0.026. Thus, uncorrected P-values are presented and P-value <0.026 was considered to be statistically significant.

Results

Eczema prevalence and severity

Eczema prevalence was 12.97% (95% CI = 12.42 - 13.53). Overall, sixty seven percent (95% CI: 64.8 - 69.2) of children with eczema reportedly had mild, 26.0% (95% CI: 23.9 - 12.42 - 13.53).

28.1) moderate and 7.0% (95% CI: 5.8 - 8.3) severe disease. That is equivalent to 5.6, 2.2 and 0.6 million US children having mild, moderate and severe disease, respectively.

There was a significant variation of the distribution of eczema severity nationwide (Rao-Scott chi square, P = 0.004). Rates of severe eczema ranged from 2.0 - 12.9% across states and districts (Figure 1). The highest rates of severe eczema occurred predominantly located in Northeastern and Midwestern states.

Univariate analyses

Eczema severity was associated with older age (P = 0.0003), African-American and Hispanic race/ethnicity (P < 0.0001) but not sex (P = 0.12) (Table 2). Several household factors were associated with increased eczema severity, including lower household income (P < 0.0001), being the oldest child in the family (P = 0.02), home with a single mother and no father present (P < 0.0001), but not number of children in the household (P = 0.03) or primary language spoken in home (P = 0.27).

Several parental factors were associated with more severe eczema, including paternal and maternal education level (P = 0.001 and <0.0001, respectively), maternal general health (P < 0.0001) and maternal and paternal emotional health (P < 0.0001 and 0.02, respectively). However, paternal, maternal and child birthplace inside the US were not associated with eczema severity (P = 0.04).

Finally, several local environmental factors were associated with more severe eczema, including dilapidated housing (P = 0.0009) and garbage on the streets (P = 0.001). However, eczema severity was not associated with residence in a metropolitan area (P = 0.26), smokers living at home (P = 0.03), indoor smoking (P = 0.29) or the presence of a park (P = 0.53) or sidewalk (P = 0.94) in the neighborhood (Table 3).

Multivariate analysis

Multivariate survey logistic regression models were constructed using backward and stepwise selection from all significant variables from univariate analyses. Moderate – severe eczema was associated with older age (adjusted odds ratio [95% confidence interval], P-value; $1.05 \, [1.03 - 1.07]$, P < 0.0001), lower household income (0-99% FPL: 1.91 [1.39 – 2.63], P < 0.0001; 100-199% FPL: $1.60 \, [1.20 - 2.12]$, P = 0.001; 200-399% FPL: $1.39 \, [1.06 - 1.83]$, P = 0.01) and fair or poor maternal health (2.16 [1.47 – 3.16], P < 0.0001), but inversely associated with birthplace outside the US (0.44 [0.22 – 0.89], P = 0.02).

Discussion

Using a population-based sample, we present the distribution and associations of eczema severity in the US. The findings of this study suggest a multifactorial role of genetic, environmental and lifestyle factors on eczema severity. First, we found significant statewide variation of eczema severity, with severe eczema occurring predominantly in Northeastern and Midwest states. Further, eczema severity was associated with household income, family structure, parental education and health, dilapidated housing and the presence of garbage on local streets and inversely associated with birthplace in the US. Previous international

> studies found only weak associations ^{5-7, 9, 10} or no associations ^{4, 8} between filaggrin mutations and AD severity. Together, these suggest that environmental and/or lifestyle factors drive disease severity in the US and play as much, or even more important role than genetics.

The present study assessed self-reported eczema severity over a 1 year period. This measure provides an overall assessment of eczema severity over a relatively broad time period and is distinct from disease prevalence or incidence. This approach is quite useful because assessment of eczema severity at a single time point may not capture the true disease severity given the waxing and waning nature of the disease. We found that the distribution of eczema severity was 67% mild, 26% moderate and 7% severe. This is a slightly more severe disease distribution than the distribution of 82% mild, 12% moderate and 6% severe found in a previous study in the United Kingdom using a novel eczema severity score ¹⁶. Another UK study using clinician assessment of severity found 84% mild, 14% moderate and 2% severe ¹⁷. The different distributions may reflect population-based differences of eczema severity between the US and UK. Alternatively, caregiver-report of AD severity may differ from that of the Nottingham Eczema Severity Score or clinician assessment used in those studies ^{16, 17}. Nevertheless, we previously demonstrated that caregiver-report of eczema severity strongly correlated with quality-of-life reporting and healthcare utilization in the US ¹². Thus, the distribution of eczema severity found in this study appears to be a good indicator of the public health burden of eczema in the US.

The distribution of eczema severity found in this study is also distinct from that of the distribution of US prevalence of eczema previously demonstrated, where peak prevalences occurred on the East coast and Pacific Northwest ¹. Many of the states with higher rates of severe eczema have large population-densities with different racial/ethnic distributions ¹⁸. more air pollution ¹⁹ and colder climates. It is unknown what role, if any, these factors have on eczema severity. We previously found that climate conditions influence the prevalence of pediatric eczema in the US, with disease risk increasing in areas of lower relative humidity, lower UV index, lower temperatures and more precipitation and increased days needing indoor heating ³. The Northeastern states generally have lower UV index and relative humidity, which suggests that climate may influence disease severity as well. It may be that low indoor humidity during the winter months in Northeastern and Midwest states causes xerotic or irritant contact dermatitis in at risk individuals, thereby predisposing to the development of ESA. Further studies are needed to determine whether climatic or other factors further drive eczema severity in the US.

We found that severe eczema was associated with Black race and Hispanic ethnicity. No studies have examined the role of racial/ethnic disparities in determining eczema severity. Previous studies found that eczema prevalence was higher in children of African descent compared with Caucasians ^{1, 20-22}. Studies of racial/ethnic disparities in asthma found that African-Americans have significantly worse asthma outcomes, while Hispanics have lower quality of life secondary to asthma ²³. African American children are less likely to use preventive medications for asthma than White or Hispanic children ²⁴ and to have lower health literacy ²³. Together, there appear to be significant racial/ethnic disparities for AD and other allergic disease.

Severe eczema was also associated with lower socioeconomic status, including lower household income, single-parent households, lower parental education, dilapidated housing and garbage on the street. Hanifin and Reed found that the US prevalence of AD and eczema decreased significantly with higher household income, but did not compare AD severity by household income ²⁵. However, Shaw et al. found that eczema prevalence in the US increased with higher household incomes ¹. Several other studies in the US and internationally found that markers of atopy such as skin-prick test positivity and immunoglobulin E levels were increased with higher socioeconomic status ²⁶⁻²⁸. Future studies are needed to elucidate these points and to determine the cause(s) of racial/ethnic and perhaps socioeconomic disparities.

Eczema severity was significantly associated with being the oldest child in the household. This may be due to parental inexperience dealing with eczema skin care in their children, which would improve with subsequent children. This emphasizes the importance of education of parents about proper use of emollients and medications by dermatologists and other providers. Alternatively, there may be different exposures in children with older siblings living in the home, such as earlier introduction of certain foods that might result in tolerance or greater exposure to allergens in the physical environment. Flohr et al. recently demonstrated increased sensitization to a variety of food allergens in children that were exclusively breastfed, suggesting that sensitization occurs via transcutaneous sensitization ²⁹. Family size and structure, household dietary and cultural practices may contribute to such transcutaneous sensitization. Future studies are needed to better understand the role of these factors on eczema.

Moderate - severe eczema was also associated with older age, which remained significant in multivariate models. Previous studies found lower prevalence of childhood eczema and eczema with increasing age ^{1, 12, 25}. Together, these findings suggest that mild to moderate eczema generally becomes more quiescent with age and that children whose eczema persists are likely to have more severe disease. It is therefore important to study this group in the future to better understand the determinants of severe eczema in the population.

We found that birthplace outside the US was associated with decreased eczema severity. This is consistent with previous studies of Silverberg et al. that showed children born outside the US had significantly lower odds of atopic disease compared with those born in the US, including asthma, eczema, hay fever and food allergies ¹⁴. Interestingly, children born outside the US who lived in the US for >10 years when compared with only 0-2 years had significantly higher odds of developing eczema and other atopic disorders. Shaw et al. found that the prevalence of childhood eczema was lower in children who were born outside the US or whose parents were born outside the US ¹. Similarly, Silverberg and Hanifin found that the prevalence of eczema in US adults was lower in those born outside the US compared with those born in the US ². Several other studies found that birthplace outside the US was associated with lower prevalence of asthma ³⁰⁻³³. The results of this study suggest that birthplace outside the US may also have a protective effect for eczema severity.

The strengths of this study include being large-scale, US population-based and using backward and stepwise selection approaches in multivariate survey logistic regression

models. However, the study also has some limitations. The NSCH question encompassed both eczema and skin allergy. We were therefore unable to distinguish between these two entities. However, the preponderant etiology of eczema in children is related to AD. Is it possible that responses are skewed by inclusion of allergic or irritant contact dermatitis, which may increase with older age. However, this is less likely because the population we have categorized as eczema demonstrate a disease prevalence, comorbidity profile, and a natural history course consistent with AD ¹². This group of children has a prevalence of eczema similar to two other studies of the prevalence of AD in the US using more strict criteria 34. A lower prevalence of affirmative responses to this question with age is consistent with the natural course of the disease. Lastly, children with a "yes" response to this question have a higher risk of asthma, food allergy and hay fever with odds ratios very similar to previously published numbers for AD populations. History and severity of eczema were defined by caregiver report. Previous studies using parental recall of history of physician-diagnosed eczema ^{34, 35} and severity of disease ³⁶ have been validated and found to correlate well with physician exam. Moreover, the perception of severe eczema by parents and children is likely a better determinant of quality of life impairment and healthcare utilization than physician assessment. We reported that caregiver-report of severe eczema was associated with poorer overall health and greater healthcare utilization ¹². Caregiverreport of severe eczema was associated with increased mental health comorbidity, including attention deficit hyperactivity disorder, depression, anxiety, conduct disorder and autism ³⁷. Thus, the results of this survey based approach using a patient / caregiver centered outcome are likely meaningful and accurate. The study is cross-sectional and therefore provides a snapshot view of eczema severity nationwide. Of course, eczema has a waxing and waning course, which may not be accurately represented in a cross-sectional study. However, the measure used in the study was report of overall severity of eczema over a 1 year period, which better describes the variable disease course than current severity. Nevertheless, future longitudinal studies are needed to identify risk factors for disease severity and flares.

In conclusion, childhood eczema severity varies widely nationwide and is associated with older age, African and Hispanic descent and lower socioeconomic status. Future studies are needed to verify these associations and to further identify the environmental factors that drive eczema severity in the US.

Acknowledgments

Funding/Support: This project was supported in part by a Mentored Patient-oriented Research Career Development Award (K23)—award number K23AR057486 for Eric Simpson from the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health.

Abbreviations used

CI confidence interval

OR odds ratio

aOR adjusted odds ratioAD atopic dermatitis

NSCH National Survey of Children's Health

Bibliography

 Shaw TE, Currie GP, Koudelka CW, Simpson EL. Eczema prevalence in the United States: data from the 2003 National Survey of Children's Health. J Invest Dermatol. 2011; 131:67–73. [PubMed: 20739951]

- Silverberg JI, Hanifin J. Adult eczema prevalence and associations with asthma and other health and demographic factors: A US population-based study. J Allergy Clin Immunol. 2013 In Press.
- 3. Silverberg JI, Hanifin J, Simpson EL. Climatic factors are associated with childhood eczema prevalence in the United States. J Invest Dermatol. 2013; 133:1752–9. [PubMed: 23334343]
- 4. Ballardini N, Kull I, Soderhall C, Lilja G, Wickman M, Wahlgren CF. Eczema severity in preadolescent children and its relation to sex, filaggrin mutations, asthma, rhinitis, aggravating factors and topical treatment: a report from the BAMSE birth cohort. Br J Dermatol. 2013; 168:588–94. [PubMed: 23445315]
- 5. Brown SJ, McLean WH. One remarkable molecule: filaggrin. J Invest Dermatol. 2012; 132:751–62. [PubMed: 22158554]
- 6. Ekelund E, Lieden A, Link J, Lee SP, D'Amato M, Palmer CN, et al. Loss-of-function variants of the filaggrin gene are associated with atopic eczema and associated phenotypes in Swedish families. Acta Derm Venereol. 2008; 88:15–9. [PubMed: 18176743]
- 7. Flohr C, England K, Radulovic S, McLean WH, Campbel LE, Barker J, et al. Filaggrin loss-of-function mutations are associated with early-onset eczema, eczema severity and transepidermal water loss at 3 months of age. Br J Dermatol. 2010; 163:1333–6. [PubMed: 21137118]
- 8. Hubiche T, Ged C, Benard A, Leaute-Labreze C, McElreavey K, de Verneuil H, et al. Analysis of SPINK 5, KLK 7 and FLG genotypes in a French atopic dermatitis cohort. Acta Derm Venereol. 2007; 87:499–505. [PubMed: 17989887]
- 9. Morar N, Cookson WO, Harper JI, Moffatt MF. Filaggrin mutations in children with severe atopic dermatitis. J Invest Dermatol. 2007; 127:1667–72. [PubMed: 17301831]
- 10. Rodriguez E, Baurecht H, Herberich E, Wagenpfeil S, Brown SJ, Cordell HJ, et al. Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J Allergy Clin Immunol. 2009; 123:1361–70. e7. [PubMed: 19501237]
- 11. Ricci G, Patrizi A, Baldi E, Menna G, Tabanelli M, Masi M. Long-term follow-up of atopic dermatitis: retrospective analysis of related risk factors and association with concomitant allergic diseases. J Am Acad Dermatol. 2006; 55:765–71. [PubMed: 17052480]
- 12. Silverberg JI, Simpson EL. Association between severe eczema in children and multiple comorbid conditions and increased healthcare utilization. Pediatr Allergy Immunol. 2013; 24:476–86. [PubMed: 23773154]
- 13. Blumberg SJ, Welch EM, Chowdhury SR, Upchurch HL, Parker EK, Skalland BJ. Design and operation of the National Survey of Children with Special Health Care Needs, 2005-2006. Vital Health Stat 1. 2008:1–188.
- Silverberg JI, Simpson EL, Durkin HG, Joks R. Prevalence of allergic disease in foreign-born American children. JAMA Pediatr. 2013; 167:554–60. [PubMed: 23699865]
- 15. Benjamini Y, Hochberg Y. Controlling the false discovery rate a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995; 57:289–300.
- Emerson RM, Charman CR, Williams HC. The Nottingham Eczema Severity Score: preliminary refinement of the Rajka and Langeland grading. Br J Dermatol. 2000; 142:288–97. [PubMed: 10730763]
- 17. Emerson RM, Williams HC, Allen BR. Severity distribution of atopic dermatitis in the community and its relationship to secondary referral. Br J Dermatol. 1998; 139:73–6. [PubMed: 9764151]
- 18. Interactive Population Map.. 2010. Available from http://www.census.gov/2010census/popmap/
- America's Health Ranking: Air Pollution. 2012. Available from http:// www.americashealthrankings.org/ALL/air/2012

20. Davis LR, Marten RH, Sarkany I. Atopic eczema in European and Negro West Indian infants in London. Br J Dermatol. 1961; 73:410–4. [PubMed: 13883941]

- Schachner L, Ling NS, Press S. A statistical analysis of a pediatric dermatology clinic. Pediatr Dermatol. 1983; 1:157–64. [PubMed: 6239147]
- Williams HC, Pembroke AC, Forsdyke H, Boodoo G, Hay RJ, Burney PG. London-born black Caribbean children are at increased risk of atopic dermatitis. J Am Acad Dermatol. 1995; 32:212–7. [PubMed: 7829705]
- 23. Curtis LM, Wolf MS, Weiss KB, Grammer LC. The impact of health literacy and socioeconomic status on asthma disparities. J Asthma. 2012; 49:178–83. [PubMed: 22277072]
- McDaniel MK, Waldfogel J. Racial and ethnic differences in the management of childhood asthma in the United States. J Asthma. 2012; 49:785–91. [PubMed: 22784007]
- 25. Hanifin JM, Reed ML, Eczema P, Impact Working G. A population-based survey of eczema prevalence in the United States. Dermatitis. 2007; 18:82–91. [PubMed: 17498413]
- Lewis SA, Weiss ST, Platts-Mills TA, Syring M, Gold DR. Association of specific allergen sensitization with socioeconomic factors and allergic disease in a population of Boston women. J Allergy Clin Immunol. 2001; 107:615–22. [PubMed: 11295648]
- 27. Ring J, Kramer U, Schafer T, Abeck D, Vieluf D, Behrendt H. Environmental risk factors for respiratory and skin atopy: results from epidemiological studies in former East and West Germany. Int Arch Allergy Immunol. 1999; 118:403–7. [PubMed: 10224459]
- 28. Strachan DP, Harkins LS, Johnston ID, Anderson HR. Childhood antecedents of allergic sensitization in young British adults. J Allergy Clin Immunol. 1997; 99:6–12. [PubMed: 9003205]
- 29. Flohr C, Perkin M, Logan K, Marrs T, Radulovic S, Campbell LE, et al. Atopic dermatitis and disease severity are the main risk factors for food sensitization in exclusively breastfed infants. J Invest Dermatol. 2014; 134:345–50. [PubMed: 23867897]
- 30. Brugge D, Lee AC, Woodin M, Rioux C. Native and foreign born as predictors of pediatric asthma in an Asian immigrant population: a cross sectional survey. Environ Health. 2007; 6:13. [PubMed: 17474985]
- 31. Eldeirawi K, McConnell R, Freels S, Persky VW. Associations of place of birth with asthma and wheezing in Mexican American children. J Allergy Clin Immunol. 2005; 116:42–8. [PubMed: 15990771]
- 32. Holguin F, Mannino DM, Anto J, Mott J, Ford ES, Teague WG, et al. Country of birth as a risk factor for asthma among Mexican Americans. Am J Respir Crit Care Med. 2005; 171:103–8. [PubMed: 15516539]
- 33. Lee T, Brugge D, Francis C, Fisher O. Asthma prevalence among inner-city Asian American schoolchildren. Public Health Rep. 2003; 118:215–20. [PubMed: 12766216]
- 34. Laughter D, Istvan JA, Tofte SJ, Hanifin JM. The prevalence of atopic dermatitis in Oregon schoolchildren. J Am Acad Dermatol. 2000; 43:649–55. [PubMed: 11004621]
- 35. Flohr C, Weinmayr G, Weiland SK, Addo-Yobo E, Annesi-Maesano I, Bjorksten B, et al. How well do questionnaires perform compared with physical examination in detecting flexural eczema? Findings from the International Study of Asthma and Allergies in Childhood (ISAAC) Phase Two. Br J Dermatol. 2009; 161:846–53. [PubMed: 19485999]
- 36. Magin PJ, Pond CD, Smith WT, Watson AB, Goode SM. Correlation and agreement of self-assessed and objective skin disease severity in a cross-sectional study of patients with acne, psoriasis, and atopic eczema. Int J Dermatol. 2011; 50:1486–90. [PubMed: 22097994]
- 37. Yaghmaie P, Koudelka CW, Simpson EL. Mental health comorbidity in patients with atopic dermatitis. J Allergy Clin Immunol. 2013; 131:428–33. [PubMed: 23245818]

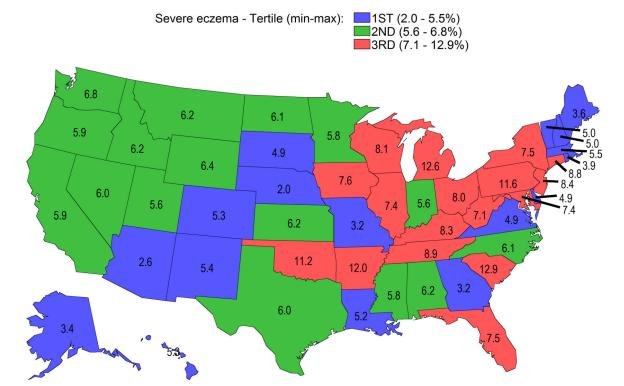


Figure 1. Rates of severe eczema in the United States are highest in Northeastern and Midwestern states $\,$

Data are presented as % per state. Severe eczema rates were divided into tertiles and color-coded: tertile-1 = blue, tertile-2 = green, tertile-3 = red.

Table 1
Personal and household associations of childhood atopic dermatitis severity (n=79,667).

Variable	Subgroup				Atopic dermatitis sev	erity		
		N	Mild (n = 7198)	Мо	derate (n = 2612)	S	evere (n = 576)	
		Freq	Percent (95% CI)	Freq	Percent (95% CI)	Freq	Percent (95% CI)	P-value*
Age (yr)	<1	392	76.9 (69.9 – 84.0)	93	17.7 (11.2 – 24 2)	25	5.4 (2.0 – 8.7)	0.0003
	1-3	1182	76.2 (72.2 – 80.2)	352	18.6 (15.2 – 22.0)	61	5.2 (2.8 – 7.6)	
	3-7	1890	67.7 (63.3 – 72.2)	648	27.1 (22.9 – 31 3)	123	5.2 (2.9 – 7.4)	
	7-13	2003	63.1 (59.0 – 67.3)	784	27.8 (24.0 – 31 5)	196	9.1 (6.4 – 11.9)	
	13-17	1731	62.6 (57.4 – 67.7)	735	29.5 (24.3 – 34.6)	171	8.0 (5.7 – 10.3)	
Sex	Male	3725	65.0 (61.9 – 68.1)	1354	26.9 (24.1 – 29.8)	295	8.1 (6.0 – 10.1)	0.12
	Female	3466	68.9 (65.8 – 72.1)	1258	25.1 (22.0 – 28 2)	281	6.0 (4.7 – 7.3)	
Race/ethnicity	Hispanic	801	61.8 (54.2 – 69.4)	324	30.2 (22.7 – 37.7)	85	8.0 (3.9 – 12.2)	< 0.00001
	White, non-Hispanic	4500	71.8 (69.2 – 74.3)	1530	23.1 (20.8 – 25.4)	285	5.1 (3.8 – 6.5)	
	African American, non-Hispanic	1045	60.5 (55.5 – 65.4)	435	28.4 (23.6 – 33 2)	135	11.2 (8.1 – 14.3)	
	Multi/Other, non-Hispanic	741	66.5 (60.3 – 72.8)	282	29.8 (23.6 – 36.0)	54	3.6 (2.0 – 5.3)	
Child's birthplace	No	123	78.4 (68.6 – 88.3)	40	13.4 (6.5 – 20.2)	11	8.2 (1.6 – 14.9)	0.04
in the US	Yes	7004	66.7 (64.5 – 69.0)	2548	26.3 (24.2 – 28.4)	570	7.0 (5.7 – 8.2)	
Household income	0-99% FPL	779	58.3 (52.8 – 63.8)	339	27.5 (22.7 – 32 3)	128	14.2 (10.1 – 18 3)	< 0.0001
	100-199% FPL	1137	64.2 (59.2 – 69.1)	470	27.4 (22.6 – 32 2)	146	8.4 (6.0 – 10.9)	
	200-399% FPL	2395	66.9 (62.8 – 71.0)	897	27.8 (24.0 – 31.7)	131	5.3 (3.0 – 7.5)	
	400% FPL	7198	74.0 (70.3 – 77.8)	2612	22.2 (18.6 – 25.8)	576	3.7 (2.2 – 5.3)	
Primary language	English	6843	66.7 (64.4 – 69.0)	2478	26.1 (24.0 – 28 3)	550	7.2 (5.9 – 8.5)	0.27
spoken in home	Not English	352	71.3 (63.4 – 79.2)	133	24.4 (16.9 – 31 9)	25	4.3 (2.1 – 6.6)	
Number of	1	2950	67.5 (64.1 – 70.8)	1041	24.8 (22.0 – 27.6)	229	7.8 (5.2 – 10.3)	0.03
children in household	2	2783	67.4 (63.9 – 80.8)	1008	26.7 (23.4 – 30.0)	206	5.9 (4.2 – 7.7)	
	3	1027	64.2 (59.0 – 69.4)	415	29.4 (24.2 – 34.6)	95	6.4 (4.2 – 8.6)	
	4	438	71.2 (64.4 – 78.0)	148	17.7 (12.9 – 22.4)	46	11.1 (5.8 – 16.4)	
Birth order in	Oldest child	2950	67.5 (64.1 – 70.8)	1041	24.8 (22.0 – 27.6)	229	7.8 (5.2 – 10.3)	0.02
families with 2 or more children	2 nd oldest child	1644	63.5 (58.6 – 68.4)	606	29.8 (25.0 – 34.6)	134	6.7 (4.1 – 9.3)	
	3 rd oldest child	1935	65.2 (61.3 – 69.2)	730	27.8 (24.0 – 31.7)	157	6.9 (4.9 – 9.0)	
	4 th oldest child	502	75.8 (70.2 – 81.5)	185	17.5 (12.7 – 22 3)	41	6.6 (3.4 – 9.8)	
Family structure	Two parent biological/adopted	5084	70.5 (67.8 – 73.1)	1724	25.3 (22.8 – 27.8)	287	4.2 (3.0 – 5.5)	< 0.0001
	Two parent stepfamily	415	64.7 (56.0 – 73.4)	194	26.4 (17.9 – 34 9)	58	8.9 (5.0 – 12.9)	
	Single mother/no father present	1295	57.4 (52.3 – 62.5)	535	28.5 (23.7 – 33 2)	189	14.1 (10.5 – 17.7)	
	Other	367	69.5 (62.9 – 76.2)	144	23.9 (17.9 – 30.0)	38	6.5 (3.2 – 9.9)	

Rao-Scott chi-square tests comparing between mild, moderate and severe eczema.

 Table 2

 Parental associations of childhood atopic dermatitis severity.

			Atopic dermatitis severity Mild (n. 7108) Mederate (n. 2012) Savere (n. 570)											
		N	Aild (n = 7198)	Mo	derate (n = 2612)	S	evere (n = 576)							
Highest level of education		Freq	Percent (95% CI)	Freq	Percent (95% CI)	Freq	Percent (95% CI)	P-value*						
Father	< HS	308	59.7 (51.1 – 68.3)	151	32.1 (23.6 – 40.5)	45	8.2 (4.6 – 11.9)	0.001						
	HS	1100	64.9 (58.6 – 71.2)	423	28.1 (22.0 – 34.2)	89	7.0 (3.4 – 10.6)							
	> HS	4153	73.1 (70.4 – 75.8)	1373	23.5 (21.0 – 26.1)	210	3.3 (2 2 – 4.4)							
Mother	< HS	381	62.8 (55.0 – 70.5)	160	26.1 (19.2 – 33.1)	64	11.1 (6.8 – 15.4)	< 0.0001						
	HS	1158	59.7 (54.5 – 65.0)	461	27.9 (23.2 – 32.5)	135	12.4 (8 2 – 16.5)							
	> HS	5238	69.9 (67.2 – 72.6)	1836	25.5 (22.9 – 28.1)	332	4.6 (3 5 – 5.6)							
Birthplace in United	States													
Father	No	635	68.3 (61.6 – 74.9)	219	26.1 (19.7 – 32.6)	38	5.6 (2 9 – 8.3)	0.72						
	Yes	4952	70.4 (67.7 – 73.1)	1732	25.1 (22.6 – 27.7)	310	4.5 (3 2 – 5.8)							
Mother	No	734	66.3 (59.5 – 73.1)	280	27.1 (20.6 – 33.6)	56	6.6 (3 3 – 9.9)	0.94						
	Yes	6060	67.0 (64.5 – 69.4)	2180	26.1 (23.8 – 28.4)	477	7.0 (5.6 – 8.4)							
Overall health														
Mother	Excellent	2015	72.3 (67.8 – 76.9)	567	22.7 (18.4 – 27.0)	104	5.0 (2.6 – 7.4)	< 0.0001						
	Very good	2724	70.7 (67.5 – 74.0)	979	25.6 (22.4 – 28.7)	159	3.7 (2 5 – 4.9)							
	Good	1503	66.0 (61.1 – 71.0)	575	25.9 (21.2 – 30.5)	153	8.1 (5.5 – 10.7)							
	Fair	459	46.6 (39.1 – 54.1)	259	35.9 (28.0 – 32.8)	84	17.5 (10.8 – 24.3)							
	Poor	117	57.1 (43.9 – 70.3)	88	30.6 (19.1 – 42.1)	32	12.3 (5.0 – 19.7)							
Father	Excellent	1779	74.2 (70.1 – 78.3)	537	20.6 (17.1 – 24.0)	90	5.2 (2 5 – 8.0)	0.15						
	Very good	2394	69.5 (65.4 – 73.5)	849	26.2 (22.3 – 30.1)	144	4.3 (2.6 – 6.1)							
	Good	1131	67.6 (62.0 – 73.2)	428	28.9 (23.3 – 34.4)	68	3.5 (1 9 – 5.1)							
	Fair	246	63.1 (52.0 – 74.2)	110	30.9 (19.9 – 41.9)	32	6.1 (2 3 – 9.8)							
	Poor	56	69.9 (53.3 – 86.5)	34	21.1 (7.8 – 34.3)	15	9.0 (1.7 – 16.3)							
Mental / emotional h	ealth													
Mother	Excellent	2273	68.8 (64.7 – 72.9)	682	26.4 (22.4 – 30.4)	136	4.8 (2 9 – 6.6)	< 0.0001						
	Very good	2844	71.8 (68.4 – 75.1)	1009	24.5 (21.2 – 27.8)	171	3.7 (2,6 0 4.9)							
	Good	1262	64.5 (59.6 – 69.4)	541	27.3 (22.7 – 31.8)	139	8.2 (5.6 – 10.8)							
	Fair	371	46.9 (37.5 – 56.4)	192	31.5 (22.0 – 41.0)	65	21.6 (12.6 – 30.5)							
	Poor	63	47.5 (31.3 – 63.6)	32	19.0 (8.6 – 29.3)	23	33.6 (15.6 – 51.5)							
Father	Excellent	2189	71.5 (67.5 – 75.6)	656	23.0 (19.4 – 26.7)	117	5.5 (2 9 – 8.1)	0.02						
	Very good	2371	71.7 (67.8 – 75.6)	839	24.6 (20.8 0 28.5)	133	3.7 (2.4 – 4.9)							
	Good	827	67.5 (61.2 – 73.8)	346	28.6 (22.4 – 34.8)	67	3.9 (2 2 – 5.6)							
	Fair	190	55.0 (42.1 – 67.8)	97	37.6 (24.8 – 50.5)	22	7.4 (1.2 – 13.7)							
	Poor	21	42.9 (3.6 – 82.2)	16	36.0 (5.1 – 67.0)	10	21.1 (0.8 – 41.3)							

^{*} Rao-Scott chi-square tests comparing between mild, moderate and severe eczema.

 ${\it Dermatitis}. \ Author \ manuscript; \ available \ in \ PMC \ 2015 \ May \ 01.$

 Table 3

 Local environmental associations of childhood atopic dermatitis severity.

Variable	Subgroup		Atopic dermatitis severity										
		N	Aild (n = 7198)	Mo	derate (n = 2612)	s	evere (n = 576)						
		Freq	Percent (95% CI)	Freq	Percent (95% CI)	Freq	Percent (95% CI)	P-value*					
Residence in metropolitan	Yes	4058	66.1 (63.4 – 68.8)	1483	26.7 (24.1 – 29.3)	342	7.2 (5.6 – 8.7)	0.26					
area	No	877	70.4 (66.2 – 74.6)	327	22.8 (19.1 – 26.5)	74	6.8 (4.2 – 9.4)						
Smokers living at home	No	5500	68.6 (66.0 – 71.2)	1922	25.2 (22.7 – 27.6)	358	6.2 (4.8 – 7.7)	0.03					
	Yes	1651	62.6 (58.4 – 66.8)	672	28.5 (24.4 – 32.6)	213	8.9 (6.7 – 11.1)						
Smoking in home	No	1205	61.8 (56.7 – 66.9)	495	29.9 (24.9 – 24.9)	148	8.3 (5.7 – 10.9)	0.29					
	Yes	445	64.8 (57.9 – 71.6)	177	24.4 (18.2 – 30 5)	65	10.9 (6.5 – 15.2)						
Dilapidated housing	No	6054	68.7 (66.3 – 71.1)	2110	25.3 (23.1 – 27.6)	434	6.0 (4.8 – 7.2)	0.0009					
	Yes	1073	59.0 (52.9 – 65.0)	472	29.4 (23.7 – 35 2)	136	11.6 (7.6 – 15.6)						
Garbage on street	No	5839	69.0 (66.6 – 71.4)	2051	25.0 (22.7 – 27 3)	425	6.0 (4.8 – 7.2)	0.001					
	Yes	1296	59.6 (54.4 – 64.8)	535	29.9 (24.8 – 34 9)	144	10.6 (6.9 – 14.3)						
Park in neighborhood	No	1265	64.7 (59.8 – 69.7)	525	27.1 (22.8 – 31.4)	117	8.2 (4.9 – 11.5)	0.53					
	Yes	5870	67.5 (65.0 – 70.0)	2064	25.8 (23.4 – 28 2)	452	6.7 (5.4 – 8.0)						
Sidewalk in neighborhood	No	1771	67.4 (63.3 – 71.5)	669	26.0 (22.0 – 29 9)	166	6.6 (4.9 – 8.4)	0.94					
	Yes	5366	66.9 (64.2 – 69.5)	1920	26.1 (23.6 – 28 5)	403	7.1 (5.5 – 8.6)						

 $[\]ensuremath{^{*}}$ Rao-Scott chi-square tests comparing between mild, moderate and severe eczema.

トラロキヌマブ (遺伝子組換え)

第1部(モジュール1)

申請書等行政情報及び添付文書に関する情報

1.6 外国における使用状況等に関する資料

レオ ファーマ株式会社

1 外国における使用状況等

トラロキヌマブは 2021 年 6 月に欧州および英国で、2021 年 10 月にカナダで、2021 年 12 月に 米国で承認された。

本剤の欧州および米国の添付文書と企業中核データシート(CCDS)を以下に添付する。

Adtralza 150 mg solution for injection in pre-filled syringe

Summary of Product Characteristics Updated 05-Jul-2021 | Leo Laboratories Limited

This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions.

1. Name of the medicinal product

Adtralza 150 mg solution for injection in pre-filled syringe

2. Qualitative and quantitative composition

Each pre-filled syringe contains 150 mg of tralokinumab in 1 mL solution (150 mg/mL).

Tralokinumab is produced in mouse myeloma cells by recombinant DNA technology.

For the full list of excipients, see section 6.1.

3. Pharmaceutical form

Solution for injection (injection)

Clear to opalescent, colourless to pale yellow solution, pH 5.5 and osmolarity approximately 280 mOsm/L

4. Clinical particulars

4.1 Therapeutic indications

Adtralza is indicated for the treatment of moderate-to-severe atopic dermatitis in adult patients who are candidates for systemic therapy.

4.2 Posology and method of administration

Treatment should be initiated by healthcare professionals experienced in the diagnosis and treatment of atopic dermatitis.

<u>Posology</u>

The recommended dose of tralokinumab for adult patients is an initial dose of 600 mg (four 150 mg injections) followed by 300 mg (two 150 mg injections) administered every other week as subcutaneous injection.

At prescr ber's discretion, every fourth week dosing may be considered for patients who achieve clear or almost clear skin after 16 weeks of treatment. The probability of maintaining clear or almost clear skin may be lower with every fourth week dosing (see section 5.1).

Consideration should be given to discontinuing treatment in patients who have shown no response after 16 weeks of treatment. Some patients with initial partial response may subsequently improve further with continued treatment every other week beyond 16 weeks.

Tralokinumab can be used with or without topical corticosteroids. The use of topical corticosteroids, when appropriate, may provide an additional effect to the overall efficacy of tralokinumab (see section 5.1). Topical calcineurin inhibitors may be used, but should be reserved for problem areas only, such as the face, neck, intertriginous and genital areas.

Missed dose

If a dose is missed, the dose should be administered as soon as possible. Thereafter, dosing should be resumed at the regular scheduled time.

Special populations

Elderly (≥ 65 years)

No dose adjustment is recommended for elderly patients (see section 5.2). Limited data is available in patients > 75 years of age.

Renal impairment

No dose adjustment is needed in patients with renal impairment. Very limited data are available in patients with severe renal impairment (see section 5.2).

Hepatic impairment

No dose adjustment is needed in patients with hepatic impairment. Very limited data are available in patients with moderate or severe hepatic impairment (see section 5.2).

High body weight

For patients with high body weight (>100 kg), who achieve clear or almost clear skin after 16 weeks of treatment, reducing the dosage to every fourth week might not be appropriate (see section 5.2).

Paediatric population

The safety and efficacy of tralokinumab in children below the age of 18 years have not yet been established. No data are available.

Method of administration

Subcutaneous use.

The pre-filled syringe should be not shaken. After removing the pre-filled syringes from the refrigerator, they should be allowed to reach room temperature by waiting for 30 minutes before injecting.

Tralokinumab is administered by subcutaneous injection into the thigh or abdomen, except the 5 cm around the navel. If somebody else administers the injection, the upper arm can also be used.

For the initial 600 mg dose, four 150 mg tralokinumab injections should be administered consecutively in different injection sites.

It is recommended to rotate the injection site with each dose. Tralokinumab should not be injected into skin that is tender, damaged or has bruises or scars.

A patient may self-inject tralokinumab or the patient's caregiver may administer tralokinumab if their healthcare professional determines that this is appropriate. Proper training should be provided to patients and/or caregivers on the administration of tralokinumab prior to use. Detailed instructions for use are included at the end of the package leaflet.

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

4.4 Special warnings and precautions for use

Traceability

In order to improve the traceability of biological medicinal products, the name and the batch number of the administered product should be clearly recorded.

Hypersensitivity

If a systemic hypersensitivity reaction (immediate or delayed) occurs, administration of tralokinumab should be discontinued and appropriate therapy initiated.

Conjunctivitis

Patients treated with tralokinumab who develop conjunctivitis that does not resolve following standard treatment should undergo ophthalmological examination (see section 4.8).

Helminth infection

Patients with known helminth infections were excluded from participation in clinical studies. It is unknown if tralokinumab will influence the immune response against helminth infections by inhibiting IL-13 signalling.

Patients with pre-existing helminth infections should be treated before initiating treatment with tralokinumab. If patients become infected while receiving tralokinumab and do not respond to antihelminth treatment, treatment with tralokinumab should be discontinued until infection resolves.

Vaccinations

Live and live attenuated vaccines should not be given concurrently with tralokinumab as clinical safety and efficacy have not been established. Immune responses to the non-live tetanus and meningococcal vaccines were assessed (see section 4.5). It is recommended that patients should be brought up to date with live and live attenuated immunisations in agreement with current immunisation guidelines prior to treatment with tralokinumab.

Sodium content

This medicine contains less than 1 mmol sodium (23 mg) per 150 mg dose, that is to say essentially "sodium-free".

4.5 Interaction with other medicinal products and other forms of interaction

The safety and efficacy of concurrent use of tralokinumab with live and live attenuated vaccines has not been studied.

Immune responses to non-live vaccines were assessed in a study in which adult patients with atopic dermatitis were treated with an initial dose of 600 mg (four 150 mg injections) followed by 300 mg every second (other) week administered as subcutaneous injection. After 12 weeks of tralokinumab administration, patients were vaccinated with a combined tetanus, diphtheria, and acellular pertussis vaccine, and a meningococcal vaccine and immune responses were assessed 4 weeks later. Antibody responses to both tetanus vaccine and meningococcal vaccine were similar in tralokinumab-treated and placebo-treated patients. No adverse interactions between either of the non-live vaccines or tralokinumab were noted in the study. Therefore, patients receiving tralokinumab may receive concurrent inactivated or non-live vaccinations.

For information on live and live attenuated vaccines, see section 4.4.

4.6 Fertility, pregnancy and lactation

<u>Pregnancy</u>

There is limited amount of data from the use of tralokinumab in pregnant women.

Animal studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity (see section 5.3).

As a precautionary measure, it is preferable to avoid the use of tralokinumab during pregnancy.

Breast-feeding

It is unknown whether tralokinumab is excreted in human milk or absorbed systemically after ingestion. A decision must be made whether to discontinue breast-feeding or to discontinue tralokinumab therapy taking into account the benefit of breast-feeding for the child and the benefit of therapy for the woman.

Fertility

Animal studies did not show any effects on male and female reproductive organs and on sperm count, motility and morphology (see section 5.3).

4.7 Effects on ability to drive and use machines

Tralokinumab has no or negligible influence on the ability to drive and use machines.

4.8 Undesirable effects

Summary of the safety profile

The most common adverse reactions are upper respiratory tract infections (23.4%; mainly reported as common cold), injection site reactions (7.2%), conjunctivitis (5.4%) and conjunctivitis allergic (2.0%).

Tabulated list of adverse reactions

In a pool of 5 randomised, double-blind, placebo-controlled studies in patients with moderate to severe atopic dermatitis (ECZTRA 1, ECZTRA 2, and ECZTRA 3, a dose ranging trial and a vaccine-response study), 1 991 subjects were treated with subcutaneous injections of tralokinumab, with or without concomitant topical corticosteroids. A total of 807 patients were treated with tralokinumab for at least 1 year.

Listed in Table 1 are adverse reactions observed from clinical trials presented by system organ class and frequency, using the following categories: very common ($\geq 1/10$); common ($\geq 1/100$ to < 1/10); uncommon ($\geq 1/1000$); rare ($\geq 1/1000$); very rare (< 1/1000). Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness. The frequencies are based on the initial treatment period of up to 16 weeks in the pool of 5 studies in the atopic dermatitis population.

Table 1: List of adverse reactions

MedDRA System Organ Class	Frequency	Adverse reaction
Infections and infestations	Very common Common	Upper respiratory tract infections Conjunctivitis
Blood and lymphatic system disorders	Common	Eosinophilia
Eye disorders	Common Uncommon	Conjunctivitis allergic Keratitis
General disorders and administration site conditions	Common	Injection site reactions

The long-term safety of tralokinumab was assessed in the 2 monotherapy studies up to 52 weeks and in 1 combination study with topical corticosteroids up to 32 weeks. The safety profile of tralokinumab through week 52 and week 32 respectively was consistent with the safety profile observed up to week 16.

Description of selected adverse reactions

Conjunctivitis and related events

Conjunctivitis occurred more frequently in atopic dermatitis patients who received tralokinumab (5.4%) compared to placebo (1.9%) in the initial treatment period of up to 16 weeks in the pool of 5 studies. Conjunctivitis was reported at a higher frequency in patients with severe atopic dermatitis compared to subjects with moderate atopic dermatitis in both the tralokinumab group (6.0 vs 3.3%; initial treatment period) and placebo group (2.2 vs 0.8%; initial treatment period). Most patients recovered or were recovering during the treatment period.

Keratitis was reported in 0.5% of subjects treated with tralokinumab during the initial treatment period. Of these, half were classified as keratoconjunctivitis, all were non-serious and mild or moderate in severity, and none led to treatment discontinuation.

Eosinophilia

Adverse reactions of eosinophilia were reported in 1.3% of patients treated with tralokinumab and 0.3% of patients treated with placebo during the initial treatment period of up to 16 weeks in the pool of 5 studies. Tralokinumab-treated patients had a greater mean initial increase from baseline in eosinophil count compared to patients treated with placebo. Eosinophilia (≥ 5 000 cells/mcL) was measured in 1.2% of tralokinumab-treated patients and 0.3% of placebo-treated patients in the initial treatment period. However, the increase in the tralokinumab-treated patients was transient, and mean eosinophil counts returned to baseline during continued treatment. The safety profile for subjects with eosinophilia was comparable to the safety profile for all subjects.

Eczema Herpeticum

Eczema herpeticum was reported in 0.3% of the subjects treated with tralokinumab and in 1.5% of subjects in the placebo group, in the initial treatment period of up to 16 weeks in the pool of 5 studies in atopic dermatitis. Across all treatment periods in the pool of 5 studies, all eczema herpeticum events reported in the tralokinumab group were nonserious, none were severe, and a single event led to permanent discontinuation of treatment.

Immunogenicity

As with all therapeutic proteins, there is a potential for immunogenicity with tralokinumab.

Anti-drug-antibody (ADA) responses were not associated with any impact on tralokinumab exposure, safety, or efficacy.

In ECZTRA 1, ECZTRA 2, ECZTRA 3, and the vaccine-response study, the incidence of ADA up to 16 weeks was 1.4% for patients treated with tralokinumab and 1.3% for patients treated with placebo; neutralising antibodies were seen in 0.1% of patients treated with tralokinumab and 0.2% of patients treated with placebo.

Across all trial periods, the ADA incidence for subjects who received tralokinumab was 4.6%; 0.9% had persistent ADA and 1.0% had neutralising antibodies.

Injection site reactions

Injection site reactions (including pain and redness) occurred more frequently in patients who received tralokinumab (7.2%) compared to placebo (3.0%) in the initial treatment period of up to 16 weeks in the pool of 5 studies. Across all treatment periods in the 5 studies in atopic dermatitis, the vast majority (99%) of injection site reactions were mild or moderate in severity, and few patients (< 1%) discontinued tralokinumab treatment. Most injections site reactions reported had a short duration with approximately 76% of the events resolving within 1 to 5 days.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at: www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.

4.9 Overdose

There is no specific treatment for tralokinumab overdose. In clinical studies with tralokinumab, single intravenous doses of up to 30 mg/kg and multiple subcutaneous doses of 600 mg every 2 weeks for 12 weeks were found to be well tolerated.

5. Pharmacological properties

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Agents for dermatitis, excluding corticosteroids, ATC code: D11AH07.

Mechanism of action

Tralokinumab is a fully human IgG4 monoclonal antibody that specifically binds to the type 2 cytokine interleukin-13 (IL-13) and inhibits its interaction with the IL-13 receptors. Tralokinumab neutralises the biological activity of IL-13 by blocking its interaction with the IL-13R α 1/IL-4R α receptor complex. IL-13 is a major driver of human type 2 inflammatory disease, such as atopic dermatitis and inhibiting the IL-13 pathway with tralokinumab in patients decreases many of the mediators of type 2 inflammation.

Pharmacodynamic effects

In clinical trials, treatment with tralokinumab resulted in reduced levels of type 2 inflammation biomarkers in both lesional skin (CCL17, CCL18 and CCL26) and in blood (CCL17, periostin and IgE). In lesional skin, treatment with tralokinumab led also to reductions in epidermal thickness and to increase in marker of epithelial barrier integrity (loricrin). Skin colonization with *Staphylococcus aureus* was reduced more than 10-fold in patients treated with tralokinumab.

Clinical efficacy and safety

The efficacy and safety of tralokinumab as monotherapy and with concomitant topical corticosteroids were evaluated in three pivotal randomised, double-blind, placebo-controlled studies (ECZTRA 1, ECZTRA 2 and ECZTRA 3) in 1 976 patients 18 years of age and older with moderate to severe atopic dermatitis defined by Investigator's Global Assessment (IGA) score of 3 or 4 (moderate or severe), an Eczema Area and Severity Index (EASI) score of ≥ 16 at baseline, and a minimum body surface area (BSA) involvement of ≥ 10%. Eligible patients enrolled into the three studies had previous inadequate response to topical medication.

In all three studies, patients received 1) an initial dose of 600 mg tralokinumab (four 150 mg injections) on day 1, followed by 300 mg every two weeks (Q2W) up to week 16 or 2) matching placebo. In ECZTRA 3, patients received concomitant topical corticosteroids on active lesions as needed. Tralokinumab was administered by subcutaneous (SC) injection in all studies.

In ECZTRA 1 and ECZTRA 2, to evaluate the maintenance of response, patients responding to the initial 16-week treatment with tralokinumab (i.e. achieved IGA 0 or 1, or EASI-75) were re-randomised to 1) tralokinumab 300 mg Q2W or 2) tralokinumab 300 mg Q4W (alternating tralokinumab 300 mg and placebo Q2W) or 3) placebo Q2W up to 52 weeks. The main endpoints for evaluating maintenance of response were IGA 0 or 1 and EASI-75 at week 52. Patients responding to the initial 16-week treatment with placebo continued on placebo. Subjects not achieving IGA 0 or 1 or EASI-75 at week 16 and subjects who did not maintain the response during the maintenance period were transferred to open-label treatment with tralokinumab 300 mg Q2W with optional use of topical corticosteroids. The studies had a treatment period of 52 weeks.

In ECZTRA 3, patients responding to the initial 16-week treatment with tralokinumab + TCS (i.e. achieved IGA 0 or 1, or EASI-75) were re-randomised to 1) tralokinumab 300 mg Q2W + TCS or 2) tralokinumab 300 mg Q4W + TCS (alternating tralokinumab 300 mg and placebo Q2W) up to 32 weeks. The main endpoints for evaluating maintenance of response were IGA 0 or 1 and EASI-75 at week 32. Patients responding to the initial 16-week treatment with placebo + TCS continued on placebo + TCS. Patients who at week 16 did not achieve IGA 0 or 1 or EASI-75 continued on tralokinumab 300 mg Q2W + TCS treatment, irrespectively of their initial treatment. The study had a treatment period of 32 weeks.

In ECZTRA 1, 802 patients were enrolled (199 to placebo, 603 to tralokinumab 300 mg Q2W).

In ECZTRA 2, 794 patients were enrolled (201 to placebo, 593 to tralokinumab 300 mg Q2W).

In ECZTRA 3, 380 patients were enrolled (127 to placebo + TCS, 253 to tralokinumab 300 mg Q2W + TCS).

Endpoints

In all three pivotal studies, the primary endpoints were achievement of IGA 0 or 1 ("clear" or "almost clear") and a reduction of at least 75% in EASI (EASI-75) from baseline to week 16. Secondary endpoints included the reduction of itch as defined by at least a 4-point improvement in the Worst Daily Pruritus Numeric Rating Scale (NRS) from baseline to week 16, reduction in the SCORing Atopic Dermatitis (SCORAD) scale from baseline to week 16, and change from baseline to week 16 in the Dermatology Life Quality Index (DLQI). Additional secondary endpoints included reduction of at least 50% and 90% in EASI (EASI-50 and EASI-90, respectively) and reduction in Worst Daily Pruritus NRS (weekly average) from baseline to week 16. Other endpoints included change from baseline to week 16 in the Patient Oriented Eczema Measure (POEM), at least 4-point improvement in POEM, and Eczema-related Sleep NRS.

Baseline characteristics

In the monotherapy studies (ECZTRA 1 and ECZTRA 2), across all treatment groups, the mean age was 37.8 years, 5.0% of the patients were 65 years of age or older, the mean weight was 76.0 kg, 40.7% were female, 66.5% were white, 22.9% were Asian, and 7.5% were black. In these studies, 49.9% of patients had a baseline IGA score of 3 (moderate atopic dermatitis, 49.7% of patients had a baseline IGA of 4 (severe atopic dermatitis), and 42.5% of patients had received prior systemic immunosuppressants (cyclosporine, methotrexate, azathioprine and mycophenolate). The mean baseline EASI score was 32.3, mean baseline Worst Daily Pruritus NRS was 7.8, mean baseline DLQI was 17.3, the baseline mean SCORAD score was 70.4, the baseline mean POEM score was 22.8, and the baseline mean physical and mental components of SF-36 were 43.4 and 44.3, respectively.

In the concomitant topical corticosteroids study (ECZTRA 3), across both treatment groups, the mean age was 39.1 years, 6.3% of the patients were 65 years of age or older, the mean weight was 79.4 kg, 45.0% were female, 75.8% were white, 10.8% were Asian, and 9.2% were black. In this study, 53.2% of patients had a baseline IGA score of 3, 46.3% of patients had a baseline IGA of 4, and 39.2 % of patients received prior systemic immunosuppressants. The baseline mean EASI score was 29.4, the baseline Worst Daily Pruritus NRS was 7.7, the baseline mean DLQI was 17.5, the baseline mean SCORAD score was 67.6, the baseline mean POEM score was 22.3.

Clinical response

Monotherapy studies (ECZTRA 1 and ECZTRA 2) - initial treatment period 0-16 weeks

In ECZTRA 1 and ECZTRA 2, from baseline to week 16, a significantly greater proportion of patients randomised and dosed to tralokinumab achieved IGA 0 or 1, EASI-75, and/or an improvement of ≥ 4 points on the Worst Daily Pruritus NRS compared to placebo (see Table 2).

Table 2: Efficacy results of tralokinumab monotherapy at week 16 in ECZTRA 1 and ECZTRA 2 (FAS)

Monotherapy	

	ECZTRA 1		ECZTRA 2	
	Week 16	Week 16		
	Placebo	Tralokinumab 300 mg Q2W	Placebo	Tralokinumab 300 mg Q2W
Number of patients randomised and dosed (FAS)	197	601	201	591
IGA 0 or 1, % responders ^{a,b)}	7.1	15.8#	10.9	22.2 [§]
EASI-50, % responders ^{a)}	21.3	41.6 ^{§,e)}	20.4	49.9 ^{§,e)}
EASI-75, % responders ^{a)}	12.7	25.0 [§]	11.4	33.2 [§]
SCORAD, LS mean change from baseline (± SE) ^{c)}	-17.2 (± 1.98)	-24.9 [§] (± 1.23)	-13.8 (± 2.00)	-26.9 [§] (± 1.06)
Pruritus NRS (≥ 4-point improvement, % responders) ^{a,d)}	10.3 (20/194)	20.0 [#] (119/594)	9.5 (19/200)	25.0 [§] (144/575)
DLQI, LS mean change from baseline (± SE) ^{c)}	-5.7 (± 0.63)	-7.5 [#] (± 0.41)	-5.2 (± 0.68)	-8.6 [§] (± 0.36)

LS=least squares; SE=standard error, FAS: Full Analysis Set - includes all patients randomised and dosed

If needed to control intolerable symptoms of atopic dermatitis, patients were permitted to receive rescue treatment at the discretion of the investigator.

- a) Patients who received rescue treatment or had missing data were considered non-responders.
- b) Responder was defined as a patient with IGA 0 or 1 ("clear" or "almost clear" on a 0 4 IGA scale)
- c) Data after initiation of rescue medication or permanent discontinuation of treatment were considered missing. Placebo based multiple imputation of missing data.
- d) The percentage is calculated relative to the number of subjects with a baseline value > 4.
- e) Not adjusted for multiplicity.

In both monotherapy studies (ECZTRA 1 and ECZTRA 2), tralokinumab reduced itch, as measured by the percent change from baseline in Worst Daily Pruritus NRS, already at Week 1 compared to placebo. The reduction in itch was observed in parallel with improvements in objective signs and symptoms of atopic dermatitis and quality of life.

In the two studies, fewer patients randomised to Adtralza 300 mg Q2W needed rescue treatment (topical corticosteroids, systemic corticosteroids, non-steroidal immunosuppressants) as compared to patients randomised to placebo (29.3% versus 45.3%, respectively, across both studies). Use of rescue treatment was higher if patients had severe atopic dermatitis at baseline (39.3% if under tralokinumab 300 mg Q2W treatment versus 56.7% in placebo group).

Monotherapy Studies (ECZTRA 1 and ECZTRA 2) – maintenance period (week 16-52)

To evaluate maintenance of response, 185 subjects from ECZTRA 1 and 227 subjects from ECZTRA 2 treated with tralokinumab 300 mg Q2W for 16 weeks who achieved IGA 0 or 1 or EASI-75 at week 16 were re-randomised to an additional 36-week treatment of 1) 300 mg tralokinumab every two weeks (Q2W) or 2) alternating tralokinumab 300 mg and placebo Q2W (tralokinumab Q4W) or 3) placebo Q2W, for a cumulative 52-week study treatment. Response rates (IGA 0/1 or EASI-75) at week 52 in the monotherapy pool were 56.2% and 50% for tralokinumab 300 mg Q2W and tralokinumab 300 mg Q4W among subjects achieving clinical response at week 16, respectively.

Table 3: Efficacy results (IGA 0 or 1 or EASI-75) at week 52 of subjects responding to tralokinumab 300 mg Q2W at week 16

	ECZTRA 1	ECZTRA 1			ECZTRA 2			
	Treatment regimen Week 16-52 ^{e)}			Treatment regimen Week 16-52 ^{e)}				
Assessment at Week 52	Tralokinumab 300 mg Q2W	Tralokinumab 300 mg Q4W	Placebo	Tralokinumab 300 mg Q2W	Tralokinumab 300 mg Q4W	Placebo		
IGA 0/1 ^{a)} %	51.3 ^{d)}	38.9 ^{d)}	47.4	59.3 ^{c)}	44.9 ^{d)}	25.0		

responders f)	(20/39)	(14/36)	(9/19)	(32/54)	(22/49)	(7/28)
EASI-75 ^{a)} %	59.6 ^{d)}	49.1 ^{d)}	33.3	55.8 ^{b)}	51.4 ^{c)}	21.4
responders ^{g)}	(28/47)	(28/57)	(10/30)	(43/77)	(38/74)	(9/42)

If needed to control intolerable symptoms of atopic dermatitis, patients were permitted to receive rescue treatment at the discretion of the investigator.

- a) Subjects who received rescue treatment or had missing data were treated as non-responders. The percentage is calculated relative to the number of subjects with response at week 16.
- b) p<0.001 compared to placebo
- c) p<0.05 compared to placebo
- d) p>0.05 compared to placebo
- e) All patients were initially treated with tralokinumab 300 mg Q2W week 0 to week 16.
- f) IGA 0/1 at week 52 was evaluated in those subjects that had IGA 0/1 at week 16.
- g) EASI-75 at week 52 was evaluated in those subjects that had EASI-75 at week 16.

Of the subjects randomised to tralokinumab, who did not achieve IGA 0 or 1 or EASI-75 at week 16 and were transferred to open-label tralokinumab 300 mg Q2W + optional TCS, 20.8% in ECZTRA 1 and 19.3% in ECZTRA 2 achieved IGA 0 or 1 at week 52, and 46.1% in ECZTRA 1 and 39.3% in ECZTRA 2 achieved EASI-75 at week 52. The clinical response was mainly driven by continued tralokinumab treatment rather than optional topical corticosteroids treatment.

32-Week concomitant TCS study (ECZTRA 3) - initial treatment period 0-16 weeks

In ECZTRA 3 from baseline to week 16, a significantly greater proportion of patients randomised to tralokinumab 300 mg Q2W + TCS achieved IGA 0 or 1, EASI-75, and/or an improvement of ≥ 4 points on the Worst Daily Pruritus NRS compared to placebo + TCS (see Table 4).

Table 4: Efficacy results of tralokinumab combination therapy with TCS at week 16 in ECZTRA 3 (FAS)

Combination therapy					
	ECZTRA 3				
	Week 16				
	Placebo + TCS	Tralokinumab 300 mg Q2W + TCS			
Number of patients randomised and dosed (FAS)	126	252			
IGA 0 or 1, % responders ^{a,b)}	26.2	38.9 [*]			
EASI-50, % responders ^{a)}	57.9	79.4 ^{§, e)}			
EASI-75, % responders ^{a)}	35.7	56.0 [§]			
SCORAD, LS mean change from baseline $(\pm SE)^{c)}$	-26.7 (± 1.83)	-37.5 [§] (± 1.27)			
Pruritus NRS (≥ 4-point improvement, % responders) ^{a,d)}	34.1 (43/126)	45.4 [*] (113/249)			
DLQI, LS mean change from baseline (± SE) ^{c)}	-8.8 (± 0.57)	-11.6 [§] (± 0.40)			

LS=least squares; SE=standard error, FAS: Full Analysis Set - includes all patients randomised and dosed

If needed to control intolerable symptoms of atopic dermatitis, patients were permitted to receive rescue treatment at the discretion of the investigator. The supplied TCS did not constitute rescue medication.

- a) Subjects who received rescue treatment or had missing data were treated as non-responders.
- b) Responder was defined as a patient with IGA 0 or 1 ("clear" or "almost clear" on a 0-4 IGA scale).
- c) Data after initiation of rescue medication or permanent discontinuation of treatment were considered missing. Placebo based multiple imputation of missing data.

- d) The percentage is calculated relative to the number of subjects with a baseline value ≥ 4.
- e) Not adjusted for multiplicity.

*p<0.05, #p<0.01, §p<0.001.

In ECZTRA 3, subjects who received tralokinumab 300 mg Q2W from Week 0 to 16 used 50% less of the supplied topical corticosteroids at Week 16 as compared to subjects who received placebo.

In the concomitant TCS study (ECZTRA 3), tralokinumab + TCS reduced itch, as measured by the percent change from baseline in Worst Daily Pruritus NRS, already at Week 2 compared to placebo + TCS. The reduction in itch was observed in parallel with improvements in objective signs and symptoms of atopic dermatitis and quality of life.

32-Week concomitant TCS study (ECZTRA 3) - maintenance period 16-32 weeks

To evaluate maintenance of response, subjects treated with tralokinumab 300 mg + TCS for 16 weeks in the ECZTRA 3 study and who achieved IGA 0 or 1 or EASI-75 at week 16 were re-randomised to an additional 16-week treatment of 1) tralokinumab 300 mg every two weeks (Q2W) + TCS or 2) alternating tralokinumab 300 mg + TCS and placebo every two weeks (tralokinumab Q4W) for a cumulative 32-week study treatment. High maintenance of clinical efficacy at week 32 were seen across tralokinumab 300 mg Q2W + TCS and tralokinumab 300 mg Q4W + TCS among subjects achieving clinical response at week 16 (see Table 5).

Table 5: Efficacy results at week 32 of subjects achieving clinical response to tralokinumab 300 mg + TCS Q2W at week 16

	Tralokinumab 300 mg Q2W + TCS	Tralokinumab 300 mg Q4W + TCS
IGA 0/1 at week 32 ^{a)}	89.6	77.6
% responders ^{b)}	(43/48)	(38/49)
EASI-75 at week 32 ^{a)}	92.5	90.8
% responders ^{c)}	(62/67)	(59/65)

If needed to control intolerable symptoms of atopic dermatitis, patients were permitted to receive rescue treatment at the discretion of the investigator.

- a) Subjects who received rescue treatment or had missing data were treated as non-responders. The percentage is calculated relative to the number of subjects with response at week 16.
- b) IGA 0/1 at week 32 was evaluated in those subjects that had IGA 0/1 at week 16.
- c) EASI-75 at week 32 was evaluated in those subjects that had EASI-75 at week 16.

Among all the subjects who achieved either IGA 0 or 1 or EASI-75 at week 16, the mean percentage improvement in EASI score from baseline was 93.5% at week 32 when maintained on tralokinumab 300 mg Q2W + TCS and 91.5% at week 32 for subjects on tralokinumab 300 mg Q4W + TCS.

Of the subjects randomised to tralokinumab 300 mg Q2W + TCS who did not achieve IGA 0 or 1 or EASI-75 at week 16, 30.5 % achieved IGA 0/1 and 55.8 % achieved EASI-75 at week 32 when treated continuously with tralokinumab 300 mg Q2W + TCS for additional 16 weeks.

The continued improvement among the subjects who did not achieve IGA 0 or 1 or EASI-75 at week 16 occurred in conjunction with the improvement of Worst Daily Pruritus NRS and objective signs of atopic dermatitis including SCORAD.

Table 6: Efficacy results of tralokinumab with concomitant TCS at weeks 16 and 32 in ECZTRA 3 in patients initially treated with tralokinumab Q2W + TCS

	Treatment regimen Week 16-32 ^{d)}					
	Responders	Responders at Week 16 ^{e)}				ders at
Patients randomised	Q2W	Q2W + TCS Q4W + TCS		Q2W + TCS N=95		
	N=	N=69 N=69				
Week number	W16	W32	W16	W32	W16	W32
EASI-50, % responders ^{a)}	100.0	98.6	97.1	91.3	63.2	76.8
EASI-90, % responders ^{a)}	58.0	72.5	60.9	63.8	1.1	34.7
EASI, LS % mean change from baseline	-90.5	-93.2	-89.3	-91.5	-46.9	-73.5

(SE) ^{b)}	(2.7)	(2.3)	(2.7)	(2.3)	(2.4)	(2.0)
Pruritus NRS (≥ 4-point improvement, % responders) ^{a,c)}	63.2	70.6	64.2	61.2	27.4	38.9

LS: Least squares, SE: Standard error

If needed to control intolerable symptoms of atopic dermatitis, patients were permitted to receive rescue treatment at the discretion of the investigator.

- a) Patients who received rescue treatment or had missing data were considered non-responders in the analyses.
- b) Data after initiation of rescue medication or permanent discontinuation of treatment was excluded from the analyses.
- c) The percentage is calculated relative to the number of subjects with a baseline value ≥ 4.
- d) All patients were initially treated with tralokinumab 300 mg Q2W + TCS from week 0 to week 16. They were subsequently treated with tralokinumab 300 mg Q2W + TCS or Q4W + TCS.
- e) Responders at week 16 are identified as patients achieving either IGA 0/1 and/or EASI-75.

Patient-reported outcomes

In both monotherapy studies (ECZTRA 1 and ECZTRA 2) and in the concomitant TCS study (ECZTRA 3) tralokinumab improved patient-reported symptoms of atopic dermatitis, as measured by POEM, and the impact of atopic dermatitis on sleep, as measured by Eczema-related sleep NRS, at week 16 compared to placebo. A higher proportion of patients treated with tralokinumab had clinically meaningful reductions in POEM, (defined as at least 4 point improvement) from baseline to week 16 compared to placebo.

Paediatric population

The licensing authority has deferred the obligation to submit the results of studies with tralokinumab in one or more subset of the paediatric population in atopic dermatitis (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

Absorption

After subcutaneous (SC) dose of tralokinumab median time to maximum concentration in serum (t_{max}) were 5-8 days. The absolute bioavailability of tralokinumab following SC dosing was estimated by population PK analysis to be 76%. In a phase 1 trial (10 subjects per arm), bioavailability was estimated to be 62% for the 150 mg dose and 60% for the 300 mg dose.

Steady-state concentrations were achieved by week 16 following a 600 mg starting dose and 300 mg every other week. Across clinical studies (ECZTRA 1, ECZTRA 2 and ECZTRA 3), the mean ±SD steady-state trough concentration ranged from 98.0±41.1 mcg/mL to 101.4±42.7 mcg/mL for 300 mg dose administered every other week.

Distr bution

A volume of distribution for tralokinumab of approximately 4.2 L was estimated by population PK analysis.

Biotransformation

Specific metabolism studies were not conducted because tralokinumab is a protein. Tralokinumab is expected to degrade to small peptides and individual amino acids.

Elimination

Tralokinumab is eliminated through a non-saturable proteolytic pathway. Half-life is 22 days, consistent with the typical estimate for human IgG4 monoclonal antibodies targeting soluble cytokines. In ECZTRA 1, ECZTRA 2, and ECZTRA 3, clearance was estimated by population PK analysis to be 0.149 L/day. In phase 1 trials with IV dosing, clearance was estimated to be between 0.179 and 0.211 L/day

Linearity/non-linearity

Exposure of tralokinumab increases proportionally to the dose of tralokinumab between 150-600 mg.

Special populations

Gender

Gender was not found to be associated with any clinically meaningful impact on the systemic exposure of tralokinumab determined by population PK analysis.

Age

Age was not found to be associated with clinically relevant impact of systemic exposure of tralokinumab determined by population PK analysis. 109 subjects above 65 years were included in the analysis.

Race

Race was not found to be associated with any clinically meaningful impact on the systemic exposure of tralokinumab by population PK analysis.

Hepatic impairment

Tralokinumab, as a monoclonal antibody, is not expected to undergo significant hepatic elimination. No clinical studies have been conducted to evaluate the effect of hepatic impairment on the pharmacokinetics of tralokinumab. Mild hepatic impairment was not found to affect the PK of tralokinumab determined by population PK analysis. Very limited data are available in patients with moderate or severe hepatic impairment.

Renal impairment

Tralokinumab, as a monoclonal antibody, is not expected to undergo significant renal elimination. No clinical studies have been conducted to evaluate the effect of renal impairment on the pharmacokinetics of tralokinumab. Population PK analysis did not identify mild or moderate renal impairment as having a clinically meaningful influence on the systemic exposure of tralokinumab. Very limited data are available in patients with severe renal impairment.

High body weight

Tralokinumab trough concentrations were lower in subjects with higher body weight (see section 4.2).

Table 7: Area under the curve (AUC) by weight

Weight (kg)	75	100	120	140
AUC (mcg*day/mL)	1532	1192	1017	889
Ratio AUC 75 kg	1	0.78	0.66	0.57

Calculated AUC at steady-state for the dosing interval for 300 mg Q2W for a subject of a certain weight based on the relation between Clearance and weight Clearance = $0.149 \times (W/75)^{^{\land}} 0.873$. AUC = F × Dose Clearance, where F = 0.761.

Paediatric population

The pharmacokinetics of tralokinumab in paediatric patients has not yet been studied.

5.3 Preclinical safety data

Non-clinical data reveal no special hazard for humans based on conventional studies of repeated dose toxicity (including safety pharmacology endpoints) and toxicity to reproduction and development.

The mutagenic potential of tralokinumab has not been evaluated; however monoclonal ant bodies are not expected to alter DNA or chromosomes.

Carcinogenicity studies have not been conducted with tralokinumab. An evaluation of the available evidence related to IL-13 inh bition and animal toxicology data with tralokinumab does not suggest an increased carcinogenic potential for tralokinumab.

Enhanced pre- and postnatal studies with tralokinumab in monkeys did not identify adverse effects in maternal animals or their offspring up to 6 months post-partum.

No effects on fertility parameters such as reproductive organs, menstrual cycle and sperm analysis were observed in sexually mature monkeys treated subcutaneously with tralokinumab up to 350 mg/animal (females) or 600 mg/animal (males) (AUC exposure up to 15-fold higher than in human patients receiving tralokinumab 300 mg every 2 weeks).

6. Pharmaceutical particulars

6.1 List of excipients

Sodium acetate trihydrate (E262)

Acetic acid (E260)

Sodium chloride

Polysorbate 80 (E433)

Water for injections

6.2 Incompatibilities

In the absence of compatibility studies, this medicinal product must not be mixed with other medicinal products.

6.3 Shelf life

3 years.

If necessary, pre-filled syringes may be kept at room temperature up to 25°C for a maximum of 14 days, within its shelf-life, without being refrigerated again during this period. Do not store above 25°C. If the carton needs to be removed permanently from refrigerator, the date of removal may be recorded on the carton. After removal from the refrigerator, Adtralza must be used within 14 days or discarded.

6.4 Special precautions for storage

Store in a refrigerator (2°C - 8°C).

Do not freeze.

Store in the original package in order to protect from light.

6.5 Nature and contents of container

1 mL (150 mg) solution in a siliconised type-1 clear glass pre-filled syringe with 27 gauge $\frac{1}{2}$ inch thin wall stainless steel staked needle, elastomer plunger stopper extended finger flange and needle guard.

Pack size:

- 2 pre-filled syringes
- Multipack containing 4 (2 packs of 2) pre-filled syringes
- Multipack containing 12 (6 packs of 2) pre-filled syringes.

Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

The solution should be clear to opalescent, colourless to pale yellow. If the solution is cloudy, discoloured or contains visible particulate matter, the solution should not be used. Do not use if the pre-filled syringe is damaged or has been dropped on a hard surface.

After removing the pre-filled syringes from the refrigerator, they should be allowed to reach room temperature by waiting for 30 minutes before injecting Adtralza.

Adtralza is sterile. Discard any unused product remaining in the pre-filled syringe.

7. Marketing authorisation holder

LEO Pharma A/S

Industriparken 55

DK-2750 Ballerup

Denmark

8. Marketing authorisation number(s)

PLGB 05293/0182

9. Date of first authorisation/renewal of the authorisation

Date of first authorisation: 21st June 2021

10. Date of revision of the text

June 2021

Company Contact Details

Leo Laboratories Limited

Address

Horizon, Honey Lane, Hurley, Berkshire, SL6 6RJ, UK

Telephone

+44 (0)1844 347 333

Medical Information e-mail

medical-info.uk@leo-pharma.com

Adtralza 150 mg solution for injection in pre-filled syringe

製品特性概要 2021 年 7 月 5 日更新 Leo Laboratories Limited

▼本医薬品についてはさらにモニタリングを行い、新しい安全性情報を迅速に確認する。副作用の疑いが生じた場合、医療従事者には報告が求められる。副作用の報告の方法は 4.8 項参照。

1. 販売名

Adtralza 150 mg solution for injection in pre-filled syringe

2. 成分 - 含量

プレフィルドシリンジ 1 本中、トラロキヌマブ 150 mg を含有する 1mL の注射液 1 mL (150 mg/mL) 。トラロキヌマブはマウスミエローマ細胞を使用し、遺伝子組み換え技術により製造される。 添加剤の一覧を 6.1 項に示す。

3. 剤型

注射液 (注射用製剤)

澄明または乳白光、無色~微黄色の溶液で、pH は 5.5、浸透圧は約 280 mOsm/L である。

4. 臨床特性

4.1 適応症

Adtralza は、全身療法が適応となる中等症から重症のアトピー性皮膚炎成人患者の治療薬である。

4.2 用法及び用量

アトピー性皮膚炎の診断および治療に経験のある医療従事者が投与すること。

<u>用量</u>

成人患者に対するトラロキヌマブの推奨用量は、初回用量として 600 mg (150 mg の注射を 4 本)、その後は 300 mg (150 mg の注射を 2 本)を 2 週間隔で皮下投与する。

投与を 16 週間継続して「皮膚病変がなし」または「ほとんどなし」となった患者には、処方医師の裁量で、 4 週間隔の投与を検討できる。4 週間隔の投与では、「皮膚病変がなし」または「ほとんどなし」の状態を維持できる可能性は低下することがある(5.1 項参照)。

投与を 16 週間継続しても効果がみられない患者には、投与の中止を検討すること。投与初期に部分奏効が達成されている患者の中には、16 週を超えても 2 週間隔の投与を継続することで、16 週以降にさらに改善する患者もいる。

トラロキヌマブは単剤およびステロイド外用剤併用のいずれでも投与可能である。適切な場合、ステロイド外用剤を併用すると、トラロキヌマブの全体的な有効性に相加的な効果が得られることがある(5.1 項参照)。カルシニューリン阻害外用薬も使用できるが、顔、頸、間擦部および外陰部など問題のある部位のみにとどめること。

投与を忘れた場合

投与を忘れた場合には、可能な限り迅速に投与する。その後は通常の予定時刻に投与を再開する。

特定の集団

高齡者(65 歳以上)

高齢の患者では用量の調節は推奨されない(5.2 項参照)。75歳を超えた患者に投与したときのデータは限られている。

腎機能障害

腎機能障害を有する患者で用量を調節する必要はない。重度の腎機能障害患者に投与したときのデータは非常に限られている(5.2 項参照)。

肝機能障害

肝機能障害を有する患者で用量を調節する必要はない。中等度または重度の肝機能障害患者に投与したときのデータは非常に限られている(5.2 項参照)。

高体重

高体重(100 kg 超)の患者の場合、16週間の投与で「皮膚病変がなし」または「ほとんどなし」を達成しても、投与頻度を4週間隔に減らすことは適切ではない可能性がある(5.2項参照)。

小児集団

18歳未満の小児におけるトラロキヌマブの安全性および有効性は確立されていない。この患者集団に投与したときのデータはない。

投与方法

トラロキヌマブは皮下投与する。

プレフィルドシリンジは振とうしないこと。プレフィルドシリンジを冷蔵庫から取り出したら、投与前に30分かけて室温に戻しておくことが望ましい。

トラロキヌマブは大腿、または臍周囲5センチを避けて腹部に皮下投与する。患者以外の者が投与する場合には、上腕に投与することもできる。

初回用量 600 mg は、トラロキヌマブ 150 mg を 4 本、それぞれ異なる注射部位に連続的に投与する。

投与ごとに注射部位を変えることが推奨される。圧痛、損傷、挫傷または瘢痕のある部位は避ける。

担当の医療従事者が適切であると判断したときには、患者が自己投与するまたは介護者が投与することもできる。患者および/または介護者が投与する場合は、事前に適切なトレーニングを行うこと。使用方法の詳細は添付文書の最後に記載する。

4.3 禁忌

トラロキヌマブの有効成分または 6.1 項に示すいずれかの添加剤に対して過敏症のある患者には使用しないこと。

4.4 警告及び使用上の注意

トレーサビリティ

生物製剤のトレーサビリティを向上させるために、投与した製剤の名称およびバッチ番号を明確に記録すること。

過敏症

全身過敏症反応(即時性または遅延性)が生じた場合には、トラロキヌマブの投与は中止し、適切な治療を行うこと。

結膜炎

トラロキヌマブ投与後に結膜炎が生じ、標準治療で回復しない場合には、眼科で検査を受けること(4.8 項参照)。

蠕虫感染

蠕虫感染が知られている患者は臨床試験から除外されている。トラロキヌマブによる IL-13 シグナル伝達の阻害が、蠕虫感染に対する免疫応答に影響を及ぼすかどうかは不明である。

蠕虫感染がある患者は、トラロキヌマブ投与開始前に蠕虫感染の治療を行うこと。トラロキヌマブ投与中に 感染し、蠕虫に対する治療の効果がみられない場合には、感染が消失するまでトラロキヌマブの投与を中止 すること。

ワクチン接種

トラロキヌマブと生ワクチンおよび弱毒生ワクチンを併用した場合の臨床的な安全性および有効性は確立されていないため、これらのワクチンと併用しないこと。生ワクチンではない破傷風ワクチンおよび髄膜炎菌ワクチンに対する免疫応答は評価されている(4.5 項参照)。トラロキヌマブ投与開始前に、現行のワクチン接種ガイドラインに従い、生ワクチンおよび弱毒生ワクチンの最新情報を患者に伝えることが推奨される。

ナトリウム含有量

本医薬品のナトリウム含有量は 150 mg あたり 1 mmol (23 mg) 未満であり、実質的に「ナトリウムフリー」である。

4.5 他の医薬品との相互作用及びその他の相互作用

トラロキヌマブと生ワクチンおよび弱毒生ワクチンを併用したときの安全性および有効性は、評価されていない。

生ワクチンではないワクチンに対する免疫応答はアトピー性皮膚炎の成人患者を対象とした試験で評価されており、この試験では、トラロキヌマブを初回用量として 600 mg(150 mg の注射を 4 本)、その後 300 mg を 2 週間隔で皮下投与した。トラロキヌマブを 12 週間投与した後、破傷風・ジフテリア・無菌性百日咳ワクチン、および髄膜炎菌ワクチンを接種し、4 週間後に免疫応答を評価した。破傷風ワクチンおよび髄膜炎菌ワクチンに対する抗体反応は、トラロキヌマブ投与群とプラセボ投与群で同程度であり、生ワクチンではないワクチンとトラロキヌマブの間に有害な相互作用はなかった。したがって、トラロキヌマブを投与している患者でも、不活化ワクチンまたは生ワクチンではないワクチンを同時に接種することは可能である。

生ワクチンまたは弱毒生ワクチンの情報は4.4項参照。

4.6 妊娠中・授乳期の使用

妊婦

妊婦にトラロキヌマブを投与したときのデータは限られている。

動物を使用した試験では、生殖毒性に関する直接または間接的な有害作用は示されていない(5.3 項参照)。 しかし、予防措置として、妊娠中はトラロキヌマブの使用は避けることが望ましい。

授乳婦

トラロキヌマブが投与後ヒト母乳に移行するか全身吸収されるかは不明である。授乳を中止するかトラロキヌマブの投与を中止するかは、母乳栄養の有益性とトラロキヌマブによる治療上の有益性とを考慮して判断する必要がある。

生殖能

動物を使用した試験では、雌雄の生殖器、精子の数、運動性および形態に影響はみられなかった(5.3 項参照)。

4.7 運転及び機械操作能力に対する影響

自動車の運転および機械操作能力への影響はない。

4.8 望ましくない作用

安全性プロファイルの概要

最も多くみられる副作用は上気道感染(23.4%。主に感冒)、注射部位反応(7.2%)、結膜炎(5.4%)およびアレルギー性結膜炎(2.0%)である。

副作用の一覧

中等症から重症のアトピー性皮膚炎患者を対象とした無作為化、二重盲検、プラセボ対照試験 5 試験 (ECZTRA 1、ECZTRA 2、ECZTRA 3、用量設定試験、ワクチン応答試験) のプールでは、被験者 1991 例に ステロイド外用剤併用下および非併用下でトラロキヌマブを皮下投与した。このうち 807 例には、1 年以上 にわたってトラロキヌマブを投与した。

臨床試験でみられた副作用を器官別大分類ごとに、次の頻度に分けて表 1 に示す:非常に高頻度(10%以上)、高頻度(1%以上 10%未満)、低頻度(0.1%以上 1%未満)、まれ(0.01%以上 0.1%未満)、非常にまれ(0.01%未満)。各頻度グループ内では、重篤度の高い順に提示した。頻度は、アトピー性皮膚炎集団を対象とした 5 試験をプールし、Week 16 までの初期投与期間中に生じた頻度に基づいている。

表 1: 副作用の一覧

MedDRA System Organ Class	Frequency	Adverse reaction
感染症および寄生虫症	Very common Common	上気道感染 結膜炎
血液およびリンパ系障害	Common	好酸球増加症
眼障害	Common Uncommon	アレルギー性結膜炎 角膜炎
一般・全身障害および投与部位 の状態	Common	注射部位反応

トラロキヌマブの長期的な安全性は、最長 52 週間の単剤投与試験 2 試験、および最長 32 週間のステロイド外用剤との併用 1 試験で評価した。最長 Week 52 または Week 32 までのトラロキヌマブの安全性プロファイルは、Week 16 までの安全性プロファイルと一致していた。

特定の副作用の説明

結膜炎および結膜炎関連事象

アトピー性皮膚炎患者を対象とした5試験のプールにおいて、Week 16 までの初期投与期間では、結膜炎の頻度はプラセボ投与群(1.9%)と比べてトラロキヌマブ投与群(5.4%)のほうが高かった。トラロキヌマブ投与群でもプラセボ投与群でも、結膜炎の報告頻度は中等症である患者と比べてアトピー性皮膚炎が重症である患者で高かった(初期投与期間のトラロキヌマブ投与群で6.0% vs. 3.3%、プラセボ投与群で2.2% vs. 0.8%)。ほとんどの患者は投与期間中に回復したか回復傾向であった。

角膜炎は初期投与期間にトラロキヌマブを投与した被験者の 0.5%で報告された。このうち半数は角結膜炎と 分類されたが、いずれも非重篤で軽度または中等度であり、投与中止に至った例はなかった。

好酸球增加症

5 試験のプールにおいて、Week 16 までの初期投与期間で副作用としての好酸球増加症の発現頻度は、トラロキヌマブ投与群で 1.3%、プラセボ投与群で 0.3%であった。トラロキヌマブ投与群ではプラセボ投与群に比べ、ベースラインからの初期増加の平均値が高かった。初期投与期間に好酸球増加症(5,000/mcL 以上)と判断された患者の割合は、トラロキヌマブ投与群で 1.2%、プラセボ投与群で 0.3%であった。しかし、トラロキヌマブ投与群での増加は一過性であり、投与継続中に平均好酸球数はベースライン時の値に戻った。安全性プロファイルは好酸球増加症の被験者と全被験者との間で同程度であった。

ヘルペス性状湿疹

アトピー性皮膚炎を対象とした5試験のプールにおいて、Week 16 までの初期投与期間では、ヘルペス性状湿疹が報告された被験者者はトラロキヌマブ投与群で0.3%、プラセボ投与群で1.5%であった。5 試験のプールの全投与期間を通じ、トラロキヌマブ投与群で報告されたヘルペス性状湿疹事象はいずれも非重篤であり、重度の事象はなく、投与の完全中止に至った事象は1件のみであった。

免疫原性

他の治療用タンパク質と同様に、トラロキヌマブにも免疫原性の可能性がある。

抗薬物抗体(ADA)反応によるトラロキヌマブの曝露量、安全性または有効性への影響はみられなかった。

ECZTRA 1、ECZTRA 2、ECZTRA 3 試験およびワクチン応答試験では、Week 16 までの ADA 発現頻度はトラロキヌマブ投与群で 1.4%、プラセボ投与群で 1.3%であり、中和抗体の発現頻度はそれぞれ 0.1%と 0.2%であった。

全試験期間を通じ、トラロキヌマブ投与群における ADA 発現頻度は 4.6%であり、ADA が継続した被験者の割合は 0.9%、中和抗体の発現頻度は 1.0%であった。

注射部位反応

5 試験のプールにおいて、Week 16 までの初期投与期間での注射部位反応(疼痛および発赤など)の発現頻度は、プラセボ投与群と比べてトラロキヌマブ投与群で高かった(7.2% vs. 3.0%)。アトピー性皮膚炎を対象とした 5 試験の全投与期間で、注射部位反応の大半(99%)は軽度または中等度であり、トラロキヌマブ投与を中止した患者はほとんどいなかった(1%未満)。報告されたほとんどの注射部位反応は短期間で消失し、約76%の事象は $1\sim5$ 日以内に消失した。

副作用の疑いの報告

医薬品の承認後に副作用の疑いが生じた場合には、報告することが重要である。報告することで当該医薬品のリスク・ベネフィットバランスを継続的にモニタリングすることができる。副作用の疑いが生じた場合には、医療従事者はイエローカード副作用報告システムを通じて報告することが求められる(www.mhra.gov.uk/yellowcard、あるいは Google Play または Apple App Store で MHRA Yellow Card を検索)。

4.9 過量投与

トラロキヌマブの過量投与に対する特定の治療法はない。臨床試験では、最高 30 mg/kg の単回静脈内投与、および 600 mg を 2 週間隔で 12 週間にわたり反復皮下投与したときの忍容性は良好であった。

5. 薬理学的特性

5.1 薬力学的特性

薬物療法的分類:皮膚炎用製剤、副腎皮質ステロイドを除く。ATC コード: D11AH07

作用機序

トラロキヌマブは、2型サイトカインのインターロイキン 13 (IL-13) に特異的に結合し、IL-13 と IL-13 受容体との相互作用を阻害する完全ヒト IgG4 モノクローナル抗体である。トラロキヌマブは IL-13 と IL-13 Rα1/IL-4Rα 受容体複合体との相互作用を遮断し、IL-13 の生物学的活性を中和する。IL-13 はヒトの 2 型炎症による疾患(アトピー性皮膚炎など)を引き起こす主要な要因であり、IL-13 経路をトラロキヌマブで阻害すると、2 型炎症に関与する多くのメディエータが減少する。

薬力学的作用

臨床試験でトラロキヌマブを投与すると、病変皮膚および血液中の2型炎症のバイオマーカー(皮膚では CCL17、CCL18、CCL26;血液中ではCCL17、ペリオスチン、IgE)レベルが低下した。病変皮膚では表皮の厚さの減少および上皮バリアの完全性マーカー(ロリクリン)の増加がみられ、S. aureus のコロニー形成は10分の1以下に減少した。

臨床的有効性および安全性

トラロキヌマブ単剤投与およびステロイド外用剤と併用したときの有効性および安全性は、主要試験である無作為化、二重盲検、プラセボ対照試験 3 試験(ECZTRA 1、ECZTRA 2 および ECZTRA 3)で評価した。これらの 3 試験には、中等症から重症のアトピー性皮膚炎(ベースライン時に医師による包括的な評価 [IGA] のスコアが 3 または 4 [中等度または重度]、湿疹面積・重症度指数 [EASI] スコアが 16 以上、および病変のある体表面積 [BSA] が 10%以上と定義)であり、これまでに外用剤では十分な効果がなかった 18 歳以上の患者 1976 例が参加した。

3 試験での投与レジメンは以下のとおりである: 1) トラロキヌマブの初回用量として 600 mg (150 mg の注射を 4 本)を Day 1 に投与し、その後最長 Week 16 まで 300 mg を 2 週間隔で (Q2W) 投与、または 2) プラセボの投与。ECZTRA 3 試験では活動性病変に対し必要に応じてステロイド外用剤を併用した。いずれの試験でもトラロキヌマブは皮下 (SC) 注射で投与した。

ECZTRA 1 と ECZTRA 2 試験では効果の持続性を評価するために、最初の 16 週間の投与が奏効した患者 (IGA 0 または 1、あるいは EASI-75 を達成)を次の 3 群に再無作為化し、最長 Week 52 まで投与を継続した: 1)トラロキヌマブ 300 mg Q2W; 2)トラロキヌマブ 300 mg Q4W(トラロキヌマブ 300 mg とプラセボを Q2W で交互に投与); 3)プラセボ Q2W。奏効の持続性を評価する主要評価項目は、Week 52 における IGA 0 または 1、および EASI-75 とした。16 週間の初期投与中にプラセボで効果がみられた患者には、そのままプラセボ投与を継続した。Week 16 に IGA 0 または 1 あるいは EASI-75 が達成されなかった被験者、および維持投与期間中に奏効が維持されなかった被験者には、トラロキヌマブ 300 mg Q2W を非盲検下で投与し、場合によりステロイド外用剤を併用するレジメンに移行した。試験の投与期間は 52 週間であった。

ECZTRA 3 試験では、最初の 16 週間でトラロキヌマブ+TCS が奏効した患者(IGA 0 または 1、あるいは EASI-75 を達成)を次の 2 群に再無作為化し、最長 Week 32 まで投与を継続した:1) トラロキヌマブ 300 mg Q2W+TCS; 2) トラロキヌマブ 300 mg Q4W+TCS(トラロキヌマブ 300 mg とプラセボを交互に Q2W 投与)。奏効の持続性を評価する主要評価項項目は、Week 32 における IGA 0 または 1、および EASI-75 とした。16 週間の初期投与中にプラセボ+TCS で効果がみられた患者には、そのままプラセボ+TCS 投与を継続した。Week 16 に IGA 0 または 1、あるいは EASI-75 が達成されなかった患者は、初期投与でどの治療を受けたかにかかわらず、トラロキヌマブ 300 mg Q2W+TCS 投与を継続した。試験の投与期間は 32 週間であった。

各試験に登録した患者数は以下のとおりである:

ECZTRA 1:合計 802 例(プラセボ 199 例、トラロキヌマブ 300 mg Q2W 603 例) ECZTRA 2:合計 794 例(プラセボ 201 例、トラロキヌマブ 300 mg Q2W 593 例)

ECZTRA 3:合計 380 例 (プラセボ+TCS 127 例、トラロキヌマブ 300 mg Q2W+TCS 253 例)

評価項目

3 つの主要試験すべてにおいて、主要評価項目はベースラインから Week 16 までの IGA 0 または 1 (「病変なし」または「ほとんど病変なし」)の達成、および EASI の 75%以上の低下(EASI-75)の達成であった。副次的評価項目は、ベースラインから Week 16 までの痒みの減少(そう痒 NRS の日内最高値の 4 ポイント以上の改善と定義)、アトピー性皮膚炎評価スコア(SCORAD)の低下、および皮膚の状態に関する質問票(DLQI)の変化とした。追加の副次的評価項目は、ベースラインから Week 16 までの EASI の 50%以上および 90%以上の低下(EASI-50 および EASI-90)、およびそう痒 NRS の日内最高値の低下(週平均)などであった。その他の評価項目は、ベースラインから Week 16 までの患者向け湿疹評価(POEM)の変化、POEMの 4 ポイント以上の改善、および湿疹に関連した睡眠の NRS の変化などであった。

ベースライン時の人口統計学的特性

単剤投与試験(ECZTRA 1 および ECZTRA 2)では、投与群全体の平均年齢は 37.8 歳、65 歳以上の患者は 5.0%、平均体重は 76.0 kg、女性は 40.7%、白人は 66.5%、アジア人は 22.9%、黒人は 7.5%であった。ベースライン時の IGA スコアは 3(中等度のアトピー性皮膚炎)が 49.9%、4(重度のアトピー性皮膚炎)が 49.7%、全身性免疫抑制剤(シクロスポリン、メトトレキサート、アザチオプリン、ミコフェノール酸)の治療歴がある患者は 42.5%であった。ベースライン時の平均スコアは、EASI が 32.3、そう痒 NRS の日内最高値が 7.8、DLQI が 17.3、SCORAD が 70.4、POEM が 22.8、SF-36 の身体的健康および精神的健康スコアがそれぞれ 43.4 と 44.3 であった。

ステロイド外用剤併用試験(ECZTRA 3)では、投与群全体の平均年齢は 39.1 歳、65 歳以上の患者は 6.3%、平均体重は 79.4kg、女性は 45.0%、白人は 75.8%、アジア系は 10.8%、黒人は 9.2%であった。ベースライン時の IGA スコアは 3 が 53.2%、4 が 46.3%、全身性免疫抑制剤の治療歴がある患者は 39.2%であった。ベースライン時の平均スコアは、EASI が 29.4、そう痒 NRS の日内最高値が 7.7、DLQI が 17.5、SCORAD が 67.6、POEM が 22.3 であった。

クリニカルレスポンス

単剤投与試験 (ECZTRA 1 および ECZTRA 2) -初期投与期間 (Week 0~16)

ECZTRA 1 および ECZTRA 2 試験のベースラインから Week 16 までに、IGA 0 または 1、EASI-75、および / またはそう痒 NRS の日内最高値が 4 ポイント以上改善した患者の割合は、プラセボに無作為化された患者 と比べてトラロキヌマブに無作為化された患者で有意に高かった(表 2 参照)。

表 2: ECZTRA 1 および ECZTRA 2 試験の Week 16 におけるトラロキヌマブ単投与の有効性(FAS)

Monotherapy					
	ECZTRA 1		ECZTRA 2		
	Week 16		Week 16		
	Placebo	Tralokinumab 300 mg Q2W	Placebo	Tralokinumab 300 mg Q2W	
Number of patients randomised and dosed (FAS)	197	601	201	591	
IGA 0 or 1, % responders ^{a,b)}	7.1	15.8#	10.9	22.2 [§]	
EASI-50, % responders ^{a)}	21.3	41.6 ^{§,e)}	20.4	49.9 ^{§,e)}	
EASI-75, % responders ^{a)}	12.7	25.0 [§]	11.4	33.2 [§]	
SCORAD, LS mean change from baseline (± SE) ^{c)}	-17.2 (± 1.98)	-24.9 [§] (± 1.23)	-13.8 (± 2.00)	-26.9 [§] (± 1.06)	
Pruritus NRS (≥4-point improvement, % responders) ^{a,d)}	10.3 (20/194)	20.0# (119/594)	9.5 (19/200)	25.0 [§] (144/575)	
DLQI, LS mean change from baseline (±SE) ^{c)}	-5.7 (± 0.63)	-7.5 [#] (± 0.41)	-5.2 (± 0.68)	-8.6 [§] (± 0.36)	

LS=least squares; SE=standard error, FAS: Full Analysis Set - includes all patients randomised and dosed

If needed to control intolerable symptoms of atopic dermatitis, patients were permitted to receive rescue treatment at the discretion of the investigator.

- a) Patients who received rescue treatment or had missing data were considered non-responders.
- b) Responder was defined as a patient with IGA 0 or 1 ("clear" or "almost clear" on a 0-4 IGA scale).
- c) Data after initiation of rescue medication or permanent discontinuation of treatment were considered missing. Placebo based multiple imputation of missing data.
- d) The percentage is calculated relative to the number of subjects with a baseline value > 4.
- e) Not adjusted for multiplicity.

*p<0.05, #p<0.01, §p<0.001

単剤投与試験(ECZTRA 1 および ECZTRA 2)において、プラセボ投与群に比べ、トラロキヌマブ投与群では Week 1 という早い時期からそう痒 NRS の日内最高値の変化率で測定した痒みが低下していた。痒みの低下に伴い、アトピー性皮膚炎の客観的徴候および症状、並びに生活の質も改善した。

これらの 2 試験で救援療法(ステロイド外用剤、全身性ステロイド薬、非ステロイド免疫抑制剤)が必要となった患者数は、プラセボに無作為化された患者と比べてトラロキヌマブ 300 mg Q2W に無作為化された患者で少なかった(2 試験全体で 29.3% vs. 45.3%)。ベースラインでアトピー性皮膚炎が重症であった患者ほど救援療法の使用率が高かった(トラロキヌマブ 300 mg Q2W 群とプラセボ投与群でそれぞれ 39.3% と 56.7%)。

単剤投与試験(ECZTRA 1 およびECZTRA 2) -維持投与期間(Week 16~52)

ECZTRA 1 および ECZTRA 2 試験では奏効の持続性を評価するために、トラロキヌマブ 300 mg Q2W 群の投与で Week 16 に IGA 0 または 1、あるいは EASI-75 を達成した被験者(ECZTRA 1 試験では 185 例、 ECZTRA 2 試験では 227 例)を次の 3 群に再無作為化し、さらに 36 週間(試験治療は合計 52 週間)にわたって投与を継続した:1)トラロキヌマブ 300 mg を 2 週間隔(Q2W);2)トラロキヌマブ 300 mg とプラセボを交互に Q2W(トラロキヌマブ Q4W)または;3)プラセボ Q2W。単剤投与プールにおいて Week 16 にクリニカルレスポンスを達成した被験者の間では、Week 52 での奏効率(IGA 0/1 または EASI-75)は、トラロキヌマブ 300 mg Q2W とトラロキヌマブ 300 mg Q4W でそれぞれ 56.2%と 50%であった。

表 3: Week 16 でトラロキヌマブ 300 mg Q2W が奏効した被験者における Week 52 での有効性(IGA 0 または 1、あるいは EASI-75)

	ECZTRA 1			ECZTRA 2			
	Treatment regimen Week 16-52e)			Treatment regimen Week 16-52°)			
Assessment at Week 52	Tralokinumab 300 mg Q2W	Tralokinumab 300 mg Q4W	Placebo	Tralokinumab 300 mg Q2W Tralokinumab P		Placebo	
IGA 0/1 ^{a)} % responders ^{f)}	51.3 ^{d)} (20/39)	38.9 ^{d)} (14/36)	47.4 (9/19)	59.3°) (32/54)	44.9 ^{d)} (22/49)	25.0 (7/28)	
EASI-75 ^{a)} % responders ^{g)}	59.6 ^{d)} (28/47)	49.1 ^{d)} (28/57)	33.3 (10/30)	55.8 ^{b)} (43/77)	51.4 ^{c)} (38/74)	21.4 (9/42)	

If needed to control intolerable symptoms of atopic dermatitis, patients were permitted to receive rescue treatment at the discretion of the investigator

- a) Subjects who received rescue treatment or had missing data were treated as non-responders. The percentage is calculated relative to the number of subjects with response at week 16.
- b) p<0.001 compared to placebo
- c) p<0.05 compared to placebo
- d) p>0.05 compared to placebo
- e) All patients were initially treated with tralokinumab 300 mg Q2W week 0 to week 16.
- f) IGA 0/1 at week 52 was evaluated in those subjects that had IGA 0/1 at week 16.
- g) EASI-75 at week 52 was evaluated in those subjects that had EASI-75 at week 16.

トラロキヌマブに無作為化し、Week 16 で IGA 0 または 1 あるいは EASI-75 が達成されておらず、非盲検下のトラロキヌマブ 300 mg Q2W+任意の TCS に移行した被験者のうち、Week 52 で IGA 0 または 1 を達成した被験者の割合は、ECZTRA 1 試験で 20.8%、ECZTRA 2 試験で 19.3%、EASI-75 を達成した被験者の割合はそれぞれ 46.1%と 39.3%であった。クリニカルレスポンスが達成された主な要因は、任意のステロイド外用剤ではなく、継続投与されたトラロキヌマブであった。

32 週間の TCS 併用投与試験(ECZTRA 3) - 初期投与期間(0~16 週)

ECZTRA 3 試験のベースラインから Week 16 で、IGA 0 または 1、EASI-75、および/またはそう痒 NRS の日内最高値の 4 ポイント以上の改善を達成した患者の割合は、トラロキヌマブ 300 mg Q2W+TCS に無作為化した患者のほうがプラセボ+TCS に無作為化した患者と比べて有意に多かった(表 4 参照)。

表 4: ECZTRA 3 試験の Week 16 におけるトラロキヌマブ+TCS 併用投与の有効性(FAS)

Combination therapy					
	ECZTRA 3 Week 16				
	Placebo + TCS	Tralokinumab 300 mg Q2W + TCS			
Number of patients randomised and dosed (FAS)	126	252			
IGA 0 or 1, % responders ^{a,b)}	26.2	38.9*			
EASI-50, % responders ^{a)}	57.9	79.4 ^{§,e)}			
EASI-75, % responders ^{a)}	35.7	56.0 [§]			
SCORAD, LS mean change from baseline (±SE)c)	-26.7 (± 1.83)	-37.5 [§] (± 1.27)			
Pruritus NRS (≥4-point improvement, % responders) ^{a,d)}	34.1 (43/126)	45.4* (113/249)			
DLQI, LS mean change from baseline (±SE) ^{c)}	-8.8 (± 0.57)	-11.6 [§] (± 0.40)			

LS=least squares; SE=standard error, FAS: Full Analysis Set - includes all patients randomised and dosed

If needed to control intolerable symptoms of atopic dermatitis, patients were permitted to receive rescue treatment at the discretion of the investigator. The supplied TCS did not constitute rescue medication.

- a) Subjects who received rescue treatment or had missing data were treated as non-responders.
- b) Responder was defined as a patient with IGA 0 or 1 ("clear" or "almost clear" on a 0-4 IGA scale).
- c) Data after initiation of rescue medication or permanent discontinuation of treatment were considered missing. Placebo based multiple imputation of missing data.
- d) The percentage is calculated relative to the number of subjects with a baseline value ≥ 4.
- e) Not adjusted for multiplicity.

ECZTRA 3 試験において、提供されたステロイド外用剤の Week 16 での使用量は、トラロキヌマブ 300 mg Q2W 投与群ではプラセボ投与群の 50%であった。

また、トラロキヌマブ+TCS 投与群ではプラセボ+TCS 投与群に比べ、Week 2 という早い時期からそう痒 NRS の日内最高値の変化率で測定した痒みが低下していた。痒みの低下に伴い、アトピー性皮膚炎の客観的 徴候および症状、並びに生活の質も改善した。

32 週間の TCS 併用試験 (ECZTRA 3 - 維持投与期間 (Week 16~32)

ECZTRA 3 試験では奏効の持続性を評価するために、トラロキヌマブ 300 mg+TCS の投与で Week 16 に IGA 0 または 1、あるいは EASI-75 を達成した被験者を次の 2 群に再無作為化し、さらに 16 週間(試験治療は合計 32 週間)にわたって投与を継続した:1)トラロキヌマブ 300 mg を 2 週間隔(Q2W)+TCS;2)トラロキヌマブ 300 mg+TCS とプラセボを交互に 2 週間隔(トラロキヌマブ Q4W)。Week 16 にクリニカルレスポンスを達成した被験者では、トラロキヌマブ 300 mg Q2W+TCS 群とトラロキヌマブ 300 mg Q4W+TCS 群のいずれも、Week 32 までの臨床的有効性の維持率は高かった(表 5 参照)。

^{*}p<0.05, #p<0.01, §p<0.001.

表 5:トラロキヌマブ 300 mg+TCS Q2W の投与で Week 16 でクリニカルレスポンスが達成された被験 者における Week 32 での有効性

	Tralokinumab 300 mg Q2W + TCS	Tralokinumab 300 mg Q4W + TCS
IGA 0/1 at week 32 ^{a)}	89.6	77.6
% responders ^{b)}	(43/48)	(38/49)
EASI-75 at week 32 ^{a)}	92.5	90.8
% responders ^{c)}	(62/67)	(59/65)

If needed to control intolerable symptoms of atopic dermatitis, patients were permitted to receive rescue treatment at the discretion of the investigator.

- a) Subjects who received rescue treatment or had missing data were treated as non-responders. The percentage is calculated relative to the number of subjects with response at week 16.
- b) IGA 0/1 at week 32 was evaluated in those subjects that had IGA 0/1 at week 16.
- c) EASI-75 at week 32 was evaluated in those subjects that had EASI-75 at week 16.

Week 16 に IGA 0 または 1、あるいは EASI-75 が達成された全被験者のうち、ベースラインから Week 32 までの EASI スコアの改善の平均割合はトラロキヌマブ 300 mg Q2W+TCS 投与を維持した被験者で 93.5%、トラロキヌマブ 300 mg Q4W+TCS 投与に移行した被験者で 91.5%であった。

トラロキヌマブ 300 mg Q2W+TCS に無作為化され、Week 16 に IGA 0 または 1 あるいは EASI-75 が達成されなかった被験者では、トラロキヌマブ 300 mg Q2W+TCS 投与をさらに 16 週間継続すると、Week 32では 30.5%で IGA 0/1、55.8%で EASI-75 が達成された。

Week 16 で IGA 0 または 1、あるいは EASI-75 が達成されなかった被験者でも、そう痒 NRS の日内最高値および SCORAD などのアトピー性皮膚炎の客観的徴候の改善が継続した。

表 6: ECZTRA 3 試験で初期投与期間にトラロキヌマブ Q2W+TCS を投与した患者における Week 16 と Week 32 でのトラロキヌマブと TCS 併用の有効性

	Treatment regimen Week 16-32 ^{d)}					
	Responders at Week 16 ^{e)}			Non-responders at Week 16		
Patients randomised	Q2W + TCS Q4W + TCS		+ TCS	Q2W + TCS		
	N=	:69	N=	=69 N=95		95
Week number	W16	W32	W16	W32	W16	W32
EASI-50, % responders ^{a)}	100.0	98.6	97.1	91.3	63.2	76.8
EASI-90, % responders ^{a)}	58.0	72.5	60.9	63.8	1.1	34.7
EASI, LS % mean change from baseline (SE) ^{b)}	-90.5 (2.7)	-93.2 (2.3)	-89.3 (2.7)	-91.5 (2.3)	-46.9 (2.4)	-73.5 (2.0)
Pruritus NRS (≥4-point improvement, % responders) ^{a,c)}	63.2	70.6	64.2	61.2	27.4	38.9

LS: Least squares, SE: Standard error

If needed to control intolerable symptoms of atopic dermatitis, patients were permitted to receive rescue treatment at the discretion of the investigator.

- a) Patients who received rescue treatment or had missing data were considered non-responders in the analyses.
- b) Data after initiation of rescue medication or permanent discontinuation of treatment was excluded from the analyses.
- c) The percentage is calculated relative to the number of subjects with a baseline value ≥ 4.
- d) All patients were initially treated with tralokinumab 300 mg Q2W + TCS from week 0 to week 16. They were subsequently treated with tralokinumab 300 mg Q2W + TCS or Q4W + TCS.
- e) Responders at week 16 are identified as patients achieving either IGA 0/1 and/or EASI-75.

患者報告アウトカム

単剤投与試験(ECZTRA 1 および ECZTRA 2)と TCS 併用投与試験(ECZTRA 3)のいずれでも、プラセボ 投与群に比べ、トラロキヌマブ投与群で Week 16 でのアトピー性皮膚炎の患者報告症状(POEM で評価)およびアトピー性皮膚炎が睡眠に及ぼす影響(湿疹に関連した睡眠の NRS で評価)も改善した。ベースライン から Week 16 までに、POEM スコアに臨床的に意味のある低下(4 ポイント以上の改善と定義)がみられた 患者の割合は、トラロキヌマブ投与群がプラセボ投与群と比べて高かった。

小児患者集団

規制当局は、アトピー性皮膚炎の1つ以上の小児患者集団サブセットにおける試験結果の提出義務を延期した(小児に対する使用については、4.2項参照)。

5.2 薬物動態

吸収

トラロキヌマブを皮下(SC)投与したときの最高血清中濃度到達時間(t_{max})の中央値は、 $5\sim8$ 日であった。母集団 PK 解析では、トラロキヌマブの SC 投与後の絶対バイオアベイラビリティは 76%と推定された。第 1 相試験(各群 10 例)でのバイオアベイラビリティは、150 mg の投与で 62%、300 mg の投与で 60%と推定された。

初回に 600 mg を投与し、その後 300 mg を 2 週間隔で投与すると、Week 16 までに定常状態の濃度が達成された。ECZTRA 1、ECZTRA 2 および ECZTRA 3 の 3 試験では、300 mg を 2 週間隔で投与したときの定常状態でのトラフ濃度(平均 \pm SD)は 98.0 \pm 41.1 \sim 101.4 \pm 42.7 mcg/mL の範囲であった。

分布

母集団 PK 解析では、トラロキヌマブの分布容量は約4.2 L と推定された。

<u>生体内分解</u>

トラロキヌマブはタンパク質であるため、特定の代謝試験は行っていない。トラロキヌマブは小さなペプチドに分解され、さらに個々のアミノ酸に分解されると予想される。

排泄

トラロキヌマブは非飽和性タンパク質分解経路で排泄される。半減期は 22 日であり、可溶性サイトカインを標的としたヒト IgG4 モノクローナル抗体の典型的な推定値と一致している。ECZTRA 1、ECZTRA 2 および ECZTRA 3 試験の母集団 PK 解析では、クリアランスは 0.149 L/日と推定された。第 1 相試験における IV 投与では、クリアランスは $0.179\sim0.211$ L/日と推定された。

線形性/非線形性

トラロキヌマブの曝露量は、用量 150~600 mg の間では用量に比例して増加する。

特殊な集団

性別

母集団 PK 解析では、トラロキヌマブの全身曝露量に対して性別による臨床的に意味のある影響はなかった。

年齡

母集団 PK 解析では、トラロキヌマブの全身曝露量に対して年齢による臨床的に意味のある影響はなかった。解析には 65 歳超の被験者 109 例も含まれている。

人種

母集団 PK 解析では、トラロキヌマブの全身曝露量に対して人種による臨床的に意味のある影響はなかった。

肝機能障害

トラロキヌマブはモノクローナル抗体であるため、有意な肝排泄が生じることは予想されない。肝機能障害がトラロキヌマブの薬物動態に及ぼす作用を評価した臨床試験は実施されていない。母集団 PK 解析では、軽度の肝機能障害によるトラロキヌマブの PK への影響はなかった。中等度または重度の肝機能障害患者からは非常に限られたデータしか得られていない。

腎機能障害

トラロキヌマブはモノクローナル抗体であるため、有意な腎排泄が生じることは予想されない。腎機能障害がトラロキヌマブの薬物動態に及ぼす作用を評価した臨床試験は実施されていない。母集団 PK 解析では、

軽度または中等度の腎機能障害によるトラロキヌマブの全身曝露量への影響はなかった。重度の腎機能障害 患者からは非常に限られたデータしか得られていない。

高体重

高体重の被験者では、トラロキヌマブのトラフ濃度は低くなった(4.2項参照)。

表 7: 体重別曲線下面積(AUC)

Weight (kg)	75	100	120	140
AUC (mcg*day/mL)	1532	1192	1017	889
Ratio AUC 75 kg	1	0.78	0.66	0.57

Calculated AUC at steady-state for the dosing interval for 300 mg Q2W for a subject of a certain weight based on the relation between Clearance and weight Clearance = 0.149 × (W/75) 0.873. AUC = F × Dose Clearance, where F = 0.761.

小児集団

小児患者におけるトラロキヌマブの薬物動態は検討されていない。

5.3 前臨床安全性データ

従来の反復投与毒性試験(安全性薬理評価項目を含む)および生殖発生毒性試験に基づく非臨床データでは、ヒトに対する特別なハザードはみられない。

トラロキヌマブの変異原性は評価されていないが、モノクローナル抗体が DNA または染色体に変化を起こすことは予想されない。

トラロキヌマブのがん原性試験は実施されていない。IL-13 阻害とトラロキヌマブの毒性データ (動物を使用した試験)に関して得られているエビデンスを評価したが、がん原性が高まる可能性は示唆されていない。

サルを使用した拡充型出生前および出生後の発生毒性試験では、母動物にも仔にも出生後 6 ヵ月まで有害作用はなかった。

性的に成熟したサルにトラロキヌマブを最高 350 mg/匹(雌)および 600 mg/匹(雄)皮下投与したとき、生殖器、月経周期および精子などの生殖パラメータに作用はなかった(このときの AUC 曝露量は、ヒトの患者にトラロキヌマブ 300 mg を 2 週間隔で回投与したときの 15 倍)。

6. 製剤特性

6.1 添加剤

酢酸ナトリウム三水和物(E262)

酢酸 (E260)

塩化ナトリウムポリソルベート 80 (E433)

注射用水

6.2 配合禁忌

配合変化試験は行われていない。本医薬品は他の医薬品と混合してはならない。

6.3 有効期間

3年

有効期間内のプレフィルドシリンジは、必要であれば 25°C までの室温で最長 14 日間保存することができ、この間再度冷蔵する必要はない。保存の際、25°C を超えないこと。冷蔵庫からカートンを取り出しておく必要がある場合には、出した日付をカートンに記録することができる。冷蔵庫から取り出した Adtralza は 14 日以内に使用し、14 日を過ぎたら廃棄すること。

6.4 保存に関する注意

冷蔵庫で保存する(2~8°C)。

凍結させないこと。

遮光のため元のパッケージに入れたままで保存すること。

6.5 容器 • 包装

シリコン加工が施された1型透明ガラスのプレフィルドシリンジに1 mL (150 mg) の注射液が入っており、27 ゲージ、½インチ、薄壁ステンレススチール製の固定針、エラストマー製プランジャストッパー、拡張フィンガーフランジおよび針ガードを備えている。

包装サイズ:

- プレフィルドシリンジ2本
- プレフィルドシリンジ4本(2本入り2箱)が入ったマルチパック
- プレフィルドシリンジ12本(2本入り6箱)が入ったマルチパック

全包装形態が販売されているわけではない。

6.6 廃棄及び取扱上の注意

溶液は澄明または乳白光、無色~微黄色でなければならない。濁り、変色、眼に見える粒子状物質などがみられた場合には使用しないこと。プレフィルドシリンジが破損したり、固い表面に落としたりした場合も使用しないこと。

プレフィルドシリンジは冷蔵庫から取り出したら、30分かけて室温に戻してから注射する。

Adtralza は無菌製剤である。プレフィルドシリンジ中に薬液が残った場合は廃棄する。

7. 製造販売業者

LEO Pharma A/S Industriparken 55 DK-2750 Ballerup Denmark

8. 製造販売承認番号

PLGB 05293/0182

9. 初回承認日/承認更新日

初回承認日: 2021年6月21日

10. 添付文書改定日

2021年6月

企業連絡先

Leo Laboratories Limited

住所電話番号

Horizon, Honey Lane, Hurley, Berkshire, SL6 6RJ, UK +44 (0)1844 347 333

医薬情報電子メールアドレス

medical-info.uk@leo-pharma.com

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use ADBRY safely and effectively. See full prescribing information for ADBRY.

ADBRY™ (tralokinumab-ldrm) injection, for subcutaneous use Initial U.S. Approval: 2021

---INDICATIONS AND USAGE-----

ADBRY is an interleukin-13 antagonist indicated for the treatment of moderate-to-severe atopic dermatitis in adult patients whose disease is not adequately controlled with topical prescription therapies or when those therapies are not advisable. ADBRY can be used with or without topical corticosteroids. (1)

-----DOSAGE AND ADMINISTRATION------

- Prior to ADBRY initiation, complete all age appropriate vaccinations as recommended by current immunization guidelines (2.1)
- The recommended dosage of ADBRY is an initial dose of 600 mg (four 150 mg injections), followed by 300 mg (two 150 mg injections) administered every other week. A dosage of 300 mg every 4 weeks may be considered for patients below 100 kg who achieve clear or almost clear skin after 16 weeks of treatment. (2.2)
- Administer by subcutaneous injection. (2.2)

-----DOSAGE FORMS AND STRENGTHS------

Injection: 150 mg/mL solution in a single-dose prefilled syringe with needle guard. (3)

-CONTRAINDICATIONS-----

Known hypersensitivity to tralokinumab-ldrm or any excipients in ADBRY. (4)

---WARNINGS AND PRECAUTIONS----

- <u>Hypersensitivity:</u> Hypersensitivity reactions, including anaphylaxis, and angioedema have occurred after administration of ADBRY. Discontinue ADBRY in the event of a hypersensitivity reaction. (5.1)
- <u>Conjunctivitis and Keratitis:</u> Patients should report new onset or worsening eye symptoms to their healthcare provider. (5.2)
- <u>Parasitic (Helminth) Infections:</u> Treat patients with pre-existing helminth infections before initiating treatment with ADBRY. If patients become infected while receiving ADBRY and do not respond to anti-helminth treatment, discontinue treatment with ADBRY until the infection resolves. (5.3)
- Risk of Infection with Live Vaccines: Avoid use of live vaccines. (5.4)

-----ADVERSE REACTIONS-----

Most common adverse reactions (incidence \geq 1%) are upper respiratory tract infections, conjunctivitis, injection site reactions, and eosinophilia. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact LEO Pharma Inc. at 1-877-494-4536 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling.

Revised: 12/2021

FULL PRESCRIBING INFORMATION: CONTENTS*

- 1 INDICATIONS AND USAGE
- 2 DOSAGE AND ADMINISTRATION
 - 2.1 Vaccination Prior to Treatment
 - 2.2 Recommended Dosage
 - 2.3 Concomitant Topical Therapies
 - 2.4 Missed Doses
 - 2.5 Preparation for Use
 - 2.6 Important Administration Instructions
- **3 DOSAGE FORMS AND STRENGTHS**
- 4 CONTRAINDICATIONS
- **5 WARNINGS AND PRECAUTIONS**
 - 5.1 Hypersensitivity
 - 5.2 Conjunctivitis and Keratitis
 - 5.3 Parasitic (Helminth) Infections
 - 5.4 Risk of Infection with Live Vaccines
- 6 ADVERSE REACTIONS
 - 6.1 Clinical Trials Experience
 - 6.2 Immunogenicity
- 8 USE IN SPECIFIC POPULATIONS 8.1 Pregnancy
 - 8.2 Lactation 8.4 Pediatric Use
 - 8.5 Geriatric Use

- 10 OVERDOSAGE
- 11 DESCRIPTION
- 12 CLINICAL PHARMACOLOGY
 - 12.1 Mechanism of Action
 - 12.2 Pharmacodynamics
 - 12.3 Pharmacokinetics
- 13 NONCLINICAL TOXICOLOGY
 - 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
- 14 CLINICAL STUDIES
- 16 HOW SUPPLIED/STORAGE AND HANDLING
- 17 PATIENT COUNSELING INFORMATION
- * Sections or subsections omitted from the full prescribing information are not listed.

FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE

ADBRY is indicated for the treatment of moderate-to-severe atopic dermatitis in adult patients whose disease is not adequately controlled with topical prescription therapies or when those therapies are not advisable. ADBRY can be used with or without topical corticosteroids.

2 DOSAGE AND ADMINISTRATION

2.1 Vaccination Prior to Treatment

Complete all age-appropriate vaccinations as recommended by current immunization guidelines prior to initiating treatment with ADBRY [see Warnings and Precautions (5.4)].

2.2 Recommended Dosage

The recommended dosage of ADBRY is:

- An initial dose of 600 mg (four 150 mg injections), followed by 300 mg (two 150 mg injections) administered every other week.
- After 16 weeks of treatment, for patients with body weight below 100 kg who achieve clear or almost clear skin, a dosage of 300 mg every 4 weeks may be considered.

ADBRY is administered by subcutaneous injection [see Dosage and Administration (2.5, 2.6)].

2.3 Concomitant Topical Therapies

ADBRY can be used with or without topical corticosteroids. Topical calcineurin inhibitors may be used, but should be reserved for problem areas only, such as the face, neck, intertriginous and genital areas.

2.4 Missed Doses

If a dose is missed, administer the dose as soon as possible. Thereafter, resume dosing at the regular scheduled time.

2.5 Preparation for Use

- Before injection, remove ADBRY prefilled syringes from the refrigerator and allow to reach room temperature (30 minutes for the 150 mg/mL prefilled syringes) without removing the needle cap.
- After removal from the refrigerator, prefilled syringes may be kept at room temperature up to 25°C (77°F) and must be used within 14 days or discarded.

- Inspect ADBRY visually for particulate matter and discoloration prior to administration. ADBRY
 injection is a clear to opalescent, colorless to pale yellow solution. Do not use if the liquid
 contains visible particulate matter, is discolored or cloudy (other than clear to opalescent,
 colorless to pale yellow).
- ADBRY does not contain preservatives; therefore, discard any unused product.

2.6 Important Administration Instructions

- ADBRY is intended for use under the guidance of a healthcare provider. A patient may self-inject ADBRY after training in subcutaneous injection technique. Provide proper training to patients and/or caregivers on the preparation and administration according to the "Instructions for Use" [see Instructions for Use].
- For the initial 600 mg dose, administer each of the four ADBRY 150 mg injections at different injection sites within the same body area.
- For the subsequent 300 mg doses, administer the two ADBRY 150 mg injections at different injection sites within the same body area.
- Administer subcutaneous injection into the thigh or abdomen, except for the 2 inches (5 cm) around the navel. The upper arm can also be used if a caregiver administers the injection.
- Rotate the body area with each subsequent set of injections. DO NOT inject ADBRY into skin that is tender, damaged, bruised, or scarred.

3 DOSAGE FORMS AND STRENGTHS

Injection: 150 mg/mL clear to opalescent, colorless to pale yellow solution in a single-dose prefilled syringe with needle guard

4 CONTRAINDICATIONS

ADBRY is contraindicated in patients who have known hypersensitivity to tralokinumab-ldrm or any excipients in ADBRY [see Warnings and Precautions (5.1)].

5 WARNINGS AND PRECAUTIONS

5.1 Hypersensitivity

Hypersensitivity reactions including anaphylaxis and angioedema, have been reported with use of ADBRY.

If a serious hypersensitivity reaction occurs, discontinue ADBRY immediately and initiate appropriate therapy.

5.2 Conjunctivitis and Keratitis

Conjunctivitis and keratitis occurred more frequently in atopic dermatitis subjects who received ADBRY. Conjunctivitis was the most frequently reported eye disorder. Most subjects with conjunctivitis or keratitis recovered or were recovering during the treatment period [see Adverse Reactions (6.1)].

Advise patients to report new onset or worsening eye symptoms to their healthcare provider.

5.3 Parasitic (Helminth) Infections

Patients with known helminth infections were excluded from participation in clinical studies. It is unknown if ADBRY will influence the immune response against helminth infections by inhibiting IL-13 signaling.

Treat patients with pre-existing helminth infections before initiating treatment with ADBRY. If patients become infected while receiving ADBRY and do not respond to antihelminth treatment, discontinue treatment with ADBRY until the infection resolves.

5.4 Risk of Infection with Live Vaccines

ADBRY may alter a patient's immunity and increase the risk of infection following administration of live vaccines. Prior to initiating therapy with ADBRY, complete all age appropriate vaccinations according to current immunization guidelines. Avoid use of live vaccines in patients treated with ADBRY. Limited data are available regarding coadministration of ADBRY with non-live vaccines [see Clinical Pharmacology (12.2)].

6 ADVERSE REACTIONS

The following adverse reactions are discussed in greater detail elsewhere in the labeling:

- Hypersensitivity [see Warnings and Precautions (5.1)]
- Conjunctivitis and Keratitis [see Warnings and Precautions (5.2)]

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

The safety of ADBRY was evaluated in a pool of 5 randomized, double-blind, placebo-controlled trials in subjects with moderate-to-severe atopic dermatitis including three phase 3 Eczema Tralokinumab trials (ECZTRA 1, ECZTRA 2, and ECZTRA 3), a dose-finding trial, and a vaccine response trial. The safety population had a mean age of 37 years; 43% of subjects were female, 67% were White, 21% were Asian, and 9% were Black. In terms of co-morbid conditions, 39% of the subjects had asthma, 49% had hay fever, 36% had food allergy, and 21% had allergic conjunctivitis at baseline.

In these 5 atopic dermatitis trials, 1964 subjects were treated with subcutaneous injections of ADBRY, with or without concomitant topical corticosteroids (TCS). A total of 807 subjects were treated with ADBRY for at least 1 year.

ECZTRA 1 and ECZTRA 2 compared the safety of ADBRY monotherapy to placebo through Week 52. ECZTRA 3 compared the safety of ADBRY + TCS to placebo + TCS through Week 32.

Weeks 0 to 16 (ECZTRA 1, ECZTRA 2, and ECZTRA 3):

Table 1 summarizes the adverse reactions identified in the pool of 3 trials (ECZTRA 1, ECZTRA 2, and ECZTRA 3) and that occurred at a rate of at least 1% in the ADBRY 300 mg every other week monotherapy group, and in the ADBRY 300 mg every other week + TCS study, all at a higher rate than placebo during the first 16 weeks of treatment.

Table 1: Adverse Reactions Occurring in ≥1% of the ADBRY Monotherapy Group or the ADBRY + TCS Group in the Atopic Dermatitis Trials through Week 16

Adverse Reaction	ADBRY Monot	herapy ^a	ADBRY + TCS ^b		
	ADBRY 300 mg Q2W ^c	PLACEBO	ADBRY 300 mg Q2W ^c + TCS	PLACEBO + TCS	
	N=1180 n (%)	N=388 n (%)	N=243 n (%)	N=123 n (%)	
Upper respiratory tract infections ^d	281(23.8)	79 (20.4)	73 (30.0)	19 (15.4)	
Conjunctivitis ^f	88 (7.5)	12 (3.1)	33 (13.6)	6 (4.9)	
Injection site reactions ^e	87 (7.4)	16 (4.1)	27 (11.1)	1 (0.8)	
Eosinophiliag	17 (1.4)	2 (0.5)	3 (1.2)	0	

^a Pooled analysis of ECZTRA 1 and ECZTRA 2.

In the monotherapy trials (ECZTRA 1 and ECZTRA 2) through Week 16, the proportion of subjects who discontinued treatment due to adverse reactions was 0.7% in the ADBRY 300 mg every other week group and 0% of the placebo group. In the concomitant TCS trial (ECZTRA 3) through Week 16, the proportion of subjects who discontinued treatment due to adverse reactions was 0.8% in the ADBRY 300 mg every other week +TCS group and 0% of the placebo + TCS group. The most common adverse reactions leading to discontinuation in the ADBRY group compared to the placebo group were injection site reaction (0.3% v. 0) and eosinophilia (0.3% v. 0) in ECZTRA 1 and ECZTRA 2; and injection site reaction (0.4% v. 0) and conjunctivitis (0.4% v. 0) in ECZTRA 3.

Safety Weeks 16-52 (ECZTRA 1 and ECZTRA 2) and Weeks 16-32 (ECZTRA 3):

The safety profile of ADBRY 300 mg every other week with or without TCS during maintenance treatment was consistent with that in the initial 16-week treatment period. In addition, the frequency of adverse reactions with ADBRY 300 mg every other week and every 4 weeks in ECZTRA 1 and ECZTRA 2 was 44% and 34%, respectively, and 43% and 26% with ADBRY 300 mg + TCS every other week and every 4 weeks in ECZTRA 3, respectively.

Specific Adverse Reactions

Conjunctivitis and Keratitis

^b Analysis of ECZTRA 3 where subjects were on background TCS therapy.

^c ADBRY 600 mg at Week 0, followed by 300 mg every other week.

^d Upper respiratory tract infections cluster includes upper respiratory tract infection, viral upper respiratory tract infection, pharyngitis, and nasopharyngitis; mainly reported as common cold.

^e Injection site reactions cluster includes pain, erythema, and swelling.

^f Conjunctivitis cluster includes conjunctivitis and allergic conjunctivitis.

^g Eosinophilia cluster includes eosinophilia and eosinophil count increased.

Conjunctivitis, including allergic conjunctivitis, was reported in 7.5% of subjects treated with ADBRY 300 mg every other week (29 events per 100 subject-years of exposure) and in 3.1% of subjects treated with placebo (12 events per 100 subject-years of exposure) in the initial treatment period of up to 16 weeks in the pool of 5 trials. In the ADBRY group, 126 subjects reported 145 events of conjunctivitis, with 114 events resolved at the end of initial treatment period. Conjunctivitis led to discontinuation of treatment in 2 subjects.

During the maintenance treatment period of the monotherapy trials (ECZTRA 1 and ECZTRA 2) from 16 to 52 weeks, conjunctivitis was reported in 8.9% of subjects treated with ADBRY 300 mg every other week (20 events per 100 subject-years of exposure) and in 6.3% of subjects treated with ADBRY 300 mg every 4 weeks (14 events per 100 subject-years of exposure) compared to 7.7% of subjects treated with ADBRY 300 mg every other week in the initial treatment period (30 events per 100 subject-years of exposure). Conjunctivitis (including no serious events, 1 severe event, and 1 event that led to discontinuation) was reported in 24 subjects in the combined (every other week and every 4 weeks) ADBRY groups. A similar pattern was seen during the continuation treatment period of an additional 16 weeks in the ADBRY combination ECZTRA 3.

Keratitis (including keratoconjunctivitis) was reported in 0.5% of subjects treated with ADBRY and 0% treated with placebo during the initial treatment period of up to 16 weeks in the pool of 5 trials. Keratitis (including 1 ulcerative keratitis) was reported in 0.2% of subjects treated with ADBRY (0.9 events per 100 subject-years of exposure) and 0.2% of subjects treated with placebo (0.6 events per 100 subject-years of exposure). Keratoconjunctivitis (including 1 atopic keratoconjunctivitis) was reported in 0.3% of subjects treated with ADBRY (1.2 events per 100 subject-years of exposure), and in no subjects treated with placebo. In the ADBRY group, 9 subjects reported 10 events of keratitis or keratoconjunctivitis, with 5 events resolved during the trial following the initial treatment period. None of the events were serious or led to treatment discontinuation.

During the maintenance treatment period of the monotherapy trials (ECZTRA 1 and ECZTRA 2) from 16 to 52 weeks in the ADBRY 300 mg every other week group, keratitis was reported in 1 (0.6%) subject (ulcerative, severe, resolved after discontinuation) at an exposure-adjusted event rate of 1.2 per 100 subject-years, and keratoconjunctivitis (not serious or severe, resolved, not led to discontinuation) was reported in 3 (1.9%) subjects (3.6 events per 100 subject-years of exposure). No events of keratitis or keratoconjunctivitis was reported in ADBRY every 4 weeks or placebo groups, compared to keratitis event rate of 2 per 100 subject-years for ADBRY 300 mg every other week in the initial treatment period.

In the continuation treatment period of ECZTRA 3 (from 16 to 32 weeks), there were no additional events of keratitis reported for subjects randomized to ADBRY 300 mg + TCS.

Eosinophil Counts

ADBRY-treated subjects had a greater mean initial increase from baseline in eosinophil count compared to subjects treated with placebo. The mean and median increases in blood eosinophils from baseline to Week 4 were 190 and 100 cells/mcL, respectively. The increase in the ADBRY-treated subjects declined to baseline level with continued treatment. Eosinophilia (> 5000 cells/mcL) in the initial treatment period of up to 16 weeks was reported in 1.2% in the ADBRY-treated subjects and 0.3% in the placebo-treated subjects. The safety profile for subjects with eosinophilia was comparable to the safety profile for all subjects included in the pool of 5 atopic dermatitis trials.

6.2 Immunogenicity

As with all therapeutic proteins, there is a potential for immunogenicity with ADBRY. The detection of antibody formation is highly dependent on the sensitivity and specificity of the assay. Additionally, the observed incidence of antibody (including neutralizing antibody) positivity in an assay may be influenced by several factors, including assay methodology, sample handling, timing of sample collection, concomitant medications, and underlying disease. For these reasons, comparison of the incidence of antibodies in the studies described below with the incidence of antibodies in other studies or to other tralokinumab products may be misleading.

In ECZTRA 1, ECZTRA 2, and ECZTRA 3, and the vaccine-response trial, the incidence of Anti-Drug-Antibodies (ADA) during the initial 16-week treatment period was 1.4% for subjects treated with ADBRY 300 mg every other week and in 1.3% for subjects treated with placebo; neutralizing antibodies were seen in 0.1% of subjects treated with ADBRY and 0.2% of subjects treated with placebo.

Across all trial periods, the ADA incidence for subjects who received ADBRY was 4.6%; 0.9% had persistent ADA and 1.0% had neutralizing antibodies.

No clinically meaningful differences in the pharmacokinetics, safety, or efficacy of tralokinumab-ldrm were observed in patients who tested positive for anti-tralokinumab-ldrm antibody (including neutralizing antibodies).

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

There are limited data from the use of ADBRY in pregnant women to inform a drug-associated risk of adverse developmental outcomes. Human IgG antibodies are known to cross the placental barrier; therefore, ADBRY may be transmitted from the mother to the developing fetus.

In an enhanced pre-and post-natal developmental study, no adverse developmental effects were observed in offspring born to pregnant monkeys after intravenous administration of tralokinumab-ldrm during organogenesis through parturition at doses up to 10 times the maximum recommended human dose (MRHD).

The background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively.

Data

Animal Data

In a pre- and post-natal development study, intravenous doses up to 100 mg/kg tralokinumab-ldrm were administered to pregnant cynomolgus monkeys once every week from gestation day 20 to

parturition. No maternal or developmental toxicity was observed at doses up to 100 mg/kg/week (10 times the MRHD on a mg/kg basis of 10 mg/kg/week).

In an enhanced pre- and post-natal development study, intravenous doses up to 100 mg/kg tralokinumab-ldrm (10 times the MRHD on a mg/kg basis of 10 mg/kg/week) were administered to pregnant cynomolgus monkeys once every week from the beginning of organogenesis to parturition. No treatment-related adverse effects on embryofetal toxicity or malformations, or on morphological, functional, or immunological development were observed in the infants from birth through 6 months of age.

8.2 Lactation

Risk Summary

There are no data on the presence of tralokinumab-ldrm in human milk, the effects on the breastfed infant, or the effects on milk production. Maternal IgG is present in breast milk. The effects of local gastrointestinal exposure and limited systemic exposure to ADBRY on the breastfed infant are unknown. The development and health benefits of breastfeeding should be considered along with the mother's clinical need for ADBRY and any potential adverse effects on the breastfed child from ADBRY or from the underlying maternal condition.

8.4 Pediatric Use

The safety and effectiveness of ADBRY have not been established in pediatric patients.

8.5 Geriatric Use

Of the 1605 subjects exposed to ADBRY in 5 atopic dermatitis trials in the initial treatment period of up to 16 weeks, 77 subjects were 65 years or older. Clinical studies did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects [see Clinical Pharmacology (12.3)].

10 OVERDOSAGE

There is no specific treatment for ADBRY overdose. In the event of overdosage, contact Poison Control (1-800-222-1222) for latest recommendations and monitor the patient for any signs or symptoms of adverse reactions and institute appropriate symptomatic treatment immediately.

11 DESCRIPTION

Tralokinumab-ldrm, an interleukin-13 antagonist, is a human IgG4 monoclonal antibody. Tralokinumab-ldrm is produced in mouse myeloma cells by recombinant DNA technology, consists of 1326 amino acids, and has a molecular weight of approximately 147 kilodaltons.

ADBRY (tralokinumab-ldrm) injection is a sterile, preservative-free, clear to opalescent, colorless to pale yellow solution for subcutaneous use supplied as a single-dose prefilled syringe with needle guard in a siliconized Type-1 clear glass syringe. None of the components of the prefilled syringe or the needle guard are made with natural rubber latex.

Each prefilled syringe delivers 150 mg tralokinumab-ldrm in 1 mL and the inactive ingredients: acetic acid (0.3 mg), polysorbate 80 (0.1 mg), sodium acetate trihydrate (6 mg), sodium chloride (5 mg), and Water for Injection, at an approximate pH of 5.5.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Tralokinumab-ldrm is a human IgG4 monoclonal antibody that specifically binds to human interleukin-13 (IL-13) and inhibits its interaction with the IL-13 receptor $\alpha 1$ and $\alpha 2$ subunits (IL-13R $\alpha 1$ and IL-13R $\alpha 2$). IL-13 is a naturally occurring cytokine of the Type 2 immune response. Tralokinumab-ldrm inhibits the bioactivity of IL-13 by blocking IL-13 interaction with IL-13R $\alpha 1$ /IL-4R α receptor complex. Tralokinumab-ldrm inhibits IL-13-induced responses including the release of proinflammatory cytokines, chemokines and IgE.

12.2 Pharmacodynamics

ADBRY was associated with decreased concentrations of Th2 and Th22 immunity biomarkers in the blood, such as thymus and activation-regulated chemokine (TARC/CCL17), periostin, IL-22, lactate dehydrogenase (LDH) and serum IgE. ADBRY decreased expression of keratin 16 and Ki-67 in AD skin, and upregulated protein expression of loricrin. ADBRY suppressed expression of genes in the Th2 pathway, including CCL17, CCL18 and CCL26 as well as markers of Th17- and Th22-regulated genes in lesional skin. The clinical relevance of these biomarkers is not fully understood.

Immune Response to Non-live Vaccines during Treatment

Immune responses to non-live vaccines were assessed in a trial in which adult subjects with atopic dermatitis were treated with an initial dose of 600 mg (four 150 mg injections) followed by 300 mg every other week administered as subcutaneous injection. After 12 weeks of ADBRY administration, subjects were vaccinated with a combined tetanus, diphtheria, and acellular pertussis vaccine, and a meningococcal vaccine. Antibody responses were assessed 4 weeks later. Antibody response to tetanus, diphtheria, acellular pertussis, and a meningococcal vaccine was similar in tralokinumablarm treated and placebo treated subjects. Immune responses to other vaccines were not assessed.

12.3 Pharmacokinetics

The mean (SD) steady-state trough concentration of tralokinumab-ldrm ranged from 98.0 (41.1) mcg/mL to 101.4 (42.7) mcg/mL following administration of ADBRY at 300 mg every other week. Tralokinumab-ldrm exposure increased proportionally over a dosage range up to 2100 mg for a 70 kg subject (30 mg/kg IV) (3.5 times the maximum approved recommended dosage). Steady-state tralokinumab-ldrm concentrations were achieved by week 16 following a 600 mg starting dose and 300 mg every other week.

Absorption

The absolute bioavailability of tralokinumab-ldrm was estimated to be 76%. The time to maximum tralokinumab-ldrm concentrations (t_{max}) was 5 to 8 days after administration.

Distribution

The volume of distribution of tralokinumab-ldrm was estimated to be approximately 4.2 L.

Elimination

The half-life of tralokinumab-ldrm was 3 weeks and systemic clearance was estimated to be 0.149 L/day.

<u>Metabolism</u>

Tralokinumab-ldrm is expected to be metabolized into small peptides by catabolic pathways.

Specific Populations

No clinically significant differences in the pharmacokinetics of tralokinumab-ldrm were observed based on age (ranged from 18-92 years), sex, mild to moderate renal impairment, or mild hepatic impairment. The effect of severe renal impairment or moderate to severe hepatic impairment on the pharmacokinetics of tralokinumab-ldrm is unknown.

Body Weight

The exposure of tralokinumab-ldrm decreases with increasing body weight. After 300 mg dose every 4 weeks, the median tralokinumab-ldrm exposure (AUC) of subjects with body weight of above 100 kg is expected to be 1.46-fold lower than that of subjects weighing below 100 kg [see Dosage and Administration (2.2)].

Drug Interaction Studies

Drug interactions with ADBRY has not been assessed.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Animal studies have not been conducted to evaluate the carcinogenic or mutagenic potential for tralokinumab-ldrm.

No effects on fertility parameters such as reproductive organs, menstrual cycle and sperm analysis were observed in male or female sexually mature cynomolgus monkeys that were subcutaneously administered tralokinumab-ldrm at doses up to 350 mg/animal (10 times the MRHD on a mg/kg basis of 10 mg/kg/week) in females once a week for three consecutive menstrual cycles (maximum of 15 doses) or 600 mg/animal (10 times the MRHD on a mg/kg basis of 10 mg/kg/week) in males once a week for 13 weeks. The monkeys were not mated to evaluate fertility.

14 CLINICAL STUDIES

The efficacy of ADBRY was assessed in three randomized, double-blind, placebo-controlled trials [ECZTRA 1 (NCT03131648), ECZTRA 2 (NCT03160885), and ECZTRA 3 (NCT03363854)]. Efficacy was assessed in a total of 1934 subjects 18 years of age and older with moderate-to-severe atopic dermatitis (AD) not adequately controlled by topical medication(s). Disease severity was defined by

an Investigator's Global Assessment (IGA) score ≥ 3 in the overall assessment of AD lesions on a severity scale of 0 to 4, an Eczema Area and Severity Index (EASI) score ≥16 on a scale of 0 to 72, and a minimum body surface area (BSA) involvement of ≥10%. At baseline, 58% of subjects were male, 69% of subjects were White, 50% of subjects had a baseline IGA score of 3 (moderate AD), and 50% of subjects had a baseline IGA score of 4 (severe AD). The baseline mean EASI score was 32 and the baseline weekly averaged Worst Daily Pruritus Numeric Rating Scale (NRS) was 8 on a scale of 0-10.

In all three trials, subjects received subcutaneous injections of ADBRY 600 mg or placebo on Day 0, followed by 300 mg every other week or placebo for 16 weeks. Responders were defined as achieving an IGA 0 or 1 ("clear" or "almost clear") or EASI-75 (improvement of at least 75% in EASI score from baseline) at Week 16.

To evaluate maintenance of response in the monotherapy trials (ECZTRA 1 and ECZTRA 2), subjects responding to initial treatment with ADBRY 300 mg every other week were re-randomized to ADBRY 300 mg every other week, ADBRY 300 mg every 4 weeks or placebo every other week for another 36 weeks following first dose administration. Subjects randomized to placebo in the initial treatment period who achieved a clinical response at Week 16 continued to receive placebo every other week for another 36 weeks. Non-responders at Week 16, and subjects who lost clinical response during the maintenance period were placed on open-label treatment with ADBRY 300 mg every other week and optional use of TCS.

In the combination therapy trial (ECZTRA 3), subjects received either ADBRY 300 mg every other week with TCS or placebo with TCS and as needed topical calcineurin inhibitors (TCI) until Week 16. Subjects in the ADBRY 300 mg with TCS group who achieved clinical response at Week 16 were rerandomized to ADBRY 300 mg every other week with TCS or ADBRY every 4 weeks with TCS for another 16 weeks following first dose administration. Subjects in the placebo with TCS group who achieved clinical response at Week 16 continued on placebo with TCS for another 16 weeks. Subjects who did not achieve clinical response at Week 16 received ADBRY 300 mg every other week for another 16 weeks. A mid-potency TCS (i.e., mometasone furoate 0.1% cream) was dispensed at each dosing visit. Subjects were instructed to apply a thin film of the dispensed TCS as needed once daily to active lesions from Week 0 to Week 32 and were to discontinue treatment with TCS when control was achieved. An additional, lower potency TCS or TCI could be used at the investigator's discretion on areas of the body where use of the supplied TCS was not advisable, such as areas of thin skin.

All three trials assessed the primary endpoints of the proportion of subjects with an IGA 0 or 1 at Week 16 and the proportion of subjects with EASI-75 at Week 16. Secondary endpoints included the reduction of Worst Daily Pruritus NRS (weekly average) of at least 4 points on the 11-point itch NRS from baseline to Week 16.

Clinical Response at Week 16 (ECZTRA 1, ECZTRA 2, and ECZTRA 3)

The results of the ADBRY monotherapy trials (ECZTRA 1 and ECZTRA 2) and the ADBRY with TCS trial (ECZTRA 3) are presented in Table 2.

Table 2: Efficacy Results of ADBRY With or Without TCS at Week 16 (ECZTRA 1, ECZTRA 2, and ECZTRA 3) in Subjects with Moderate-to-Severe AD

	ECZTRA 1		ECZTRA 2		ECZTRA 3	
	ADBRY 300 mg every other week	Placebo	ADBRY 300 mg every other week	Placebo	ADBRY 300 mg every other week + TCS	Placebo + TCS
Number of subjects randomized and dosed (FAS) ^a	601	197	577	193	243	123
IGA 0 or 1 ^{b,c}	16%	7%	21%	9%	38%	27%
Difference from Placebo	9%		12%		11%	
(95% CI)	(4%, 13%)		(7%, 17%)		(1%, 21%)	
EASI-75°	25%	13%	33%	10%	56%	37%
Difference from Placebo	12%		22%		20%	
(95% CI)	(6%, 18%)		(17%, 28%)		(9%, 30%)	
Number of subjects with baseline Worst Daily Pruritus NRS (weekly average) score ≥4	594	194	563	192	240	123
Worst Daily Pruritus NRS (≥4	20%	10%	25%	9%	46%	35%
point reduction) ^c						
Difference from Placebo	10%		16%		11%	
(95% CI)	(4%, 15	%)	(11%, 21	%)	(1%, 22	2%)

Abbreviations: AD = Atopic Dermatitis CI = Confidence Interval.

Note: Difference and 95% CI are based on the CMH test stratified by region and baseline IGA score.

A higher proportion of subjects in the ADBRY 300 mg every other week arm achieved EASI-90 compared to placebo in the three pivotal trials.

Examination of age, gender, race, body weight, and previous treatment, including immunosuppressants, did not identify differences in response to ADBRY 300 mg every other week among these subgroups.

Monotherapy Trials (ECZTRA 1 and ECZTRA 2) - Maintenance Period (Week 16-52)

In ECZTRA 1, 179 ADBRY 300 mg every other week responders (IGA 0/1 or EASI-75) were rerandomized (and dosed) at Week 16 to ADBRY 300 mg every other week (68 subjects), ADBRY 300 mg every 4 weeks (76 subjects) or placebo (35 subjects). Among these subjects, 39 subjects in ADBRY 300 mg every other week arm, 36 subjects in ADBRY 300 mg every 4 weeks arm and 19 subjects in placebo arm were IGA 0/1 responders at Week 16. Maintenance of IGA 0/1 response at Week 52 was as follows: 20 subjects (51%) in the every other week arm, 14 subjects (39%) in the every 4 weeks arm and 9 subjects (47%) in the placebo arm. Among the re-randomized subjects, 47 subjects in ADBRY 300 mg every other week arm, 57 subjects in ADBRY 300 mg every 4 weeks arm and 30 subjects in placebo arm were EASI-75 responders at Week 16. Maintenance of EASI-75 response at Week 52 was as follows: 28 subjects (60%) in the every other week arm, 28 subjects (49%) in the every 4 weeks arm and 10 subjects (33%) in the placebo arm.

In ECZTRA 2, 218 ADBRY 300 mg every other week responders (IGA 0/1 or EASI-75) were rerandomized (and dosed) at Week 16 to ADBRY 300 mg every other week (90 subjects), ADBRY 300 mg every 4 weeks (84 subjects) or placebo (44 subjects). Among these subjects, 53 subjects in ADBRY 300 mg every other week arm, 44 subjects in ADBRY 300 mg every 4 weeks arm and 26 subjects in placebo arm were IGA 0/1 responders at Week 16. Maintenance of IGA 0/1 response at Week 52 was as follows: 32 subjects (60%) in the every other week arm, 22 subjects (50%) in the

^a Full Analysis Set (FAS) includes all subjects randomized and dosed.

^b Responders was defined as a subject with an IGA 0 or 1 ("clear" or "almost clear").

^c Subjects who received rescue treatment or with missing data were considered as non-responders.

every 4 weeks arm and 6 subjects (23%) in the placebo arm. Among the re-randomized subjects, 76 subjects in ADBRY 300 mg every other week arm, 69 subjects in ADBRY 300 mg every 4 weeks arm and 40 subjects in placebo arm were EASI-75 responders at Week 16. Maintenance of EASI-75 response at Week 52 was as follows: 43 subjects (57%) in the every other week arm, 38 subjects (55%) in the every 4 weeks arm and 8 subjects (20%) in the placebo arm.

Concomitant TCS Trial (ECZTRA 3) – Maintenance Period (Week 16-32)

In ECZTRA 3, 131 ADBRY 300 mg every other week + TCS responders (IGA 0/1 or EASI-75) were re-randomized (and dosed) at Week 16 to ADBRY 300 mg every other week + TCS (65 subjects) or ADBRY 300 mg every 4 weeks + TCS (66 subjects). Among these subjects, 45 subjects in ADBRY 300 mg every other week + TCS arm and 46 subjects in ADBRY 300 mg every 4 weeks + TCS arm were IGA 0/1 responders at Week 16. Maintenance of IGA 0/1 response at Week 32 was as follows: 40 subjects (89%) in the every other week arm and 35 subjects (76%) every 4 weeks arm. Among the re-randomized subjects, 65 subjects in ADBRY 300 mg every other week arm and 62 subjects in ADBRY 300 mg every 4 weeks arm were EASI-75 responders at Week 16. Maintenance of EASI-75 response at Week 32 was as follows: 60 subjects (92%) in the every other week arm and 56 subjects (90%) in the every 4 weeks arm.

16 HOW SUPPLIED/STORAGE AND HANDLING

How Supplied

ADBRY (tralokinumab-ldrm) injection is a sterile, clear to opalescent, colorless to pale yellow solution, supplied in single-dose prefilled syringe with a 27-gauge, ½ inch needle and a needle guard.

Each prefilled syringe delivers 150 mg/mL of ADBRY.

ADBRY is available in pack sizes containing 2 or 4 prefilled syringes with needle guard.

Pack Size	NDC #
Two cartons (multipack) containing 4 prefilled syringes	NDC 50222-346-04
One carton containing 2 prefilled syringes	NDC 50222-346-02

Storage and Handling

ADBRY does not contain preservatives. Discard any unused product remaining in the prefilled syringe.

Store refrigerated at 2°C to 8°C (36°F to 46°F) in the original carton to protect from light.

If necessary, prefilled syringes may be kept at room temperature up to 25°C (77°F) for a maximum of 14 days in the original carton. Do not store above 25°C (77°F). If the carton needs to be removed permanently from refrigerator, the date of removal may be recorded on the outer carton in the space provided. After removal from the refrigerator, ADBRY must be used within 14 days or discarded.

Do not expose the prefilled syringe to heat or direct sunlight. Do not freeze. Do not shake.

17 PATIENT COUNSELING INFORMATION

Advise the patients to read the FDA-approved patient labeling (Patient Information and Instructions for Use).

Administration Instructions

Instruct patients or caregivers:

- to perform the first self-injection under the supervision and guidance of a qualified healthcare provider for proper training in subcutaneous injection technique.
- to inject the full dose of ADBRY.
- to follow sharps disposal recommendations [see Instructions for Use].

Hypersensitivity

Advise patients to discontinue ADBRY and to seek immediate medical attention if they experience any symptoms of systemic hypersensitivity reactions [see Warnings and Precautions (5.1)].

Conjunctivitis and Keratitis

Advise patients to consult their healthcare provider if new onset or worsening eye symptoms develop [see Adverse Reactions (6.1)].

Risk of Infection with Live Vaccines

Advise patients that ADBRY may increase the risk of infection following administration of live vaccines and that vaccination with live vaccines is not recommended during ADBRY treatment. Instruct patients to inform the healthcare provider that they are taking ADBRY prior to a potential vaccination [see Warnings and Precautions (5.4)].

Manufactured by: LEO Pharma A/S Industriparken 55 Ballerup, Denmark DK-2750 U.S. License No. 2169

Distributed by: LEO Pharma Inc. Madison, NJ 07940, USA

ADBRY™ is a trademark of LEO Pharma A/S. © 2021 LEO Pharma Inc. All rights reserved.

PATIENT INFORMATION ADBRY™ [ad'-bree] (tralokinumab-ldrm)

injection, for subcutaneous use

What is ADBRY?

- ADBRY is a prescription medicine used to treat adults with moderate-to-severe atopic dermatitis (eczema) that is
 not well controlled with prescription therapies used on the skin (topical), or who cannot use topical therapies.
 ADBRY can be used with or without topical corticosteroids.
- It is not known if ADBRY is safe and effective in children.

Do not use ADBRY if you are allergic to tralokinumab or to any of the ingredients in ADBRY. See the end of this leaflet for a complete list of ingredients in ADBRY.

Before using ADBRY, tell your healthcare provider about all your medical conditions, including if you:

- have eye problems.
- have a parasitic (helminth) infection.
- are scheduled to receive any vaccinations. You should not receive a "live vaccine" if you are treated with ADBRY.
- are pregnant or plan to become pregnant. It is not known whether ADBRY will harm your unborn baby.
- are breastfeeding or plan to breastfeed. It is not known whether ADBRY passes into your breast milk and if it can harm your baby.

Tell your healthcare provider about all of the medicines you take, including prescription and over-the-counter medicines, vitamins, and herbal supplements.

How should I use ADBRY?

- See the detailed "Instructions for Use" that comes with ADBRY for information on how to prepare and inject ADBRY and how to properly store and throw away (dispose of) used ADBRY prefilled syringes.
- Use ADBRY exactly as prescribed by your healthcare provider.
- Your healthcare provider will tell you how much ADBRY to inject and when to inject it.
- ADBRY comes as a single-dose (150 mg) prefilled syringe with needle guard.
- ADBRY is given as an injection under the skin (subcutaneous injection).
- If your healthcare provider decides that you or a caregiver can give the injections of ADBRY, you or your caregiver should receive training on the right way to prepare and inject ADBRY. **Do not** try to inject ADBRY until you have been shown the right way by your healthcare provider.
- If you miss a dose, inject the missed dose as soon as possible, then continue with your next dose at your regular scheduled time.
- If you inject more ADBRY than prescribed, call Poison Control at 1-800-222-1222.
- Your healthcare provider may prescribe other medicines to use with ADBRY. Use the other prescribed medicines exactly as your healthcare provider tells you to.

What are the possible side effects of ADBRY?

ADBRY can cause serious side effects, including:

- Allergic reactions (hypersensitivity), including a severe reaction known as anaphylaxis. Stop using ADBRY and tell your healthcare provider or get emergency help right away if you get any of the following symptoms:
 - breathing problems
 - o swelling of the face, mouth, and tongue
- iue
 - hives
 - itching

skin rash

fainting, dizziness, feeling lightheaded

Eye problems. Tell your healthcare provider if you have any worsening eye problems, including eye pain or changes in vision.

(low blood pressure)

The most common side effects of ADBRY include:

- · eye and eyelid inflammation, including redness, swelling, and itching
- injection site reactions

high count of a certain white blood cell (eosinophilia)

These are not all of the possible side effects of ADBRY.

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

General information about the safe and effective use of ADBRY.

Medicines are sometimes prescribed for purposes other than those listed in a Patient Information leaflet. Do not use ADBRY for a condition for which it was not prescribed. Do not give ADBRY to other people, even if they have the same symptoms you have. It may harm them. You can ask your pharmacist or healthcare provider for information about ADBRY that is written for health professionals.

What are the ingredients in ADBRY?

Active ingredient: tralokinumab-ldrm

Inactive ingredients: acetic acid, polysorbate 80, sodium acetate trihydrate, sodium chloride, and water for injection.

Manufactured by: LEO Pharma A/S Industriparken 55, DK-2750 Ballerup, Denmark Distributed by: LEO Pharma Inc., Madison, NJ 07940, USA

U.S. License No. 2169

ADBRY™ is a trademark of LEO Pharma A/S. © 2021 LEO Pharma Inc. All rights reserved.

For more information about ADBRY, go to www.ADBRY.com or call 1-844-MY-ADBRY (1-844-692-3279).

This Patient Information has been approved by the U.S. Food and Drug Administration.

Issued: 12/2021

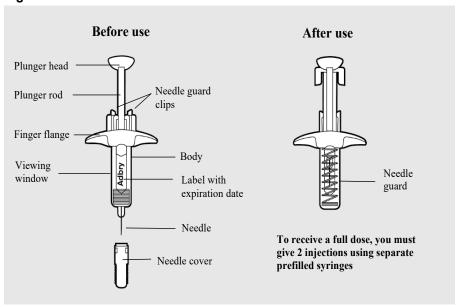
INSTRUCTIONS FOR USE

ADBRY™ [ad'-bree] (tralokinumab-ldrm) injection, for subcutaneous use

This Instructions for Use contains information on how to inject ADBRY.

Read this Instructions for Use before you start using ADBRY prefilled syringes and each time you get a refill. There may be new information. This information does not take the place of talking to your healthcare provider about your medical condition or your treatment.

Keep this Instructions for Use and refer to it as needed.

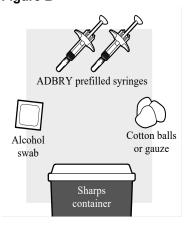

Each single-dose prefilled syringe contains 150 mg of ADBRY. The ADBRY prefilled syringes are for single-dose only.

Important Information You Need to Know Before Injecting ADBRY:

- Your healthcare provider should show you how to prepare and inject ADBRY using the prefilled syringes before you inject ADBRY for the first time.
- **Do not** inject yourself or someone else until you have been shown how to inject ADBRY the right way.
- Talk to your healthcare provider if you have any questions about how to inject ADBRY the right way.
- To receive your full prescribed dose, you will need to give more than 1 ADBRY injection.
 - To get your full prescribed initial dose of 600 mg, you will need to give 4 injections at different injection sites within the same body area.
 - To get your full prescribed dose of 300 mg, you will need to give 2 injections at different injection sites within the same body area.
- It is recommended to rotate the body area with the next set of injections.
- The ADBRY prefilled syringes have a needle guard that will be activated to cover the needle after the injection is finished.
- For subcutaneous injection only (inject directly into fatty layer under the skin).
- **Do not** remove the needle cover until just before you give the injection.
- Do not share or reuse your ADBRY prefilled syringes.
- Do not inject through clothes.

ADBRY prefilled syringe parts (see Figure A):

Figure A



Storing ADBRY

- Store ADBRY prefilled syringes in a refrigerator between 36°F to 46°F (2°C to 8°C).
- Store ADBRY prefilled syringes in the original carton and protect from light until you are ready to use them.
- ADBRY can be stored in the original carton at room temperature up to 77°F (25°C) for up to 14 days. Throw away (dispose of) syringes if left out of the refrigerator for more than 14 days.
- **Do not** freeze ADBRY prefilled syringes. **Do not** use if they have been frozen.
- Do not shake the ADBRY prefilled syringe.
- Do not heat the ADBRY prefilled syringe.
- **Do not** put the ADBRY prefilled syringe into direct sunlight.
- Keep ADBRY prefilled syringes and all medicines out of the reach of children.

Step 1: Setting up ADBRY injection

Figure B

1a: Gather the supplies needed for your injection. For each ADBRY dose you will need (see Figure B):

- A clean, flat, well-lit work surface, like a table
- 1 ADBRY carton that contains 2 ADBRY prefilled syringes

- An alcohol swab (not included in the carton)
- Clean gauze pads or cotton balls (not included in the carton)
- A puncture-resistant sharps disposal container (not included in the carton)
 See Step 5 "Disposing of ADBRY" at the end of this Instructions for Use.

Figure C

1b: Take the ADBRY prefilled syringe carton out of the refrigerator

- Check the expiration date (EXP) on the carton (see Figure C). Do not use if the expiration date on the carton has passed.
- Check to make sure the seal on the ADBRY carton is intact. **Do not** use the ADBRY prefilled syringes if the seal on the carton is broken.

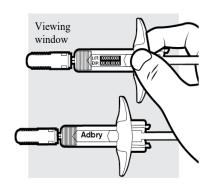
Figure D

1c: Let the ADBRY prefilled syringes warm up to room temperature (see Figure D)

Set the ADBRY carton on the flat surface and wait 30 minutes before you inject ADBRY to let the prefilled syringes warm up to room temperature 68°F to 77°F (20°C to 25°C). This will help to reduce discomfort and make it easier to inject ADBRY.

- **Do not** microwave the prefilled syringes, run hot water over them, or leave them in direct sunlight.
- **Do not** shake the syringes.
- **Do not** remove the needle cover on the prefilled syringes until you have reached Step 3 and are ready to inject.
- **Do not** put the syringes back in the refrigerator once they have reached room temperature.

Figure E

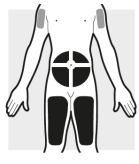


1d: Remove the ADBRY prefilled syringes from the carton

Remove the **2** ADBRY prefilled syringes one by one from the carton by grasping the body (not the plunger rod) of the ADBRY prefilled syringes (**see Figure E**).

- Do not touch the needle guard clips to keep from activating the safety device (needle guard) too soon.
- **Do not** remove the needle cover on the prefilled syringes until you have reached Step 3 and are ready to inject.

Figure F

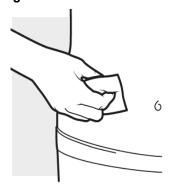


1e: Inspect the 2 ADBRY prefilled syringes (see Figure F)

- Make sure the ADBRY appears on the labels.
- Check the expiration date printed on the syringes.
- Check the medicine through the viewing windows. The medicine inside should be clear to slightly pearly and colorless to pale yellow.
- Do not use the ADBRY prefilled syringes, throw away and get new ones if:
 - the expiration date printed on the syringes has passed
 - o the medicine is cloudy, discolored, or has particles in it
 - o they look damaged or have been dropped
- You may see small air bubbles in the liquid. This is normal. You do not need to do anything about
 it

Step 2: Choosing and preparing injection area

Figure G

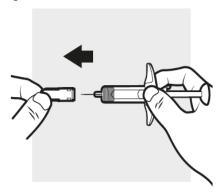


- Injection by caregiver only
- Self-injection or by caregiver

2a: Choose the area for your injections (see Figure G)

- You may inject into:
 - your stomach area (abdomen)
 - o your thighs
 - your upper arm. To inject into your upper arm, you will need a caregiver to give you the injections.
- **Do not** inject within 2 inches (5 cm) of your belly button (navel).
- Rotate the body area with each following set of injections. Do not use the same body area
 2 times in a row.
- **Do not** inject where the skin is tender, damaged, bruised or scarred.

Figure H



2b: Wash your hands and prepare your skin

- Wash your hands with soap and water.
- Clean the injection area for the 2 injections with an alcohol swab using a circular motion (see Figure H).
 - Let the area dry completely.
 - o **Do not** blow or touch the cleaned area before injecting.

Step 3: Injecting ADBRY

Figure I

3a: Pull off the ADBRY needle cover

Hold the ADBRY prefilled syringe body with one hand, pull the needle cover straight off with your other hand (see Figure I) and throw it away in the sharps container.

- Do not try to recap the ADBRY prefilled syringes.
- **Do not** hold the plunger rod or plunger head while removing the needle cover.
- You may see a drop of liquid at the end of the needle. This is normal.
- **Do not** touch the needle, or let it touch any surface. If either of these occur, throw away the syringe and get a new one.

Figure J

3b: Insert the needle

With one hand, gently pinch and hold a fold of skin where you cleaned the injection area. With the other hand, insert the needle completely at about a 45 degree angle into your skin (see Figure J).

Figure K

3c: Inject the medicine

Use your thumb to firmly push down the plunger head all the way down (see Figure K). All the medicine is injected when you cannot push the plunger head any further.

Figure L

3d: Release and remove


Lift your thumb off the plunger head. The needle will automatically move back inside the syringe body and lock into place (see Figure L).

- Place a dry cotton ball or gauze pad over the injection site for a few seconds. Do not rub the injection site. If needed, cover the injection site with a small bandage.
- There may be a small amount of blood or liquid where you injected. This is normal.

Throw away the used ADBRY prefilled syringe in the sharps disposal container. **See Step 5 "Disposing of ADBRY".**

Step 4: Injecting the next syringe

Figure M

To get your full prescribed dose, you will need to give more than 1 injection.

- To get your full prescribed initial dose of **600 mg**, you will need to give **4** injections.
- To get your full prescribed dose of 300 mg, you will need to give 2 injections.

Get a new ADBRY prefilled syringe and repeat Steps 3 and 5 (see Figure M) for each injection you need to give for your full prescribed dose.

Note

Make sure each injection is at least 1 inch (3 cm) from the prior injection site and within the same body area.

Step 5: Disposing of ADBRY

Figure N

- Put the used ADBRY prefilled syringes in an FDA-cleared sharps disposal container right away after use (see Figure N). Do not throw away the ADBRY prefilled syringes in your household trash
- If you do not have an FDA-cleared sharps disposal container, you may use a household container that is:
 - made of heavy-duty plastic,
 - can be closed with a tight-fitting, puncture-resistant lid, without sharps being able to come out
 - o upright and stable during use,
 - o leak-resistant, and
 - o properly labeled to warn of hazardous waste inside the container.
- When your sharps disposal container is almost full, you will need to follow your community guidelines for the right way to dispose of your sharps disposal container. There may be state or local laws about how you should throw away used needles and syringes. For more information about safe sharps disposal, and for specific information about sharps disposal in the state that you live in, go to the FDA's website at: http://www.fda.gov/safesharpsdisposal.
- Do not recycle your used sharps disposal container.

For more information go to www.ADBRY.com or call 1-844-692-3279. If you still have questions, call your healthcare provider.

Manufactured by: LEO Pharma A/S Industriparken 55, DK-2750 Ballerup, Denmark Distributed by: LEO Pharma Inc., Madison, NJ 07940, USA U.S. License No. 2169
ADBRY™ is a trademark of LEO Pharma A/S.
© 2021 LEO Pharma Inc. All rights reserved.

This "Instructions for Use" has been approved by the U.S. Food and Drug Administration.

Approved December 2021

処方情報の重要事項

処方情報の重要事項は ADBRY を安全かつ有効に使用するために必要な情報の概要であり、すべての情報を網羅しているわけではない。詳細は ADBRY の処方情報の全文を参照すること。

ADBRY™ (tralokinumab-ldrm) injection, for subcutaneous

米国における初回承認: 2021年

----- 効能・効果 ------

ADBRY はインターロイキン 13 拮抗薬で、外用療法では効果不十分な、または外用剤の使用が推奨されない中等症から重症のアトピー性皮膚炎成人患者の治療に適応となる。ADBRY は単剤およびステロイド外用剤併用のいずれでも使用可能である(1)。

----- 用法・用量 -----

- ・ ADBRY による治療を開始する前に、現行のワクチン接種 ガイドラインに従い、患者の年齢に応じたすべてのワクチ ン接種を完了すること (2.1)。
- ・ ADBRY の推奨用量は、初回用量として 600 mg (150 mg の注射を 4 本)を投与し、その後は 300 mg (150 mg の注射を 2 本)を 2 週間隔で投与する。体重が 100 kg 未満の患者では、16 週間の投与後に「皮膚病変がなし」または「ほとんどなし」となった場合は、300 mg を 4 週間隔での投与への切り替えを検討することができる (2.2)。
- · ADBRY は皮下投与する(2.2)。

注射剤:針ガード付き使い捨てプレフィルドシリンジに、150 mg/mL の注射液が含まれている(3)。

·---- 禁忌 ·-----

ADBRY に含まれるトラロキヌマブ-ldrm またはいずれかの添加物に対する過敏症が知られている患者には禁忌である(4)。

-----警告および使用上の注意 -----

- ・ 過敏症: ADBRY 投与後にアナフィラキシーおよび血管浮腫などの過敏症反応が生じている。過敏症反応が生じた場合には ADBRY の投与を中止すること(5.1)。
- · <u>結膜炎および角膜炎</u>:眼に症状が現れたり、症状が悪化した場合には医療従事者に報告すること(5.2)。
- ・ <u>寄生虫(蠕虫)感染</u>: ADBRY による治療開始前に蠕虫感染が知られている場合には、蠕虫感染に対する治療を行うこと。ADBRY による治療中に感染し、蠕虫の治療が奏効しない場合には、感染が消失するまで ADBRY の投与を中止すること(5.3)。
- ・ <u>生ワクチンによる感染のリスク</u>: 生ワクチンの使用は避けること(5.4)。

.----- 副作用 ------

最もよくみられる副作用(発現頻度 1%以上)は上気道感染、結膜炎、注射部位反応および好酸球増加症である (6.1)。

副作用の疑いがある場合は、LEO Pharma Inc. (1-877-494-4536) 、または FDA(1-800-FDA-1088 または www.fda.gov/medwatch.)に連絡すること。

患者カウンセリング情報および FDA が承認した患者向けラベルを 17 に示す。

2021年12月改訂

処方情報の全文:目次* 処方情報の重要事項

- 1. 効能・効果
- 2. 用法•用量
 - 2.1 投与前のワクチン接種
 - 2.2 推奨用量
 - 2.3 外用剤の併用
 - 2.4 投与を忘れた場合
 - 2.5 使用前の準備
 - 2.6 投与に関する重要な注意
- 3. 剤型および力価
- 4. 禁忌
- 5. 警告および使用上の注意
 - 5.1 過敏症
 - 5.2 結膜炎および角膜炎
 - 5.3 寄生虫(蠕虫)感染
 - 5.4 生ワクチンによる感染のリスク
- 6. 副作用
 - 6.1 臨床試験
 - 6.2 免疫原性

- 8. 特殊な集団における使用
 - 8.1 妊娠
 - 8.2 授乳
 - 8.4 小児に対する使用
 - 8.5 高齢者に対する使用
- 10. 過量投与
- 11. 性状
- 12. 臨床薬理
 - 12.1 作用機序
 - 12.2 薬力学
 - 12.3 薬物動態
- 13. 非臨床毒性
 - 13.1 発癌性、変異原性、受胎能に及ぼす影響
- 14. 臨床試験
- 16. 包装形態/保存と取り扱い
- 17. 患者カウンセリング情報
- * 処方情報の全文から省略したセクションおよびサブセクション は記載していない。

処方情報の全文

1. 効能・効果

ADBRY は外用療法では効果不十分な、または外用療法の使用が推奨されない中等症から重症のアトピー性皮膚炎成人患者の治療に適応となる。ADBRY は単剤およびステロイド外用剤併用のいずれでも使用可能である。

2. 用法・用量

2.1 投与前のワクチン接種

ADBRY による治療を開始する前に、現行のワクチン接種ガイドラインに従い、患者の年齢に応じたすべてのワクチン接種を完了すること [警告および使用上の注意(5.4)参照]。

2.2 推奨用量

ADBRY の推奨用量は以下のとおりである:

- ・ 初回用量として 600 mg(150 mg の注射を 4 本)を投与し、その後は 300 mg(150 mg の注射 を 2 本)を 2 週間隔で投与する。
- ・体重が 100 kg 未満の患者では、16 週間の投与開始後に「皮膚病変がなし」または「ほとんどなし」となった場合は、300 mg を 4 週間隔での投与への切り替えを検討することができる。

ADBRY は皮下投与する [*用法・用量(2.5、2.6)参照*]。

2.3 外用剤の併用

ADBRY は単剤およびステロイド外用剤併用のいずれでも使用可能である。カルシニューリン阻害外用薬も使用できるが、顔、頸、間擦部および外陰部など問題のある部位のみにとどめること。

2.4 投与を忘れた場合

投与を忘れた場合には、可能な限り迅速に投与する。その後は通常の予定時刻に投与を再開する。

2.5 使用前の準備

- ADBRY プレフィルドシリンジを冷蔵庫から取り出し、室温に戻してから投与する (150 mg/mL のプレフィルドシリンジで30分)。このとき、針キャップは外さない。
- ・冷蔵庫から取り出したプレフィルドシリンジは、25°C (77°F) 以下であれば室温で保存することもできるが、14 日以内に使用しなければならない。14 日を過ぎたら廃棄すること。
- ・ 投与前に ADBRY を目視検査し、粒子状物質や変色がないかを確認する。ADBRY 注射液は澄明または乳白光で無色~微黄色の溶液である。眼に見える粒子状物質、変色、または濁りがみられる場合には使用しないこと(澄明または乳白光で、無色~微黄色でなければならない)。
- · ADBRYには保存剤は含まれていないため、使用しなかった製剤は廃棄すること。

2.6 投与に関する重要な注意

・ADBRY は医療従事者の指導の下で使用する薬剤である。患者は、ADBRY の皮下注射手技のトレーニングを受ければ自己投与も可能である。患者および/または介護者に対しては、「使用方法」に従って準備と投与について適切なトレーニングを行うこと 「使用方法参照」。

- ・ 600 mg の初回投与では、ADBRY 150 mg を身体の同一部位で異なる注射部位に 4 本投与する。
- ・ その後の 300 mg の投与では、ADBRY 150 mg を身体の同一部位で異なる注射部位に 2 本投与する。
- ・大腿、または臍周囲 5 cm (2 インチ) を避けて腹部に皮下投与する。介護者が投与するときに は上腕に投与することもできる。
- · 投与ごとに注射部位を変えること。圧痛、損傷、挫傷または瘢痕のある部位は避ける。

3. 剤型および力価

注射剤:針ガードの付いた使い捨てのプレフィルドシリンジに、澄明または乳白光、無色~微黄色の溶液が 150 mg/mL 含まれている。

4. 禁忌

ADBRY に含まれるトラロキヌマブ-ldrm またはいずれかの添加剤に対する過敏症が知られている患者には禁忌である「警告および使用上の注意(5.1)参照]。

5. 警告および使用上の注意

5.1 過敏症

ADBRY 投与後にアナフィラキシーおよび血管浮腫などの過敏症反応が報告されている。

重篤な過敏症反応が生じた場合はただちに ADBRY を中止し、適切な治療を行うこと。

5.2 結膜炎および角膜炎

ADBRY を投与したアトピー性皮膚炎の被験者で、結膜炎および角膜炎の発現頻度が高くなっている。最も高い頻度で報告された眼障害は、結膜炎であった。結膜炎および角膜炎を発現した被験者の大半は投与期間中に回復したまたは回復傾向となった[副作用(6.1)参照]。

眼に症状が現れたり症状が悪化したりした場合には医療従事者に報告するよう患者に助言すること。

5.3 寄生虫(蠕虫)感染

蠕虫感染がある患者は臨床試験から除外されている。ADBRYによるIL-13シグナル伝達の阻害が、 蠕虫感染に対する免疫応答に影響を及ぼすかどうかは不明である。

ADBRY による治療開始前に蠕虫感染がある場合は、ADBRY 開始前に蠕虫感染の治療を行うこと。 ADBRY による治療中に感染し、蠕虫に対する治療の効果がみられない場合には、感染が治癒するまで ADBRY の投与を中止すること。

5.4 生ワクチンによる感染のリスク

ADBRY により患者の免疫に変化が生じる可能性があり、生ワクチン投与後の感染リスクが高まる恐れがある。ADBRY による治療の開始前に、現行のワクチン接種ガイドラインに従い、年齢に応じたすべてのワクチン接種を完了すること。ADBRY による治療を受けている患者は生ワクチンの使用は避けること。ADBRY と生ワクチンではないワクチンの併用に関するデータは限られている [臨床薬理(12.2)参照]。

6. 副作用

以下の副作用については、処方情報の別の箇所に詳細な説明がある:

- ・ 過敏症「警告および使用上の注意(5.1)参照
- · 結膜炎および角膜炎 [警告および使用上の注意 (5.2) 参照]

6.1 臨床試験

臨床試験は様々な条件下で実施されるため、異なる薬剤の試験間での副作用の発現率を直接比較することはできず、また臨床試験でみられた発現率は必ずしも実臨床での発現率を反映しているわけではない。

ADBRY の安全性は、中等症から重症のアトピー性皮膚炎被験者を対象とした無作為化、二重盲検、プラセボ対照試験 5 試験 [第 3 相の「Eczema Tralokinumab」試験 3 件(ECZTRA 1、ECZTRA 2 および ECZTRA 3)、用量設定試験、およびワクチン応答試験]で評価されている。安全性解析対象集団は、平均年齢が 37 歳、女性が 43%、白人が 67%、アジア系が 21%、黒人が 9%であった。ベースライン時の併存疾患は、喘息が 39%、枯草熱が 49%、食物アレルギーが 36%、アレルギー性 結膜炎が 21%であった。

アトピー性皮膚炎を対象としたこれらの5試験では、被験者1964例に対し、ADBRYが単剤またはステロイド外用剤との併用で皮下投与された。このうち807例には1年以上にわたりADBRYが投与された。

ECZTRA 1 試験および ECZTRA 2 試験では、ADBRY 単剤投与の安全性をプラセボとの比較で Week 52 まで評価し、ECZTRA 3 試験では、ADBRY+TCS の安全性をプラセボ+TCS との比較で Week 32 まで評価した。

Week 0~16(ECZTRA 1 試験、ECZTRA 2 試験および ECZTRA 3 試験):

3 試験のプール(ECZTRA 1、ECZTRA 2 および ECZTRA 3)の中で、ADBRY 300 mg 2 週間隔単 剤投与群、および ADBRY 300 mg 2 週間隔+TCS 投与群において、Week 0~16 の初期投与期間に 生じ、発現率が 1%以上で、かつ、プラセボよりも発現率が高かった副作用の概要を表 1 に示す。

表 1:アトピー性皮膚炎を対象とした臨床試験の Week 16 までに、ADBRY 単剤投与群または ADBRY+TCS 投与群で 1%以上の患者に生じた副作用

Adverse Reaction	ADBRY Mono	therapy ^a	ADBRY + TCSb			
	ADBRY 300 mg Q2W ^c	PLACEBO	ADBRY 300 mg Q2Wc + TCS	PLACEBO + TCS		
	N=1180 n (%)	N=388 n (%)	N=243 N (%)	N=123 N (%)		
上気道感染 ^d	281(23.8)	79 (20.4)	73 (30.0)	19 (15.4)		
結膜炎 ^f	88 (7.5)	12 (3.1)	33 (13.6)	6 (4.9)		
注射部位反応 ^e	87 (7.4)	16 (4.1)	27 (11.1)	1 (0.8)		
好酸球増加症 ^g	17 (1.4)	2 (0.5)	3 (1.2)	0		

^a Pooled analysis of ECZTRA 1 and ECZTRA 2.

^b Analysis of ÉCZTRA 3 where subjects were on background TCS therapy.

^c ADBRY 600 mg at Week 0, followed by 300 mg every other week.

d Upper respiratory tract infections cluster includes upper respiratory tract infection, viral upper respiratory tract infection, pharyngitis, and nasopharyngitis; mainly reported as common cold.

^e Injection site reactions cluster includes pain, erythema, and swelling.

^f Conjunctivitis cluster includes conjunctivitis and allergic conjunctivitis.

g Eosinophilia cluster includes eosinophilia and eosinophil count increased.

単剤投与試験(ECZTRA 1 試験および ECZTRA 2 試験)の Week 16 までに、副作用のため投与を中止した被験者の割合は、ADBRY 300 mg 2 週間隔投与群で 0.7%、プラセボ投与群で 0%であり、TCS 併用試験(ECZTRA 3)の同期間に、副作用のため投与を中止した被験者の割合は、ADBRY 300 mg 2 週間隔+TCS 投与群で 0.8%、プラセボ+TCS 投与群で 0%であった。投与中止に至った副作用で、プラセボ投与群と比べ ADBRY 投与群でより多くみられたものは、ECZTRA 1 試験とECZTRA 2 試験では注射部位反応(0.3% vs. 0%)および結膜炎(0.4% vs. 0%)であった。

Week 16~52(ECZTRA 1 試験と ECZTRA 2 試験)および Week 16~32(ECZTRA 3 試験)における安全性:

ADBRY 300 mg の 2 週間隔での単剤投与または TCS との併用投与における安全性プロファイルは、維持投与期間と 16 週間の初期投与期間との間で一貫していた。さらに副作用の発現頻度は、 ECZTRA 1 試験および ECZTRA 2 試験で ADBRY 300 mg を 2 週間隔で投与したときおよび 4 週間隔で投与したときにそれぞれ 44%および 34%、ECZTRA 3 試験で ADBRY 300 mg+TCS を 2 週間隔で投与したときおよび 4 週間隔で投与したときにそれぞれ 43%および 26%であった。

特定の副作用

結膜炎および角膜炎

5 試験プールの Week 16 までの初期投与期間において、結膜炎(アレルギー性結膜炎を含む)は ADBRY 300 mg を 2 週間隔で投与した被験者の 7.5%(100 曝露人年あたり 29 件)、プラセボを投与した被験者の 3.1%(100 曝露人年あたり 12 件)で報告された。ADBRY 投与群では 126 例に結膜炎 145 件が報告され、このうち 114 件は初期投与期間終了時には消失していた。投与中止に至った結膜炎は 2 例で生じた。

単剤投与試験(ECZTRA 1 および ECZTRA 2)の維持投与期間(Week 16~52)において、結膜炎は ADBRY 300 mg を 2 週間隔で投与した被験者の 8.9%(100 曝露人年あたり 20 件)、4 週間隔で投与した被験者の 6.3%(100 曝露人年あたり 14 件)で報告された。これに対し、初期投与期間では ADBRY 300 mg を 2 週間隔で投与した被験者の 7.7%(100 曝露人年あたり 30 件)で報告された。結膜炎(非重篤は 0 件、重度は 1 件、投与中止に至った事象は 1 件)は ADBRY 投与群を合わせて(2 週間隔で投与と 4 週間隔で投与) 24 例で報告された。ADBRY+TCS 併用試験(ECZTRA 3)の 16 週間の継続投与期間でも、同様の傾向がみられた。

角膜炎(角結膜炎を含む)は、5 試験のプールで Week 16 までの初期投与期間に ADBRY を投与した被験者の 0.5%、プラセボを投与した被験者の 0%で報告された。角膜炎(潰瘍性角膜炎 1 件を含む)は ADBRY を投与した被験者の 0.2%(100 曝露人年あたり 0.9 件)、プラセボを投与した被験者の 0.2%(100 曝露人年あたり 0.6 件)で報告された。角結膜炎(アトピー性角結膜炎 1 件を含む)は ADBRY を投与した被験者で 0.3%(100 曝露人年あたり 1.2 件)で報告され、プラセボを投与した被験者では報告はなかった。ADBRY 投与群では、9 例で角膜炎または角結膜炎事象 10 件が報告され、このうち 5 件は初期投与期間後の試験期間中に消失した。重篤な事象または投与の中止に至った事象はなかった。

単剤投与試験(ECZTRA 1 および ECZTRA 2)の維持投与期間(Week 16~52)では、ADBRY 300 mg 2 週間隔投与群で角膜炎が 1 例(0.6%)に報告され(潰瘍性で重度であり、投与中止後に消失)、曝露で調整した 100 曝露人年あたりの発現率は 1.2 であった。角結膜炎(重篤または重度ではなく、消失し、投与中止には至らなかった)は、3 例(1.9%。100 曝露人年あたり 3.6 件)で報告された。初期投与期間では、ADBRY 4 週間隔投与群またはプラセボ投与群では角膜炎と角結膜炎のいずれも報告がなかった一方、ADBRY 300 mg 2 週間隔投与群では角膜炎が 100 曝露人年あたり 2 件であった。

ECZTRA 3 試験の継続投与期間(Week 16~32)では、ADBRY 300 mg+TCS に無作為化された被験者で追加の角膜炎は報告されていない。

好酸球数

ADBRY 投与群ではプラセボ投与群に比べ、初期に平均好酸球数が大きく増加した。ベースラインから Week 4 までの血中好酸球数増加の平均値および中央値は、それぞれ 190 cells/mcL および 100 cells/mcL であった。ADBRY 投与群における好酸球数は、投与継続中にベースラインレベルまで低下した。Week 16 までの初期投与期間において好酸球増加症(5000 cells/mcL 超)は ADBRY 投与群の 1.2%、プラセボ投与群の 0.3%で報告された。アトピー性皮膚炎を対象とした 5 試験のプールで、安全性プロファイルは、好酸球増加症がみられた被験者と試験全体集団で同程度であった。

6.2 免疫原性

他の治療用タンパク質と同様に、ADBRYには免疫原性の可能性がある。抗体形成が検出されるかどうかはアッセイの感度と特異性に大きく依存する。さらに、抗体(中和抗体を含む)陽性の発現頻度は、アッセイの方法、サンプルの取り扱い、サンプル採取のタイミング、併用薬および基礎疾患などいくつかの要因から影響を受ける可能性がある。これらの理由のため、下記の試験と他の試験、または他のトラロキヌマブ製剤との間で抗体発現頻度を比較しても正しい結果が得られるわけではない。

ECZTRA 1 試験、ECZTRA 2 試験、ECZTRA 3 試験、およびワクチン応答試験の初期投与期間(16週間)における抗薬物抗体(ADA)の発現頻度は、ADBRY 300 mg 2 週間隔投与群で 1.4%、プラセボ投与群で 1.3%であり、中和抗体は ADBRY 投与群の 0.1%、プラセボ投与群の 0.2%にみられた。

試験期間全体では、ADBRY 投与群の ADA の発現頻度は 4.6%であり、ADA が継続した被験者は 0.9%、中和抗体が発現した被験者は 1.0%であった。

抗トラロキヌマブ-ldrm 抗体(中和抗体を含む)陽性になった患者でも、トラロキヌマブ-ldrm の薬物動態、安全性および有効性に臨床的に意味のある差はなかった。

8. 特殊な集団における使用

8.1 妊娠

<u>リスクの概要</u>

ADBRY を妊婦に投与したときの発達上の有害なアウトカムに対するリスクに関しては、データが限られている。ヒト IgG 抗体は胎盤関門を通過することが知られており、ADBRY は母体から発生中の胎児に移行する可能性がある。

拡充型出生前および出生後の発生に関する試験で、ヒトの最高推奨用量(MRHD)の 10 倍までの用量でトラロキヌマブ-ldrm を妊娠サルの器官形成期から分娩まで静脈内投与したところ、出生児及び母動物に毒性変化は観察されなかった。

適応となる集団における主な先天性欠損や自然流産のバックグランドリスクは知られていない。すべての妊娠は、先天性欠損、死産などの有害アウトカムのバックグランドリスクを伴う。米国の一般集団では、臨床的に確認されている妊娠における主な先天性欠損と自然流産のバックグランドリスクは、それぞれ 2~4%、15~20%と推定されている。

データ

動物のデータ

拡充型出生前および出生後の発生に関する試験では、妊娠カニクイザルに妊娠 20 日から分娩までトラロキヌマブ-ldrm を 100 mg/kg まで週 1 回、静脈内投与した。最高用量の 100 mg/kg/週 [MRHD (mg/kg ベースで 10 mg/kg/週) の 10 倍] まで母動物および出生児に対する毒性はいずれもみられなかった。

拡充型出生前および出生後の発生に関する試験では、妊娠カニクイザルに器官形成期から分娩までトラロキヌマブ-ldrm を 100 mg/kg/週まで週 1 回、静脈内投与した [MRHD (mg/kg ベースで 10 mg/kg/週) の 10 倍]。6ヵ月齢までの出生児において、胚胎児毒性または奇形あるいは形態学的、機能的または免疫学的発達に関し投与による毒性変化はみられなかった。

8.2 授乳

リスクの概要

トラロキヌマブ-Idrm のヒト母乳への移行、母乳育児の乳児に対する作用、母乳産生に対する作用に関するデータはない。母体の IgG は母乳中に存在する。母乳育児の乳児が消化管局所的に ADBRY に曝露されたときおよび限定的に全身曝露されたときに、ADBRY が乳児に与える作用は不明である。母乳育児が乳児の発達および健康に与える有益性と、母体に対する ADBRY の治療上の有益性、ADBRY が乳児に与える潜在的な有害作用、および母体の基礎的な健康状態が乳児に与える潜在的な有害作用を検討しなければならない。

8.4 小児に対する使用

小児患者における ADBRY の安全性および効果は確立されていない。

8.5 高齢者に対する使用

アトピー性皮膚炎を対象とした5試験で初期投与期間(最長16週間)にADBRYを投与した1605例のうち、77例は65歳以上であった。臨床試験に参加したこの年齢層の被験者数は十分ではなく、この年齢層の患者と若年の患者との間で反応性が異なるかどうかを判断することはできない[臨床薬理(12.3)参照]。

10. 過量投与

ADBRY の過量投与に対する特定の治療法はない。過量投与が生じた場合には、中毒予防センター (1-800-222-1222) に連絡して最新の助言を受け、患者に副作用の徴候または症状がないかを モニタリングし、適切な対処療法をただちに行う。

11. 性状

トラロキヌマブ-Idrm はインターロイキン-13 拮抗薬であり、ヒト IgG モノクローナル抗体である。トラロキヌマブ-Idrm は、マウスミエローマ細胞を使用した遺伝子組換え技術で製造され、1326個のアミノ酸から成り、分子量は約 147kDa である。

ADBRY(トラロキヌマブ-ldrm)は保存剤を含まない、無菌の澄明または乳白光、無色または微黄色の溶液で、針ガードが付きシリコン加工が施された1型透明ガラスの使い捨てプレフィルドシリンジに入った皮下注射用として提供される。プレフィルドシリンジまたは針ガードの構成要素には、天然のゴムラテックスは使用されていない。

各プレフィルドシリンジからは、1 mL の注射液中のトラロキヌマブ-ldrm 150 mg が投与される。活性のない添加物として、酢酸 (0.3 mg) 、ポリソルベート 80 (0.1 mg) 、酢酸ナトリウム三水和物 (6 mg) 、塩化ナトリウム (5 mg) および注射用水が含まれており、pH は約 5.5 である。

12. 臨床薬理

12.1 作用機序

トラロキヌマブ-ldrm はヒト lgG4 モノクローナル抗体で、ヒトインターロイキン-13(IL-13)に特異的に結合し、IL-13 と、IL-13 受容体 α 1 サブユニットまたは IL-13 受容体 α 2 サブユニット(IL-13R α 1、IL-13R α 2)の間の相互作用を阻害する。IL-13 は 2 型免疫反応のサイトカインである。トラロキヌマブ-ldrm は IL-13 と IL-13R α 1/IL-4R α 受容体複合体の相互作用を遮断して IL-13 の生理活性を阻害し、炎症性サイトカイン、ケモカイン、lgE の放出など、IL-13 が誘導する反応を阻害する。

12.2 薬力学

ADBRY の投与に伴い、胸腺や活性化調節ケモカイン(TARC/CCL17)、ペリオスチン、IL-22、乳酸脱水素酵素(LDH)および血清 IgE などの血中の Th2 および Th22 免疫バイオマーカーの濃度が低下する。ADBRY は AD 皮膚のケラチン 16 および Ki-67 の発現を低下させ、ロリクリンのタンパク質発現を上昇させる。ADBRY は CCL17、CCL18、CCL26 などの Th2 経路の遺伝子の発現、および病変部位の Th17 と Th22 で調節される遺伝子のマーカーを抑制する。これらのバイオマーカーの臨床的な意味は完全には解明されていない。

投与中に生ワクチン以外のワクチンを投与したときの免疫応答

生ワクチン以外のワクチンに対する免疫応答について、アトピー性皮膚炎成人被験者に ADBRY の初回用量 600 mg(150 mg の注射を 4 本)を投与し、その後 300 mg を 2 週間隔で、いずれも皮下投与した試験で評価した。12 週間の ADBRY 投与後、ジフテリア・破傷風・無菌性百日咳ワクチン、および髄膜炎菌ワクチンを接種し、その 4 週間後に抗体反応を評価した。ジフテリア・破傷風・無菌性百日咳ワクチンおよび髄膜炎菌ワクチンに対する抗体反応は、トラロキヌマブ-ldrm を投与した被験者でもプラセボを投与した被験者でも同程度であった。他のワクチンに対する免疫応答は評価していない。

12.3 薬物動態

ADBRY 300 mg を 2 週間隔で投与したとき、定常状態でのトラロキヌマブ-ldrm の平均トラフ濃度は 98.0(41.1)~101.4(42.7)mcg/mL の範囲であった。トラロキヌマブ-ldrm を体重 70 kg の被験者に投与したとき、曝露量は最高 2100 mg(30 mg/kg IV。承認された最高推奨用量の 3.5 倍)の用量まで比例的に増加した。600 mg を初回投与し、その後 300 mg を 2 週間隔で投与すると、トラロキヌマブ-ldrm 濃度は Week 16 までに定常状態に達した。

吸収

トラロキヌマブ-ldrm の絶対的バイオアベイラビリティは 76%と推定され、最高濃度到達時間 (tmax) は投与後 5~8 日であった。

分布

トラロキヌマブ-Idrm の分布容量は約4.2Lと推定された。

排泄

トラロキヌマブ-ldrm の半減期は3週間、全身クリアランスは0.149 L/日と推定された。

代謝

トラロキヌマブ-Idrm は異化経路で小さなペプチドに代謝されると予想される。

特殊な集団

年齢(18~92歳)、性別、軽度から中等度の腎機能障害、または軽度の肝機能障害などの各集団において、トラロキヌマブ-ldrmの薬物動態に臨床的に意味のある差はみられなかった。重度の腎機能障害または中等度から重度の肝機能障害がトラロキヌマブ-ldrmの薬物動態に与える作用は不明である。

体重

トラロキヌマブ-ldrm の曝露量は、体重の増加と共に減少する。300 mg を 4 週間隔で投与したとき、トラロキヌマブ-ldrm 曝露量(AUC)の中央値は、体重 100 kg 以上の被験者では 100 kg 未満の被験者に比べ 1.46 分の 1 であった *[用法・用量(2.2)]。*

薬物相互作用試験

ADBRY の薬物相互作用は評価していない。

13. 非臨床毒性

13.1 発癌性、変異原性、受胎能に及ぼす影響

トラロキヌマブ-ldrm の潜在的ながん原性または変異原性を評価する動物試験は実施していない。

性的に成熟した雌雄のカニクイザルにトラロキヌマブ-ldrm を皮下投与した試験では、雌では最高 350 mg/匹(MRHD(mg/kg ベースで 10 mg/kg/週)の 10 倍)を連続 3 回の月経周期にわたり週 1 回(最高 15 回投与)、雄では最高 600 mg/匹(MRHD(mg/kg ベースで 10 mg/kg/週)の 10 倍)を 13 週間にわたり週 1 回皮下投与したところ、生殖器官、月経サイクルおよび精子などの生殖能パラメータに対する影響はみられなかった。受胎能を評価するための交配は行っていない。

14. 臨床試験

ADBRY の有効性は、無作為化、二重盲検、プラセボ対照の 3 試験 [ECZTRA 1 (NCT03131648) 、ECZTRA 2 (NCT03160885) および ECZTRA 3 (NCT03363854)] で評価した。被験者は 18 歳以上で、外用薬では効果不十分な中等症から重症のアトピー性皮膚炎(AD)を有する 1934 例であった。疾患の重症度は、医師による包括的な評価(IGA)が 3 以上(AD 病変を全体として $0\sim4$ で評価する重症度の尺度)、湿疹面積・重症度指数(EASI)スコアが 16 以上($0\sim72$ の尺度)および体表面積(BSA)の 10%以上に病変があることで定義した。ベースライン時の被験者の特性は、男性が 58%、白人が 69%、ベースライン時の IGA スコア 3 (中等症の AD) が 50%、4 (重症の AD) が 50%であった。ベースライン時の平均 EASI スコアは 32、そう痒 NRS の日内最高値($0\sim10$ の尺度)の週平均は 8 であった。

3 試験ではいずれも、Day 0 に ADBRY 600 mg またはプラセボを皮下投与し、その後 ADBRY 300 mg またはプラセボを 2 週間隔で 16 週間にわたり投与した。レスポンダーは、Week 16 時点で IGA 0 または 1 (「病変がなし」または「ほとんどなし」)あるいは EASI-75 (EASI スコアがベースラインから 75%以上改善)が達成されていることと定義した。

単剤投与試験(ECZTRA 1 および ECZTRA 2)では反応の持続性を評価するために、初期投与期間で ADBRY 300 mg の 2 週間隔の投与が反応した被験者を、初回投与後、ADBRY 300 mg を 2 週間隔、ADBRY 300 mg を 4 週間隔、またはプラセボを 2 週間隔に再無作為化し、さらに 36 週間投与を継続した。初期投与期間にプラセボに無作為化され、Week 16 でクリニカルレスポンスを達成していた被験者では、さらにプラセボの 2 週間隔での投与を 36 週間継続した。Week 16 でノンレスポンダーであった被験者および維持投与期間にクリニカルレスポンスが失われた被験者には、ADBRY 300 mg を 2 週間隔で非盲検投与し、任意で TCS を使用した。

併用投与試験(ECZTRA 3)では、Week 16 まで ADBRY 300 mg を 2 週間隔+TCS またはプラセボ+TCS を投与し、必要に応じてカルシニューリン阻害外用薬(TCI)を使用した。ADBRY 300

mg+TCS 投与群で Week 16 にクリニカルレスポンスを達成していた被験者は、ADBRY 300 mg+TCS を 2 週間隔、または ADBRY 300 mg+TCS を 4 週間隔に再無作為化し、初回投与後さらに 16 週間、投与を継続した。プラセボ+TCS 投与群で Week 16 にクリニカルレスポンスを達成していた 被験者には、プラセボ+TCS の投与をさらに 16 週間継続した。Week 16 でクリニカルレスポンスを達成していたかった被験者には、ADBRY 300 mg 2 週間隔での投与をさらに 16 週間継続した。投与のための来院時ごとに mid-potency の TCS(モメタゾンフランカルボン酸エステル 0.1%クリーム)を提供し、Week $0\sim32$ までは必要に応じて、提供された TCS を活動性病変に 1 日 1 回薄い膜状に塗布し、病変がコントロールされたら TCS は中止するように被験者に指示した。提供した TCS の使用が好ましくない部位(皮膚が薄い部位など)には、治験担当医師の裁量で、より力価が低い TCS または TCI を使用することも可能とした。

3 試験ではいずれも、Week 16 で IGA 0 または 1 が達成されていた被験者の割合、および EASI-75 が達成されていた被験者の割合を主要評価項目とした。副次的評価項目は、ベースラインから Week 16 までにそう痒 NRS の日内最高値(週平均)(11 ポイントの数値による痒みの評価)が 4 ポイント以上低下することなどであった。

Week 16 でのクリニカルレスポンス(ECZTRA 1 試験、ECZTRA 2 試験および ECZTRA 3 試験)

ADBRY 単剤投与試験(ECZTRA 1、ECZTRA 2)および ADBRY+TCS 試験(ECZTRA 3)の成績を表 2 に提示する。

表 2:中等症から重症の AD 被験者における ADBRY 単剤および ADBRY+TCS の Week 16 での有効性(ECZTRA 1 試験、ECZTRA 2 試験および ECZTRA 3 試験)

	ECZTRA 1		ECZTRA 2		ECZTRA 3	
	ADBRY 300 mg every other week	Placebo	ADBRY 300 mg every other week	Placebo	ADBRY 300 mg every other week + TCS	Placebo + TCS
Number of subjects randomized and dosed (FAS) ^a	601	197	577	193	243	123
IGA 0 or 1 ^{b,c}	16%	7%	21%	9%	38%	27%
Difference from Placebo (95% CI)	9% (4%, 13%)		12% (7%, 17%)		11% (1%, 21%)	
EASI-75 ^C	25%	13%	33%	10%	56%	37%
Difference from Placebo (95% CI)	12% (6%, 18%)		22% (17%, 28%)		20% (9%, 30%)	
Number of subjects with baseline Worst Daily Pruritus NRS (weekly average)score ≥4	594	194	563	192	240	123
Worst Daily Pruritus NRS (≥4 point	20%	10%	25%	9%	46%	35%
reduction) ^C Difference from Placebo (95% CI)	10% (4%, 15%)		16% (11%, 21%)		11% (1%, 22%)	

Abbreviations: AD = Atopic Dermatitis CI = Confidence Interval.

Note: Difference and 95% CI are based on the CMH test stratified by region and baseline IGA score.

この主要 3 試験において、ADBRY 300 mg 2 週間隔投与群ではプラセボ投与群に比べ、EASI-90 を達成した被験者の割合が高かった。

年齢、性別、人種、体重、および前治療(免疫抑制剤など)ごとに検討したが、サブグループ間で ADBRY 300 mg 2 週間隔投与の反応に差はなかった。

単剤投与試験(ECZTRA 1、ECZTRA 2) 一維持投与期間(Week 16~52)

^a Full Analysis Set (FAS) includes all subjects randomized and dosed.

^b Responders was defined as a subject with an IGA 0 or 1 ("clear" or "almost clear") .

^c Subjects who received rescue treatment or with missing data were considered as non-responders.

ECZTRA 1 試験では、ADBRY 300 mg の 2 週間隔での投与でレスポンダー(IGA 0/1 または EASI-75)となった 179 例を Week 16 で ADBRY 300 mg 2 週間隔(68 例)、ADBRY 300 mg 4 週間隔(76 例)およびプラセボ(35 例)に再無作為化した。これらの被験者のうち、ADBRY 300 mg 2 週間隔投与群の 39 例、ADBRY 300 mg 4 週間隔投与群の 36 例、プラセボ投与群の 19 例が、Week 16 での IGA 0/1 レスポンダーであった。Week 52 で IGA 0/1 が維持されていた被験者は、2 週間隔投与群で 20 例(51%)、4 週間隔投与群で 14 例(39%)、プラセボ投与群で 9 例(47%)であった。再無作為化した被験者のうち、ADBRY 300 mg 2 週間隔投与群の 47 例、ADBRY 300 mg 4 週間隔投与群の 57 例、およびプラセボ投与群の 30 例が、Week 16 での EASI-75 レスポンダーであった。Week 52 で EASI-75 が維持されていた被験者は、2 週間隔投与群で 28 例(60%)、4 週間隔投与群で 28 例(49%)、プラセボ投与群で 10 例(33%)であった。

ECZTRA 2 試験では、ADBRY 300 mg 2 週間隔での投与でレスポンダー(IGA 0/1 または EASI-75)となった 218 例を Week 16 で ADBRY 300 mg 2 週間隔(90 例)、ADBRY 300 mg 4 週間隔(84 例)およびプラセボ(44 例)に再無作為化した。これらの被験者のうち、ADBRY 300 mg 2 週間隔投与群の 53 例、ADBRY 300 mg 4 週間隔投与群の 44 例、プラセボ投与群の 26 例が、Week 16 での IGA 0/1 レスポンダーであった。Week 52 で IGA 0/1 が維持されていた被験者は、2 週間隔投与群で 32 例(60%)、4 週間隔投与群で 22 例(50%)、プラセボ投与群で 6 例(23%)であった。再無作為化した被験者のうち、ADBRY 300 mg 2 週間隔投与群の 76 例、ADBRY 300 mg 4 週間隔投与群の 69 例、およびプラセボ投与群の 40 例が、Week 16 での EASI-75 レスポンダーであった。Week 52 で EASI-75 が維持されていた被験者は、2 週間隔投与群で 43 例(57%)、4 週間隔投与群で 38 例(55%)、プラセボ投与群で 8 例(20%)であった。

TCS 併用投与試験(ECZTRA 3)一維持投与期間(Week 16~32)

ECZTRA 3 試験では、ADBRY 300 mg 2 週間隔+TCS の投与でレスポンダー(IGA 0/1 または EASI-75)となった 131 例を Week 16 で ADBRY 300 mg、2 週間隔+TCS(65 例)または 4 週間隔+TCS(66 例)に再無作為化した。これらの被験者では、ADBRY 300 mg 2 週間隔+TCS 投与群の 45 例、ADBRY 300 mg 4 週間隔で+TCS 投与群の 46 例が、Week 16 での IGA 0/1 レスポンダーであった。Week 32 で IGA 0/1 が維持されていた被験者は、2 週間隔投与群で 40 例(89%)、4 週間隔投与群で 35 例(76%)であった。再無作為化した被験者のうち、ADBRY 300 mg 2 週間隔投与群の 65 例、ADBRY 300 mg 4 週間隔投与群の 62 例が、Week 16 での EASI-75 レスポンダーであった。Week 32 で EASI-75 が維持されていた被験者は、2 週間隔投与群で 60 例(92%)、4 週間隔投与群で 56 例(90%)であった。

16. 包装形態/保存と取り扱い

包装形態

ADBRY(トラロキヌマブ-Idrm)は無菌の澄明または乳白光、無色~微黄色の溶液で、27 ゲージ、½インチ針と針ガードが付いた使い捨てプレフィルドシリンジで提供される。

各プレフィルドシリンジからは ADBRY 150 mg/mL が投与される。 ADBRY は針ガードが付いたプレフィルドシリンジ2本または4本入りの箱に入っている。

包装の大きさ	NDC #		
プレフィルドシリンジ4本入り2カートン(マルチパック)	NDC 50222-346-04		
プレフィルドシリンジ2本入り1カートン	NDC 50222-346-02		

保存と取り扱い

ADBRY には保存剤は含まれていない。プレフィルドシリンジ内に使用されない製剤が残っていたら廃棄すること。

2~8°C(36~46°F)の冷蔵庫で、元のカートンに入れたまま遮光して保存すること。

必要であれば、元のカートンに入れたままの状態で、室温[最高 25° C (77° F)] で最長 14 日間保存することができる。このとき 25° C (77° F)を超えないこと。冷蔵庫からカートンを取り出す必要がある場合には、出した日付を外箱の所定のスペースに記録することができる。冷蔵庫から取り出した ADBRY は 14 日以内に使用し、14 日を過ぎたら廃棄すること。

プレフィルドシリンジの熱や直射日光への曝露、凍結、振とうは避けること。

17. 患者カウンセリング情報

患者には、FDA が承認した患者向けラベル(患者向け情報および使用方法)を読むように助言する。

投与の指示:

患者または介護者に次のように指示する:

- · 最初の自己投与は資格のある医療従事者の監督と指示の下で行い、正しい皮下注射手技のトレーニングをすること。
- · ADBRY は全量投与すること。
- ・ 鋭利物は正しい方法で廃棄すること [使用方法を参照]。

過敏症

全身性の過敏症反応の症状が現れたら、ただちに ADBRY の投与を中止し、医師の診察を受けるよう患者に指示する [警告および注意 (5.1) 参照]。

結膜炎および角膜炎

眼症状が現れたり症状が悪化したりした場合は、医療従事者に相談するよう患者に指示する [副作用 (6.1) 参照]。

<u>生ワクチンによる感染のリスク</u>

ADBRY は生ワクチンによる感染リスクを高める恐れがあること、および ADBRY を使用して治療している間は生ワクチンの接種は推奨されないことを患者に知らせること。ワクチンを接種する可能性がある場合には、接種前に ADBRY を使用していることを医療従事者に伝えるように指示する [警告および使用上の注意 (5.4) 参照]。

製造業者:

LEO Pharma A/S Industriparken 55 Ballerup, Denmark DK-2750 U.S. License No. 2169

販売業者:

LEO Pharma Inc. Madison, NJ 07940, USA

ADBRY™は LEO Pharma A/S の商標登録である。 © 2021 LEO Pharma Inc. 無断複写・複製・転載を禁ず。

患者向け情報 ADBRY™ [ad'-bree] トラロキヌスブ (drm) 中下

(トラロキヌマブ-Idrm)、皮下注

ADBRY とは?

- ・ ADBRY は、中等症から重症のアトピー性皮膚炎(湿疹)成人患者で、皮膚に塗布する(外用)処方薬では十分にコントロールできない、または外用療法が使用できないときに使用する処方薬です。 ADBRY はステロイド外用剤と共に使用することもできますし、ADBRY のみで使用することもできます。
- 小児における安全性と効果はわかっていません。

ADBRY に含まれているトラロキヌマブまたは添加剤にアレルギーがある場合は、使用しないでください。ADBRY の全成分はこのリーフレットの最後に記載されています。

ADBRY を使い始める前に、現在の身体の状態を医療従事者に伝えてください:

- · 眼に症状がある。
- ・寄生虫(蠕虫)感染がある。
- · ワクチンを接種する予定がある。ADBRYを使用している間は「生ワクチン」の接種はできません。
- ・ 妊娠しているまたはその予定がある。胎児に対する ADBRY の作用はわかっていません。
- ・授乳をしているかまたはその予定がある。ADBRYが母乳に移行するまたは乳児に影響があるかどうかはわかっていません。

現在使用しているすべての医薬品(処方薬および市販薬、ビタミン剤、ハーブのサプリメントなどを含む)を医療従事者に伝えてください。

ADBRY はどのように使うのですか?

- ・ ADBRY の準備、注射、保存、および使用済みプレフィルドシリンジの廃棄の方法については、 ADBRY に同梱されている「使用方法」をご覧ください。
- · ADBRY は、医療従事者の処方に従って使用してください。
- ・ 注射の量とタイミングは、医療従事者が指示します。
- ・ ADBRY は針ガードの付いた使い捨てプレフィルドシリンジ(150 mg)で提供されます。
- ・ 注射は皮膚の下に行います(皮下注射)。
- ・ あなたまたはあなたの介護者が注射できると医療従事者が判断した場合には、あなたまたはあなたの 介護者は正しい準備と注射の仕方についてトレーニングを受けなければなりません。**医療従事者が正 しい注射の方法を示すまでは、自分で注射をしない**でください。
- · 注射を忘れたら、気づいた時点でできるだけ早くその分を注射し、その後は通常の予定時刻に注射を 継続してください。
- · 処方された量よりも多い量を注射してしまった場合は、中毒予防センター(1-800-222-1222)に連絡 してください。
- · ADBRY と共に使用する薬が処方される場合があります。その薬も医療従事者の指示に従って正確に 使用してください。

ADBRY の副作用にはどんなものがありますか?

次のような重篤な副作用が起きる可能性があります:

- ・アレルギー反応(過敏症)、重度の反応(アナフィラキシー)が生じることもあります。次のような症状が生じた場合には、ADBRYの使用をやめ、医療従事者に連絡するか救急治療室を受診してください:
 - 息が苦しい

○ 気が遠くなる、めまい、ふらふらする(低血圧)

○ 顔、口、舌が腫れる

○ 皮疹

- 蕁麻疹
- 痒み
- · **眼の症状。**眼が痛い、見え方が変わるなどの眼の問題が生じたり悪化したりした場合は医療従事者に 伝えてください。

最もよくみられる副作用:

- ・眼と瞼の炎症(赤くなる、腫れ、痒み)
- · 注射部位反応
- ・ 一部の白血球の数が増える(好酸球増加症)

この他の副作用も現れることがあります。

副作用が生じた場合には医師に連絡してください。FDA(1-800-FDA-1088)に報告することもできま す。

安全、効果的に使用するための一般的な情報

医薬品は、患者向け情報リーフレットに書かれている目的以外の目的で処方されることがあります。 ADBRY は、処方された症状以外の目的では使用しないでください。他の人にあなたと同じ症状があっ ても、その人に ADBRY を渡さないでください。悪影響が生じる場合があります。医療専門家向けの情 報については、薬剤師または医療従事者にお尋ねください。

ADBRY には何が含まれていますか?

有効成分:トラロキヌマブ-ldrm

: 酢酸、ポリソルベート 80、酢酸ナトリウム三水和物、塩化ナトリウム、注射用水 添加物

製造業者: LEO Pharma A/S Industriparken 55, DK-2750 Ballerup, Denmark

販売業者: LEO Pharma Inc., Madison, NJ 07940, USA

米国でのライセンス: No. 2169

ADBRY™は LEO Pharma A/S の商標登録です

この患者向け情報は、米国食品医薬品局の承認を受けています。

発行: 2021年12月

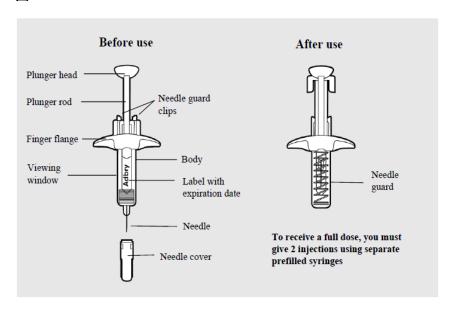
使用方法

ADBRY™ [ad'-bree] (トラロキヌマブ-ldrm) 皮下注

この使用方法では、ADBRY の注射の仕方について説明します。

ADBRY プレフィルドシリンジの使用を始める前、また追加の ADBRY を受け取るごとに使用上の注意をお読みください。情報が追加されている場合があります。この情報は、あなたの健康状態や治療に関する医療従事者の説明に代わるものではありません。

この使用方法を保存し、必要に応じて参照してください。

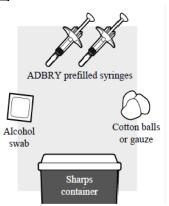

使い捨てプレフィルドシリンジ 1 本には ADBRY 150 mg が含まれます。ADBRY プレフィルドシリンジは使い捨てです。

使用前に知っておくべき重要な情報:

- あなたが初めて ADBRY を注射する前に、医療従事者がプレフィルドシリンジを使って準備と注射の仕方を説明します。
- 正しい注射の仕方を学ぶ前に自分や他の人に注射をしないでください。
- 正しい注射の仕方について質問があれば医療従事者に相談してください。
- 処方された量を完全に投与するために、注射は何本か使用する必要があります。
 - 初回用量は 600 mg なので、4 本注射する必要があります。身体の同一部位で異なる注射部位に注射をしてください。
 - **300 mg** を投与するには、**2 本**注射する必要があります。この場合も身体の同一部位で異なる 注射部位に注射をしてください。
- 毎回の注射ごとに、注射をする身体の部位をローテーションしてください。
- ADBRY プレフィルドシリンジには針ガードがついており、注射が終わると作動して針がカバーされます。
- ADBRY は皮下注射剤です(皮膚の下の脂肪層に直接注射します)。
- 注射直前まで針カバーを外さないでください。
- ADBRY プレフィルドシリンジを他人と共有したり再使用したりしないでください。
- 衣服の上から**注射しない**でください。

ADBRY プレフィルドシリンジの各部(図 A 参照):

図A



ADBRY を保存する

- ADBRY プレフィルドシリンジは、冷蔵庫に入れ 2~8°C (36~46°F) で保存します。
- ADBRY プレフィルドシリンジは、使用直前まで元のカートンに入れたまま、遮光して保存してください。
- ADBRY は、元のカートンに入れたまま室温 [25°C (77°F) 以下] で 14 日間まで保存できます。
 冷蔵庫から出して 14 日以上経過したシリンジは廃棄してください。
- ADBRY プレフィルドシリンジは冷凍しないでください。凍結した場合は使用しないでください。
- ADBRY プレフィルドシリンジは振らないでください。
- ADBRY プレフィルドシリンジは加熱しないでください。
- ADBRY プレフィルドシリンジは直射日光のあたる場所に置かないでください。
- ADBRY プレフィルドシリンジなどの医薬品は、子供の手の届かないところに置いてください。

ステップ1: ADBRY 注射をセットする

図B

1a:注射に必要なものを準備します。注射ごとに次のような準備が必要です(図 B 参照):

• テーブルのような清潔、平らで適切な明るさの作業台

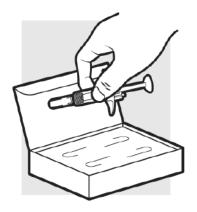
- · ADBRY プレフィルドシリンジ 2 本が入った ADBRY カートン 1 箱
- アルコールスワブ(カートンには入っていません)
- 清潔なガーゼパッドまたはコットンボール (カートンには入っていません)
- 鋭利物を入れられる安全な廃棄容器(カートンには入っていません)。この使用上の注意の最後にあるステップ5「ADBRYを廃棄する」をご覧ください。

図C

1b: ADBRY プレフィルドシリンジのカートンを冷蔵庫から取り出す

- カートンに記載された使用期限(EXP)を確認します(図 C 参照)。使用期限が切れたものは使用しないでください。
- ADBRY カートンのシールが剥がれていないことを確認します。シールが剥がれている ADBRY プレフィルドシリンジは**使用しないで**ください。

図 D

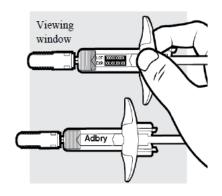


1c: ADBRY プレフィルドシリンジを室温に戻す(図 D 参照)

ADBRY カートンを平らな面に置き、30 分間そのままにしてシリンジの温度を $20\sim25^{\circ}$ C (68 \sim 77°F) の室温まで戻します。室温に戻すことで、注射時の不快感が軽減され、注射がしやすくなります。

- プレフィルドシリンジを電子レンジに入れたり、お湯をかけたり、直射日光に当てたりしないでください。
- シリンジは振らないでください。
- ステップ3で注射の準備ができるまで、針カバーは**外さないで**ください。
- 室温に戻したシリンジを再び冷蔵庫に**入れないで**ください。

図E

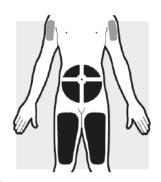


1d: ADBRY プレフィルドシリンジをカートンから取り出す

ADBRY プレフィルドシリンジの本体を持ってカートンから 1 本ずつ、2 本取り出します(図 E 参照)。

- 針ガードのクリップに**触らないで**ください。触ると安全装置(針ガード)がすぐに作動してしまいます。
- ステップ3で注射の準備ができるまで、プレフィルドシリンジの針ルカバーは**外さないで**くだ さい。

図F



1e: 2 本の ADBRY プレフィルドシリンジを確認する(図 F 参照)

- ラベルに ADBRY と表示されていることを確認します。
- シリンジに印刷されている使用期限を確認します。
- ウィンドウから薬液を確認し、透明かわずかに乳白色で、無色~微黄色であることを確認します。
- 次のような場合には使用せず、廃棄して、別のものを使用してください。
 - シリンジに印刷された使用期限が切れている。
 - 薬液に濁り、変色、微粒子がある。
 - 破損しているか落とされたあとがある。
- 薬液には小さな泡があることがありますが、問題はなく、何もする必要はありません。

ステップ2:注射をする部位を選んで準備する

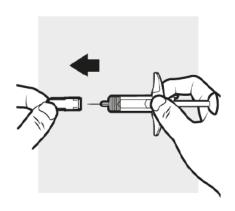
図 G

- Injection by caregiver only
- Self-injection or by caregiver

2a:注射する部位を選ぶ(図 G 参照)

- 次のいずれかの部位に注射することができます:
 - 腹部
 - 大腿部
 - 上腕。上腕に注射をする場合は介護者に注射してもらう必要があります。
- へその周囲 5 cm (2 インチ) 以内には注射しないでください。
- ◆ 次回の注射では別の部位に注射をします。2回続けて同じ部位にしないでください。
- 押すと痛い、傷がある、あざや瘢痕があるなどの場所には注射しないでください。

図H



2b: 手を洗い、注射する皮膚の準備をする

- 石鹸と水で手を洗います。
- 注射をする位置 2 か所をアルコールスワブで円形になぞって拭きます(図 H 参照)。
 - 拭いた場所を完全に乾かします。
 - 拭いた場所に、注射の前に息を吹きかけたり触ったりしないでください。

ステップ3: ADBRY を注射する

図Ⅰ

3a: 針カバーを外す

ADBRY プレフィルドシリンジの本体を片手で持ち、別の手で針カバーをまっすぐ引き抜き(図 I 参照)、カバーを鋭利物廃棄容器に廃棄します。

- **一度外したカバーを再度かぶせることはしないで**ください。
- 針カバーを外す際にプランジャロッドやプランジャヘッドを持たないでください。
- 針の先端に水滴がついていることもありますが、問題ありません。
- 針に**触らない**、針が他のものに**触れない**ように気を付けてください。なにかに触れたときには そのシリンジは廃棄し、別のシリンジを使用してください。

図J

3b: シリンジを挿入する

スワブで拭いた注射位置の皮膚を片手で静かにつまみます。もう片方の手で針を約 45 度の角度で皮膚に完全に差し込みます(図 J 参照)。

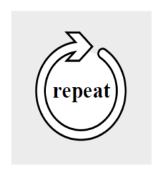
図K

3c:薬液を注入する

親指でプランジャヘッドを最後まで押し込みます(**図 K 参照**)。完全に押し込むとすべての薬液が注入されます。

図L

3d: 針を抜く


プランジャヘッドから親指を離します。針は自動的にシリンジの中に戻り、ロックされます(**図 L 参照**)。

- 乾いたコットンボールやガーゼパッドを注射位置に数秒あてます。こすってはいけません。 必要であれば注射位置に小さな絆創膏を貼ります。
- 注射位置から少量の血や液体が出ることがありますが、問題ありません。

使用した ADBRY プレフィルドシリンジは、鋭利物廃棄容器に廃棄します。ステップ 5「ADBRY を廃棄する」を参照してください。

ステップ4:2本目のシリンジで注射する

図M

処方された量をすべて注射するために、注射は何本か使用する必要があります。

- 初回用量の 600 mg を投与するには、4本の注射が必要です。
- 300 mg を投与するには、2本の注射が必要です。

新しい ADBRY プレフィルドシリンジを取り出し、ステップ 3 と 5 (図 M 参照)を繰り返して、処方された量をすべて注射します。

注:

身体の同じ部位で前の注射位置から3cm(1インチ)以上離れた位置に注射します。

ステップ5: ADBRY を廃棄する

図N

- 使用済みのプレフィルドシリンジはただちに、FDA認可の鋭利物廃棄容器に入れます(図 N参照)。家庭のごみ箱に入れないでください。
- FDA が認可した鋭利物廃棄容器がない場合には、家庭にある次のような容器を使います:
 - 丈夫なプラスチック製容器
 - 鋭利物が突き出てこないような穴の開かない蓋がついており、密閉できる容器
 - 使用中は安定して立てておくことができる容器
 - 水漏れしない容器
 - 容器に危険廃棄物の警告を正しく表示することができる容器
- 鋭利物廃棄容器がほぼいっぱいになったら、各地域で定められた鋭利物廃棄容器の捨て方に従って廃棄してください。使用済み針やシリンジの廃棄法については各州または各地域で定められた規則があります。鋭利物の安全な廃棄、およびお住まいの州における鋭利物廃棄の詳細については、FDA のサイトを参照してください。http://www.fda.gov/safesharpsdisposal
- 使用済み鋭利物廃棄容器はリサイクル**しないで**ください。

詳細はウェブサイト www.ADBRY.com を参照するか 1-844-692-3279 にお電話ください。ご不明点がある場合には、医療従事者にご 相談ください。

製造業者: LEO Pharma A/S Industriparken 55, DK-2750 Ballerup, Denmark

販売業者: LEO Pharma Inc., Madison, NJ 07940, USA

米国ライセンス番号: 2169

ADBRY™は LEO Pharma A/S の商標登録です。

© 2021 LEO Pharma Inc. 無断複写・複製・転載を禁止します。

この患者向け情報は、米国食品医薬品局の承認を受けています。

2021年12月承認

Page 1 of 31

Version:

FOR INTERNAL USE ONLY

Company Core Data Sheet (CCDS) Adtralza® SOLUTION FOR INJECTION 150 MG

The document has been approved electronically.

トラロキヌマブ (遺伝子組換え)

第1部(モジュール1) 申請書等行政情報及び添付文書に関する情報 1.7 同種同効品一覧表

レオ ファーマ株式会社

1 同種同効品一覧表

本剤及び本剤の同種同効品として、デュピクセント皮下注 300mg シリンジの情報を以下に示す。

販売名	アドトラーザ®皮下注 150 mgシリンジ	デュピクセント®皮下注 300mg シリンジ
一般名	トラロキヌマブ(遺伝子組換え)	デュピルマブ (遺伝子組換え)
会社名	レオ ファーマ株式会社	サノフィ株式会社
効能又は効果	既存治療で効果不十分なアトピー性 皮膚炎	既存治療で効果不十分なアトピー性皮膚 炎
添付文書改訂日	_	2020年11月改訂
備考	_	_

最新の添付文書を参照すること

*2020年11月改訂 (第3版) 2020年8月改訂 (第2版)

貯 法:凍結を避け、2~8℃にて保存

有効期間:36箇月

ヒト型抗ヒトIL-4/13受容体モノクローナル抗体

デュピルマブ (遺伝子組換え) 製剤

生物由来製品、劇薬、処方箋医薬品:注意-医師等の処方箋により使用すること

87449

日本標準商品分類番号

 承認番号
 23000AMX00015

 販売開始
 2018年4月

DUPIXENT®

D0396609

テュピクセント®皮下注300mgシリンジ 最適使用推進ガイドライン対象品目

DUPIXENT® S.C. Injection

SANOFI REGENERON

1. 警告

本剤の投与は、適応疾患の治療に精通している医師のもとで行うこと。

2. 禁忌 (次の患者には投与しないこと)

本剤の成分に対し過敏症の既往歴のある患者

3. 組成・性状

3.1 組成

	成 分	1 シリンジ (2 mL) 中の分量
有効成分	デュピルマブ(遺伝子組換え)注)	300mg
	L-ヒスチジン	5.4mg
	L-ヒスチジン塩酸塩水和物	1.0mg
	L-アルギニン塩酸塩	10.5mg
添加剤	酢酸ナトリウム水和物	2.6mg
	氷酢酸	0.3mg
	精製白糖	100mg
	ポリソルベート80	4 mg

注)本剤は遺伝子組換え技術によりチャイニーズハムスター卵巣細胞を用いて製造される。

3.2 製剤の性状

性状・剤形	無色〜微黄色の澄明又はわずかに乳白光を呈する液 (注射剤)
pН	5.6~6.2
浸透圧比	約1.0 (生理食塩液に対する比)

4. 効能又は効果

- ○既存治療で効果不十分なアトピー性皮膚炎
- ○気管支喘息 (既存治療によっても喘息症状をコントロール できない重症又は難治の患者に限る)
- ○鼻茸を伴う慢性副鼻腔炎 (既存治療で効果不十分な患者に限る)

5. 効能又は効果に関連する注意

〈アトピー性皮膚炎〉

- 5.1 ステロイド外用剤やタクロリムス外用剤等の抗炎症外用剤 による適切な治療を一定期間施行しても、十分な効果が得ら れず、強い炎症を伴う皮疹が広範囲に及ぶ患者に用いること。 [17.1.1、17.1.2 参照]
- 5.2 原則として、本剤投与時にはアトピー性皮膚炎の病変部位 の状態に応じて抗炎症外用剤を併用すること。
- 5.3 本剤投与時も保湿外用剤を継続使用すること。

〈気管支喘息〉

- 5.4 最新のガイドライン等を参考に、中用量又は高用量の吸入 ステロイド薬とその他の長期管理薬を併用しても、全身性ス テロイド薬の投与等が必要な喘息増悪をきたす患者に本剤を 追加して投与すること。
- 5.5 本剤はIL-4及びIL-13シグナル伝達を阻害することにより、 喘息の病態に関与する2型炎症反応を抑制することから、臨 床試験で認められた本剤投与前の2型炎症に関連するバイオ

マーカー(血中好酸球数、FeNO、IgE等)の値と有効性の関係を十分に理解し、患者の当該バイオマーカーの値を考慮した上で、適応患者の選択を行うこと。[17.1.3 参照]

5.6 本剤は既に起きている気管支喘息の発作や症状を速やかに 軽減する薬剤ではないので、急性の発作に対しては使用しな いこと。

〈鼻茸を伴う慢性副鼻腔炎〉

5.7 本剤は全身性ステロイド薬、手術等ではコントロールが不 十分な患者に用いること。

6. 用法及び用量

〈アトピー性皮膚炎〉

通常、成人にはデュピルマブ(遺伝子組換え)として初回に 600mgを皮下投与し、その後は1回300mgを2週間隔で皮下投与する。

〈気管支喘息〉

通常、成人及び12歳以上の小児にはデュピルマブ(遺伝子組換え)として初回に600mgを皮下投与し、その後は1回300mgを2週間隔で皮下投与する。

〈鼻茸を伴う慢性副鼻腔炎〉

通常、成人にはデュピルマブ(遺伝子組換え)として1回300mgを2週間隔で皮下投与する。なお、症状安定後には、1回300mgを4週間隔で皮下投与できる。

7. 用法及び用量に関連する注意

〈アトピー性皮膚炎〉

7.1 本剤による治療反応は、通常投与開始から16週までには得られる。16週までに治療反応が得られない場合は、投与中止を考慮すること。

8. 重要な基本的注意

〈効能共通〉

- 8.1 本剤の投与によって合併する他のアレルギー性疾患の症状が変化する可能性があり、当該アレルギー性疾患に対する適切な治療を怠った場合、症状が急激に悪化し、喘息等では死亡に至るおそれもある。本剤の投与間隔変更後及び投与中止後の疾患管理も含めて、本剤投与中から、合併するアレルギー性疾患を担当する医師と適切に連携すること。患者に対して、医師の指示なく、それらの疾患に対する治療内容を変更しないよう指導すること。
- **8.2** ショック、アナフィラキシーがあらわれることがあるので、 観察を十分に行い、適切に対処できるようにしておくこと。 [11.1.1 参照]
- 8.3 長期ステロイド療法を受けている患者において、本剤投与 開始後にステロイド薬を急に中止しないこと。ステロイド薬 の減量が必要な場合には、医師の管理下で徐々に行うこと。
- 8.4 本剤の臨床試験において、好酸球性肺炎及び好酸球性多発血管炎性肉芽腫症の発現が認められている。本剤投与中は、 好酸球数の推移、並びに血管炎性皮疹、肺症状の悪化、心臓 合併症及びニューロパチー等に注意すること。
- 8.5 本剤はIL-4及びIL-13の阻害作用により2型免疫応答を抑制 する。2型免疫応答は寄生虫感染に対する生体防御機能に関

与している可能性がある。患者が本剤投与中に寄生虫感染を起こし、抗寄生虫薬による治療が無効な場合には、寄生虫感染が治癒するまで本剤の投与を一時中止すること。[9.1.1 参照]

- 8.6 本剤投与中の生ワクチンの接種は、安全性が確認されていないので避けること。
- 8.7 本剤の投与開始にあたっては、医療施設において、必ず医師によるか、医師の直接の監督のもとで投与を行うこと。自己投与の適用については、医師がその妥当性を慎重に検討し、十分な教育訓練を実施した後、本剤投与による危険性と対処法について患者が理解し、患者自ら確実に投与できることを確認した上で、医師の管理指導のもとで実施すること。また、適用後、本剤による副作用が疑われる場合や自己投与の継続が困難な状況となる可能性がある場合には、直ちに自己投与を中止させ、医師の管理下で慎重に観察するなど適切な処置を行うこと。また、本剤投与後に副作用の発現が疑われる場合は、医療機関へ連絡するよう患者に指導を行うこと。使用済みの注射器を再使用しないよう患者に注意を促し、すべての器具の安全な廃棄方法に関する指導の徹底を行うとともに、使用済みの注射器を廃棄する容器を提供すること。

〈アトピー性皮膚炎〉

8.8 本剤が疾病を完治させる薬剤でなく、本剤投与中も保湿外 用剤等を併用する必要があることを患者に対して説明し、患 者が理解したことを確認したうえで投与すること。

〈気管支喘息〉

8.9 本剤の投与開始後に喘息症状がコントロール不良であったり、悪化した場合には、医師の診療を受けるよう患者に指導すること。

9. 特定の背景を有する患者に関する注意

- 9.1 合併症・既往歴等のある患者
- 9.1.1 寄生虫感染患者

本剤を投与する前に寄生虫感染の治療を行うこと。[8.5 参照]

9.5 妊婦

妊婦又は妊娠している可能性のある女性には、治療上の有益性が危険性を上回ると判断される場合にのみ投与すること。本剤はヒトIgG4モノクローナル抗体であり、ヒトIgGは胎盤関門を通過することが知られている。また、本剤のサル相同抗体を妊娠カニクイザルへ投与した場合、胎盤を通過して胎児に移行することが確認されている。

9.6 授乳婦

治療上の有益性及び母乳栄養の有益性を考慮し、授乳の継続 又は中止を検討すること。本剤のヒト乳汁への移行は不明で あるが、本剤はヒトIgG4モノクローナル抗体であり、ヒトIgG は乳汁中に移行することが知られている。

9.7 小児等

〈アトピー性皮膚炎〉

小児等を対象とした臨床試験は実施していない。

〈気管支喘息〉

12歳未満の小児等を対象とした臨床試験は実施していない。

〈鼻茸を伴う慢性副鼻腔炎〉

小児等を対象とした臨床試験は実施していない。

9.8 高齢者

一般的に生理機能(免疫機能等)が低下している。

11. 副作用

次の副作用があらわれることがあるので、観察を十分に行い、 異常が認められた場合には投与を中止するなど適切な処置を 行うこと。

11.1 重大な副作用

*11.1.1 重篤な過敏症

アナフィラキシー (0.1%未満) が報告されている。血圧低下、 呼吸困難、意識消失、めまい、嘔気、嘔吐、そう痒感、潮紅、 血管性浮腫等があらわれる可能性がある。[8.2 参照]

11.2 その他の副作用

	5%以上	5 %未満	頻度不明
感染症およ び寄生虫症		結膜炎、細菌性結膜 炎、口腔ヘルペス、 単純ヘルペス	
眼 障 害		アレルギー性結膜炎、 眼瞼炎、眼乾燥	眼そう痒症
血液および リンパ系障 害		好酸球増加症	
注射部位	注射部位紅斑	注射部位反応、注射 部位そう痒感、注射 部位浮腫	
神経系障害		頭痛	
その他		発熱	血清病、血清病 様反応、関節痛

14. 適用上の注意

14.1 薬剤投与前の注意

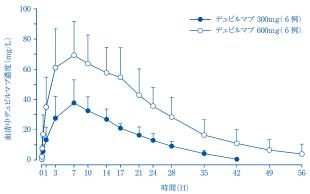
- 14.1.1 投与前に45分以上かけて室温に戻しておくことが望ましい。
- **14.1.2** 溶液が白濁したり、着色したり、微粒子がみられた場合及びシリンジに損傷がみられた場合には本剤は使用しないこと。
- *14.1.3 投与直前まで本剤のキャップを外さないこと。キャップ を外したら直ちに投与すること。

14.2 薬剤投与時の注意

- 14.2.1 皮下注射は腹部、大腿部又は上腕部に行うこと。腹部へ投与する場合は、へその周り5cmを外して投与すること。注射部位反応が報告されているので、同一箇所へ繰り返し注射することは避けること。
- 14.2.2 正常な皮膚の部位に注射すること。皮膚が敏感な部位、 皮膚に損傷、打撲や傷のある部位、アトピー性皮膚炎の強い 炎症を伴う部位には注射しないこと。
- 14.2.3 他の薬剤と混合しないこと。
- 14.2.4 本剤は1回使用の製剤であり、再使用しないこと。

15. その他の注意

15.1 臨床使用に基づく情報


デュピルマブ300mg隔週投与の52週間投与後のアトピー性皮膚炎患者、気管支喘息患者又は鼻茸を伴う慢性副鼻腔炎患者の約5%が抗薬物抗体(ADA)陽性反応を示し、約2%が持続するADA陽性反応を示し、約2%が中和抗体陽性であった。プラセボ群では約4%がADA陽性反応を示し、約2%が持続するADA陽性反応を示し、約1%が中和抗体陽性であった。高抗体価(10,000超)のADAの発現例(発現頻度0.6%未満)では、本剤の薬物動態及び有効性への影響が示唆された。加えて、高抗体価のADAに関連した血清病及び血清病様反応が認められた。

16. 薬物動態

16.1 血中濃度

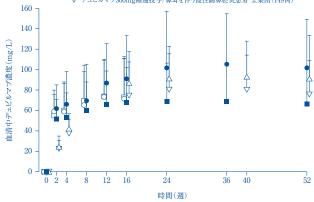
16.1.1 単回投与

日本人健康成人に本剤300mg又は600mgを単回皮下投与したときのデュピルマブの血清中濃度推移及び薬物動態パラメータは以下のとおりであった¹⁾。

本剤300mg又は600mgを単回皮下投与したときの血清中濃度推移

本剤300mg又は600mgを単回皮下投与したときの薬物動態パラメータ

投与量 (mg)	$C_{max} \ (mg/L)$	t _{max} (day)	$\begin{array}{c} AUC_{last} \\ (mg \cdot day/L) \end{array}$	t _{1/2z} 詳2) (day)
300 (6例)	38.3±15.3	7.01 (6.99-10.00)	700±234	5.13±1.42
600 (6例)	70.1±24.1	7.00 (3.00-7.02)	1780±699	8.77±5.18


(平均值±標準偏差)

- 注1) 中央値(最小値-最大値)
- 注2) 血清中薬物濃度の経時的推移を片対数プロットしたときの最終消失相の回帰直線の傾きから算出

16.1.2 反復投与

アトピー性皮膚炎患者を対象とし本剤(初回600mg、以降300mg隔週投与)を16週間反復皮下投与したとき、並びに気管支喘息患者では本剤(初回600mg、以降300mg隔週投与)を、鼻茸を伴う慢性副鼻腔炎患者では本剤(300mg隔週投与)を52週間反復皮下投与したときの日本人部分集団と全患者集団でデュピルマブの曝露量は以下に示すとおりであった^{2.5.6}。

- デュビルマブ300mg隔週投与/アトビー性皮膚炎患者 日本人集団(36例)
- □ デュピルマブ300mg隔週投与/アトピー性皮膚炎患者 全集団(220例)
- デュビルマブ300mg隔週投与/気管支喘息患者 日本人集団(38例) ■ デュビルマブ300mg隔週投与/気管支喘息患者 全集団(597例)
- アユビルマブ300mg隔週投与/鼻茸を伴う慢性副鼻腔炎患者 日本人集団(16例)
- □ プラビルマブ300mg隔週投与/鼻茸を伴う慢性副鼻腔炎患者 全集団(149例)

16週間又は52週間反復皮下投与したときの血清中濃度推移

16.1.3 母集団薬物動態解析

本剤は主に血管内のコンパートメントに分布し、母集団薬物動態解析により推定される分布容積は約4.6Lであった。 母集団薬物動態解析により、定常状態時の最終投与から本剤の血清中濃度が定量下限未満に低下する時間の中央値は、300mg隔週投与で10~12週間と推定された。

16.2 吸収

母集団薬物動態解析により推定される皮下投与時の絶対バイオアベイラビリティは、アトピー性皮膚炎、気管支喘息及び鼻茸を伴う慢性副鼻腔炎患者の間で類似しており、61~64%であった。

17. 臨床成績

17.1 有効性及び安全性に関する試験

〈アトピー性皮膚炎〉

17.1.1 国際共同第Ⅲ相併用療法試験

日本の分類でストロングクラス以上に相当するステロイド外用薬で効果不十分な、18歳以上の中等症から重症 $^{(1)}$ のアトピー性皮膚炎(AD)患者740例(日本人患者117例を含む)を対象に、ステロイド外用剤に上乗せして本剤300mgを2週に1回(Q2W)又は毎週1回(QW)、若しくはプラセボを52週間投与した。本剤群では投与1日目に初回用量として本剤600mgの投与を行った $^{(12)}$ 。ベースラインの医師による全般評価(IGA)スコアは3.5±0.5、Eczema Area and Severity Index(EASI)スコアは32.5±12.9であった。主要有効性評価項目とした投与後16週時点のIGA \leq 1 達成率 $^{(13)}$ 3 及びEASI-75達成率 $^{(14)}$ において、本剤群はプラセボ群に比べ統計的に有意な(P<0.0001)改善効果を示した $^{(3)}$ 。

- 注1) IGAスコアが3以上、EASIスコアが16以上、及び体表面 積に占めるAD病変の割合が10%以上、そう痒NRSスコ アの日内最大値の週平均が3点以上
- 注2) 投与期間中は保湿剤の併用を必須とし、経口シクロスポリン、経口ステロイド等の全身療法及び光線療法の併用を禁止した
- 注3) IGAスコアが 0 (消失) 又は 1 (ほぼ消失) かつベース ラインから 2 点以上減少 (改善) を達成した患者の割合
- 注4) EASIスコアがベースラインから75%以上改善した患者の 割合

アトピー性皮膚炎・国際共同第Ⅲ相併用療法試験の成績

アトビー性皮膚炎・国際共同第Ⅲ相併用療法試験の成績				
	全体集団	Q2W群	プラセボ群	プラセボ群との差 [95%信頼区間] p値 ^{注5),注6)}
	IGA≦ 1 達成率	38.7 (41/106)	12.4 (39/315)	26.3 [16.3, 36.3] <0.0001
16週	EASI-75達成率	68.9 (73/106)	23.2 (73/315)	45.7 [35.7, 55.7] <0.0001
	そう痒NRS≥ 4 点改善達成率 ^{注7)}	58.8 (60/102)	19.7 (59/299)	39.1 [28.5, 49.7]
	IGA≤1達成率	34.9 (37/106)	12.4 (39/264)	22.5 [12.8, 32.3]
52週	EASI-75達成率	62.3 (66/106)	21.9 (69/315)	40.4 [30.1, 50.7]
	そう痒NRS≥ 4 点改善達成率 ^{注7)}	48.0 (49/102)	13.4 (40/299)	34.7 [24.2, 45.1]
日	本人部分集団	Q2W群	プラセボ群	プラセボ群との差 [95%信頼区間]
	IGA≤1達成率	18.8 (3/16)	3.7 (2/54)	15.0 [-13.2, 41.7]
16週	EASI-75達成率	62.5 (10/16)	22.2 (12/54)	40.3 [12.5, 65.0]
	そう痒NRS≥ 4 点改善達成率 ^{注7)}	40.0 (6/15)	18.9 (10/53)	21.1 [-7.82, 48.5]
	IGA≤1達成率	31.3 (5/16)	11.1 (6/54)	20.1 [-7.78, 46.5]
52週	EASI-75達成率	50.0 (8/16)	24.1 (13/54)	25.9 [-2.15, 52.3]
	そう痒NRS≥ 4 点改善達成率 ^{注7)}	33.3 (5/15)	17.0 (9/53)	16.4 [-12.5, 44.0]

承認用法・用量である300mg Q2Wのみ提示

% (例数)

- 中止例又は救済治療例はNon-responderとした
- 注5) 地域及びベースライン時の重症度(IGAスコア 3 又は 4)を層と したCochran-Mantel-Haenszel検定(主要有効性評価項目につい てのみ表中に表示)
- 注6) プラセボ群と各本剤群の比較における有意水準をそれぞれ両側 2.5%と設定することで、検定の多重性を調整
- 注7) そう痒NRSスコアの日内最大値の週平均がベースラインから4点 以上改善した患者の割合 (スコアの最大は10)

本剤Q2W投与群での副作用は33.6% (37/110例) に、プラセボ

群の副作用は28.6% (90/315例) に認められ、主な副作用は本 剤Q2W群で注射部位反応10.9%、アレルギー性結膜炎4.5%、眼 験炎3.6%、アトピー性皮膚炎3.6%、頭痛3.6%であった。 [5.1 参照]

17.1.2 国際共同第Ⅲ相単独療法試験

日本の分類でストロングクラス以上に相当するステロイド外用薬で効果不十分な、又は安全性上の理由等 $^{i * 8)}$ からステロイド外用薬が推奨されない、 $18歳以上の中等症から重症<math>^{i * 9)}$ のAD 患者671例(日本人患者106例を含む)を対象に、本剤300mgをQ2W又はQW、若しくはプラセボを16週間投与した $^{i * 10)}$ 。本剤群では投与1日目に初回用量として本剤600mgの投与を行った。ベースラインのIGAスコアは 3.5 ± 0.5 、EASIスコアは 33.6 ± 14.0 であった。主要有効性評価項目とした投与後16週時点のIGA ≤ 1 達成率 $^{i * 11)}$ 及 $^{i * 12}$ 及 $^{i * 13}$ 及 $^{i * 14}$ において、本剤群はプラセボ群に比べ統計的に有意な(P<0.0001)改善効果を示した 4 。

- 注8) ステロイド外用薬治療により副作用(治療不耐容、過敏 症反応、顕著な皮膚萎縮、全身性の影響など)を認めた 患者
- 注9) IGAスコアが 3 以上、EASIスコアが16以上、及び体表面 積に占めるAD病変の割合が10%以上、そう痒NRSスコ アの日内最大値の週平均が 3 点以上
- 注10) 投与期間中は保湿剤の併用を必須とし、経口シクロスポリン、経口ステロイド等の全身療法及び光線療法の 併用を禁止した
- 注11) IGAスコアが 0 (消失) 又は 1 (ほぼ消失) かつベースラインから 2 点以上減少(改善)を達成した患者の割合
- 注12) EASIスコアがベースラインから75%以上改善した患者 の割合

アトピー性皮膚炎・国際共同第Ⅲ相単独療法試験の成績

全体集団	Q2W群	プラセボ群	プラセボ群との差 [95%信頼区間] p値 ^{注13), 注14)}	
IGA≤1達成率	37.9 (85/224)	10.3 (23/224)	27.7 [20.2, 35.2] <0.0001	
EASI-75達成率	51.3 (115/224)	14.7 (33/224)	36.6 [28.6, 44.6] <0.0001	
そう 痒NRS≥ 4 点 改 善達成率 ^{注15)}	40.8 (87/213)	12.3 (26/212)	28.6 [20.7, 36.5]	
日本人部分集団	Q2W群	プラセボ群	プラセボ群との差 [95%信頼区間]	
IGA≤1達成率	19.4 (7/36)	2.9 (1/35)	16.6 [-6.36, 38.8]	
EASI-75達成率	25.0 (9/36)	0.0 (0/35)	25.0 [2.16, 46.5]	
そう 痒NRS≥ 4 点 改 善達成率 ^{注15)}	25.0 (8/32)	0.0 (0/34)	25.0 [1.35, 47.6]	

承認用法・用量である300mg Q2Wのみ提示

% (例数)

中止例又は救済治療例はNon-responderとした

- 注13) 地域及びベースライン時の重症度(IGAスコア3又は4)を層としたCochran-Mantel-Haenszel検定(主要有効性評価項目についてのみ)
- 注14) プラセボ群と各本剤群の比較における有意水準をそれぞれ両側 2.5%と設定することで、検定の多重性を調整
- 注15) そう痒NRSスコアの日内最大値の週平均がベースラインから 4 点以上改善した患者の割合 (スコアの最大は10)

本剤Q2W投与群での副作用は28.8%(66/229例)に、プラセボ 群に18.0%(40/222例)に認められ、主な副作用は本剤Q2W群 に注射部位反応7.4%、アトピー性皮膚炎3.5%、頭痛3.1%であっ た。[5.1 参照]

〈気管支喘息〉

17.1.3 国際共同第Ⅲ相試験

中用量又は高用量の吸入ステロイド薬及び他の長期管理薬で

治療しても喘息増悪をきたす12歳以上の気管支喘息患者1902 例^{達16)} (日本人患者114例を含む)を対象に、既存治療の併用下で、本剤200mg^{達17)}又は300mg^{達17)}、もしくはそれぞれと対応するプラセボを52週間Q2W投与した。主要有効性評価項目とした喘息増悪(全身ステロイド薬による3日間以上の治療、又は全身ステロイド薬による治療が必要な喘息による入院若しくは救急外来の受診)の発生率^{達18)}及び12週時点のFEV₁の変化量^{注19)}で、本剤300mg群はプラセボ群と比べて統計的に有意な効果を示した⁵⁾。

- 注16) ベースライン時の血中好酸球数が1,500/ μ L超の患者は 除外した
- 注17) 投与開始時には初回用量としてそれぞれ400mg又は 600mgを投与
- 注18) 52週間の治験薬投与期間中における重度喘息増悪の年 換算発生率
- 注19) 投与開始後12週時点における気管支拡張薬投与前の FEV₁のベースラインからの変化量

投与52週後までの年間重度喘息増悪発生率 (ITT集団)

汉寺52週 後よくの中间里及刪応相志光王平(H11条団)					
全体集団	300mg群 (633例)	プラセボ群 (321例)			
総観察期間 (人・年)	612.5	313.2			
喘息増悪発生件数(回)	343	342			
年間増悪発生率 (回/人・年)	0.560	1.092			
年間増悪発生率 ^{注20)} (回/人・年) [95%信頼区間]	0.524 [0.450, 0.611]	0.970 [0.810, 1.160]			
プラセボ群との比 ^{注20)} [95%信頼区間] p値 ^{注20)}	0.540 [0.430, 0.680] <0.0001				
日本人部分集団	300mg群 (41例)	プラセボ群 (17例)			
総観察期間 (人・年)	40.2	17.0			
喘息増悪発生件数(回)	17	21			
年間増悪発生率 (回/人・年)	0.423	1.238			
年間増悪発生率 ^{注20)} (回/人・年) [95%信頼区間]	0.309 [0.139, 0.687]	1,232 [0.502, 3.025]			
プラセボ群との比 ^{注20)} [95%信頼区間]	0.251 [0.072, 0.874]				

注20) 投与群、年齢、地域、ベースライン時の血中好酸球数区分、ベースライン時のICS用量、1年以内の重度喘息増悪の発生回数を説明変数とし、観察期間の対数変換値をオフセット変数とした負の二項回帰モデル

投与12週後の気管支拡張薬投与前FEV₁(L) の変化量(ITT集団)

300mg群	プラセボ群
1.78±0.60 (633)	1.75±0.57 (321)
2.09±0.70 (610)	1.93±0.68 (313)
0.31±0.43 (610)	0.18±0.39 (313)
0.13 [0.08, 0.18] <0.0001	
300mg群	プラセボ群
1.75±0.64 (41)	1.76±0.43 (17)
2.02±0.63 (41)	1.88±0.55 (17)
0.28±0.43 (41)	0.12±0.32 (17)
0.17 [-0.04, 0.37]	
	1.78±0.60 (633) 2.09±0.70 (610) 0.31±0.43 (610) 0.13 [0.08, 0.18] <0.0001 300mg# 1.75±0.64 (41) 2.02±0.63 (41) 0.28±0.43 (41) 0.17

平均值±標準偏差(例数)

注21) 投与群、年齢、性別、身長、地域、ベースライン時の血中好酸 球数区分、ベースライン時のICS用量、評価時点、投与群と評価 時点の交互作用、ベースライン値、ベースライン値と評価時点 の交互作用を説明変数としたMMRM法、相関構造にはunstructured を仮定した。

バイオマーカーの区分別の投与52週後までの年間重度喘息増悪発生率 (ITT集団)

マー	区分 (ベースライン時)	重度喘息増悪の年間発生率		プラセボ群との	
カー		300mg群	プラセボ群	比 ^{注22)} [95%信頼区間]	
	150/μL未満	0.805 (181)	0.779 (83)	1.149 [0.747, 1.767]	
血中好	150/μL以上 300/μL未満	0.475 (175)	0.845 (95)	0.557 [0.350, 0.888]	
酸球数	300/μL以上 500/μL未満	0.496 (136)	1.393 (68)	0.366 [0.225, 0.596]	
	500/µL以上	0.413 (141)	1.486 (74)	0.287 [0.184, 0.449]	
	25ppb未満	0.639 (317)	0.863 (144)	0.792 [0.572, 1.098]	
FeNO	25ppb以上 50ppb未満	0.489 (186)	1.183 (97)	0.442 [0.282, 0.693]	
	50ppb以上	0.485 (124)	1.444 (75)	0.305 [0.188, 0.494]	
	61IU/mL未満	0.681 (149)	0.792 (83)	0.817 [0.511, 1.307]	
総Igl	61IU/mL以上 167IU/mL未満	0.535 (156)	1.344 (74)	0.420 [0.275, 0.641]	
総IgE濃度	167IU/mL以上 449IU/mL未満	0.616 (164)	1.008 (84)	0.685 [0.424, 1.106]	
	449IU/mL以上	0.402 (157)	1.291 (77)	0.375 [0.232, 0.606]	

回/人・年 (例数)

注22) 投与群、年齢、地域、ベースライン時の血中好酸球数区分、ベースライン時のICS用量、1年以内の重度喘息増悪の発生回数を説明変数とし、観察期間の対数変換値をオフセット変数とした負の二項回帰モデル

バイオマーカーの区分別の投与12週後の気管支拡張薬投与前FEV₁(L)の変化量(ITT集団)

の変化重(111集団)					
マー	区分 (ベースライン時)	ベースライン	プラセボ群との		
カー		300mg群	プラセボ群	差 ^{注23)} [95%信頼区間]	
	150/μL未満	0.19±0.37 (176)	0.11±0.41 (83)	0.09 [-0.01, 0.18]	
血中好	150/μL以上 300/μL未満	0.22±0.45 (168)	0.22±0.36 (90)	-0.00 [-0.10, 0.10]	
好酸球数	300/μL以上 500/μL未満	0.36±0.39 (131)	0.17±0.39 (66)	0.18 [0.07, 0.30]	
	500/µL以上	0.50±0.45 (135)	0.22±0.41 (73)	0.30 [0.19, 0.42]	
	25ppb未満	0.20±0.37 (309)	0.17±0.36 (141)	0.03 [-0.04, 0.10]	
FeNO	25ppb以上 50ppb未満	0.32±0.40 (182)	0.18±0.37 (94)	0.12 [0.03, 0.21]	
	50ppb以上	0.59±0.51 (113)	0.20±0.48 (73)	0.39 [0.26, 0.52]	
	61IU/mL未満	0.21±0.36 (143)	0.19±0.39 (78)	0.05 [-0.04, 0.14]	
総IgE濃度	61IU/mL以上 167IU/mL未満	0.28±0.38 (151)	0.23±0.40 (73)	0.05 [-0.05, 0.15]	
	167IU/mL以上 449IU/mL未満	0.34±0.47 (156)	0.08±0.31 (83)	0.26 [0.15, 0.36]	
	449IU/mL以上	0.39±0.49 (154)	0.24±0.46 (76)	0.13 [0.01, 0.25]	

平均値±標準偏差(例数)

注23) 投与群、年齢、性別、身長、地域、ベースライン時の血中好酸 球数区分、ベースライン時のICS用量、評価時点、投与群と評価 時点の交互作用、ベースライン時のFEV₁値、ベースラインと評 価時点の交互作用を説明変数としたMMRM法、相関構造には unstructuredを仮定した。

本剤300mg投与群での副作用は22.6%(143/632例)に、プラセボ群では14.0%(45/321例)に認められ、主な副作用は本剤300mgに注射部位紅斑14.9%、注射部位浮腫5.9%、注射部位そう痒症4.7%であった。[5.5 参照]

〈鼻茸を伴う慢性副鼻腔炎〉

17.1.4 国際共同第Ⅲ相試験

手術や全身ステロイド薬(推奨されない場合を除く)によっても効果不十分 $^{i24)}$ な、18歳以上の鼻茸を伴う慢性副鼻腔炎患者448例(日本人患者49例を含む)を対象に、鼻噴霧用ステロイド薬に追加して本剤300mgを52週間 2週に1回(Q2W)(Q2W群)又は最初の24週間はQ2Wその後52週まで4週に1回(Q4W)投与(Q2W-Q4W群)、若しくはプラセボを52週間投与した。 3 つの主要有効性評価項目である投与後24週時点の鼻茸スコア、鼻閉重症度スコア、Lund-Mackay(LMK)スコアのベースラインからの変化量において、本剤併合群(Q2W群及びQ2W-Q4W群)はプラセボ群に比べ統計的に有意な改善を示した(全てp<0.0001) 6 。

ベースラインからの変化量の調整平均及び群間差(ITT集団)

	評価	項目	本剤併合群 ^{注29)} (295例)	プラセボ群 (153例)
		投与前 ^{注26)}	6.18	5.96
	鼻茸スコア ^{注25)}	変化量 ^{注27)}	-1.71	0.10
		プラセボ群との差 [95%信頼区間] ^{注28)}	-1.80 [-2.10, -1.51]	
		投与前 ^{注26)}	2.46	2.38
÷ль	鼻閉重症度 ^{注25)}	変化量 ^{注27)}	-1.25	-0.38
投 与 後 24		プラセボ群との差 [95%信頼区間] ^{注28)}	-0.87 [-1.03, -0.71]	
週	LMKスコア ^{注25)}	投与前 ^{注26)}	18.12	17.65
週時点		変化量注27)	-5.21	-0.09
		プラセボ群との差 [95%信頼区間] ^{注28)}	-5.13 [-5.80, -4.46]	
		投与前 ^{注26)}	13.53	13.78
	UPSIT ^{注25)}	変化量 ^{注27)}	9.71	-0.81
	01 311	プラセボ群との差 [95%信頼区間] ^{注28)}	10.52 [8.98, 12.07]	

		[5570][[78422.14]] [0.50, 12.07]			
評価項目		本剤 Q2W群 (150例)	本剤 Q2W-Q4W群 (145例)	プラセ ボ群 (153例)	
		投与前注26)	6.07	6.29	5.96
	鼻茸スコア ^{注25)}	変化量注27)	-2.24	-2.06	0.15
		プラセボ群 との差 [95%信頼区 間] ^{注28)}	-2.40 [-2.77, -2.02]	-2.21 [-2.59, -1.83]	
		投与前注26)	2.48	2.44	2.38
		変化量注27)	-1.35	-1.48	-0.37
投与後52週時点	鼻閉重症度 ^{注25)}	プラセボ群 との差 [95%信頼区 間] ^{注28)}	-0.98 [-1.17, -0.79]	-1.10 [-1.29, -0.91]	
週		投与前注26)	18.42	17.81	17.65
呼点		変化量 ^{注27)}	-6.83	-5.60	0.11
	LMKスコア ^{注25)}	プラセボ群 との差 [95%信頼区 間] ^{注28)}	-6.94 [-7.87, -6.01]	-5.71 [-6.64, -4.77]	
		投与前注26)	13.46	13.60	13.78
		変化量注27)	9.53	9.99	-0.77
	UPSIT ^{#25)}	プラセボ群 との差 [95%信頼区 間] ^{注28)}	10.30 [8.50, 12.10]	10.76 [8.95, 12.57]	

注24) 両側鼻茸スコアが5以上(各鼻孔スコアは2以上)、鼻閉重症度 スコアが2以上で週平均が1を超える、嗅覚障害や鼻漏(前鼻 漏/後鼻漏)といったその他の症状を有する患者

注25) 鼻茸スコア(0-8点); 鼻閉重症度(0-3点); LMK(sinus opacification on the Lund-MacKay total CT)スコア(0-24点); UPSIT(University of Pennsylvania smell identification test) (0-40点) 鼻茸スコア、鼻閉重症度スコア、LMKスコアはスコアの減少が、UPSITはスコアの増加が改善を意味する。

注26) 平均值

注27) 調整平均

- 注28) WOCF法及び多重代入法を合わせた混成手法により、投与群、喘息の状態、手術歴及び地域を要因とし、ベースライン値を共変量とした共分散分析で解析した。
- 注29) Q2W群とQ2W-Q4W群の併合

本剤Q2W投与群での副作用は24.2%(36/149例)、Q2W-Q4W群では27.7%(41/148例)、プラセボ群では22.0%(33/150例)に認められ、本剤Q2W投与群及びQ2W-Q4W群の主な副作用は注射部位紅斑7.4%及び6.8%、及び注射部位反応3.4%及び5.4%であった。

18. 薬効薬理

18.1 作用機序

デュピルマブは、ヒトインターロイキン-4及びインターロイキン-13受容体の複合体が共有しているIL-4受容体 α サブユニットに特異的に結合することにより、IL-4及びIL-13の両シグナル伝達を阻害する遺伝子組換えヒトIgG4モノクローナル抗体である。IL-4及びIL-13はアトピー性皮膚炎、気管支喘息及び鼻茸を伴う慢性副鼻腔炎の病態において重要な役割を担う Type 2サイトカインである 7 。

18.2 IL-4及びIL-13シグナル伝達に対する作用

デュピルマブは高親和性にヒトIL-4Rαに結合し、IL-4及び IL-13を介したシグナル伝達を*in vitro*及び*in vivo*で抑制した⁷⁾。

18.3 2型炎症モデルにおける炎症抑制作用

内因性マウスIL-4及びIL-4R α の外部領域の両方を、相当するヒト配列で置換した遺伝子改変マウスを用いたチリダニアレルゲン誘発性Type 2炎症モデルにおいて、デュピルマブは、血清中IgE濃度、アレルゲン特異的IgGI濃度等を低下させるとともに、肺好酸球浸潤、杯細胞化生並びに肺機能障害を抑制した 7 。

19. 有効成分に関する理化学的知見

一般的名称:デュピルマブ(遺伝子組換え) Dupilumab (Genetical Recombination)

本 質: デュピルマブは、ヒトインターロイキン4受容体の α サブユニットに対する遺伝子組換えヒト IgG4モノクローナル抗体であり、H鎖233番目のアミノ酸残基がProに置換されている。デュピルマブは、チャイニーズハムスター卵巣細胞により産生される。デュピルマブは、452個のアミノ酸残基からなるH鎖 (γ4鎖) 2本及び219個のアミノ酸残基からなるL鎖 (κ鎖) 2本で構成される糖タンパク質 (分子量:約152,000)である。

20. 取扱い上の注意

- 20.1 外箱開封後は遮光して保存すること。
- 20.2 本剤を温めたり、直射日光に晒さないこと。また、本剤を振とうしないこと。

21. 承認条件

- 21.1 医薬品リスク管理計画を策定の上、適切に実施すること。
- 21.2 鼻噴霧用ステロイド薬非併用下における本剤の有効性及び 安全性を確認するための臨床試験を製造販売後に実施するこ と。

22. 包装

2 mL×1本

23. 主要文献

- 1)社内資料: 国内第 I 相単回投与試験(2018年 1 月19日承認、 CTD2.7.2.2)
- 2)社内資料: アトピー性皮膚炎患者を対象とした国際共同第Ⅲ 相単独療法試験(2018年1月19日承認、CTD2.7.2.2)
- 3)社内資料:アトピー性皮膚炎患者を対象とした国際共同第Ⅲ 相併用療法試験(2018年1月19日承認、審査報告書p.33-34)

- 4) Simpson, E.L., et al.: N. Engl. J. Med. 2016; 375(24), 2335-2348
- 5) 社内資料: 気管支喘息患者を対象とした国際共同第Ⅲ相試験 (2019年3月26日承認、審査報告書p.15)
- 6) Bachert, C., et al.: Lancet 2019; 394(10209), 1638-1650
- 7)社内資料:非臨床薬効薬理試験(2018年1月19日承認、 CTD2.6.2.1)

24. 文献請求先及び問い合わせ先

サノフィ株式会社

コールセンター くすり相談室

〒163-1488 東京都新宿区西新宿三丁目20番2号 フリーダイヤル 0120-109-905 FAX (03) 6301-3010

26. 製造販売業者等

26.1 製造販売元

サノフィ株式会社

〒163-1488 東京都新宿区西新宿三丁目20番2号

26.2 提携先

リジェネロン社

トラロキヌマブ (遺伝子組換え)

第1部(モジュール1) 申請書等行政情報及び添付文書に関する情報 1.8 添付文書(案)

レオ ファーマ株式会社

目次

1.	添付文書案	4
2.	添付文書(案)の「効能又は効果」、「用法及び用量」の設定根拠	9
2.1.	「効能又は効果」及び「効能又は効果に関連する注意」の設定根拠	9
2.1.1.	「効能又は効果」(案)の設定根拠	9
2.1.2.	「効能又は効果に関連する注意」(案)の設定根拠	11
2.2.	「用法及び用量」、「用法及び用量に関連する注意」(案)の設定根拠	11
2.2.1.	「用法及び用量」(案)の設定根拠	12
2.2.2.	「用法及び用量に関連する注意」(案)の設定根拠	15
3.	添付文書(案)の「使用上の注意」(案)の設定根拠	16

略号一覧

記号	日本語	—————————————————————————————————————
AD	アトピー性皮膚炎	Atopic dermatitis
TCS	ステロイド外用剤	Topical corticosteroids(s)
IL	インターロイキン	interleukin
Ig	免疫グロブリン	immunoglobulin
Q2W	2 週間隔	Every 2 weeks
IGA	医師による包括的な評価	Investigator's Global Assessment
EASI	湿疹面積・重症度指数	Eczema Area and Severity Index
NRS	数値評価スケール	numeric rating scale
POEM	患者向け湿疹評価	Patient-Oriented Eczema Measure
DLQI	皮膚の状態に関するアンケート	Dermatology Life Quality Index:
SF-36	36 項目の簡易型健康調査票	36-Item Short Form Health Survey
PRO	患者報告アウトカム	patient-reported outcome
AE	有害事象	adverse event
BMI	体格指数	body mass index
CCL (TARC)	ケモカイン(C-C motif)リガンド	chemokine (C-C motif) ligand
DPP4	ジペプチジル ペプチダーゼ 4	dipeptidyl peptidase 4
QOL	生活の質	Quality of life
PopPK	母集団薬物動態	population pharmacokinetic
SOC	器官別大分類	system organ class
PT	基本語	preferred term
SAE	重篤な有害事象	serious adverse event

1. 添付文書案

日本標準商品分類番号 87449

承認番号

販売開始

1.8 添付文書(案) トラロキヌマブ(遺伝子組換え)

20XX 年 X 月作成 (第 1 版)

貯 法:凍結を避け、2~8℃にて保存

有効期間:3年

生物由来製品、劇薬、処方箋医薬品:注意-医師等の処方箋により使用すること

ヒト抗ヒト IL-13 モノクローナル抗体

トラロキヌマブ (遺伝子組換え) 製剤

アドトラーザ®皮下注 150 mgシリンジ 最適使用推進ガイドライン対象品目

Adtralza® S.C. Injection

1. 警告

本剤の投与は、適応疾患の治療に精通している医師のもとで行うこと。

2. 禁忌 (次の患者には投与しないこと)

本剤の成分に対し過敏症の既往歴のある患者

3. 組成•性状

3.1 組成

	成 分	1 シリンジ (1mL) 中の分量
有効成分	トラロキヌマブ(遺伝子組換え) 注1)	150mg
	酢酸ナトリウム水和物	6mg
添加剤	氷酢酸	0.3mg
你加押	塩化ナトリウム	5mg
	ポリソルベート 80	0.1mg

注1) 本剤は遺伝子組換え技術によりマウスミエローマ (NSO) 細胞を用いて製造される。セルバンク構築時にウシ血液由来成分 (アルブミン) を使用している。

3.2 製剤の性状

性状・剤形	無色~黄色の澄明又は乳白光を呈する液(注射剤)
pН	5.0~5.8
浸透圧比	約0.9 (生理食塩液に対する比)

4. 効能又は効果

既存治療で効果不十分なアトピー性皮膚炎

5. 効能又は効果に関連する注意

- 5.1 ステロイド外用剤やタクロリムス外用剤等の抗炎症外用剤による適切な治療を一定期間施行しても、十分な効果が得られず、強い炎症を伴う皮疹が広範囲に及ぶ患者に用いること。[17.1.1、17.1.2、17.1.3 参照]
- 5.2 原則として、本剤投与時にはアトピー性皮膚炎の病変部 位の状態に応じて抗炎症外用剤を併用すること。
- 5.3 本剤投与時も保湿外用剤を継続使用すること。

6. 用法及び用量

通常、成人にはトラロキヌマブ(遺伝子組換え)として初回に 600mg を皮下投与し、その後は1回 300mg を2週間隔で皮下投与する。

7. 用法及び用量に関連する注意

7.1 本剤による治療反応は、通常投与開始から 16 週までに は得られる。16 週までに治療反応が得られない場合は、投 与中止を考慮すること。

8. 重要な基本的注意

- 8.1 本剤投与中の生ワクチンの接種は、安全性が確認されて いないので避けること。
- 8.2 本剤の投与開始にあたっては、医療施設において、必ず 医師によるか、医師の直接の監督のもとで投与を行うこと。 自己投与の適用については、医師がその妥当性を慎重に検 討し、十分な教育訓練を実施した後、本剤投与による危険 性と対処法について患者が理解し、患者自ら確実に投与で きることを確認した上で、医師の管理指導のもとで実施す ること。自己投与の適用後、本剤による副作用が疑われる 場合や自己投与の継続が困難な状況となる可能性がある場 合には、直ちに自己投与を中止させ、医師の管理下で慎重 に観察するなど適切な処置を行うこと。また、本剤投与後 に副作用の発現が疑われる場合は、医療機関へ連絡するよ う患者に指導を行うこと。使用済みの注射器を再使用しな いよう患者に注意を促し、すべての器具の安全な廃棄方法 に関する指導の徹底を行うとともに、使用済みの注射器を 廃棄する容器を提供すること。
- 8.3 本剤が疾病を完治させる薬剤でなく、本剤投与中も保湿 外用剤等を併用する必要があることを患者に対して説明し、 患者が理解したことを確認したうえで投与すること。

9. 特定の背景を有する患者に関する注意

9.1 合併症・既往歴等のある患者

9.1.1 寄生虫感染患者

本剤を投与する前に寄生虫感染の治療を行うこと。また、 患者が本剤投与中に寄生虫感染を起こし、抗寄生虫薬によ る治療が無効な場合には、寄生虫感染が治癒するまで本剤 の投与を一時中止すること。本剤は IL-13 を阻害すること により 2 型免疫応答を減弱させ、寄生虫感染に対する生体 防御機能を減弱させる可能性がある。

9.1.2 長期ステロイド内服療法を受けている患者

本剤投与開始後に経口ステロイドを急に中止しないこと。 経口ステロイドの減量が必要な場合には、医師の管理下で 徐々に行うこと。

9 5 妊婦

妊婦又は妊娠している可能性のある女性には、治療上の有益性が危険性を上回ると判断される場合にのみ投与すること。本剤はヒト IgG4 モノクローナル抗体であり、ヒト IgG は胎盤関門を通過することが知られている。また、本剤を妊娠カニクイザルへ投与した場合、胎盤を通過して胎児に移行することが確認されている。

9.6 授乳婦

治療上の有益性及び母乳栄養の有益性を考慮し、授乳の継続又は中止を検討すること。本剤のヒト乳汁への移行は不明であるが、本剤はヒト IgG4 モノクローナル抗体であり、ヒト IgG は乳汁中に移行することが知られている。

9.7 小児等

小児等を対象とした臨床試験は実施していない。

11. 副作用

次の副作用があらわれることがあるので、観察を十分に行い、異常が認められた場合には投与を中止するなど適切な 処置を行うこと。

11.1 重大な副作用

11.1.1 重篤な過敏症(頻度不明)

アナフィラキシー等の重篤な過敏症があらわれることがある。

11.2 その他の副作用

	5%以上	5%未満
感染症及び寄 生虫症	上気道感染(上咽頭炎、 咽頭炎を含む)、結膜炎	
注射部位	注射部位反応(紅斑、疼 痛、腫脹等)(11.7%)	
血液及びリン パ系障害		好酸球増加症
眼障害		アレルギー性結膜 炎、角膜炎

14. 適用上の注意

14.1 薬剤投与前の注意

- 14.1.1 投与30分前を目安に冷蔵庫から取り出し、外箱から 出さずに、室温に戻しておくこと。
- 14.1.2 溶液が濁ったり、変色したり、粒子がみられた場合及 びシリンジに損傷や汚染がみられた場合には、本剤は使用 しないこと。
- 14.1.3 注射の準備ができるまで本剤の針キャップを外さないこと。針キャップを外したら直ちに投与すること。

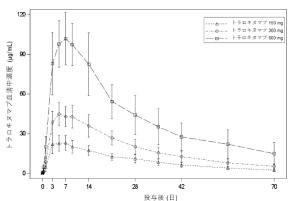
14.2 薬剤投与時の注意

14.2.1 皮下注射は、大腿部、腹部又は上腕部に行うこと。腹部へ投与する場合は、へその周りを外して投与すること。同一箇所へ繰り返し注射することは避けること。

- 14.2.2 正常な皮膚の部位に注射すること。皮膚が敏感な部位、皮膚に圧痛、損傷、挫傷又は瘢痕のある部位、アトピー性皮膚炎の強い炎症を伴う部位には注射しないこと。
- 14.2.3 他の薬剤と混合しないこと。
- 14.2.4 本剤は1回使用の製剤であり、再使用しないこと。

15. その他の注意

15.1 臨床使用に基づく情報


第II相試験 1 試験及び第III相試験 3 試験(単独投与試験 2 試験及び併用投与試験 1 試験)で本剤の投与を受けたアトピー性皮膚炎患者の5.0%が抗薬物抗体(ADA)陽性であり(本剤投与前陽性例を含む)、1.0%で中和抗体が認められた。ADAの発現による本剤の薬物動態、有効性及び安全性への影響は明らかでない。

16. 薬物動態

16.1 血中濃度

16.1.1 単回投与

日本人健康成人に本剤 $150 \text{mg}^{\pm 2}$ 、300 mg 又は 600 mg を単回皮下投与したときのトラロキヌマブの血清中濃度推移及び薬物動態パラメータは以下のとおりであった 10 。

血清中濃度推移(平均値±標準偏差)

本剤 150mg ^{注2)}、300mg 又は 600mg を単回皮下投与したとき の薬物動態パラメータ

投与量 (mg)	Cmax (µg/mL)	Tmax (day)	AUC _{0-∞} (μg·day/mL)	t _{1/2} (day)
150 ^{注 2)} (8 例)	24.4 ± 5.5	6.0 (3.0 - 7.0)	752 ± 183	20.0 ± 2.1
300 (8 例)	45.6 ± 8.9	5.0 (5.0 - 9.0)	1501 ± 383	20.9 ± 2.8
600 (8 例)	105 ± 21	7.1 (3.0 - 9.1)	3641 ± 1328	24.6 ± 7.3

算術平均±標準偏差、Tmax は中央値(最小値 - 最大値) 注 2)本剤の承認用量は初回 600mg、その後は 1 回 300mg を 2 週間 隔。

16.1.2 反復投与

日本人アトピー性皮膚炎患者に、本剤 300 mg (初回のみ 600mg) を Q2W で 16 週間反復皮下投与したときの定常状態におけるトラフ濃度は $114.6\pm48.6 \mu g/mL$ であった $^{2)}$ 。

16.1.3 母集団薬物動態解析

母集団薬物動態解析により推定された中央コンパートメントの分布容積 (Vc) 及び末梢コンパートメントの分布容積

 (V_P) はそれぞれ 2.7L 及び 1.4L であり、半減期は 22 日であった。

また、母集団薬物動態解析により推定された皮下投与時の 絶対的バイオアベイラビリティは76%であった³⁾。

16.4 代謝

トラロキヌマブはペプチド及びアミノ酸に分解と推定される。

17. 臨床成績

17.1 有効性及び安全性に関する試験

17.1.1 国際共同第Ⅲ相単独投与試験(ECZTRA1 試験)

Medium potency (日本の分類でミディアム〜ストロングクラス)以上に相当するステロイド外用薬で効果不十分、又は安全性上の理由等からステロイド外用薬が推奨されない、中等度から重度^{注3)}の成人アトピー性皮膚炎患者 802 例(日本人患者 127 例を含む)を対象とした二重盲検プラセボ対照試験を実施した。本剤 300mg(初回のみ 600mg)又はプラセボを Q2W で 16 週間投与した^{注4)}。主要評価項目である投与後 16 週時点での IGA 0/1 達成率^{注5)}及び EASI-75 達成率^{注6)}において、本剤 300mg Q2W 投与群はプラセボ投与群に比べ統計的に有意な改善効果を示した⁴⁾。

国際共同第Ⅲ相単独投与試験の成績

	全体集団	Q2W 群	プラセボ群	プラセボ群との差 [95%信頼区間] p 値 ^{注7)}
16 週	IGA 0/1 達成率	15.8 (95/601)	7.1 (14/197)	8.6 [4.1, 13.1] 0.002
	EASI-75 達成率	25.0 (150/601)	12.7 (25/197)	12.1 [6.5, 17.7] <0.001

% (例数)

16 週より前の中止例又は救援療法使用例はノンレスポンダーとした 投与 16 週までの副作用の発現頻度は、本剤 Q2W 投与群及 びプラセボ投与群で、それぞれ 31.1% (602 例中 187 例) 及 び 29.6% (196 例中 58 例) であった。本剤 Q2W 投与群の 主な副作用は、アトピー性皮膚炎 5.5%、注射部位反応 3.8%、 結膜炎 3.7%であった。 [5.1 参照]

17.1.2 海外第Ⅲ相併用投与試験 (ECZTRA3 試験)

Medium potency (日本の分類でミディアム〜ストロングクラス)以上に相当するステロイド外用薬で効果不十分な中等度から重度^{注 3)}の成人アトピー性皮膚炎患者 380 例を対象とした二重盲検プラセボ対照試験を実施した。ステロイド外用薬併用下、本剤 300mg(初回のみ 600mg)又はプラセボを Q2W で 16 週間投与した^{注 4)}。主要評価項目である投与後 16 週時点での IGA 0/1 達成率^{注 5)}及び EASI-75 達成率^{注 6)}において、本剤 300mg Q2W 投与群はプラセボ投与群に比べ統計的に有意な改善効果を示した 5)。

海外第Ⅲ相併用投与試験の成績

	全体集団	Q2W 群	プラセボ群	プラセボ群との差 [95%信頼区間] p 値 ^{注 7)}
16 週	IGA 0/1 達成率	38.9 (98/252)	26.2 (33/126)	12.4 [2.9, 21.9] 0.015
	EASI-75 達成率	56.0 (141/252)	35.7 (45/126)	20.2 [9.8, 30.6] <0.001

% (例数)

16 週より前の中止例又は救援療法使用例はノンレスポンダーとした 投与 16 週までの副作用の発現頻度は、本剤 Q2W 投与群及 びプラセボ投与群で、それぞれ 43.3% (252 例中 109 例)及 び 27.0% (126 例中 34 例)であった。本剤 Q2W 投与時の 主な副作用は、結膜炎 9.1%、注射部位反応 6.7%、上咽頭炎 6.7%、上気道感染 4.0%であった。[5.1 参照]

17.1.3 国内第Ⅲ相併用投与試験(ECZTRA8 試験)

Medium potency(日本の分類でミディアム〜ストロングクラス)以上に相当するステロイド外用薬で効果不十分な中等度から重度 $^{\pm 3}$ の成人アトピー性皮膚炎の日本人の患者 106例を対象とした二重盲検プラセボ対照試験を実施した。ステロイド外用薬併用下、本剤 300mg(初回のみ 600mg)又はプラセボを Q2W で 16 週間投与した $^{\pm 4}$ 0。主要有効性評価項目とした投与後 16 週時点での IGA 0/1 達成率 $^{\pm 5}$ 0 及び EASI-75 達成率 $^{\pm 6}$ 1 において、本剤 300mg Q2W 投与群はプラセボ投与群に比べ改善傾向を示した 6 0。

国内第Ⅲ相併用投与試験の成績

	全体集団	Q2W 群	プラセボ群	プラセボ群との差 [95%信頼区間] ^{注8)}
16 週	IGA 0/1 達成率	32.1 (17/53)	26.4 (14/53)	5.7 [-11.2, 22.5]
	EASI-75 達成率	71.7 (38/53)	56.6 (30/53)	15.1 [-2.9, 33.0]

% (例数)

16 週より前の中止例又は救援療法使用例はノンレスポンダーとした 投与 16 週までの副作用の発現頻度は、本剤 Q2W 投与群及 びプラセボ投与群で、それぞれ 26.4% (53 例中 14 例) 及び 15.1% (53 例中 8 例) であった。本剤 Q2W 投与時の主な副 作用は、注射部位反応 9.4%、注射部位紅斑 5.7%であった。 「5.1 参照]

- 注3) IGA スコアが3以上、EASIスコアが16以上、体表面積に占めるアトピー性皮膚炎病変の割合が10%以上、及びそう痒NRSスコアの日内最大値の週平均が4点以上
- 注 4) 投与期間中は保湿外用剤の併用を必須とし、経口シクロスポリン、経口ステロイド等の全身療法及び光線療法の併用を禁止した
- 注 5) IGA スコアが 0 (消失) 又は 1 (ほぼ消失) を達成した患者の 割合
- 注 6) EASI スコアがベースラインから 75%以上改善した患者の割合
- 注 7) 地域とベースライン時の疾患重症度を層別因子として、プラセボ投与群との差は Mantel-Haenszel 法、p 値は Cochran-Mantel-Haenszel 検定により算出した
- 注 8) ベースライン時の疾患重症度を層別因子として、プラセボ投 与群との差は Mantel-Haenszel 法により算出した

18. 薬効薬理

18.1 作用機序

トラロキヌマブは、ヒト IgG4 モノクローナル抗体で、2 型 サイトカインである IL-13 と結合し、IL-13 と IL-13 受容体 の α 1 及び α 2 サブユニットとの相互作用を阻害する α 5 α 7 α 8 は、 α 9 は、 α 9 は、 α 9 で存体複合体を介しシグナルを伝え、炎症反応を刺激し、そう痒発生に寄与し、正常皮膚の バリア機能に必要な蛋白の産生を阻害する。

18.2 薬理作用

18.2.1 IL-13 によるシグナル伝達に対する阻害作用

トラロキヌマブは、*in vitro* で IL-13 に結合し、アトピー性 皮膚炎の病態に関与している IL-13 による各種炎症性メディエーター及び IgE 産生並びに皮膚バリアマーカーの減少 などを抑制した⁷⁾。

18.2.2 抗炎症作用

トラロキヌマブは、*in vivo* でマウス及びカニクイザルを用いた病態モデルにおいて抗炎症作用を示した⁷⁾。

19. 有効成分に関する理化学的知見

一般的名称: トラロキヌマブ(遺伝子組換え) Tralokinumab (Genetical Recombination)

本 質: トラロキヌマブは、ヒトインターロイキン-13 に対する遺伝子組換えヒト IgG4 モノクローナル抗体である。トラロキヌマブは、マウスミエローマ (NSO) 細胞により産生される。トラロキヌマブは、449 個のアミノ酸残基からなる H 鎖 (γ4 鎖) 2 本及び 214 個のアミノ酸残基からなる L 鎖 (λ 鎖) 2 本で構成される糖タンパク質(分子量:約147,000)である。

20. 取扱い上の注意

- 20.1 遮光のため、本剤は外箱に入れて保存すること。
- 20.2 本剤を温めたり、直射日光に晒さないこと。また、本剤を振とうしないこと。
- 20.3 室温で保存する場合は30℃を超えない場所で保存し、14日以内に使用すること。

22. 包装

150mg/1mL×2シリンジ

23. 主要文献

- 1)社内資料:健康な日本人成人被験者を対象とした単回投与 試験 (MI-CP224) (20XX 年 XX 月 XX 日承認、CTD2.7.2.2)
- 2)社内資料:アトピー性皮膚炎患者を対象とした国際共同第 III相単独投与試験の薬物動態(ECZTRA 1 試験)(20XX 年 XX 月 XX 日承認、CTD2.7.2.2)
- 3)社内資料: 母集団薬物動態解析 (20XX 年 XX 月 XX 日承 認、CTD2.7.2.3)

- 4)社内資料:アトピー性皮膚炎患者を対象とした国際共同第 III相単独投与試験(ECZTRA 1 試験)(20XX 年 XX 月 XX 日承認、CTD2.7.6.1)
 - 5)社内資料: アトピー性皮膚炎患者を対象とした国際共同 第III相 TCS 併用投与試験 (ECZTRA 3 試験) (20XX 年 XX 月 XX 日承認、CTD2.7.6.1)
 - 6)社内資料:アトピー性皮膚炎患者を対象とした国内第III 相 TCS 併用投与試験 (ECZTRA 8 試験) (20XX 年 XX 月 XX 日承認、CTD2.7.6.1)
 - 7)社内資料: 効力を裏付ける薬理試験 (20XX 年 XX 月 XX 日承認、CTD2.6.2.2.2)

24. 文献請求先及び問い合わせ先

レオ ファーマ株式会社 カスタマーコールセンター 〒101-0051 東京都千代田区神田神保町 1-105 TEL 0120-89-0056

26. 製造販売業者等

26.1 製造販売元

レオファーマ株式会社

東京都千代田区神田神保町 1-105

- 2. 添付文書(案)の「効能又は効果」、「用法及び用量」の設定根拠
- 2.1. 「効能又は効果」及び「効能又は効果に関連する注意」の設定根拠

「効能又は効果」(案)

既存治療で効果不十分なアトピー性皮膚炎

効能又は効果に関連する注意(案)

- 5.1 ステロイド外用剤やタクロリムス外用剤等の抗炎症外用剤による適切な治療を一定期間施行しても、十分な効果が得られず、強い炎症を伴う皮疹が広範囲に及ぶ患者に用いること。
- 5.2 原則として、本剤投与時にはアトピー性皮膚炎の病変部位の状態に応じて抗炎症外用剤を併用すること。
- 5.3 本剤投与時も保湿外用剤を継続使用すること。

2.1.1. 「効能又は効果」(案)の設定根拠

トラロキヌマブの承認申請に際して予定する効能又は効果は、「既存治療で効果不十分なアトピー性皮膚炎(AD)」で、医療用医薬品の外用療法ではコントロールが十分でない、または外用療法が推奨されない既存治療では効果不十分の成人 AD 患者がトラロキヌマブの治療対象となる。

既存治療では効果不十分な AD 症状には、激しい痒み、乾皮症、再発性の湿疹性皮膚病変がある。これらの症状は、患者の病態、生活の質、精神的健康、および労働生産性に大きな影響をおよぼす。世界人口のレベルでも、AD は最も大きな影響がある皮膚疾患に位置づけられており、長年にわたって、多大な疾病負荷をもたらす。

AD は慢性疾患であり、長期にわたる治療が必要であるにもかかわらず、有効かつ長期使用時に許容可能な安全性を有する治療選択肢は限られていることから、その治療は困難となる。既存治療法として、初診時の重症度分類に従い治療する「コントロールベース」および「リスクベース」の疾病管理モデルが推奨されている。AD の薬物治療アルゴリズムは、ウィークからストロングクラスの抗炎症外用剤の使用へ進み、その後全身性免疫調節療法に至る場合がある。アトピー性皮膚炎診療ガイドライン(2018)では、至適外用療法ではコントロール不十分の患者の治療には、全身療法の適用が推奨されている。ステロイド外用剤(TCS)は第一選択の外用剤であり、強度が異なるものが各種使用可能である。TCS は軽症および一部の中等症 AD 患者の再燃治療には十分である。しかし、多くの中等症から重症 AD 患者では、ストロングクラス以上の TCSでも疾患コントロールが不十分な場合や、実用性と安全性の観点から適切でない場合がある。またガイドラインでは、ストロングクラス以上の TCS は一時的な使用に限定することが推奨されている。近年承認されたデュピルマブ(デュピクセント®皮下注 300mg シリンジ)は、インターロイキン(IL)-4 受容体複合体および IL-13 受容体複合体に共通するサブユニットを遮断するモ

ノクローナル抗体で、外用ステロイド薬や外用タクロリムス薬等の抗炎症外用剤を用いた治療を 一定期間施行しても十分な効果が得られず、強い炎症を伴う皮疹が広範囲に及ぶ患者に対する医 薬品として承認されている。

トラロキヌマブは完全ヒト免疫グロブリン (Ig) G4 モノクローナル抗体で, IL-13 と特異的に結合し、その受容体との相互作用を阻害する。薬理学的には免疫調節薬の IL 阻害薬に分類される。

中等症から重症 AD 患者を対象としたトラロキヌマブ単剤投与時の有効性および安全性を検討した第3相試験(ECZTRA1および ECZTRA2)2試験の結果、すべての主要評価項目(IGA 0/1 および EASI-75)および多重性を調整した副次的評価項目(そう痒 NRS、睡眠 NRS、POEM、DLQI および SF-36 など)において、トラロキヌマブ 2 週に 1 回(Q2W)投与群とプラセボ投与群の投与群間差は統計的に有意であり、かつ一貫した結果が得られた。また TCS 併用時の有効性および安全性を検討した併用投与試験(ECZTRA3)においても、すべての主要評価項目(IGA 0/1 および EASI-75)および多重性を調整した副次的評価項目(そう痒 NRS、睡眠 NRS、POEM、DLQI および SF-36 など)において、トラロキヌマブ Q2W 投与群とプラセボ投与群の投与群間差は統計的に有意であり、かつ一貫した結果が得られた。日本人被験者を対象とした併用投与試験(ECZTRA8)においても、全体として、ECZTRA3試験の有効性と一貫した結果が得られた。

トラロキヌマブを単剤投与した場合、初期投与期間(16週間)以降、Week 52 まで有効であった。Week 16 時点でトラロキヌマブ Q2W 投与によりクリニカルレスポンスを達成した多くの被験者(レスポンダー)が、その後もクリニカルレスポンスを維持した。この結果は、TCS 併用時のほうが、より顕著であった。併用投与試験(ECZTRA3 試験)において、Week 16 時点ではトラロキヌマブ Q2W+TCS 投与ではクリニカルレスポンスが得られなかった場合でも、トラロキヌマブ投与を継続することで、多くの被験者がクリニカルレスポンスを達成し改善効果が認められた

トラロキヌマブの改善効果は、AD 疾患の主観的な症状(そう痒 NRS、睡眠 NRS および POEM)だけでなく、患者の QOL(DLQI および SF-36)を検討した患者報告アウトカム (PRO) でも認められており、患者自身が投与早期からトラロキヌマブによる治療効果を感じ始めていることが示唆された。さらにトラロキヌマブは S. aureus による皮膚感染症を低減しており、皮膚のバリア機能の改善効果が示唆される。

安全性の観点では、トラロキヌマブの安全性プロファイルとしてアナフィラキシー反応、血清病、重篤な感染症または精神障害などの注目すべき安全性領域に特定されたリスクは認められなかった。トラロキヌマブで特定された副作用は、注射部位反応を除き、AD患者集団では一般的にみられるものであった(好酸球増加症、眼の障害、上気道感染[主に感冒と報告された])。これらの事象の発現頻度は相対的には低く、重症度はおおむね軽度または中等度であり、また一過性であったことから、管理可能であった。さらに完了した試験および進行中のECZTEND試験における52週間の投与期間および最長104週間のJ-ECZTEND試験においても安全性上の懸念はなく、経時的な治療効果の低下もなかった。これらの結果はADのような慢性疾患の治療には極めて重要である。

トラロキヌマブを投与中止した場合に、アレルギー疾患の悪化、全身療法を必要とする皮膚感染、ヘルペス性湿疹、または重度および重篤な感染症に関連する有害事象(AE)が増加するかどうかを検討したが関連性は認められなかった。AD 患者を対象とした臨床試験 5 試験(国際共同試験 5 試験:AD プール [D2213C00001(日本人含む),ECZTRA 1(日本人含む),ECZTRA 2、3、および 5 試験])を含むデータプールにおける投与完了または投与中止後の安全性成績から,離脱症状または反跳作用を示唆する新たな AE はなかった。

以上,トラロキヌマブは,既存治療では効果不十分な AD 患者に対し有効かつ良好な忍容性を示し,長期使用時に有効性は持続し,投与を中止しても安全性の懸念はないことが確認され,臨床的ベネフィットを大幅に向上させる治療選択肢となり得ると考えた。これらを踏まえ,予定する効能及び効果を設定した。

2.1.2. 「効能又は効果に関連する注意」(案)の設定根拠

効能又は効果に関連する注意(案)

- 5.1 ステロイド外用剤やタクロリムス外用剤等の抗炎症外用剤による適切な治療を一定期間施行しても、十分な効果が得られず、強い炎症を伴う皮疹が広範囲に及ぶ患者に用いること。
- 5.2 原則として、本剤投与時にはアトピー性皮膚炎の病変部位の状態に応じて抗炎症外用剤を併用すること。
- 5.3 本剤投与時も保湿外用剤を継続使用すること。
- 1. 本剤の治療対象となる患者層について AD 患者を対象とした臨床試験において設定した選択基準等を考慮して設定した。
- 2. および3. アトピー性皮膚炎の診療ガイドラインを参考に、本剤投与時に適正に併用薬が使用されるよう設定した。

2.2. 「用法及び用量」、「用法及び用量に関連する注意」(案)の設定根拠

用法及び用量(案)

通常、成人にはトラロキヌマブ(遺伝子組換え)として初回に 600mg を皮下投与し、その後は 1回 300mg を 2 週間隔で皮下投与する。

用法及び用量に関連する注意 (案)

7.1 本剤による治療反応は、通常投与開始から 16 週までには得られる。16 週までに治療反応が得られない場合は、投与中止を考慮すること。

2.2.1. 「用法及び用量」(案)の設定根拠

トラロキヌマブの用法及び用量は、AD 患者を対象とした第 2b 相用量検討試験(D2213C00001 試験)、第 3 相単剤投与試験(ECZTRA1 試験および ECZTRA2 試験)、並びに第 3 相併用投与試験(ECZTRA3 試験および ECZTRA 8 試験)の結果に基づき設定した。

国際共同試験を主体とする本申請の臨床データパッケージにおいて設定されたトラロキヌマブの用法及び用量は、日本人 AD 患者でも適用可能であると考える。

内因性要因および外因性要因の部分集団解析は、単独投与プール(ECZTRA 1 試験および ECZTRA 2 試験)を対象に、主要評価項目の IGA 0/1 および EASI-75 を用いて行った。部分集団には、年齢、性別、体重、体格指数(BMI)、人種、民族、地域、AD の重症度、AD 罹病期間、AD 発症時の年齢、全身性 AD 治療薬の使用歴、免疫抑制剤の使用歴および関連するアトピー性疾患の既往歴(喘息、食物アレルギー、および花粉症)が含まれる。検討した部分集団のほとんどにおいて、トラロキヌマブ投与時のレスポンダーの割合は、IGA 0/1 と EASI-75 のいずれにおいても同程度であった。いくつかの部分集団では治験薬(IMP)投与と部分集団との間に交互作用が認められたが(p<0.05)、いずれも特定の部分集団における高いプラセボ効果によるもので、これらの所見は個々の試験ではみられなかった。また ECZTRA 1 試験の日本人部分集団における有効性および安全性成績は、全体集団のそれらとおおむね類似した。

上記部分集団での検討結果に加え、トラロキヌマブと TCS との併用投与においても、 ECZTRA 3 試験(外国人被験者)および ECZTRA 8 試験(日本人被験者)の有効性および安全性 の結果は一貫していた。これらの結果を踏まえ、中等症から重症の AD 患者を対象に実施された 国際共同試験で得られた臨床試験成績は日本人に外挿可能であると考えている。

以下に、上述した臨床試験の結果に基づく用法及び用量の設定根拠を記述する。

第3相試験において選択された用法及び用量

中等症から重症の AD 患者を対象とした第 3 相試験で選択されたトラロキヌマブの用法及び用量は、「トラロキヌマブ 600 mg の初回負荷投与とその後 16 週間のトラロキヌマブ 300 mg Q2W」であり、Week 16 以降の維持投与期間では、「トラロキヌマブ 300 mg を Q2W もしくは Q4W 投与」とした。

トラロキヌマブ 300 mg Q2W 投与は、第 2b 相用量設定試験(D2213C00001)成績に基づき、設定された。

第 2 相試験(3 用量:トラロキヌマブ 45 mg Q2W+TCS, 150 mg Q2W+TCS, または 300 mg Q2W+TCS をプラセボ Q2W+TCS と比較)の結果,プラセボ+TCS 投与群に比べ,トラロキヌマブ 150 mg+TCS 投与群およびトラロキヌマブ 300 mg+TCS 投与群では,Week 12 時点で EASIスコアのベースラインからの平均変化に,統計的に有意な差が認められ,特にトラロキヌマブ 300 mg+TCS 投与群での差は大きかった。IGA 0/1 レスポンダー率は用量依存的に増加し,トラロキヌマブ 300 mg+TCS 投与群とプラセボ+TCS 投与群との間で最も大きな差が認められた。すべての副次的評価項目において,用量依存的にプラセボとの差は大きくなり,主要評価項目の結果と一貫した。また,プラセボが投与された日本人被験者では IGA 0/1 達成率は低かったこと

を除き、いずれの投与群でも、EASIのベースラインからの変化および IGA 0/1 レスポンダーの割合は、日本人被験者と試験全体集団との間で同程度であった。

トラロキヌマブ投与時の血清トラフ濃度は用量依存的に増加した。平均トラフ濃度は、日本人被験者の方が日本人以外の被験者と比べてやや高かった。これは日本人被験者の平均体重は試験全体集団と比べ、軽かったことに起因する可能性が考えられた。

第2相用量設定試験における薬力学の結果から、血清ペリオスチンおよび CCL17値(本試験では TARC という)は、いずれのトラロキヌマブ投与群(3 用量)でも、プラセボ投与群と比較してベースラインから Week 12 時点まで有意に低下し(p<0.001)、トラロキヌマブ 300 mg 投与群で最大の低下となった(ペリオスチンで 32%低下、CCL17で 49%低下)。同様に血清 IgE 値においても、トラロキヌマブ 150 mg および 300 mg 投与群では、プラセボ投与群と比較してベースラインから Week 12 時点まで有意に低下し(p<0.001)、トラロキヌマブ 300 mg 投与時に最大の低下(24%)となった。DPP4 については、いずれのトラロキヌマブ投与群でも、プラセボと比較して血清値が上昇し、トラロキヌマブ 150 mg および 300 mg 投与群で最も顕著であった。

安全性プロファイルは、いずれの投与群でも許容可能であり、安全性に用量依存性は認められなかった。

これら有効性および安全性成績,ならびに曝露-反応解析に基づき,トラロキヌマブ 300 mg Q2W を第3相試験の用法及び用量に選択した。

なお第3相試験においては、トラロキヌマブの全身濃度が短時間で定常状態に到達できるよう、投与初日に600 mg の負荷投与を行った。またより少ない投与頻度でWeek 16後に効果が維持するかどうか検討するため、Q4W 投与についても評価した。

推奨用法及び用量の選択

推奨用法及び用量の設定根拠とした第3相試験は、以下のとおりである。

- ECZTRA 1 試験および ECZTRA 2 試験は、同じ試験計画をもとに実施された。Week 16 時点でのプラセボに対するトラロキヌマブの優越性を検討した 52 週間のトラロキヌマブ単剤投与第 3 相試験である。
- ECZTRA 3 試験は、Week 16 時点でのプラセボ + TCS に対するトラロキヌマブ + TCS の 優越性を検討した 32 週間の併用投与第 3 相試験である。
- ECZTRA 8 試験は、日本人被験者にトラロキヌマブと TCS を併用した二重盲検の 16 週間 の投与期間と、投与を行わない 4 週間の安全性追跡調査期間からなる第 3 相試験である。
- ECZTEND 試験は、ECZTRA 試験に参加した被験者を対象に、トラロキヌマブの長期安全性および有効性を評価した第3相長期投与試験である。本申請における ECZTEND 試験の解析には、ECZTEND 試験の日本人成人被験者の中間データ(J-ECZTEND)を用いた。

有効性成績において、申請する用法及び用量である「初回に 600mg を皮下投与し、その後は 1回 300mg を 2週間隔で皮下投与」した場合、Week 16 時点で、主要評価項目(IGA 0/1 および EASI-75)において、プラセボ投与群に対する優越性が確認された。また、その他の他覚所見、自覚症状(痒みなど)および QOL においても、統計的に有意、かつ臨床的に意味のある改善効

果がみられた。ECZTRA 8 試験における TCS 併用時の Week 16 時の有効性は,ECZTRA 3 試験で認められた有効性と一貫した。また ECZTRA 1 および ECZTRA 2 試験(いずれも最長 52 週間),ならびに ECZTRA 3 試験(最長 32 週間)のいずれにおいても,Week 16 時にクリニカルレスポンスが得られた被験者(レスポンダー)は,投与終了時にも有効性が維持された。Week 16 時点でクリニカルレスポンスが得られなかった被験者(ノンレスポンダー)でも,Week 16 以降も投与を継続した場合,一定数の被験者において改善効果が認められた。ECZTRA 1 試験から ECZTEND 試験に移行し,最長 Week 104 まで投与を継続した日本人被験者では,トラロキヌマブ Q2W と TCS(任意)を長期にわたって在宅投与しても,トラロキヌマブの有効性は維持された。

一方、PopPK 解析の共変量解析結果から、性別、年齢、人種、疾患の種類(AD、喘息、健康)、ベースラインの疾患重症度、腎機能障害および肝機能障害に、トラロキヌマブの曝露量におよぼす臨床的に意味のある影響はなかった。PopPK 解析の結果、体重の増加に伴い、定常状態のトラロキヌマブ曝露量が減少することが確認され、体重は有意な共変量として特定された。この結果は、モノクローナル抗体の全身曝露量と体重は逆相関するとの文献報告と一致する。しかし、体重と曝露量は相関するものの、曝露-反応解析から、体重だけでは曝露量のばらつきを完全には説明できず、体重はトラロキヌマブ投与時の有効性のばらつきのすべてを説明できるものではなく、有効性に顕著な影響をおよぼすものではないことから、体重による投与量の調節は必要ないと判断した。

安全性成績では、単剤投与時および TCS との併用投与時のいずれにおいても、トラロキヌマ ブの忍容性は良好であった。トラロキヌマブの主要安全性評価は,国際共同試験 5 試験:ADプ ールの初期投与期間(Week16)の結果に基づくが、単剤投与プール(ECZTRA1および2)およ び併用投与試験(ECZTRA3)における安全性成績からも裏付けられた。全体として、初期投与 期間の安全性プロファイルは、単剤投与時と TCS 併用投与時との間で同様であった。ECZTRA 8 試験では,ECZTRA 3 の初期投与期間と比べて注射部位反応がわずかに高かったが,AE 発現頻 度は ECZTRA 3 試験の発現頻度と同程度であり、忍容性は良好であった。TCS 併用の有無によら ず、トラロキヌマブを Week 16 から Week 52 まで維持投与した場合の安全性は、初期投与期間の それと同様であり、Q2W で長期投与した場合の安全性は許容可能であった。初期投与期間(単 剤投与プール)の AE の要約(全発現頻度,発現件数・割合,因果関係,重症度および重篤度) ならびに SOC および PT 別の AE を基に、人口統計学的特性および地域などを含む内因性および 外因性要因の影響を評価したが、それらのいずれにおいても臨床的に意味のある差はなかった。 AE および SAE の種類ならびに 100 人年あたりの発現率は、内因性および外因性要因別部分集 団のいずれにおいても、投与群間で同程度であった。一部の事象で発現頻度にわずかな差が認め られたが、いずれも臨床的に意味あるものではなかった。日本人被験者にトラロキヌマブを長期 投与した場合の安全性成績は、J-ECZTEND から得られた。J-ECZTEND 成績から、ECZTRA 1 試 験で得られた日本人被験者の安全性(52週間投与)は、最長104週間まで継続投与しても維持 された。AE, 重度のAE およびSAE の発現率はJ-ECZTEND の方が低く, IMP の中止に至った AE は、J-ECZTEND ではみられなかった。このように、これまでに得られている結果から、トラ ロキヌマブを長期使用した場合の安全性に懸念はないと考えている。

以上の成績に基づき,トラロキヌマブを臨床使用する際に推奨される用法及び用量は,「通常,成人にはトラロキヌマブ(遺伝子組換え)として初回に 600~mg を皮下投与し,その後は 1 回 300~mg を 2 週間隔で皮下投与する。」と設定した。

2.2.2. 「用法及び用量に関連する注意」(案)の設定根拠

用法及び用量に関連する注意(案)

7.1 本剤による治療反応は、通常投与開始から 16 週までには得られる。16 週までに治療反応が得られない場合は、投与中止を考慮すること。

[設定根拠]

漫然と投与することの無いよう、治療反応の確認を適切に行い、治療の継続を検討する必要があるため設定した。

3. 添付文書(案)の「使用上の注意」(案)の設定根拠

1. 警告

本剤の投与は、適応疾患の治療に精通している医師のもとで行うこと。

[設定根拠]

本剤の適正使用を推進するため、アトピー性皮膚炎の治療に精通している医師により本剤が投与されるよう設定した。

2. 禁忌(次の患者には投与しないこと)

本剤の成分に対し過敏症の既往歴のある患者

[設定根拠]

医薬品全般の一般的な注意事項として、企業中核データーシート(CCDS)を踏まえ、設定した。

5. 効能又は効果に関連する注意

- 5.1 ステロイド外用剤やタクロリムス外用剤等の抗炎症外用剤による適切な治療を一定期間施行しても、十分な効果が得られず、強い炎症を伴う皮疹が広範囲に及ぶ患者に用いること
- 5.2 原則として、本剤投与時にはアトピー性皮膚炎の病変部位の状態に応じて抗炎症外用剤を併用すること。
- 5.3 本剤投与時も保湿外用剤を継続使用すること。

[設定根拠]

2.1.2 の項参照

7. 用法及び用量に関連する注意

7.1 本剤による治療反応は、通常投与開始から 16 週までには得られる。16 週までに治療反応が得られない場合は、投与中止を考慮すること。

[設定根拠]

2.2.2 の項参照

8. 重要な基本的注意

- 8.1 本剤投与中の生ワクチンの接種は、安全性が確認されていないので避けること。
- 8.2 本剤の投与開始にあたっては、医療施設において、必ず医師によるか、医師の直接の監督のもとで投与を行うこと。自己投与の適用については、医師がその妥当性を慎重に検討し、十分な教育訓練を実施した後、本剤投与による危険性と対処法について患者が理解し、患者自ら確実に投与できることを確認した上で、医師の管理指導のもとで実施すること。自己投与の適用後、本剤による副作用が疑われる場合や自己投与の継続が困難な状況となる可能性がある場合には、直ちに自己投与を中止させ、医師の管理下で慎重に観察するなど適切な処置を行うこと。また、本剤投与後に副作用の発現が疑われる場合は、医療機関へ連絡するよう患者に指導を行うこと。使用済みの注射器を再使用しないよう患者に注意を促し、すべての器具の安全な廃棄方法に関する指導の徹底を行うとともに、使用済みの注射器を廃棄する容器を提供すること。
- 8.3 本剤が疾病を完治させる薬剤でなく、本剤投与中も保湿外用剤等を併用する必要があることを患者に対して説明し、患者が理解したことを確認したうえで投与すること。

「設定根拠」

- 1. 本剤投与中の生ワクチン接種の安全性が確認されていないことから、CCDS の記載も踏ま え設定した。
- 2. 本剤は自己投与を可能とすることから、自己注射に関する一般的な注意事項として、国内で既承認の自己投与製剤の記載および CCDS の記載も参照し設定した。
- 3. 本剤はアトピー性皮膚炎を完治させる薬剤でなく、保湿外用剤等を継続して併用すること が必要なことを喚起する目的で設定した。

9. 特定の背景を有する患者に関する注意

- 9.1 合併症・既往歴等のある患者
- 9.1.1 寄生虫感染患者

本剤を投与する前に寄生虫感染の治療を行うこと。また、患者が本剤投与中に寄生虫感染を起こし、抗寄生虫薬による治療が無効な場合には、寄生虫感染が治癒するまで本剤の投与を一時中止すること。本剤はIL-13を阻害することにより2型免疫応答を減弱させ、寄生虫感染に対する生体防御機能を減弱させる可能性がある。

9.1.2 長期ステロイド内服療法を受けている患者

本剤投与開始後に経口ステロイドを急に中止しないこと。経口ステロイドの減量が必要な場合には、医師の管理下で徐々に行うこと。

9.5 妊婦

妊婦又は妊娠している可能性のある女性には、治療上の有益性が危険性を上回ると判断される場合にのみ投与すること。本剤はヒトIgG4モノクローナル抗体であり、ヒトIgG は胎

盤関門を通過することが知られている。また、本剤を妊娠カニクイザルへ投与した場合、 胎盤を通過して胎児に移行することが確認されている。

9.6 授乳婦

治療上の有益性及び母乳栄養の有益性を考慮し、授乳の継続又は中止を検討すること。本 剤のヒト乳汁への移行は不明であるが、本剤はヒト IgG4 モノクローナル抗体であり、ヒト IgG は乳汁中に移行することが知られている。

9.7 小児等

小児等を対象とした臨床試験は実施していない。

[設定根拠]

- 9.1.1 国内外の臨床試験では、寄生虫に感染した患者への使用経験はなく、本剤の寄生虫感染に対する免疫応答への影響も不明であることから、類薬および CCDS の記載を参照し、設定した。
- 9.1.2 長期ステロイド内服療法を受けている患者において、急に経口ステロイドの投与を中止した場合、ステロイド内服療法においてコントロールされていた症状が急激に悪化する可能性が考えられることから設定した。
- 9.5 および 9.6 本剤の非臨床試験成績, IgG に関する一般的な情報を踏まえ, 類薬および CCDS の記載も参照し, 設定した。
- 9.7 本剤の小児における臨床試験結果が得られていないことから、CCDS の情報も踏まえ設定した。

11. 副作用

次の副作用があらわれることがあるので、観察を十分に行い、異常が認められた場合には投与 を中止するなど適切な処置を行うこと。

11.1 重大な副作用

11.1.1 重篤な過敏症(頻度不明)

アナフィラキシー等の重篤な過敏症があらわれることがある。

11.2 その他の副作用

	5% 以上	5%未満
感染症及び寄生虫症	上気道感染(上咽頭炎、咽頭炎を含	
	む)、結膜炎	
注射部位	注射部位反応(紅斑、疼痛、腫脹等)	
	(11.7%)	
血液及びリンパ系障害		好酸球増加症
眼障害		アレルギー性結膜炎、角膜炎

[設定根拠]

- 11.1 申請する適応対象集団である AD 患者を対象とした臨床試験では、アナフィラキシーといった重篤な過敏症の発現は認められていないものの、喘息患者を対象とした臨床試験(申請適応外)では報告があることから設定した。
- 11.2 副作用の表は、臨床試験成績(ECTZRA1 試験, 3 試験および8 試験) および CCDS の記載を踏まえ設定した。

14. 適用上の注意

- 14.1 薬剤投与前の注意
- 14.1.1 投与30分前を目安に冷蔵庫から取り出し、外箱から出さずに、室温に戻しておくこと。
- 14.1.2 溶液が濁ったり、変色したり、粒子がみられた場合及びシリンジに損傷や汚染がみられた場合には、本剤は使用しないこと。
- 14.1.3 注射の準備ができるまで本剤の針キャップを外さないこと。針キャップを外したら直ちに投与すること。
- 14.2 薬剤投与時の注意
- 14.2.1 皮下注射は、大腿部、腹部又は上腕部に行こと。腹部へ投与する場合は、へその周りを外して投与すること。同一箇所へ繰り返し注射することは避けること。
- 14.2.2 正常な皮膚の部位に注射すること。皮膚が敏感な部位、皮膚に圧痛、損傷、挫傷又は瘢痕のある部位、アトピー性皮膚炎の強い炎症を伴う部位には注射しないこと。
- 14.2.3 他の薬剤と混合しないこと。
- 14.2.4 本剤は1回使用の製剤であり、再使用しないこと。

[設定根拠]

類薬の記載および CCDS の記載を踏まえ設定した。

15. その他の注意

15.1 臨床使用に基づく情報

第Ⅱ相試験1試験及び第Ⅲ相試験3試験(単独投与試験2試験及び併用投与試験1試験)で本剤の投与を受けたアトピー性皮膚炎患者の5.0%が抗薬物抗体(ADA)陽性であり(本剤投与前陽性例を含む)、1.0%で中和抗体が認められた。ADAの発現による本剤の薬物動態、有効性及び安全性への影響は明らかでない。

「設定根拠〕

AD 患者を対象とした第2相試験および第3相試験で得られた結果を踏まえ、CCDS を参照して設定した。

トラロキヌマブ (遺伝子組換え)

第1部(モジュール1) 申請書等行政情報及び添付文書に関する情報 1.9 一般的名称に係る文書

レオ ファーマ株式会社

目次

1	JAN	. 3
2	INN	.4

1 JAN

平成28年7月5日付薬生薬審発0705第3号により通知された。

JAN (日本名):トラロキヌマブ (遺伝子組換え)

JAN (英名) : Tralokinumab (Genetical Recombination)

本質記載(日本名):トラロキヌマブは、ヒトインターロイキン-13 に対する遺伝子組換えヒト IgG4 モノクローナル抗体である。トラロキヌマブは、マウスミエロ

ーマ (NS0) 細胞により産生される。トラロキヌマブは、449 個のアミノ酸残基からなる H 鎖 (γ 4 鎖) 2 本及び 214 個のアミノ酸残基からなる L 鎖 (λ 鎖) 2 本で構成される糖タンパク質 (分子量:約 147,000) であ

る.

本質記載(英名): Tralokinumab is a recombinant human IgG4 monoclonal antibody against

human interleukin-13. Tralokinumab is produced in mouse myeloma (NS0)

cells. Tralokinumab is a glycoprotein (molecular weight: ca. 147,000)

composed of 2 H-chains (γ 4-chains) consisting of 449 amino acid residues each

and 2 L-chains (λ-chains) consisting of 214 amino acid residues each.

アミノ酸配列及びジスルフィド結合: L鎖

SYVLTQPPSV SVAPGKTARI TCGGNIIGSK LVHWYQQKPG QAPVLVIYDD GDRPSGIPER FSGSNSGNTA TLTISRVEAG DEADYYCQVW DTGSDPVVFG GGTKLTVLGQ PKAAPSVTLF PPSSEELQAN KATLVCLISD FYPGAVTVAW KADSSPVKAG VETTTPSKQS NNKYAASSYL SLTPEQWKSH RSYSCQVTHE GSTVEKTVAP TECS

H鎖

QVQLVQSGAE VKKPGASVKV SCKASGYTFT NYGLSWVRQA PGQGLEWMGW
ISANNGDTNY GQEFQGRVTM TTDTSTSTAY MELRSLRSDD TAVYYCARDS
SSSWARWFFD LWGRGTLVTV SSASTKGPSV FPLAPCSRST SESTAALGCL
VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVPSSSLGT
KTYTCNVDHK PSNTKVDKRV ESKYGPPCPS CPAPEFLGGP SVFLFPPKPK
DTLMISRTPE VTCVVVDVSQ EDPEVQFNWY VDGVEVHNAK TKPREEQFNS
TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV
YTLPPSQEEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL
DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGK

H鎖 Q1: ピログルタミン酸; H鎖 N299: 糖鎖結合; H鎖 K449:部分的プロセシング L鎖 C 213 – H鎖 C136, H鎖 C228 – H鎖 C228, H鎖 C231 – H鎖 C231: ジスルフィド結合

主な糖鎖の推定構造:

$$\mathsf{Gal}_{0\text{-}2} \left\{ \begin{matrix} (\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}2)\mathsf{Man}(\alpha 1\text{-}6) \\ \mathsf{Man}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}2)\mathsf{Man}(\alpha 1\text{-}3) \end{matrix} \right. \\ \left. \begin{matrix} \mathsf{Fuc}(\alpha 1\text{-}6) \\ \mathsf{Man}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text$$

C6386H9832N1700O2016S44(タンパク質部分, 4本鎖)

H鎖 C2193H3367N583O684S17

L鎖 C1000H1553N267O324S5

2 INN

International Nonproprietary Names for Pharmaceutical Substances (INN), WHO Drug Information, Vol.24, No.3, 2010 (r-INN list64) に以下の名称で掲載された。

INN: Tralokinumab

薬生薬審発0705第3号平成28年7月5日

各都道府県衛生主管部(局)長 殿

厚生労働省医薬・生活衛生局医薬品審査管理課長 (公 印 省 略)

医薬品の一般的名称について

標記については、「医薬品の一般的名称の取扱いについて(平成 18 年 3 月 31 日薬 食発第 0331001 号厚生労働省医薬食品局長通知)」等により取り扱っているところであるが、今般、我が国における医薬品一般的名称(以下「JAN」という。)について、新たに別添のとおり定めたので、御了知の上、貴管下関係業者に周知方よろしく御配慮願いたい。

(参照)

日本医薬品一般名称データベース: URL http://jpdb.nihs.go.jp/jan/Default.aspx (別添の情報のうち、JAN 以外の最新の情報は、当該データベースの情報で対応することとしています。)

(別表2)INN に収載された品目の我が国における医薬品一般的名称

(平成18年3月31日薬食審査発第0331001号厚生労働省医薬食品局審査管理課長通知に示す別表2)

登録番号 26-4-B8

JAN (日本名) :トレメリムマブ (遺伝子組換え)

JAN (英名): Tremelimumab (Genetical Recombination)

アミノ酸配列及び主なジスルフィド結合:

L鎖

DIQMTQSPSS LSASVGDRVT ITCRASQSIN SYLDWYQQKP GKAPKLLIYA
ASSLQSGVPS RFSGSGSGTD FTLTISSLQP EDFATYYCQQ YYSTPFTFGP
GTKVEIKRTV AAPSVFIFPP SDEQLKSGTA SVVCLLNNFY PREAKVQWKV
DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG
LSSPVTKSFN RGEC

H鎖

QVQLVESGGG VVQPGRSLRL SCAASGFTFS SYGMHWVRQA PGKGLEWVAV
IWYDGSNKYY ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCARDP
RGATLYYYYY GMDVWGQGTT VTVSSASTKG PSVFPLAPCS RSTSESTAAL
GCLVKDYFPE PVTVSWNSGA LTSGVHTFPA VLQSSGLYSL SSVVTVPSSN
FGTQTYTCNV DHKPSNTKVD KTVERKCCVE CPPCPAPPVA GPSVFLFPPK
PKDTLMISRT PEVTCVVVDV SHEDPEVQFN WYVDGVEVHN AKTKPREEQF
NSTFRVVSVL TVVHQDWLNG KEYKCKVSNK GLPAPIEKTI SKTKGQPREP
QVYTLPPSRE EMTKNQVSLT CLVKGFYPSD IAVEWESNGQ PENNYKTTPP
MLDSDGSFFL YSKLTVDKSR WQQGNVFSCS VMHEALHNHY TQKSLSLSPG

H 鎖 Q1: 部分的ピログルタミン酸; H 鎖 N301: 糖鎖結合; H 鎖 K451: 部分的プロセシング L 鎖 C214 – H 鎖 C227, H 鎖 C139 – H 鎖 C228, H 鎖 C231 – H 鎖 C231, H 鎖 C234 – H 鎖 C234; ジスフィルド結合

主な糖鎖の推定構造:

$$\mathsf{Gal}_{0\text{-}2} \left\{ \begin{array}{l} (\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}2)\mathsf{Man}(\alpha 1\text{-}6) \\ \mathsf{Man}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}2)\mathsf{Man}(\alpha 1\text{-}3) \end{array} \right.$$

 $C_{6500}H_{9974}N_{1726}O_{2026}S_{52}$ (タンパク質部分,4本鎖)

H鎖 C2219H3409N591O676S20

L鎖 C₁₀₃₁H₁₅₉₆N₂₇₂O₃₃₇S₆

トレメリムマブは、ヒト細胞傷害性 T リンパ球抗原-4 (CTLA-4) に対する遺伝子組換えヒト IgG2 モノクローナル抗体である。トレメリムマブは、マウスミエローマ(NS0)細胞により産生される。トレメリムマブは、451 個のアミノ酸残基からなる H 鎖($\gamma2$ 鎖)2 本及び 214 個のアミノ酸残基からなる L 鎖(κ 鎖)2 本で構成される糖タンパク質(分子量:約 149,000)である。

Tremelimumab is a recombinant human IgG2 monoclonal antibody against human cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4). Tremelimumab is produced in mouse myeloma (NS0) cells. Tremelimumab is a glycoprotein (molecular weight: ca. 149,000) composed of 2 H-chains (γ 2-chains) consisting of 451 amino acid residues each and 2 L-chains (κ -chains) consisting of 214 amino acid residues each.

登録番号 27-1-B1

JAN (日本名):ロモソズマブ (遺伝子組換え)

JAN (英名): Romosozumab (Genetical Recombination)

アミノ酸配列及び主なジスルフィド結合:

L鎖

DIQMTQSPSS LSASVGDRVT ITCRASQDIS NYLNWYQQKP GKAPKLLIYY
TSRLLSGVPS RFSGSGSGTD FTLTISSLQP EDFATYYCQQ GDTLPYTFGG
GTKVEIKRTV AAPSVFIFPP SDEQLKSGTA SVVCLLNNFY PREAKVQWKV
DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG
LSSPVTKSFN RGEC

Η鎖

EVQLVQSGAE VKKPGASVKV SCKASGYTFT DYNMHWVRQA PGQGLEWMGE INPNSGGAGY NQKFKGRVTM TTDTSTSTAY MELRSLRSDD TAVYYCARLG YDDIYDDWYF DVWGQGTTVT VSSASTKGPS VFPLAPCSRS TSESTAALGC LVKDYFPEPV TVSWNSGALT SGVHTFPAVL QSSGLYSLSS VVTVPSSNFG TQTYTCNVDH KPSNTKVDKT VERKCCVECP PCPAPPVAGP SVFLFPPKPK DTLMISRTPE VTCVVVDVSH EDPEVQFNWY VDGVEVHNAK TKPREEQFNS TFRVVSVLTV VHQDWLNGKE YKCKVSNKGL PAPIEKTISK TKGQPREPQV YTLPPSREEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPML DSDGSFFLYS KLTVDKSRWO QGNVFSCSVM HEALHNHYTO KSLSLSPGK

H 鎖 E1: 部分的ピログルタミン酸; H 鎖 N299: 糖鎖結合; H 鎖 K449: 部分的プロセシング L 鎖 C23 – L 鎖 C88, L 鎖 C134 – L 鎖 C194, H 鎖 C22 – H 鎖 C96, H 鎖 C150 – H 鎖 C206, H 鎖 C263 – H 鎖 C323, H 鎖 C369 – H 鎖 C427: 鎖内ジスルフィド結合; L 鎖 C214 – H 鎖 C225, H 鎖 C137 – H 鎖 C226, H 鎖 C229 – H 鎖 C229, H 鎖 C232 – H 鎖 C232: 鎖間ジスルフィド結合

L 鎖 C23 – L 鎖 C88, L 鎖 C134 – L 鎖 C194, H 鎖 C22 – H 鎖 C96, H 鎖 C150 – H 鎖 C206, H 鎖 C229 – H 鎖 C232, H 鎖 C263 – H 鎖 C323, H 鎖 C369 – H 鎖 C427: 鎖内ジスルフィド結合; L 鎖 C214 – H 鎖 C225, H 鎖 C137 – H 鎖 C226: 鎖間ジスルフィド結合

主な糖鎖の推定構造:

 $C_{6452}H_{9926}N_{1714}O_{2040}S_{54}$ (タンパク質部分, 4本鎖)

H鎖 C₂₁₉₅H₃₃₇₆N₅₈₂O₆₈₃S₂₁

L鎖 C₁₀₃₁H₁₆₀₅N₂₇₅O₃₃₇S₆

ロモソズマブは、遺伝子組換えヒト化モノクローナル抗体であり、マウス抗ヒトスクレロスチン抗体の相補性決定部、並びにヒト IgG2 のフレームワーク部及び定常部からなる。ロモソズマブは、チャイニーズハムスター卵巣細胞により産生される。ロモソズマブは、449 個のアミノ酸残基からなる H 鎖($\gamma2$ 鎖)2 本及び 214 個のアミノ酸残基からなる L 鎖(κ 鎖)2 本で構成される糖タンパク質(分子量:約 149,000)である。

Romosozumab is a recombinant humanized monoclonal antibody composed of complementarity-determining regions derived from mouse anti-human sclerostin monoclonal antibody and framework regions and constant regions derived from human IgG2. Romosozumab is produced in Chinese hamster ovary cells. Romosozumab is a glycoprotein (molecular weight: ca. 149,000) composed of 2 H-chains (γ 2-chains) consisting of 449 amino acid residues each and 2 L-chains (κ -chains) consisting of 214 amino acid residues each.

登録番号 27-1-B11

JAN (日本名):トラロキヌマブ (遺伝子組換え)

JAN (英名): Tralokinumab (Genetical Recombination)

アミノ酸配列及びジスルフィド結合:

L鎖

SYVLTQPPSV SVAPGKTARI TCGGNIIGSK LVHWYQQKPG QAPVLVIYDD GDRPSGIPER FSGSNSGNTA TLTISRVEAG DEADYYCQVW DTGSDPVVFG GGTKLTVLGQ PKAAPSVTLF PPSSEELQAN KATLVCLISD FYPGAVTVAW KADSSPVKAG VETTTPSKQS NNKYAASSYL SLTPEQWKSH RSYSCQVTHE GSTVEKTVAP TECS

H鎖

QVQLVQSGAE VKKPGASVKV SCKASGYTFT NYGLSWVRQA PGQGLEWMGW ISANNGDTNY GQEFQGRVTM TTDTSTSTAY MELRSLRSDD TAVYYCARDS SSSWARWFFD LWGRGTLVTV SSASTKGPSV FPLAPCSRST SESTAALGCL VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVPSSSLGT KTYTCNVDHK PSNTKVDKRV ESKYGPPCPS CPAPEFLGGP SVFLFPPKPK DTLMISRTPE VTCVVVDVSQ EDPEVQFNWY VDGVEVHNAK TKPREEQFNS TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV YTLPPSQEEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGK

H鎖 Q1: ピログルタミン酸; H鎖 N299: 糖鎖結合; H鎖 K449:部分的プロセシング L鎖 C 213 – H鎖 C136, H鎖 C228 – H鎖 C228, H鎖 C231 – H鎖 C231: ジスルフィド結合

主な糖鎖の推定構造:

$$\mathsf{Gal}_{0\text{-}2} \left\{ \begin{array}{l} \mathsf{Fuc}(\alpha 1\text{-}6) \\ \mathsf{I} \\ \mathsf{Man}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}2)\mathsf{Man}(\alpha 1\text{-}6) \\ \mathsf{Man}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}4)\mathsf{GlcNAc} \\ (\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}2)\mathsf{Man}(\alpha 1\text{-}3) \end{array} \right.$$

C6386H9838N1702O2016S44 (タンパク質部分, 4本鎖)

H鎖 C₂₁₉₃H₃₃₇₈N₅₈₄O₆₈₄S₁₇

L鎖 C₁₀₀₀H₁₅₅₇N₂₆₇O₃₂₄S₅

トラロキヌマブは、ヒトインターロイキン-13 に対する遺伝子組換えヒト IgG4 モノクローナル抗体である。トラロキヌマブは、マウスミエローマ(NSO)細胞により産生される。トラロキヌマブは、449 個のアミノ酸残基からなる H 鎖($\gamma4$ 鎖)2 本及び 214 個のアミノ酸残基からなる L 鎖(λ 鎖)2 本で構成される糖タンパク質(分子量:約 147,000)である。

Tralokinumab is a recombinant human IgG4 monoclonal antibody against human interleukin-13. Tralokinumab is produced in mouse myeloma (NS0) cells. Tralokinumab is a glycoprotein (molecular weight: ca. 147,000) composed of 2 H-chains (γ 4-chains) consisting of 449 amino acid residues each and 2 L-chains (λ -chains) consisting of 214 amino acid residues each.

登録番号 27-2-B1

JAN (日本名):サリルマブ(遺伝子組換え)

JAN (英 名): Sarilumab (Genetical Recombination)

アミノ酸配列及びジスルフィド結合:

L鎖

DIQMTQSPSS VSASVGDRVT ITCRASQGIS SWLAWYQQKP GKAPKLLIYG
ASSLESGVPS RFSGSGSGTD FTLTISSLQP EDFASYYCQQ ANSFPYTFGQ
GTKLEIKRTV AAPSVFIFPP SDEQLKSGTA SVVCLLNNFY PREAKVQWKV
DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG
LSSPVTKSFN RGEC

H鎖

EVQLVESGGG LVQPGRSLRL SCAASRFTFD DYAMHWVRQA PGKGLEWVSG
ISWNSGRIGY ADSVKGRFTI SRDNAENSLF LQMNGLRAED TALYYCAKGR

DSFDIWGQGT MVTVSSASTK GPSVFPLAPS SKSTSGGTAA LGCLVKDYFP
EPVTVSWNSG ALTSGVHTFP AVLQSSGLYS LSSVVTVPSS SLGTQTYICN

VNHKPSNTKV DKKVEPKSCD KTHTCPPCPA PELLGGPSVF LFPPKPKDTL

MISRTPEVTC VVVDVSHEDP EVKFNWYVDG VEVHNAKTKP REEQYNSTYR

VVSVLTVLHQ DWLNGKEYKC KVSNKALPAP IEKTISKAKG QPREPQVYTL

PPSRDELTKN QVSLTCLVKG FYPSDIAVEW ESNGQPENNY KTTPPVLDSD

GSFFLYSKLT VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPGK

H 鎖 N296: 糖鎖結合; H 鎖 K446: 部分的プロセシング L 鎖 C214 – H 鎖 C219, H 鎖 C225 – H 鎖 C225, H 鎖 C228 – H 鎖 C228: ジスルフィド結合

主な糖鎖の推定構造:

$$\mathsf{Gal}_{0\text{-}2} \left\{ \begin{array}{l} \mathsf{Fuc}(\alpha 1\text{-}6) \\ \mathsf{I} \\ \mathsf{Man}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}2)\mathsf{Man}(\alpha 1\text{-}6) \\ \mathsf{Man}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}4)\mathsf{GlcNAc}(\beta 1\text{-}2)\mathsf{Man}(\alpha 1\text{-}3) \end{array} \right.$$

 $C_{6388}H_{9886}N_{1718}O_{1998}S_{44}$ (タンパク質部分, 4本鎖)

H鎖 $C_{2172}H_{3366}N_{586}O_{665}S_{16}$

L鎖 C₁₀₂₂H₁₅₈₁N₂₇₃O₃₃₄S₆

サリルマブは、ヒトインターロイキン-6 受容体の α サブユニットに対する遺伝子組換えヒト IgG1 モノクローナル抗体である。サリルマブは、チャイニーズハムスター卵巣細胞により産生される。サリルマブは、446 個のアミノ酸残基からなる H 鎖 $(\gamma 1$ 鎖) 2 本及び 214 個のアミノ酸残基からなる L 鎖 $(\kappa$ 鎖) 2 本で構成される糖タンパク質(分子量:約 150,000)である。

Sarilumab is a recombinant human IgG1 monoclonal antibody against human interleukin-6 receptor α subunit. Sarilumab is produced in Chinese hamster ovary cells. Sarilumab is a glycoprotein (molecular weight: ca. 150,000) composed of 2 H-chains (γ 1-chains) consisting of 446 amino acid residues each and 2 L-chains (κ -chains) consisting of 214 amino acid residues each.

登録番号 27-3-B9

JAN(日本名): ビベグロン JAN(英 名): Vibegron

 $C_{26}H_{28}N_{4}O_{3} \\$

(6*S*)-*N*-[4-({(2*S*,5*R*)-5-[(*R*)-ヒドロキシ(フェニル)メチル]ピロリジン-2-イル}メチル)フェニル]-4-オキソ-4,6,7,8-テトラヒドロピロロ[1,2-*a*]ピリミジン-6-カルボキサミド

(6S)-N-[4-($\{(2S,5R)$ -5-[(R)-Hydroxy(phenyl)methyl]pyrrolidin-2-yl $\}$ methyl)phenyl]-4-oxo-4,6,7,8-tetrahydropyrrolo[1,2-a]pyrimidine-6-carboxamide

登録番号 27-4-B5

JAN (日本名): テデュグルチド (遺伝子組換え)

JAN (英名): Teduglutide (Genetical Recombination)

アミノ酸配列:

HGDGSFSDEM NTILDNLAAR DFINWLIQTK ITD

$C_{164}H_{252}N_{44}O_{55}S \\$

テデュグルチドは、遺伝子組換えヒトグルカゴン様ペプチド-2 (GLP-2) 類縁体であり、2番目の Ala が Gly に置換されている. テデュグルチドは、33個のアミノ酸残基からなるペプチドである.

Teduglutide is a recombinant human glucagon like peptide-2 (GLP-2) analog in which Ala at position 2 is substituted by Gly. Teduglutide is a peptide consisting of 33 amino acid residues.

薬生薬審発 1118 第 1 号 令 和 4 年 11 月 18 日

各都道府県衛生主管部(局)長 殿

厚生労働省医薬・生活衛生局医薬品審査管理課長 (公 印 省 略)

医薬品の一般的名称について

標記については、「医薬品の一般的名称の取扱いについて(平成 18 年 3 月 31 日薬食発第 0331001 号厚生労働省医薬食品局長通知)」等により取り扱っているところです。今般、我が国における医薬品の一般的名称(以下「JAN」という。)について、新たに別添 1 のとおり定めたので、御了知の上、貴管下関係業者に周知方よろしく御配慮願います。

また、「医薬品の一般的名称について」(平成28年7月5日薬生薬審発0705第3号厚生労働省医薬・生活衛生局医薬品審査管理課長通知及び令和4年4月18日薬生薬審発0418第1号厚生労働省医薬・生活衛生局医薬品審査管理課長通知)の別添中の記載内容について、別添2のとおり訂正するので併せて御留意願います。

(参照)

「日本医薬品一般的名称データベース」https://jpdb.nihs.go.jp/jan/Default.aspx (別添の情報のうち、JAN 以外の最新の情報は、当該データベースの情報で対応する こととしています。) (別表2) INN に収載された品目の我が国における医薬品一般的名称

(平成18年3月31日薬食審査発第0331001号厚生労働省医薬食品局審査管理課長通知に示す別表2)

登録番号 303-6-B6

JAN (日本名):ネタルスジルメシル酸塩

JAN(英 名): Netarsudil Mesilate

 $C_{28}H_{27}N_3O_3 \cdot 2CH_4O_3S$

2,4-ジメチル安息香酸 $\{4-[(2S)-3-T ミノ-1-(イソキノリン-6-イルアミノ)-1-オキソプロパン-2-イル]$ フェニル $\}$ メチル ニメタンスルホン酸塩

 $\label{eq:continuous} $$ \{4-[(2S)-3-Amino-1-(isoquinolin-6-ylamino)-1-oxopropan-2-yl]phenyl} methyl \ 2, 4-dimethylbenzoate dimethanesulfonate$

登録番号 304-1-B3

JAN (日本名):アンセラミマブ(遺伝子組換え)

JAN (英名): Anselamimab (Genetical Recombination)

アミノ酸配列及びジスルフィド結合

H鎖

L鎖

QVQLKESGPG	LVAPSQSLSI	TCTVSGFSLS	SYGVSWVRQP	PGKGLEWLGV	50
IWGDGSTNYH	PNLMSRLSIS	KDISKSQVLF	KLNSLQTDDT	ATYYCVTLDY	100
WGQGTSVTVS	SASTKGPSVF	PLAPSSKSTS	GGTAALGCLV	KDYFPEPVTV	150
SWNSGALTSG	VHTFPAVLQS	SGLYSLSSVV	TVPSSSLGTQ	TYICNVNHKP	200
SNTKVDKRVE	PKSCDKTHTC	PPCPAPELLG	GPSVFLFPPK	PKDTLMISRT	250
PEVTCVVVDV	SHEDPEVKFN	WYVDGVEVHN	AKTKPREEQY	NSTYRVVSVL	300
TVLHQDWLNG	KEYKCKVSNK	ALPAPIEKTI	SKAKGQPREP	QVYTLPPSRE	350
EMTKNQVSLT	CLVKGFYPSD	IAVEWESNGQ	PENNYKTTPP	VLDSDGSFFL	400
YSKLTVDKSR	WQQGNVFSCS	VMHEALHNHY	TQKSLSLSPG	K	441
DVVMTQTPLS	LPVSLGDQAS	ISCRSSQSLV	HRNGNTYLHW	YLQKPGQSPK	50
LLIYKVSNRF	SGVPDRFSGS	GSGTDFTLKI	SRVEAEDLGL	 YFCFQTTYVP	100
NTFGGGTKLE	IKRTVAAPSV	FIFPPSDEQL	KSGTASVVCL	LNNFYPREAK	150
VQWKVDNALQ	SGNSQESVTE	QDSKDSTYSL	SSTLTLSKAD	YEKHKVYACE	200
VTHQGLSSPV	TKSFNRGEC				219

H鎖Q1:部分的ピログルタミン酸;H鎖N291:糖鎖結合;H鎖K441:部分的プロセシング H鎖C214-L鎖C219, H鎖C220-H鎖C220, H鎖C223-H鎖C223:ジスルフィド結合

主な糖鎖の推定構造

$$(\text{Gal}\beta\text{1-})_{0,1} \left\{ \begin{matrix} 4\text{GlcNAc}\beta\text{1-2Man}\alpha\text{1} & \text{Fuc}\alpha\text{1} \\ 6 & \text{6} \\ & \text{Man}\beta\text{1-4GlcNAc}\beta\text{1-4GlcNAc} \\ 4\text{GlcNAc}\beta\text{1-2Man}\alpha\text{1} \end{matrix} \right. \\ \begin{matrix} 3 \end{matrix}$$

C6424H9978N1706O1998S42 (タンパク質部分, 4本鎖)

H鎖 C₂₁₄₇H₃₃₃₅N₅₆₅O₆₆₂S₁₅

L鎖 C₁₀₆₅H₁₆₅₈N₂₈₈O₃₃₇S₆

アンセラミマブは、免疫グロブリン L 鎖から形成されたアミロイド線維に対する遺伝子組換えモノクローナル抗体であり、その可変部はマウス抗体に由来し、その他はヒト IgG1 に由来する。アンセラミマブは、CHO 細胞により産生される。アンセラミマブは、441 個のアミノ酸残基からなる H 鎖 $(\gamma 1$ 鎖) 2 本及び 219 個のアミノ酸残基からなる L 鎖 $(\kappa$ 鎖) 2 本で構成される糖タンパク質(分子量: 約 147,000)である。

Anselamimab is a recombinant monoclonal antibody against amyloid fibrils formed from immunoglobulin L-chains, whose variable regions are derived from mouse antibody and other regions are derived from human IgG1. Anselamimab is produced in CHO cells. Anselamimab is a glycoprotein (molecular weight: ca. 147,000) composed of 2 H-chains (γ 1-chains) consisting of 441 amino acid residues each and 2 L-chains (κ -chains) consisting of 219 amino acid residues each.

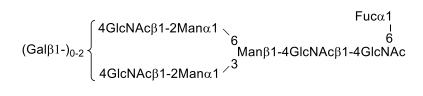
登録番号 304-2-B1

JAN (日本名) : デペモキマブ (遺伝子組換え)

JAN(英 名): Depemokimab (Genetical Recombination)

アミノ酸配列及びジスルフィド結合

Η鎖


QVTLRESGPA	LVKPTQTLTL	TCTVSGFSLT	GSSVHWVRQP	PGKGLEWLGV	50
IWASGGTDYN	SALMSRLSIS	KDTSRNQVVL	TMTNMDPVDT	ATYYCARDPP	100
SGLLRLDYWG	RGTLVTVSSA	STKGPSVFPL	APSSKSTSGG	TAALGCLVKD J	150
YFPEPVTVSW	NSGALTSGVH	TFPAVLQSSG	LYSLSSVVTV	PSSSLGTQTY	200
 ICNVNHKPSN	TKVDKRVEPK	SCDKTHTCPP	CPAPELLGGP	SVFLFPPKPK	250
DTLYITREPE	VTCVVVDVSH	EDPEVKFNWY	VDGVEVHNAK	TKPREEQYNS	300
TYRVVSVLTV	LHQDWLNGKE	YKCKVSNKAL	PAPIEKTISK	AKGQPREPQV	350
YTLPPSREEM	TKNQVSLTCL	VKGFYPSDIA	VEWESNGQPE	NNYKTTPPVL	400
DSDGSFFLYS	KLTVDKSRWQ	QGNVFSCSVM	HEALHNHYTQ	KSLSLSPGK	449

L鎖

DIVMTQSPDS	LAVSLGERAT	INCKSSQSLL	NSGNQKNYLA	WYQQKPGQPP	50
KLLIYGASTR	ESGVPDRFSG	SGSGTDFTLT	ISSLQAEDVA	VYYCQNVHSF	100
PFTFGGGTKL	EIKRTVAAPS	VFIFPPSDEQ	LKSGTASVVC L	LLNNFYPREA	150
KVQWKVDNAL	QSGNSQESVT	EQDSKDSTYS	LSSTLTLSKA	DYEKHKVYAC	200
EVTHQGLSSP	VTKSFNRGEC				220

H鎖Q1:部分的ピログルタミン酸; H鎖N299:糖鎖結合; H鎖K449:部分的プロセシング H鎖C222-L鎖C220, H鎖C228-H鎖C228, H鎖C231-H鎖C231:ジスルフィド結合

主な糖鎖の推定構造

C₆₄₇₄H₁₀₀₈₂N₁₇₃₄O₂₀₂₈S₄₄(タンパク質部分,4本鎖) H鎖 C₂₁₈₅H₃₄₀₉N₅₈₃O₆₇₁S₁₆ L鎖 C₁₀₅₂H₁₆₃₆N₂₈₄O₃₄₃S₆

デペモキマブは、遺伝子組換え抗インターロイキン-5 モノクローナル抗体であり、その相補性決定部はマウス抗体に由来し、その他はヒト IgG1 に由来する. H 鎖の 3 つのアミノ酸残基が置換(M254Y, S256T, T258E)されている. デペモキマブは、CHO 細胞により産生される. デペモキマブは、449 個のアミノ酸残基からなる H 鎖(γ 1 鎖)2 本及び 220 個のアミノ酸残基からなる L 鎖(κ 鎖)2 本で構成される糖タンパク質(分子量: 約 149,000)である.

Depemokimab is a recombinant anti-interleukin-5 monoclonal antibody whose complementarity-determining regions are derived from mouse antibody and other regions are derived from human IgG1. In the H-chain, the amino acid residues are substituted at 3 positions (M254Y, S256T, T258E). Depemokimab is produced in CHO cells. Depemokimab is a glycoprotein (molecular weight: ca.149,000) composed of 2 H-chains (γ1-chains) consisting of 449 amino acid residues each and 2 L-chains (κ-chains) consisting of 220 amino acid residues each.

平成28年7月5日薬生薬審発0705第3号厚生労働省医薬・生活衛生局医薬品審査管理課長通知の別添

正	誤
(別表 2)	(別表 2)
登録番号 27-1-B11	登録番号 27-1-B11
JAN (日本名):トラロキヌマブ (遺伝子組換え)	JAN(日本名):トラロキヌマブ(遺伝子組換え)
JAN (英名): Tralokinumab (Genetical Recombination)	JAN(英名):Tralokinumab (Genetical Recombination)
(m/z \	(m4r)
(略)	(略)
C ₆₃₈₆ H ₉₈₃₂ N ₁₇₀₀ O ₂₀₁₆ S ₄₄ (タンパク質部分,4本鎖)	C ₆₃₈₆ H ₉₈₃₈ N ₁₇₀₂ O ₂₀₁₆ S ₄₄ (タンパク質部分,4本鎖)
H 鎖 C ₂₁₉₃ H _{33<u>67</u>N₅₈₃O₆₈₄S₁₇}	H鎖 C ₂₁₉₃ H _{33<u>78</u>} N ₅₈₄ O ₆₈₄ S ₁₇
L鎖 C ₁₀₀₀ H ₁₅₅₃ N ₂₆₇ O ₃₂₄ S ₅	L 鎖 C ₁₀₀₀ H ₁₅₅₇ N ₂₆₇ O ₃₂₄ S ₅
(略)	(略)

(下線部変更)

正	誤
(別表 2)	(別表 2)
登録番号 303-3-B4	登録番号 303-3-B4
JAN(日本名):ボクロスポリン	JAN(日本名):ボクロスポリン
JAN(英 名): Voclosporin	JAN(英 名): Voclosporin
CH ₃ H ₃ C H	CH ₂ CH ₃ H ₃ C H

(構造式変更)

International Nonproprietary Names for Pharmaceutical Substances (INN)

RECOMMENDED International Nonproprietary Names: List 64

Notice is hereby given that, in accordance with paragraph 7 of the Procedure for the Selection of Recommended International Nonproprietary Names for Pharmaceutical Substances [Off. Rec. Wld Health Org., 1955, 60, 3 (Resolution EB15.R7); 1969, 173, 10 (Resolution EB43.R9); Resolution EB115.R4 (EB115/2005/REC/1)], the following names are selected as Recommended International Nonproprietary Names. The inclusion of a name in the lists of Recommended International Nonproprietary Names does not imply any recommendation of the use of the substance in medicine or pharmacy.

Lists of Proposed (1–101) and Recommended (1–62) International Nonproprietary Names can be found in *Cumulative List No. 13, 2009* (available in CD-ROM only).

Dénominations communes internationales des Substances pharmaceutiques (DCI)

Dénominations communes internationales RECOMMANDÉES: Liste 64

Il est notifié que, conformément aux dispositions du paragraphe 7 de la Procédure à suivre en vue du choix de Dénominations communes internationales recommandées pour les Substances pharmaceutiques [Actes off. Org. mond. Santé, 1955, 60, 3 (résolution EB15.R7); 1969, 173, 10 (résolution EB43.R9); résolution EB115.R4 (EB115/2005/REC/1)] les dénominations ci-dessous sont choisies par l'Organisation mondiale de la Santé en tant que dénominations communes internationales recommandées. L'inclusion d'une dénomination dans les listes de DCI recommandées n'implique aucune recommandation en vue de l'utilisation de la substance correspondante en médecine ou en pharmacie. On trouvera d'autres listes de Dénominations communes internationales proposées (1–101) et recommandées (1–62) dans

On trouvera d'autres listes de Denominations communes internationales proposées (1–101) et récommandées (1–62) dans la Liste récapitulative No. 13, 2009 (disponible sur CD-ROM seulement).

Denominaciones Comunes Internacionales para las Sustancias Farmacéuticas (DCI)

Denominaciones Comunes Internacionales RECOMENDADAS: Lista 64

De conformidad con lo que dispone el párrafo 7 del Procedimiento de Selección de Denominaciones Comunes Internacionales Recomendadas para las Sustancias Farmacéuticas [Act. Of. Mund. Salud, 1955, 60, 3 (Resolución EB15.R7); 1969, 173, 10 (Resolución EB43.R9); Résolution EB115.R4 (EB115/2005/REC/1) EB115.R4 (EB115/2005/REC/1)], se comunica por el presente anuncio que las denominaciones que a continuación se expresan han sido seleccionadas como Denominaciones Comunes Internacionales Recomendadas. La inclusión de una denominación en las listas de las Denominaciones Comunes Recomendadas no supone recomendación alguna en favor del empleo de la sustancia respectiva en medicina o en farmacia.

Las listas de Denominaciones Comunes Internacionales Propuestas (1–101) y Recomendadas (1–62) se encuentran reunidas en *Cumulative List No. 13, 2009* (disponible sólo en CD-ROM).

tralokinumabum

tralokinumah

IL-13)], Homo sapiens monoclonal antibody; gamma4 heavy chain (1-449) [Homo sapiens VH (IGHV1-18*01 (92.90%) -(IGHD)-IGHJ2*01) [8.8.15] (1-122) -IGHG4*01 (123-449)], (136-213')-disulfide with lambda light chain (1'-214') [Homo sapiens V-LAMBDA (IGLV3-21*03 (93.70%) -IGLJ2*01) [6.3.11] (1'-108') -IGLC2*01 (109'-214')]; (228-228":231-231")-bisdisulfide dimer

immunoglobulin G4-lambda, anti-[Homo sapiens IL13 (interleukin 13,

tralokinumab

immunoglobuline G4-lambda, anti-[Homo sapiens IL13 (interleukine 13, IL-13)], Homo sapiens anticorps monoclonal; chaîne lourde gamma4 (1-449) [Homo sapiens VH (IGHV1-18*01 (92.90%) -(IGHD)-IGHJ2*01) [8.8.15] (1-122) -IGHG4*01(123-449)], (136-213')-disulfure avec la chaîne légère lambda (1'-214') [Homo sapiens V-LAMBDA (IGLV3-21*03 (93.70%) -IGLJ2*01) [6.3.11] (1'-108') -IGLC2*01 (109'-214')]; dimère (228-228":231-231")bisdisulfure

tralokinumab

inmunoglobulina G4-lambda, anti-[IL13 (interleukina 13, IL-13) de Homo sapiens], anticuerpo monoclonal de Homo sapiens; cadena pesada gamma4 (1-449) [Homo sapiens VH (IGHV1-18*01 (92.90%) -(IGHD)-IGHJ2*01) [8.8.15] (1-122) -IGHG4*01(123-449)], (136-213')-disulfuro con la cadena ligera lambda (1'-214') [Homo sapiens V-LAMBDA (IGLV3-21*03 (93.70%) -IGLJ2*01) [6.3.11] (1'-108') -IGLC2*01 (109'-214')]; dímero (228-228":231-231")bisdisulfuro

Heavy chain / Chaîne lourde / Cadena pesada

```
OVOLVOSGAE VKKPGASVKV SCKASGYFFT NYGLSWVRQA PGQGLEWMGW 50
ISANNGDTNY GGEFQGRVTM TTDTSTSTAY MELRSLRSDD TAVYYCARDS 100
SSSWARWFFD LWGRGTLVTV SSASTKGPSV FPLAPCRST SESTALIGCI 150
VKDYFPEPVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVPSSSLGT 200
VADIFFEEVI VSWNSGALIS GVNIFFAVLQ SSGLISLSSV VIVESSLGI
KTYTCNVDHK PSNTKVDKRV ESKYGPPCPS CPAEBFLGGP SVFLFPPKPK
DTLMISRTPE VTCVVVDVSQ EDPEVQFNWY VDGVEVHNAK TKPREEQFNS
TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV
YTLPPSQEEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NYKFTPPVL
DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGK
```

Light chain / Chaîne légère / Cadena ligera

```
SYVLTOPPSS VANDERGETAR TGGMTIGSK LVHWYQQKPG QAPVLVIYDD 50
GDRPSGIPER FSGSNSGNTA TLTISRVEAG DEADYYCQVW DTGSDPVVFG 100
GGTKLTVLGQ PKAAPSVYLF PPSSEELQAN KATLVCLISD FYPGAVTVAW 150
KADSSPVKAG VETTTPSKQS NNKYAASSYL SLTPEQWKSH RSYSCQVTHE 200
GSTVEKTVAP TECS 214
```

Disulfide bridges location / Position des ponts disulfure / Posiciones de los puentes disulfuro Intra-H 22-96 149-205 263-323 369-427 22"-96" 149"-205" 263"-323" 369"-427"

22"-96" 149"-205" 26 Intra-L 22'-87" 136'-195' 22"-87" 136"-195" Inter-H-L 136-213' 136"-213" Inter-H-H 228-228" 231-231"

 $N\mbox{-glycosylation}$ sites / Sites de $N\mbox{-glycosylation}$ / Posiciones de $N\mbox{-glicosilación}$ 299, 299"

varlitinibum

varlitinib

 N^4 -{3-chloro-4-[(1,3-thiazol-2-yl)methoxy]phenyl}- N^6 -[(4R)-4-methyl-4,5-dihydro-1,3-oxazol-2-yl]quinazoline-4,6-diamine

varlitinib

 N^4 -{3-chloro-4-[(1,3-thiazol-2-yl)méthoxy]phényl}- N^6 -[(4R)-4-méthyl-4,5-dihydro-1,3-oxazol-2-yl]quinazoline-4,6-diamine

varlitinib

 N^4 -{3-cloro-4-[(1,3-tiazol-2-il)metoxi]fenil}- N^6 -[(4R)-4-metil-4,5-dihidro-1,3-oxazol-2-il]quinazolina-4,6-diamina

トラロキヌマブ(遺伝子組換え)

第1部(モジュール1)

申請書等行政情報及び添付文書に関する情報

1.10 毒薬・劇薬等の指定審査資料のまとめ

レオ ファーマ株式会社

1 毒薬・劇薬等の指定審査資料のまとめ

化学名• 別名	トラロキヌマブ(遺伝子組換え)
別名	トラロキヌマブは、ヒトインターロイキン-13 に対する遺伝子組換えヒト IgG4 モノクローナル抗体である。トラロキヌマブは、マウスミエローマ(NSO)細胞 により産生される。トラロキヌマブは、449 個のアミノ酸残基からなる H 鎖(γ4 鎖)2 本および214 個のアミノ酸残基からなる L 鎖(λ 鎖)2 本で構成される糖タ ンパク質(分子量:約 147,000)である。 アミノ酸配列及びジスルフィド結合: L 鎖 SYVLTOPPSV SVAPGKTARI TCGGNIIGSK LVHWYOOKPG QAPVLVIYDD GDRPSGIPER FSGSNSGNTA TITISRVEAG DEADYYCQVW DTGSDPVVFG GGTKLTVLGQ PKAAPSVTLF PPSSEELQAN KATLVCLISD FYPGAVTVAW KADSSPVKAG VETTTPSKQS NNKYAASSYL SLTPEQWKSH RSYSCQVTHE GSTVEKTVAP TECS H 鎖 QVOLVQSGAE VKKPGASVKV SCKASGYTFT NYGLSWVRQA PGQGLEWMGW ISANNGDTNY GQEFQGRVTM TTDTSTSTAY MELRSLRSDD TAVYYCARDS SSSWARWFFD LWGRGTLVTV SSASTKGPSV FPLAPCSRST SESTAALGCL VKDYFPEBVT VSWNSGALTS GVHTFPAVLQ SSGLYSLSSV VTVPSSSLGT KTYTCNVDHK PSNTKVDKRV ESKYGPPCPS CPAPEFIGGP SVFLFPPKPK DTLMISRTPE VTCVVVDVSQ EDPEVQFNWY VDGVVHNAK TKPREEQFNS TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV YTLPPSQEEM TRNQVSLTCL VKGFYPSDLIA VEWESNGQPE NNYKTTPPVL DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGK H 鎖 Q1: ピログルタミン酸: H 鎖 N299: 糖鏡結合: H 鎖 K449.紀分的プロセシング L 鎖 C 213 - H 鎖 C136, H 鎖 C228 - H 鎖 C228, H 鎖 C231 - H 鎖 C231: ジスルフィド結合 **Edwind Man(β1-4)GlcNAc(β1-2)Man(α1-3)** FUC(α1-6) Galo-2 (β1-4)GlcNAc(β1-2)Man(α1-3) **FUC(α1-6) Galo-2 (β1-4)GlcNAc(β1-2)Man(α1-3)
効能・効果	既存治療で効果不十分なアトピー性皮膚炎
用法・用量	通常、成人にはトラロキヌマブ(遺伝子組換え)として初回に 600mg を皮下投与し、その後は1回 300mg を2週間隔で皮下投与する。
劇薬等の 指定	

市販名及 び有効成	原体:トラロキヌマブ(遺伝子組換え)							
分・分量	製剤:1シリン	製剤:1シリンジ(1mL)にトラロキヌマブ(遺伝子組換え)150mg 含有						
	単回投与毒性	単回投与毒性(反復投与毒性試験の初回投与時に評価)						
	動物種							
	カニクイザル	静	脈内投与		> 100 mg/kg			
		皮	下投与		> 300 mg			
	 反復投与毒性							
毒性	動物種	投与期間	投与経路			無毒性量	主な所見	
	为77万1至	28 日間	100 7 111111		汉 7/11至		工. 4//1/10	
		13 週間	静脈内投与	10.20	, 100 mg/kg/週	100 mg/kg/週		
			野州四次子	10, 30	, 100 mg/kg/ <u>/</u> ll	100 mg/kg/ 🏸	2-1	
	カニクイザル	26 週間					なし	
		4週間	皮下投与	75, 15	0, 225 mg/週	225 mg/週]	
		13 週間	21121	75, 15	0,300 mg/週	300 mg/週		
). I nbv	II [7] = N#A = = A	EA 1 - 1 - NET. I.	⇒ N m/A → N m/A	
	アトピー性皮膚炎患者を対象とした国際共同試験2試験および国内試験1試験							
	で、トラロキヌマブ 300 mg が 2 週に 1 回投与された 1,141 例(日本人 176 例を含							
副作用	む)において、トラロキヌマブと関連性のある有害事象の発現頻度は、全投与期							
	間を通し,注	間を通し,注射部位反応(紅斑、疼痛、腫脹等)11.7%,上気道感染(上咽頭炎、						
	咽頭炎を含む	咽頭炎を含む) 7.9%、結膜炎 7.3%等であった。						
会社	レオ ファーマ	株式会社	製	剤:輔	 介入			

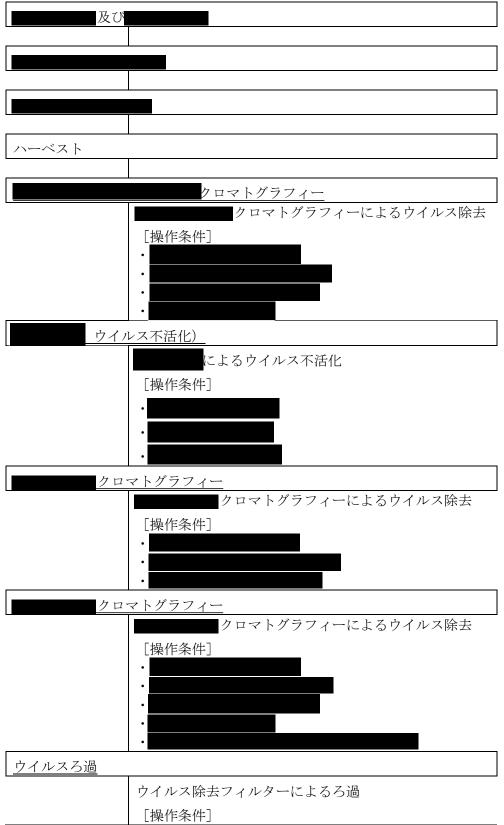
別紙様式1

生物由来製品又は特定生物由来製品の指定資料のまとめ

一般名:	トラロキヌマブ(遺伝子組換え)
販売名:	アドトラーザ皮下注150mgシリンジ
申請者:	レオファーマ株式会社
効能・効果:	既存治療で効果不十分なアトピー性皮膚炎
用法・用量:	通常、成人にはトラロキヌマブ(遺伝子組換え)として初回
	に 600mg を皮下投与し、その後は 1 回 300mg を 2 週間隔で
	皮下投与する.
生物由来原料等の使用の有無	■使用→ 使用している場合は以下の欄を記入
	□不使用
使用した生物由来原料等	□ヒト由来細胞・組織、□ヒト由来成分(血液、尿、その
	他)、■動物由来細胞・組織、■動物由来成分(血液、その
	他)
	原材料名;マウスミエローマ(NSO)細胞,ウシ血清アルブ
	ミン
生物由来原料等の使用目的	■宿主細胞、□培地添加物、□その他の製造原材料、□製剤
	添加物、■その他(マスターセルバンク(MCB)の調製)
原料等の由来となるヒト・動	別紙様式2参照
物のスクリーニング・管理の	
内容:	
生物由来原料等に対する不活	別紙1参照
化処理等の内容:	
ウイルスクリアランス試験結	別紙2参照
果の概要:	
製造工程の概要(フローチャ	別紙1参照
ート) :	
(不活化処理には下線を付	
し、処理条件を具体的に記	
載)	

別紙様式2

使用した生物由来原料等の名	マウスミエローマ (NS0) 細胞
称	
使用した生物由来原料等の分	□ヒト血液由来成分、□ヒト細胞組織、□ヒト尿由来成分、
類	□ヒト由来成分(血液、細胞組織又は尿を除くもの)、□反
	芻動物由来成分、■動物細胞組織、□動物由来成分、□その
	他 ()
生物由来原料等の使用目的	□有効成分、■宿主細胞、□培地添加物、□その他の製造原
	料等 () 、□製剤添加物、□その他 ()
生物由来原料等の由来となる	トラロキヌマブ(遺伝子組換え)の製造に使用する MCB 及
ヒト・動物のスクリーニン	びワーキングセルバンク(WCB)の特性は、関連する ICH
グ・管理の内容	ガイドラインに従って適切に評価されている.MCB はウシ
	血清アルブミンを含む培地を用いて調製したが、商用生産に
	使用される WCB はウシ血清アルブミンを含まない培地を用
	いて調製している.
	MCB 及び WCB は,細菌,菌類,マイコプラズマ,外来性感
	染性物質及び感染性レトロウイルスに汚染されていないこと
	を確認している.
生物由来原料等のウイルス等	該当なし
の不活化及び除去処理等の内	
容	
製造工程の概要(フローチャ	別紙1参照
ート)	
(不活化及び除去処理には下	
線を付し、条件を具体的に記	
載)	
ウイルスクリアランス試験結	別紙2参照
果の概要	


別紙様式2

使用した生物由来原料等の名 称	ウシ血清アルブミン
使用した生物由来原料等の分類	□ヒト血液由来成分、□ヒト細胞組織、□ヒト尿由来成分、 □ヒト由来成分(血液、細胞組織又は尿を除くもの)、■反
生物由来原料等の使用目的	□有効成分、□宿主細胞、□培地添加物、□その他の製造原料等()、□製剤添加物、■その他(MCBの調製)
生物由来原料等の由来となる ヒト・動物のスクリーニン グ・管理の内容	MCB の調製に用いたウシ血清アルブミン (200 年採取) は、米国の健康なウシの血液に由来したものである. 当該ウシ血清アルブミンは、「生物由来原料基準の規定を満たさないマスターセルバンクまたはマスターシードを使用した医薬品等の取扱いについて」(平成 21 年 3 月 27 日付け事務連絡)の基準を満たすことが確認されている.
生物由来原料等のウイルス等 の不活化及び除去処理等の内 容	該当なし
製造工程の概要(フローチャート) (不活化及び除去処理には下線を付し、条件を具体的に記載)	別紙 1 参照
ウイルスクリアランス試験結 果の概要	当該原料についてウイルスクリアランス試験は実施していない. ただし、別紙2に示すとおり、当該原料を使用したセルバンクを用いて製造した原薬の製造工程は適切にウイルスクリアランス能力を有すると考えられる.

別紙1

製造工程の概要(フローチャート)

ウイルス不活化及び除去処理を下線で示す.

	・「工程内管理試験」
試験及び保管	

別紙2

ウイルスクリアランス試験結果の概要

トラロキヌマブ(遺伝子組換え)の精製工程について、4種類のモデルウイルス [異種指向性マウス白血病ウイルス (XMuLV), 仮性狂犬病ウイルス (PRV), レオウイルス 3型 (Reo 3), マウスマイニュートウイルス (MVM)]を用いてウイルスクリアランス試験を実施した. 各工程のウイルスクリアランス指数 (LRV)及び総ウイルスクリアランス指数を下表に示す.

ウイルスクリアランス試験結果の概要(LRV ± 95% CI)

精製工程	X-MuLV	PRV	Reo-3	MVM
クロマトグラフィー	a	а		
ウイルス不活 化)。				
クロマトグラ イー	7			
クロマトグラ イー	7			c
ウイルスろ過				
総ウイルスクリアランス指	数 >14.49 ^d	> 18.71 ^d	> 11.20 ^d	> 12.07

LRV = 1	og10 reduction valu	e(ウイルスク	リアランス指数)	;	
a					_
b	,				
c					
d	ウイルス除去ろi	過工程について	,		
				いた場	合の

トラロキヌマブ(遺伝子組換え)

第1部(モジュール1) 申請書等行政情報及び添付文書に関する情報 1.12 添付資料一覧

レオ ファーマ株式会社

第3部(モジュール3):品質に関する文書

3.1 第3部 (モジュール3) 目次

該当せず

3.2.S 原薬 (トラロキヌマブ(遺伝子組換え),

)			
CTD番号/ 資料番号	表題	実施期間	実施場所	評価/
3.2.S.1 一般	设情報			
3.2.S.1.1	3.2.S.1.1 Nomenclature	_	海外	評価
3.2.S.1.2	3.2.S.1.2 Structure	_	海外	評価
3.2.S.1.3	3.2.S.1.3 General properties	_	海外	評価
3.2.S.2 製i	造			
3.2.S.2.1	3.2.S.2.1 Manufacturer(s)	_	海外	評価
3.2.S.2.2	3.2.S.2.2 Description of Manufacturing Process and Process Controls	_	海外	評価
3.2.S.2.3	3.2.S.2.3 Control of Materials	_	海外	評価
3.2.S.2.4	3.2.S.2.4 Controls of critical steps and intermediates	_	海外	評価
3.2.S.2.5	3.2.S.2.5.1 Process validation overview	_	海外	評価
3.2.S.2.5	3.2.S.2.5.2 Validation of the manufacturing process	_	海外	評価
3.2.S.2.5	3.2.S.2.5.3 Validation of process intermediate hold times	_	海外	評価
3.2.S.2.5	3.2.S.2.5.4 Resin sanitization and storage studies	_	海外	評価
3.2.S.2.5	3.2.S.2.5.5 Resin lifetime	_	海外	評価
3.2.S.2.5	3.2.S.2.5.6 UF/DF membrane lifetime	_	海外	評価
3.2.S.2.5	3.2.S.2.5.7 Filter validation	_	海外	評価
3.2.S.2.5	3.2.S.2.5.8 Drug substance shipping qualification studies	_	海外	評価
3.2.S.2.5	3.2.S.2.5.9 Validation of reprocessing	_	海外	評価
3.2.S.2.6	3.2.S.2.6.1 Introduction of manufacturing process development	_	海外	評価
3.2.S.2.6	3.2.S.2.6.2 Severity assessment and identification of Critical Quality Attributes (CQAs)	_	海外	評価
3.2.S.2.6	3.2.S.2.6.3.1-3 Manufacturing process history	_	海外	評価

3.2.S.2.6	3.2.S.2.6.3.4 Comparability analyses	_	海外	評価
3.2.S.2.6	3.2.S.2.6.4.1 Manufacturing process characterization	_	海外	評価
3.2.S.2.6	3.2.S.2.6.4.2 Process characterisation of unit operations	_	海外	評価
3.2.S.2.6	3.2.S.2.6.4.3 Summary of Critical Process Parameters	_	海外	評価
3.2.S.2.6	3.2.S.2.6.4.4 Leachables risk assessment	_	海外	評価
3.2.S.2.6	3.2.S.2.6.5 Commercial control strategy	_	海外	評価
3.2.S.2.6	3.2.S.2.6.5 Commercial control strategy, appendix	_	海外	評価
3.2.S.3 特1	· 生			
3.2.S.3.1	3.2.S.3.1.1 Elucidation of structure	_	海外	評価
3.2.S.3.1	3.2.S.3.1.2 Other characteristics	_	海外	評価
3.2.S.3.1	3.2.S.3.1.3 Method descriptions	_	海外	評価
3.2.S.3.2	3.2.S.3.2.1 Product-related impurities	_	海外	評価
3.2.S.3.2	3.2.S.3.2.2 Process-related impurities	_	海外	評価
3.2.S.4 原	薬の管理			
3.2.S.4.1	3.2.S.4.1 Specification	_	海外	評価
3.2.S.4.2	3.2.S.4.2.1 Overview of analytical procedures	_	海外	評価
3.2.S.4.2	3.2.S.4.2.2 Total protein	_	海外	評価
3.2.S.4.2	3.2.S.4.2.3 identity	_	海外	評価
3.2.S.4.2	3.2.S.4.2.4 Reduced and non-reduced CE-SDS	_	海外	評価
3.2.S.4.2	3.2.S.4.2.5 High performance size exclusion chromatography	ı	海外	評価
3.2.S.4.2	3.2.S.4.2.6 Capillary isoelectric focusing	_	海外	評価
3.2.S.4.2	3.2.S.4.2.7 Host cell proteins	_	海外	評価
3.2.S.4.2	3.2.S.4.2.8 Bioactivity assay	_	海外	評価
3.2.S.4.2	3.2.S.4.2.9 Endotoxin		海外	評価
3.2.S.4.2	3.2.S.4.2.10 Bioburden	_	海外	評価
3.2.S.4.2	3.2.S.4.2.11	_	海外	評価
3.2.S.4.2	3.2.S.4.2.12 Peptide mapping	_	海外	評価

3.2.S.4.3	3.2.S.4.3.1 Overview of validation of analytical procedures	_	海外	評価
3.2.S.4.3	3.2.S.4.3.2 Validation of total protein	_	海外	評価
3.2.S.4.3	3.2.S.4.3.3 Validation of identity	_	海外	評価
3.2.S.4.3	3.2.S.4.3.4 Validation of reduced and non-reduced CE-SDS	_	海外	評価
3.2.S.4.3	3.2.S.4.3.5 Validation of high performance size exclusion chromatography	_	海外	評価
3.2.S.4.3	3.2.S.4.3.6 Validation of capillary isoelectric focusing	_	海外	評価
3.2.S.4.3	3.2.S.4.3.7 Validation of host cell proteins		海外	評価
3.2.S.4.3	3.2.S.4.3.8 Validation of bioactivity assay	l	海外	評価
3.2.S.4.3	3.2.S.4.3.9 Qualification of endotoxin	ı	海外	評価
3.2.S.4.3	3.2.S.4.3.10 Qualification of bioburden	ı	海外	評価
3.2.S.4.3	3.2.S.4.3.11 Validation of	l	海外	評価
3.2.S.4.3	3.2.S.4.3.12 Validation of Peptide mapping	ı	海外	評価
3.2.S.4.4	3.2.S.4.4 Batch analyses, historical/developmental batches	1	海外	評価
3.2.S.4.5	3.2.S.4.5 Justification of specification	ı	海外	評価
3.2.S.5 標	準品又は標準物質			
3.2.S.5	3.2.S.5 Reference standards or materials	_	海外	評価
3.2.S.6 容	器及び施栓系			
3.2.S.6	3.2.S.6 Container closure system	_	海外	評価
3.2.S.6	3.2.S.6 Container closure system, appendices	ı	海外	評価
3.2.S.7 安	定性			
3.2.S.7.1	3.2.S.7.1 Stability Summary and Conclusion	_	海外	評価
3.2.S.7.2	3.2.S.7.2 Stability commitment	_	海外	評価
3.2.S.7.3	3.2.S.7.3.1 Stability data, overview	_	海外	評価
3.2.S.7.3	3.2.S.7.3.2 Stability data, commitment, lot , , , ,	_	海外	評価
3.2.S.7.3	3.2.S.7.3.3 Stability data, primary batch , lot	_	海外	評価
3.2.S.7.3	3.2.S.7.3.4 Stability data, primary batches , lot ,	_	海外	評価
3.2.S.7.3	3.2.S.7.3.5 Stability data, primary batch , lot	_	海外	評価

3.2.S.7.3	3.2.S.7.3.6 Stability data, primary batch , lot	_	海外	評価
-----------	---	---	----	----

3.2.P 製剤 (アドトラーザ皮下注150 mgシリンジ)

3.2.P 袋 CTD番号/ 資料番号	剤 (アトトラーザ及ト注150 mgンリンシ) 	実施期間	実施場所	評価/参考
	I 削及び処方			,
3.2.P.1	3.2.P.1 Description and composition of the drug product	_	海外	評価
3.2.P.2 製i	利開発の経緯			
3.2.P.2.1	3.2.P.2.1 Components of the drug product	_	海外	評価
3.2.P.2.2	3.2.P.2.2 Drug product	_	海外	評価
3.2.P.2.3	3.2.P.2.3.1-2 Introduction and Critical Quality Attributes		海外	評価
3.2.P.2.3	3.2.P.2.3.3.1-2 Manufacturing process history	_	海外	評価
3.2.P.2.3	3.2.P.2.3.3.3 Manufacturing process comparability		海外	評価
3.2.P.2.3	3.2.P.2.3.4 Manufacturing process characterisation		海外	評価
3.2.P.2.4	3.2.P.2.4 Container closure system	_	海外	評価
3.2.P.2.5	3.2.P.2.5 Microbiological attributes		海外	評価
3.2.P.2.6	3.2.P.2.6 Compatibility		海外	評価
3.2.P.3 製	<u></u> 告			
3.2.P.3.1	3.2.P.3.1 Manufacturer(s)	_	海外	評価
3.2.P.3.2	3.2.P.3.2 Batch formula	_	海外	評価
3.2.P.3.3	3.2.P.3.3 Manufacturing process and process controls	_	海外	評価
3.2.P.3.4	3.2.P.3.4 Control of critical steps and intermediates	_	海外	評価
3.2.P.3.5	3.2.P.3.5.1 Overall Strategy	_	海外	評価
3.2.P.3.5	3.2.P.3.5.2 Process validation of	_	海外	評価
3.2.P.3.5	3.2.P.3.5.3 Filling validation	_	海外	評価
3.2.P.3.5	3.2.P.3.5.4 Process validation assembly	_	海外	評価
3.2.P.3.5	3.2.P.3.5.5 Filter validation	_	海外	評価
3.2.P.3.5	3.2.P.3.5.5 Filter validation, appendices	_	海外	評価
3.2.P.3.5	3.2.P.3.5.6 Container Closure Integrity and Component Compatibility Operational Qualification	_	海外	評価

3.2.P.3.5	3.2.P.3.5.7 Media fills	_	海外	評価
3.2.P.4 添加	n剤の管理			
3.2.P.4	3.2.P.4 Control of excipients	_	海外	評価
3.2.P.5 製剤	判の管理			
3.2.P.5.1	3.2.P.5.1 Specification(s)	_	海外	評価
3.2.P.5.2	3.2.P.5.2.1 Overview of analytical procedures	-	海外	評価
3.2.P.5.2	3.2.P.5.2.2 Endotoxin		海外	評価
3.2.P.5.2	3.2.P.5.2.3 Sterility testing	ı	海外	評価
3.2.P.5.2	3.2.P.5.2.5 Container closure integrity testing	1	海外	評価
3.2.P.5.3	3.2.P.5.3.1 Overview of validation of analytical procedures		海外	評価
3.2.P.5.3	3.2.P.5.3.2 Endotoxin	-	海外	評価
3.2.P.5.3	3.2.P.5.3.3 Sterility testing	1	海外	評価
3.2.P.5.3	3.2.P.5.3.5 Validation of container closure integrity testing	-	海外	評価
3.2.P.5.3	3.2.P.5.3.6 Transfer of QC methods to	-	海外	評価
3.2.P.5.4	3.2.P.5.4. Batch analyses	1	海外	評価
3.2.P.5.5	3.2.P.5.5 Characterisation of impurities		海外	評価
3.2.P.5.6	3.2.P.5.6 Justification of specifications	_	海外	評価
3.2.P.6 標 ²	集品及び標準物質 			
3.2.P.6	3.2.P.6 Reference materials	_	海外	評価
3.2.P.7 容	器及び施栓系			
3.2.P.7	3.2.P.7 Container closure system	_	海外	評価
3.2.P.7	3.2.P.7 Container closure system, appendices	_	海外	評価
3.2.P.8 安定性				
3.2.P.8.1	3.2.P.8.1 Stability summary and conclusion	_	海外	評価
3.2.P.8.2	3.2.P.8.2 Stability commitment	_	海外	評価
3.2.P.8.3	3.2.P.8.3.1 Stability data, summary overview	_	海外	評価
3.2.P.8.3	3.2.P.8.3.2 Stabliity data, commitment lot,	_	海外	評価

3.2.P.8.3	3.2.P.8.3.3 Stability data, Primary batch, lot	_	海外	評価
3.2.P.8.3	3.2.P.8.3.4 Stability data, primary batches, lot,	_	海外	評価
3.2.P.8.3	3.2.P.8.3.5 Stability data, primary batch, lot	-	海外	評価
3.2.P.8.3	3.2.P.8.3.6 Stability data, primary batch, lot	_	海外	評価
3.2.P.8.3	3.2.P.8.3.7 Stability data, primary batch	_	海外	評価
3.2.P.8.3	3.2.P.8.3.8 Photostability study	-	海外	評価
3.2.P.8.3	3.2.P.8.3.9 Additional stability data, extractable and leachables	_	海外	評価
3.2.P.8.3	3.2.P.8.3.10 Thermal cycling	_	海外	評価

3.2.A その他

CTD番号/ 資料番号	表題	実施期間	実施場所	評価/参考
3.2.A.1 製法	造施設及び設備			
3.2.A.1	3.2.A.1.1 Facilities and equipment, DS facility	_	海外	評価
3.2.A.1	3.2.A.1.1 Attachment, Facility drawing, personnel, equipment and material flow, floor 1	_	海外	評価
3.2.A.1	3.2.A.1.1 Attachment, Facility drawing, personnel, equipment and material flow, floor 2	_	海外	評価
3.2.A.1	3.2.A.1.1 Attachment, Facility drawing, personnel, equipment and material flow, floor 3	_	海外	評価
3.2.A.1	3.2.A.1.1 Attachment, Facility drawing, personnel, equipment and material flow, floor 4	_	海外	評価
3.2.A.1	3.2.A.1.2 Facilities and equipment, DP facility	_	海外	評価
3.2.A.1	3.2.A.1.2 Production, QC & warehouse	_	海外	評価
3.2.A.1	3.2.A.1.2 Production, QC & warehouse	_	海外	評価
3.2.A.1	3.2.A.1.2 Personnel flow plan (drug product)	_	海外	評価
3.2.A.1	3.2.A.1.2 Raw material flow plan (drug product)	_	海外	評価
3.2.A.1	3.2.A.1.2 Waste flow plan (drug product)	_	海外	評価
3.2.A.1	3.2.A.1.2 Air handling unit plan (drug product)	_	海外	評価
3.2.A.1	3.2.A.1.2 Air pressurization plan (drug product)	_	海外	評価
3.2.A.1	3.2.A.1.2 Area classification plan (drug product)	_	海外	評価
3.2.A.1	3.2.A.1.3 Facilities and equipment, DP facility (Japan)	_	国内	評価

3.2.A.2 外表	3.2.A.2 外来性感染性物質の安全性評価			
3.2.A.2	3.2.A.2.1 Non-viral adventitious agents	ı	海外	評価
3.2.A.2	3.2.A.2.1 Non-viral adventitious agents, appendices	_	海外	評価
3.2.A.2	3.2.A.2.2 Endogenous and adventitious viral agents	_	海外	評価
3.2.A.2	3.2.A.2.2 Endogenous and adventitious viral agents, appendix	_	海外	評価
3.2.A.3 添加	3.2.A.3 添加剤			
3.2.A.3	3.2.A.3 Novel excipients		海外	評価

3.2.R 各極の要求資料

該当資料なし

3.3 参考文献 (著者アルファベット順)

資料番号	著者 表題 掲載誌など
1	List of Abbreviations
2	Aalberse RC Immunology 2002;105:9-19
3	Ahmadi M Pharm Res 2015;32(4): 1383-1394
4	Alegre ML J Immunol 1992;148:3461-3468
5	Angal S Mol Immunol 1993;30(1):105-108
6	Anumula KR J Immunol Methods 2012;382(1-2):167-176
7	Aronson JK Insulin Meyler's Side Effects of Endocrine and Metabolic Drugs 15th Editon 2006 1761-1783
8	Ashwell G Ann Rev Biochem 1982;51:531-554
9	Augener W Immunochemistry 1971;8(11):1011-1020
10	Bach J Biotechnol Bioeng 2015;112(4):743-750
11	Barouch DH J Virol 2003;77(16): 8729-8735
12	Barton C Am Chem Soc 2014;1176:69-98
13	Beck A Curr Pharm Biotechnol 2008;9:482-501
14	Boyd D J Chromatogr B 2011;879(13-14):955-960
15	Boyd PN Mol Immunol 1995;32(17-18): 1311-1318
16	Buongiorno AM J Endocrinol Invest 2008;31(6): 558-562
17	Burdick RK J Biopharm Stat 2013;23:730-743
18	Burnette WN Anal Biochem 1981;112(2):195-203
19	Burton DR Science 2007;317(5844):1507-1508
20	Cai B Biotechnol Bioeng 2011;108(2): 404-412
21	Cai K Biologicals 2019;58:28-34
22	Carlsson M Drug Saf 2019;42(6): 769-784
23	Champion K Bioprocess Int 2005;3(8):52-57
24	Chen Q PDA J Pharm Sci Technol 2014;68:17-22
25	Chon JH New Biotechnol 2011;28(5):458-463
26	Chumsae C J Chromatogr B 2007;850(1-2):285-294
27	Chung CH N Engl J Med 2008;358(11): 1109-1117
28	CMC Biotech Working Group A-Mab: Case Study in Bioprocess Development
29	Cohen SL J Am Chem Soc 2007;129(22):6976-6977
30	Coller HA Methods Enzymol 1986;121:412-417

31	Cordoba AJ J Chromatogr B 2005;818(2):115-121
32	Curtis S Biotechnol Bioeng 2003;84(2):179-186
33	Daftarian P Vaccine 2005;23(26): 3453-3468
34	Dakappagari NK J Biol Chem 2005;280(1): 54-63
35	Dam J Methods Enzymol 2004;384:185-212
36	Davies AM Immunol Rev 2015;268:139–159
37	Denton G Pept Res 1994;7(5):258-264
38	Dick LW Biotechnol Bioeng 2008;100(6):1132-1143
39	Dick LW Biotechnol Prog 2009;25(2):570-577
40	Dillon TM J Chromatogr A 2006;1120(1-2):112-120
41	Dishari SK Biotechnol Bioeng 2015;112(10):2115-2122
42	Dong A Biochemistry 1990;29(13):3303-3308
43	Duncan AR Nature 1988;332(6164): 563-564
44	EMA CPMP position statement on DNA and host cell proteins (HCP) impurities, routine testing versus validation studies 1997
45	Eon-Duval A Biotechnol Prog 2012;28(3): 608-622
46	FDA. Exubera US Package Insert. 2008
47	FDA Velosulin BR Draft Package insert 1999
48	Filipe V mAbs 2012;4(6): 740-752
49	Flynn GC Mol Immunol 2010;47(11-12): 2074-2082
50	Folzer E J Pharm Sci 2015;104(9):2824-2831
51	Gabrielson JP J Pharm Sci 2007;96(2):268-279
52	Galili U J Exp Med 1984;160(5): 1519-1531
53	Galili U Immunol Cell Biol 2005;83(6): 674-686
54	Gamst-Andersen H Acta Pharmacol Toxicol 1983;52(4): 261-267
55	Gandhi S Pharm Res 2012;29:209-224
56	Gao X J Pharm Sci 2015;104(2):368-377
57	Gaza-Bulseco G J Chromatogr B 2008;870(1):55-62
58	Gefroh E PDA J Pharm Sci Technol 2014;68:297-311
59	Gelman A Int Stat Rev 2003;31(2):369-382
60	Georgousakis MM Vaccine 2009;27(48): 6799-6806
61	Gilkeson GS J Immunol 1989;142:1482-1486
62	Goetze AM Glycobiology 2011;21(7): 949-959
63	Goetze AM Glycobiology 2012;22(2):221-234
64	Gomez MI Nat Med 2004;10(8): 842-848
65	Gutierrez AH Immunother 2012;8(9): 1172-1174
66	Hadfield JD J Stat Softw 2010;33(2):1-22
67	Harris RJ J Chromatogr A 1995;705(1): 129-134
68	Hermeling S J Pharm Sci 2006;95(5): 1084-1096
69	Hmiel LK Anal Bioanal Chem 2015;407:79-94
70	Hornick JL J Nucl Med 2000;41(2): 355-362
71	Hristodorov D Mol Biotechnol 2013;53:326-335
72	Huang L Anal Biochem 2006;349:197-207
73	Hughes-Jones NC Mol Immunol 1979;16(9):697-701
74	Ingerslev J Thromb Haemost 2002;87(4): 626-634
75	Ishizaka T J Immunol 1967;99(1):82-91
76	Jefferis R Arch Biochem Biophys 2012;526:159-166
77	Jefferis R Biotechnol 2005;21:11-16
78	Jiang C Biotechnol Prog 2011;27(2):442-450
79	Jiang G J Pharm Sci 2016;105:2066-2072
80	Jiang XR Nat Rev Drug Discov 2011;10(2): 101-111

81	Ju MS Curr Opin Biotechnol 2014;30: 128-139
82	Kanda Y Glycobiology 2007;17(1):104-118
83	Kelly SM Biochim Biophys Acta 2005;1751(2):119-139
84	Klinman DM J Immunol 1997;158:3635-3639
85	Kojima Y Vaccine 2002;20(23-24): 2857-2865
86	Koren E Curr Pharm Biotechnol 2002;3:349-360
87	Korotchkina LG Prog Mol Biol Transl Sci 2008;83:255-270
88	Krapp S J Mol Biol 2003;325:979-989
89	Labrijn AF Nat Biotechnol 2009;27(8): 767-771
90	LaCasse D BioProcess Int 2013;11(10):34-44
91	LaCasse D Biotechnol Prog 2016;32(4):959-970
92	Lammerts van Bueren JJ Nat Biotechnol 2011;29(7):574-576
93	Langone JJ Adv Immunol 1982;32:157-252
94	Leabman MK mAbs 2013;5(6):896-903
95	Lehr H Am J Respir Crit Care Med 2002;165(4):514-520
96	Limentani GB Anal Chem 2005;77(11):221A-226A
97	Liu H mAbs 2012;4(1):17-23
98	Liu H mAbs 2012,4(1).17-25 Liu H mAbs 2014;6(5):1145-1154
98	Liu J AAPPS J 2006;8(3):E580-E589
100	Liu YD Biologicals 2009;37(5):313-322
100	Luo Y mAbs 2009;1(5):491-504
	Lyubarskaya Y Anal Biochem 2006;348(1):24-39
102	Manning MC Pharm Res 2010;27(4):544-575
103	Miesegaes G Dev Biol (Basel) 2010;133:3-101
104	Miller AK J Pharm Sci 2011;100(7):2543-2550
105	Millward TA Biologicals 2008;36:41-47
106	Miró-Quesada G J Appl Stat 2004;31(3):251-270
107	Noguchi A Nephron 1996;72:599-603
108	O'Farrell PH J Biol Chem 1975;250(10):4007-4021
110	Pacis E Biotechnol Bioeng 2011;108(10):2348-2358
111	Padler-Karavani V Glycobiology 2008;18(10):818-830
111	Pan H Protein Sci 2009;18(2):424-433
113	Pavon JA Anal Chem 2019;91:2192-2200
113	Philo JS Curr Pharm Biotechnol 2009;10(4):348-351
114	Philo JS Curr Pharm Biotechnol 2009;10(4):359-372
116	Pisetsky DS Methods 1997;11(1):55-61
117	Prusiner SB N Engl J Med 2001;344(20):1516-1526
117	Qian J Anal Biochem 2007;364(1):8-18
119	Raju TS mAbs 2012;4(3):385-391
120	Reusch D Glycobiology 2015;25(12):1325-1334
121	Rosenberg AS AAPS J 2006;8(3):E501-E507
122	Scallon BJ Mol Immunol 2007;44:1524-1534
123	Schellekens H J Neurol 2004;251(2):II/4-II/9
123	Schenerman Chapter 4 Using a risk assessment process to determine criticality of product quality attributes in
124	Quality by Design for Biopharmaceuticals: Principles and Case Studies 2009 53-84
125	Schlapschy M Protein Eng Des Sel 2007;20(6):273-284
126	Schuurman J Immunology 1999;97(4):693-698
120	Schuurman J Mol Immunol 2001;38:1-8
127	Sheng L Biologicals 2008;36(3):184-197
128	Sheng-Fowler L Biologicals 2009;37(4):259-269
130	Sheng-Fowler L Int J Biol Sci 2010;6(2):151-162
130	Sheng-1 owler L life 3 Dioi 301 2010,0(2).131-102

131	Shepherd AJ Biologicals 2003;31(4):251-260
132	Shoda LKM J Leukoc Biol 2001;70(1):103-112
133	Siemiatkoski J Carbohydr Res 2006;341(3):410-419
134	Sortwell RJ Toxicol Lett 1981;9(1):81-85
135	Sreedhara A Mol Pharm 2013;10(1):278-288
136	Stan AC Eur J Immunol 2001;31:301-310
137	Stanley P Chapter 8 N-Glycans Essentials of Glycobiology 2009
138	Stockert RJ Physiol Rev 1995;75(3):591-609
139	Stracke J mAbs 2014;6(5):1229-1242
140	Tangvoranuntakul P Proc Natl Acad Sci USA 2003;100(21):12045-12050
141	Tous GI Anal Chem 2005;77(9):2675-2682
142	Tsubaki M Int J Biol Macromol 2013;52:139-147
143	Tsuchiya N J Rheumatol 1989;16(3):285-290
144	van Beers MMC J Immunol Methods 2010;352:32-37
145	van Beers MMC Pharm Res 2010;27:1812-1824
146	van Beers MMC Pharm Res 2011;28:2393-2402
147	van de Bovenkamp FS PNAS 2018;115(8):1901-1906
148	van der Neut Kolfschoten M Science 2007;317(5844):1554-1557
149	Varki A Nature 2007;446:1023-1029
150	Verfaillie T Vet Immunol Immunopathol 2005;103:141-151
151	Vidarsson G Front Immunol 2014;5:Article 520
152	Vlasak J mAbs 2011;3(3):253-263
153	Wada R mAbs 2019;11(2):350-372
154	Wakankar AA J Pharm Sci 2006;95(11):2321-2336
155	Walker M Curr Opin Drug Discov Devel 2010;13(1):124-135
156	Wang J Protein Pept Lett 2011;18:73-83
157	Wang W Int J Pharm 2012;431:1-11
158	Wang W J Pharm Sci 2007;96(1):1-26
159	Wang W Mol Immunol 2011;48(6-7):860-866
160	Wang X Biotechnol Bioeng 2012;109(2):307-317
161	Wawrzynczak EJ Biochem Soc Trans 1989;17:1061-1062
162	Wawrzynczak EJ Mol Immunol 1992;29(2):213-220
163	Webster R Xenobiotica 1999;29(11):1141-1155
164	Wei Z Anal Chem 2007;79(7):2797-2805
165	Wen D J Biol Chem 2009;284(47):32686-32694
166	WHO Acceptability of cell substrates for production of biologicals 1987
167	WHO Requirements for the use of animal cells as in vitro substrates for the production of biologicals (Addendum 2003) 2005
168	Willkommen H PDA J Pharm Sci Technol 2013;67:98-104
169	Wolter T Bioprocess Int 2005;3(2):40-46
170	Wright A Glycobiology 2000;10(12):1347-1355
171	Wright A J Exp Med 1994;180(3):1087-1096
172	Wuhrer M Proteomics 2007;7(22):4070-4081
173	Yan B J Biol Chem 2009;284(51):35390-35402
174	Yang J APPS J 2015;17(1):237-244
175	Yang J J Chromatogr A 2007;1156(1-2):174-182
176	Yu M mAbs 2012;4(4):475-487
177	Zhang Q J Biol Chem 2013;288(23):16371-16382
178	Zhou Q Biotechnol Bioeng 2008;99(3):652-665
176 177	Yu M mAbs 2012;4(4):475-487 Zhang Q J Biol Chem 2013;288(23):16371-16382

第4部(モジュール 4): 非臨床試験報告書

4.2 試験報告書

4.2.1 薬理試験

4.2.1.1 効力を裏付ける試験

4.2.1.1 効刀を割	文「リーノーの「日本国大			
資料番号 (試験番号)	表題 - すべて社内報	実施期間	実施場所 - すべて国外	評価/
4.2.1.1-1 (CAT354Rp006)	Isolation, optimisation and characterisation of BAK502G9 (CAT-354) Version 2	2001年1月 ~ 2003年1月	Cambridge Antibody Technology(英国)	評価
4.2.1.1-2 (CAT354Rp029)	CAT-354 neutralisation of IL-13-mediated IgE production from human B cells	2004年1月 ~ 2004年3月	Cambridge Antibody Technology(英国)	評価
4.2.1.1-3 (CAT354Rp034)	Investigation of the intravenous single-dose pharmacokinetics of CAT-354 in the ascaris suumsensitive cynomolgus monkey	2003年1月 ~ 2004年4月	(米国)	参考
4.2.1.1-4 (CAT354Rp037)	Investigation of the effect of CAT-354 in a human IL-13 stimulated mouse air pouch model of inflammation	2003年11月	Cambridge Antibody Technology(英国)	参考
4.2.1.1-5 (CAT354Rp038)	Investigation of the effect of CAT-354 on airways hyperresponsiveness in a cynomolgus monkey antigen challenge model	2004年2月 ~ 2004年5月	(米国)	参考
4.2.1.1-6 (CAT354Rp039)	Investigation of the effect of CAT-354 on IL-13 induced peripheral blood mononuclear cell CD23 expression	2003年5月 ~ 2004年4月	Cambridge Antibody Technology(英国)	評価
4.2.1.1-7 (CAT354Rp042)	Investigation of the effect of CAT-354 on the ability of IL-13, TNF- α and TGF- β 1 co-stimulated lung fibroblast media to induce eosinophil shape change	2004年2月 ~ 2004年6月	Cambridge Antibody Technology(英国)	評価
4.2.1.1-8 (CAT354Rp043)	Investigation of the effect of CAT-354 on the development of airways hyperresponsiveness induced by intratracheal administration of human IL-13 in the mouse	2004年	(米 国) / Cambridge Antibody Technology(英国)	参考
4.2.1.1-9 (RIA354-049)	Structural Characterization of the IL-13 Neutralizing Monoclonal Antibody Tralokinumab Reveals the Mechanism as Inhibition of Binding to both IL-13Rα1 and IL-13Rα2	不明	MedImmune(英国)	参考
4.2.1.1-10 (REP-HND-2019- 02)	Effect of tralokinumab on IL-13 induced inflammatory mediators in human epidermal keratinocytes	2019年10月	LEO Pharma A/S (デンマーク)	評価
4.2.1.1-11 (REP-HND-2019- 03)	Effect of tralokinumab on IL-13 driven modulation of skin barrier markers in human epidermal keratinocytes	2019年9月	LEO Pharma A/S (デンマーク)	評価
4.2.1.1-12 (REP-HND-2019- 04)	Effect of tralokinumab on IL-13 induced inflammatory mediators in human dermal fibroblasts	2019年11月	LEO Pharma A/S (デンマーク)	評価

4.2.1.2 副次的薬理試験

資料番号 (試験番号)	表題 - すべて社内報	実施期間	実施場所 - すべて国外	評価/参考
4.2.1.2 (CAT354Rp025)	Effects of CAT-354 on interleukin-13 induced potentiation of histamine induced Ca ²⁺ signalling in primary human bronchial smooth muscle cells	2004年1月 ~ 2004年3月	Cambridge Antibody Technology(英国)	評価

4.2.1.3 安全性薬理試験

該当資料なし

4.2.1.4 薬力学的薬物相互作用試験

該当資料なし

4.2.2 薬物動態試験

4.2.2.1 分析法及びバリデーション報告書

添付資料番号 (試験番号)	表題 - すべて社内報	実施期間	実施場所 - すべて国外	評価/
4.2.2.1-1 (1348/056)	Validation of a Method for the Detection of CAT- 354 in Primate serum samples Using Enzyme Linked Immunosorbant Assay (ELISA)	2003年12月 ~ 2004年10月	(英国)	評価
4.2.2.1-2 (1348/063)	Validation of a Method for the Detection of anti- CAT-354 in Cynomolgus (Primate) serum samples Using Enzyme Linked Immunosorbant Assay (ELISA)	2005年3月 ~ 2006年3月	(英国)	評価
4.2.2.1-3 (1348/077)	Validation of a Method for the Detection of Free CAT-354 in Primate serum samples Using Enzyme Linked Immunosorbant Assay (ELISA)	2006年5月 ~ 2007年7月	(英国)	評価
4.2.2.1-4 (V-IM-0022)	Validation of an Electrochemiluminescence Method for the Screening Detection of Monkey Anti-Human Antibodies to CAT-354 in Cynomolgus Monkey Serum	2012年3月	MedImmune(米国)	評価
4.2.2.1-5 (V-IM-0022)	Addendum #1 to Validation of an Electrochemiluminescence Method for the Screening Detection of Monkey Anti-human Antibodies to CAT-354 in Cynomolgus Monkey Serum	2015年5月	MedImmune(米国)	評価
4.2.2.1-6 (V-IM-0022)	Statistical Report for Validation Report V-IM-0022 Equivalence Evaluation of Screening Cut Point Factors for the MSD ECL Anti-CAT354 Antibody Assays for Cynomolgus Monkey Serum Validated at Different Sites at Medlmmune	2015年5月	MedImmune(米国)	評価
4.2.2.1-7 (V-IM-0036)	Validation of an Electrochemiluminescence Method for the Confirmation of Monkey Anti-human Antibody to CAT-354 in Normal Monkey Serum	2009年8月	MedImmune(米国)	評価
4.2.2.1-8 (101132/1)	Validation of a Gyrolab Assay for the Determination of CAT-354 in Primate Serum	2007年10月 ~ 2008年9月	(英国)	評価

4.2.2.1-9 (AR2173)	Method Validation Report for the Quantitative Determination of CAT-354 in Cynomolgus Monkey Serum Using an Enzyme Linked Immunosorbent Assay (ELISA)	2007年5月 ~ 2007年9月	(米国)	評価
4.2.2.1-10 (AR5966)	Method Validation Report for the Quantitative Determination of CAT-354 in Cynomolgus Monkey Serum Using an Enzyme Linked Immunosorbent Assay (ELISA)	2015年1月 ~ 2015年5月	(米国)	評価

4.2.2.2 吸収

該当資料なし

4.2.2.3 分布

該当資料なし

4.2.2.4 代謝

該当資料なし

4.2.2.5 排泄

該当資料なし

4.2.2.6 薬物動態学的薬物相互作用(非臨床)

該当資料なし

4.2.2.7 その他の薬物動態試験

該当資料なし

4.2.3 毒性試験

4.2.3.1 単回投与毒性試験

該当資料なし

4.2.3.2 反復投与毒性試験

添付資料番号 (試験番号)	表題 - すべて社内報	実施期間	実施場所 - すべて国外	評価/
4.2.3.2-1 (1348/053)	CAT-354: 28 Day (Once Weekly Dosing) Intravenous Administration Toxicity Study in the Monkey Followed by a 28 Day Recovery Period	2003年12月 ~ 2005年4月	(英国)	評価
4.2.3.2-2 (1348/058)	CAT-354: 13 Week (Once Weekly Dosing) Intravenous Administration Toxicity Study in the Monkey with a 13 Week Treatment-Free Period	2004年9月 ~ 2006年7月	(英国)	評価
4.2.3.2-3 (509615)	CAT-354: 26 Week Intravenous Toxicity Study in Cynomolgus Monkeys with a 13 Week Treatment-Free Period	2005年8月 ~ 2007年12月	(英国)	評価
4.2.3.2-4 (513066)	Toxicological Bridging Study for CAT-354 in Male Cynomolgus Monkeys Using Subcutaneous Administration	2007年7月 ~ 2008年5月	(英国)	評価
4.2.3.2-5 (514981)	CAT-354: 13 week toxicity study in the cynomolgus monkey with an 8 week recovery period following subcutaneous administration	2008年7月 ~ 2010年6月	(英国)	評価

4.2.3.3 遺伝毒性試験

該当資料なし

4.2.3.4 がん原性試験

該当資料なし

4.2.3.5 生殖発生毒性試験

4.2.3.5.1 受胎能及び着床までの初期胚発生に関する試験

添付資料番号 (試験番号)	表題 - すべて社内報	実施期間	実施場所 - すべて国外	評価/参考
4.2.3.5.1-1 (2843-005)	CAT-354: 13 week subcutaneous administration male fertility study in the cynomolgus monkey with a 13 week recovery phase	2011年6月 ~ 2012年10月	(ドイツ)	評価
4.2.3.5.1-2 (2843-005)	Amendment 1. CAT-354: 13 week subcutaneous administration male fertility study in the cynomolgus monkey with a 13 week recovery phase	2012年10月	(ドイツ)	評価
4.2.3.5.1-3 (2843-006)	CAT-354: A subcutaneous administration female fertility study in the cynomolgus monkey with a recovery phase	2011年9月 ~ 2013年5月	(ドイツ)	評価

4.2.3.5.2 胚・胎児発生に関する試験

添付資料番号 (試験番号)	表題 - すべて社内報	実施期間	実施場所 - すべて国外	評価/参考
4.2.3.5.2-1 (200.07)	A Pilot Embryo-Fetal Development Toxicity Study of CAT-354 Administered by Intravenous Injection to Pregnant Cynomolgus Monkeys	2006年10月 ~ 2007年12月	(米国)	評価
4.2.3.5.2-2	Amendment 1. A Pilot Embryo-Fetal Development Toxicity Study of CAT-354 Administered by Intravenous Injection to Pregnant Cynomolgus Monkeys	2011年5月	(米国)	評価

4.2.3.5.3 出生前及び出生後の発生並びに母体の機能に関する試験

4.2.0.0.0 田工市	リスの山土後の光土业のに日本の域形に国	プロルラス		
添付資料番号 (試験番号)	表題 - すべて社内報	実施期間	実施場所 - すべて国外	評価/ 参考
4.2.3.5.3-1 (200.15)	An Assessment of the Effects of CAT-354 on Pre- and Post- Natal Development When Administered Weekly by Intravenous Injection to Pregnant Cynomolgus Monkeys	2007年9月 ~ 2009年9月	(米国)	評価
4.2.3.5.3-2	Amendment 1. An Assessment of the Effects of CAT-354 on Pre- and Post- Natal Development When Administered Weekly by Intravenous Injection to Pregnant Cynomolgus Monkeys	2011年7月	(米国)	評価
4.2.3.5.3-3 (20054081)	Enhanced Pre-Postnatal Toxicity of CAT-354 Administered by Intravenous Infusion in Pregnant Cynomolgus Monkeys with 6-Month Postnatal Evaluation	2014年8月 ~ 2017年6月	(米国)	評価
4.2.3.5.3-4 (20054081)	Amendment 1. Enhanced Pre-Postnatal Toxicity of CAT-354 Administered by Intravenous Infusion in Pregnant Cynomolgus Monkeys with 6-Month Postnatal Evaluation	2017年6月	(米国)	評価

4.2.3.5.4 新生児を用いた試験

該当資料なし

4.2.3.6 局所刺激性試験

添付資料番号 (試験番号)	表題 - すべて社内報	実施期間	実施場所 - すべて国外	評価/ 参考
4.2.3.6 (513286)	Local Tolerance (Subcutaneous Injection) of CAT-354 in Rabbits	2007年6月 ~ 2008年5月	(英国)	評価

4.2.3.7 その他の毒性試験

4.2.3.7.1 抗原性試験

該当資料なし

4.2.3.7.2 免疫毒性試験

該当資料なし

4.2.3.7.3 毒性発現の機序に関する試験

該当資料なし

4.2.3.7.4 依存性試験

該当資料なし

4.2.3.7.5 代謝物の毒性試験

該当資料なし

4.2.3.7.6 不純物の毒性試験

該当資料なし

4.2.3.7.7 その他の試験

T.Z.O.1.1 C 07	3 0 0 11 0 13 0			
添付資料番号 (試験番号)	表題 - すべて社内報	実施期間	実施場所 - すべて国外	評価/ 参考
4.2.3.7.7-1 (報告書番号: eDoc-000739212)	Tralokinumab Nonclinical risk assessment Product Specific Assessment of Infection Risk Based on Mechanism of Action. Jan 2020	2020年1月	(ドイツ) LEO Pharma A/S(デン マーク)	評価
4.2.3.7.7-2 (報告書番号: eDoc-000738813)	Tralokinumab Nonclinical risk assessment Product Specific Assessment of Carcinogenic Potential	2020年1月	(ドイツ) LEO Pharma A/S(デンマーク)	評価
4.2.3.7.7-3 (001/02)	Cross reactivity screen of the immunoreactivity of twelve SCFV and one IgG4 (CAT-354) preparation (s) of human anti-IL13 antibody with a selection of normal human tissues	2002年8月 ~ 2002年10月	Cambridge Antibody Technology Ltd(英国)	評価
4.2.3.7.7-4 (530762)	CAT-354 - An immunohistochemical investigation of cross-reactivitiy in human tissues	2003年7月 ~ 2004年5月	(英国)	評価

4.3 参考文献 (著者アルファベット順. 邦文資料は英文資料に続く)

資料番号	著者 表題 掲載誌など		
1	Albanesi C et al. IL-4 and IL-13 negatively regulate TNF-alpha and IFN-gamma- Induced Beta-Defensin Expression through STAT-6, Suppressor of Cytokine Signaling (SOCS)-1, and SOCS-3. J Immunol 2007; 179:984-992		
2	Arima K et al. Upregulation of IL-13 concentration in vivo by the IL13 variant associated with bronchial asthma. J Allergy Clin Immunol. 2002; 109: 980-987		
3	Barnes KC et al. An update on the genetics of atopic dermatitis: scratching the surface in 2009. J Allergy Clin Immunol 2010;125(1):16-29		
4	Baverel PG et al. Pharmacokinetics of tralokinumab in adolescents with asthma: implications for future dosing. Br J Clin Pharmacol. 2015; 80: 1337-1349		
5	Berdyshev E et al. Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI Insight. 2018;3(4):e980062018		
6	Blast: Basic Local Alignment Search Tool [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. [cited 2018 Oct 12]. Available from: https://blast.ncbi.nlm.nih.gov/Blast.cgi		
7	Bochner BS et al. IL-13 Selectively Induces Vascular Cell Adhesion Molecule-1 Expression in Human Endothelial Cells. J immunol. 1995; 154: 799-803		
8	Braddock M et al. Potential Risks Related to Modulating Interleukin-13 and Interleukin-4 Signalling: A Systematic Review. Drug Saf. 2018;41(5): 489-509		
9	Brunner PM et al. The atopic dermatitis blood signature is characterized by increases in inflammatory and cardiovascular risk proteins. Sci Rep 2017;7:Article number: 8707		
10	Chellman GJ et al. Developmental and reproductive toxicology studies in nonhuman primates. Birth Defects Res (Part B). 2009;86(6):446-462		
11	Chen W et al. Functional effect of the R110Q IL13 genetic variant alone and in combination with IL4RA genetic variants. J Allergy Clin Immunol. 2004; 114: 553-560		
12	Chen W et al. IL-13 receptor a2 contributes to development of experimental allergic asthma. J Allergy Clin Immunol 2013;132(4):951-958		
13	Danso MO et al. TNF-alpha and Th2 Cytokines Induce Atopic Dermatitis- Like Features on Epidermal Differentiation Proteins and Stratum Corneum Lipids in Human Skin Equivalents. J Invest Dermatol. 2014; 134: 1941-1950		
14	Davies AM et al. Human IgG4: a structural perspective. Immunol Rev 2015;268:139-159		
15	Deleuran M et al. Dupilumab shows long-term safety and efficacy in patients with moderate to severe atopic dermatitis enrolled in a phase 3 open-label extension study. J Am Acad Dermatol. 2020; 82: 377–388		
16	DeSilva B et al, 2003. Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharmaceutical Research, Vol. 20, (11): 1885 – 1900		
17	Donaldson DD et al. The Murine IL-13 Receptor alpha2: Molecular Cloning, Characterization, and Comparison with Murine IL-13 Receptor alpha1. J Immunol 1998; 161:2317-2324		
18	European Medicines Agency (EMA). Scientific Advice, minutes dated 20 February 2014		
19	Ewald DA et al. Major differences between human atopic dermatitis and murine models, as determined by using global transcriptomic profiling. J Allergy Clin Immunol. 2017; 139: 562-571		
20	Fallon PG et al. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity. 2002 Jul;17(1):7-17.		
21	Fichtner-Feigl S et al. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med 2006;12(1):99-106		
	Finnish Medicines Agency (FIMEA). Scientific Advice, minutes from meeting 15 October 2012		

23	Fukuda K et al. Differential expression of thymus- and activation-regulated chemokine (CCL17) and macrophage-derived chemokine (CCL22) by human fibroblasts from cornea, skin, and lung. J Allergy Clin Immunol 2003;111(3):520-526
24	Gittler JK et al. Progressive activation of TH2/TH22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012; 130: 1344-1354
25	Graham MT et al. Lessons learned from mice and man: Mimicking human allergy through mouse models. Clinical Immunology. 2014; 155: 1-16
26	Graves PE et al. A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J Allergy Clin Immunol. 2000; 105: 506-513
27	Hamid Q et al. In vivo expression of IL-12 and IL-13 in atopic dermatitis. J Allergy Clin Immunol 1996; 98: 225-231
28	He CH et al. Chitinase 3-like 1 Regulates Cellular and Tissue Responses via IL-13 Receptor α2. Cell Rep. 2013; 4(4): 830-841
29	He JQ et al. Genetic variants of the IL13 and IL4 genes and atopic diseases in at-risk children. Genes Immun 2003;4(5):385-389
30	Health Canada. End of Phase 2 meeting minutes, dated 27 June 2014
31	Heinzmann A et al. Genetic variants of IL-13 signalling and human asthma and atopy. Human Molecular Genetics. 2000; 9(4): 549-559
32	Hershey GKK et al. IL-13 receptors and signaling pathways: An evolving web. J Allergy Clin Immunol. 2003; 111: 677-690
33	Hijnen D et al. CD8+ T Cells in the Lesional Skin of Atopic Dermatitis and Psoriasis Patients Are an Important Source of IFN-gamma, IL-13, IL-17, and IL-22. J Invest Dermatol 2013; 133: 973-979
34	Hoeck J et al. Activation of Eotaxin-3/CCL26 Gene Expression in Human Dermal Fibroblasts Is Mediated by STAT6. J Immunol 2001; 167:3216-3222
35	Hönzke S et al. Influence of Th2 Cytokines on the Cornified Envelope, Tight Junction Proteins, and Beta- Defensins in Filaggrin-Deficient Skin Equivalents. J Invest Dermatol 2016;136:631-639
36	Howard TD et al. Identification and Association of Polymorphisms in the Interleukin- 13Gene with Asthma and Atopy in a Dutch Population. Am J Respir Cell Mol Biol. 2001; 25: 377-384
37	Howell MD et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 2007;120(1):150-155
38	Hummelshoj T et al. Association between an interleukin-13 promoter polymorphism and atopy. Eur J Immunogenet. 2003; 30: 355-359
39	Jarvis P et al. The Cynomolgus Monkey as a Model for Developmental Toxicity Studies: Variability of Pregnancy losses, Statistical power estimates, and Group Size considerations. Birth Defects Research (part B). 2010; 89: 175-187
40	Kabashima K et al. Revisiting murine models for atopic dermatitis and psoriasis with multipolar cytokine axes. Current Opinion in Immunology. 2017; 48: 99-107
41	Kagami S et al. Interleukin-4 and interleukin-13 enhance CCL 26 production in a human keratinocyte cell line, HaCaT cells. Clin Exp Immunol. 2005 Sep;141(3):459-466
42	Kaplan MH et al. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity. 1996 Mar;4(3):313-319.
43	Kaur D et al. Mast cells express IL-13Ra1: IL-13 promotes human lung mast cell proliferation and FceRI expression. Allergy. 2006; 61: 1047-1053
44	Keizer RJ et al. Clinical Pharmacokinetics of Therapeutic Monoclonal Antibodies. Clin Pharmacokinet 2010; 49(8): 493-507
45	Kim BE et al. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. 2008;126:332-337
46	Kim BE et al. Significance of Skin Barrier Dysfunction in Atopic Dermatitis. Allergy Asthma Immunol Res. 2018; 10(3): 207-215
47	Kotowicz K et al. Biological activity of IL-4 and IL-13 on human endothelial cells: functional evidence that both cytokines act through the same receptor. Int immunol. 1996; 8(12): 1915-1925

48	La Grutta S et al. CD4+IL-13+ cells in peripheral blood well correlates with the severity of atopic dermatitis in children. Allergy. 2005; 60: 391-395
49	Lee E et al. Atopic dermatitis phenotype with early onset and high serum IL-13 is linked to the new development of bronchial hyperresponsiveness in school children. Allergy 2016; 71: 692-700
50	Lee GR et al. Transgenic mice which overproduce Th2 cytokines develop spontaneous atopic dermatitis and asthma. Int Immunol 2004;16(8):1155-1160
51	Liu X et al. An IL13 coding region variant is associated with a high total serum IgE level and atopic dermatitis in the German Multicenter Atopy Study (MAS-90). J Allergy Clin Immunol. 2000; 106: 167-170
52	Liu X et al. Associations between specific serum IgE response and 6 variants within the genes IL4, IL13, and IL4RA in German children: The German Multicenter Atopy Study. J Allergy Clin Immunol. 2004; 113: 489-495
53	Liu X et al. Associations between total serum IgE levels and the 6 potentially functional variants within the genes IL4, IL13, and IL4RA in German children: The German Multicenter Atopy Study. J Allergy Clin Immunol. 2003; 112: 382-388
54	Martel BC et al. Translational Animal Models of Atopic Dermatitis for Preclinical Studies. Yale Journal of Biology and Medicine. 2017; 90: 389-402
55	Martin PL et al. Considerations in Assessing the Development and Reproductive Toxicity Potential of Biopharmaceuticals. Birth Defects Res (Part B). 2009;86: 176-203
56	Mashiko S et al. Increased frequencies of basophils, type 2 innate lymphoid cells and Th2 cells in skin of patients with atopic dermatitis but not psoriasis. J Dermatol Sci 2017;88:167-174
57	Masuoka M et al. Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Invest 2012;122(7):2590-2600
58	McKenzie ANJ et al. Interleukin 13, aT-cell-derived cytokine that regulates human monocyte and B-cell function. Proc Natl Acad Sci USA. 1993; 90: 3735-3739
59	McKenzie GJ et al. Impaired development of Th2 cells in IL-13-deficient mice. Immunity. 1998;9(3):423-432.
60	McKenzie GJ et al. Simultaneous disruption of interleukin (IL)-4 and IL-13 defines individual roles in T helper cell type 2-mediated responses. J Exp Med. 1999 May 17;189(10):1565-1572.
61	Miller KJ et al, 2001. Workshop on bioanalytical methods validation for macromolecules: summary report. Pharmaceutical Research Vol. 18, (9): 1373 - 1383
62	Moriya C et al. Expression of Matrix Metalloproteinase-13 Is Controlled by IL-13 via PI3K/Akt3 and PKC-d in Normal Human Dermal Fibroblasts. J Invest Dermatol 2011;131:655-661
63	Nomura et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response Genes. J Immunol 2003;171:3262-3269
64	Novak N et al. Dichotomic nature of atopic dermatitis reflected by combined analysis of monocyte immunophenotyping and single nucleotide polymorphisms of the interleukin-4/interleukin-13 receptor gene: the dichotomy of extrinsic and intrinsic atopic dermatitis. J Invest Dermatol 2002;119(4):870-875
65	Omori-Miyake M et al. In vitro assessment of IL-4- or IL-13-mediated changes in the structural components of keratinocytes in mice and humans. J Invest Dermatol 2014;134(5):1342-1350
66	Ong PY et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002;347:1151-1160
67	Paternoster L et al. Multi-ethnic genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat Genet. 2015; 47(12): 1449-1456
68	Pellerin L et al. Defects of filaggrin-like proteins in both lesional and nonlesional atopic skin. J Allergy Clin Immunol 2013;131(4):1094-1102
69	Punnonen J et al. Interleukin 13 induces interleukin 4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc Natl Acad Sci USA. 1993; 90: 3730-3734
70	Punnonen J et al. The relative contribution of IL-4 and IL-13 to human IgE synthesis induced by activated CD4+ or CD8 + T cells. J Allergy Clin Immunol 1997;100:792-801

71	Purwar R et al. IL-13-stimulated human keratinocytes preferentially attract CD4+CCR4+ T cells: possible role in atopic dermatitis. J Invest Dermatol 2006;126(5):1043-1051
72	Purwar R et al. Modulation of keratinocyte-derived MMP-9 by IL-13: a possible role for the pathogenesis of epidermal inflammation. J Invest Dermatol 2008;128(1):59-66
73	Salimi M et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 2013;210 (13):2939-2950
74	Sehra S et al. IL-4 regulates skin homeostasis and the predisposition toward allergic skin inflammation. J Immunol 2010;184(6):3186-3190
75	Shin JW et al. Defective basement membrane in atopic dermatitis and possible role of IL-13. J Eur Acad Dermatol Venereol. 2015; 29(10):2051-2065
76	Simon D et al. The Interleukin-13 Production by Peripheral Blood T Cells from Atopic Dermatitis Patients Does Not Require CD2 Costimulation. Int Arch Allergy Immunol 2003;132:148-155
77	Sivaprasad U et al. IL-13Ralpha2 Has a Protective Role in a Mouse Model of Cutaneous Inflammation. J Immunol 2010; 185:6802-6808
78	Spanish Agency of Medicines and Medical Devices (AEMPS). Scientific Advice, minutes dated 31 October 2012
79	Suarez-Farinas M et al. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol. 2013;132(2):361-370
80	Tazawa T et al. Relative importance of IL-4 and IL-13 in lesional skin of atopic dermatitis. Arch Dermatol Res 2004;295(11):459-464
81	Terada N et al. Interleukin-13 and tumour necrosis factor-α synergistically induce eotaxin production in human nasal fibroblasts. Clin Exp Allergy 2000;30(3):348-355
82	Teraki Y et al. IL-13/IL-22-coproducing T cells, a novel subset, are increased in atopic dermatitis. J Allergy Clin Immunol. 2013; 132(4): 971-974
83	Tokura Y et al. Extrinsic and intrinsic types of atopic dermatitis. J Dermatol Sci. 2010; 58: 1-7
84	Tripp CS et al. RPC4046, A Novel Anti-interleukin-13 Antibody, Blocks IL-13 Binding to IL-13 a1 and a2 Receptors: A Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation First-in-Human Study. Adv Ther 2017;34:1364-1381
85	Tsoi et al. Atopic dermatitis is an IL-13 dominant disease with greater molecular heterogeneity compared to psoriasis. J Invest Dermatol. 2019 Jan 11; [Epub ahead of print]
86	US Food and Drug Administration (FDA), CDER. Comments to Pharmacology/Toxicology review, facsimile dated 12 August 2011
87	Van Der Pouw Kraan TCTM et al. An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes and immunity. 1999; 1: 61-65
88	Vargas HM et al. Scientific review and recommendations on preclinical cardiovascular safety evaluation of biologics. J Pharmacol Toxicol Methods. 2008; 58: 72-76
89	Viswanathan CT et al 2007. Quantitative Bioanalytical Methods Validation and Implementation: Best Practices for Chromatographic and Ligand Binding Assays. Pharmaceutical Research Vol. 24, (10): 1962 - 1973
90	Vladich FD et al. IL-13 R130Q, a common variant associated with allergy and asthma, enhances effector mechanisms essential for human allergic inflammation. J Clin Invest. 2005;115:747-754
91	Weidinger S et al. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Human Molecular Genetics. 2013; 22(23): 4841-4856
92	Wenzel SE et al. TGF-beta and IL-13 Synergistically Increase Eotaxin-1 Production in Human Airway Fibroblasts. J Immunol 2002;169:4613-4619
93	Wood N et al. Enhanced Interleukin (IL)-13 Responses in Mice Lacking IL-13 Receptor alpha-2. J exp med. 2003; 197(6): 703-709
94	Zheng T et al. IL-13 Receptor alpha2 Selectively Inhibits IL-13-Induced Responses in the Murine Lung. J Immunol 2008;180:522-529
95	Zheng T et al. Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J Invest Dermatol 2009;129(3):742-751
	remodeling. J Invest Dermatol 2009;129(3):742-751

96	Zitnik SE et al. IL13 variants are associated with total serum IgE and early sensitization to food allergens in children with atopic dermatitis. Pediatr Allergy Immunol. 2009; 20: 551-555
97	オマリズマブ添付文書. 2021年8月改訂(第3版) (https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/300242_2290400D1033_1_13)
98	デュピルマブ審査報告書. 2017年10月26日 (https://www.pmda.go.jp/drugs/2018/P20180129001/780069000_23000AMX00015_A100_1.pdf)
99	デュピルマブ添付文書. 2020年11月改訂(第 3 版) (https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/780069_4490405G1024_1_08)
100	メポリズマブ添付文書. 2020年3月改訂(第1版) (https://www.pmda.go.jp/PmdaSearch/iyakuDetail/ResultDataSetPDF/340278_2290401D1020_1_04)

第5部(モジュール5):臨床試験報告書

5.2 全臨床試験一覧表

資料番号	報告書の表題	著者	試験実施期間	試験実施場所	報種類	掲載紙・その他	評価/参考	申請電子データ 提出有無
5.2	JP Tabular listings of clinical trials Tralokinumab in moderate-to-severe atopic dermatitits	_	_	_	_	_	_	_

- 5.3 臨床試験報告書
- 5.3.1 生物薬剤学試験報告書
- 5.3.1.1 バイオアベイラビリティ(BA)試験報告書

該当資料なし

5.3.1.2 比較BA試験及び生物学的同等性(BE)試験報告書

該当資料なし

5.3.1.3 In Vitro-In Vivoの関連を検討した試験報告書

該当資料なし

5.3.1.4 生物学的及び理化学的分析法検討報告書

資料番号	報告書の表題	著者	試験実施期間	試験実施場所	報種類	掲載紙・その他	評価/ 参考	申請電子データ 提出有無
5.3.1.4-1	8451356 Report. Validation of an Immunoassay for Detection, Confirmation, and Titration of Anti-Tralokinumab Antibodies in Human Serum using the MesoScale Discovery (MSD) Platform	I	2020/10/26- 2021/1/26	英国	海外	ı	参考	無

1.12 添付資料一覧 トラロキヌマブ(遺伝子組換え)

5.3.1.4-2	8362751 Report. Partial Method Validation for the Determination of Tralokinumab in Human Serum using the Gyrolab Platform. 05 Jan 2018	_	2017/5/26- 2017/6/28	英国	海外	_	参考	無
5.3.1.4-3	8362751 Amended Report. Partial Method Validation for the Determination of Tralokinumab in Human Serum using the Gyrolab Platform. 18 Jan 2018	_	2017/5/6- 2017/6/28	英国	海外	_	参考	無
5.3.1.4-4	8362755 Amended Report 1. Assessment of Long Term Freezer Stability of Tralokinumab in Atopic Dermatitis Human Serum Using the Gyrolab Platform, March 2020	_	2018/1/31- 2020/6/30	英国	海外	_	参考	無
5.3.1.4-5	8382861 Report. Validation of an Immunoassay for Detection, Confirmation, and Titration of Anti-Tralokinumab Antibodies in Human Serum using the MesoScale Discovery (MSD) Platform. February 2019	_	2018/6/21- 2018/6/31	英国	海外	_	参考	無
5.3.1.4-6	8392107 Report. Validation of an Immunoassay for Detection of Neutralising Anti-Tralokinumab Antibodies in Human Serum, October 2019	_	2019/1/15- 2019/3/5	英国	海外	_	参考	無
5.3.1.4-7	8362753 Report. Validation of an Immunoassay for Detection, Confirmation and Titration of Anti-Tralokinumab Antibodies in Human Serum using the MesoScale Discovery (MSD) Platform. November 2018	_	2017/5/17- 2018/2/15	英国	海外	_	参考	無
5.3.1.4-8	Study 8295601 Validation of a method for the determination of Tralokinumab (CAT-354) in human serum on the Gyrolab Platform Dec 2014	_	2014/4/16- 2014/5/19	英国	海外	_	参考	無
5.3.1.4-9	Study 8361001 Partial Re-Validation of a Method for the Determination of Tralokinumab (CAT-354) in Human Serum on the Gyrolab Platform May 2018	_	2017/4/27- 2017/6/14	英国	海外	_	参考	無
5.3.1.4-10	Study 8298819 Report Validation of an Assay for Detection, Confirmation, and Titration of Anti-Tralokinumab Antibodies in Human Serum using the MesoScale Discovery (MSD) Platform Dec 2014	_	2014/6/19- 2014/7/18	英国	海外	_	参考	無
5.3.1.4-11	Study 2012-CAT354-0019 Partial validation of an electrochemiluminescence (ECL) immunoassay method for the detection of anti-tralokinumab antibodies in human serum June 2013	_	2012/11/22- 2012/11/28	英国	海外	_	参考	無
5.3.1.4-12	Study 2016-CAT354-0134 validation of an electrochemiluminescence (ecl) immunoassay method for the detection of neutralising anti-tralokinumab antibodies in human asthmatic serum Feb 2017	_	2016/10/27- 2016/12/1	英国	海外	_	参考	無

1.12 添付資料一覧

CONFIDENTIAL

トラロキヌマブ(遺伝子組換え)

5.3.1.4-13	Study CAT354Rp971 Partial validation of new reagents in the Gyrolab CAT-354 Quantitation assay in support of Clinical trial CAT-354-CP199 CAT354Rp971 Dec 2010	_	2010/2/10- 2010/2/17	米国	海外	-	参考	無
5.3.1.4-14	CAT354Rp615 Evaluation of Gyrolab CAT-354 Quantitation Assay for use in Clinical Studies July 2007	_	2007/6/28- 2007/7/3	米国	海外	I	参考	無
5.3.1.4-15	Study CAT354Rp777 Evaluation of new reagents in the Gyrolab CAT-354 quantitation assay in support of clinical trial CAT-354-0703 March 2009	_	2008/6/12- 2008/6/16	米国	海外	-	参考	無
5.3.1.4-16	Study 100911/2 Validation of a Gyrolab assay for the determination of CAT-354 in human serum Feb 2012	_	2008/2/26- 2008/8/29	英国	海外	-	参考	無
5.3.1.4-17	Validation information for Diphteria, Tetanus and H. Influenzae b (DTH) antibodies assays	_	_	米国	海外	_	参考	無
5.3.1.4-18	Validation information for Neisseria meningitidis Tetravalent (4 serogroups) antibodies assays	_	_	米国	海外	_	参考	無

5.3.2 ヒト生体資料を用いた薬物動態関連の試験報告書

5.3.2.1 血漿蛋白結合試験報告書

該当資料なし

5.3.2.2 肝代謝及び薬物相互作用試験書

該当資料なし

5.3.2.3 他のヒト生体試料を用いた試験報告書

該当資料なし

5.3.3 臨床薬物動態 (PK) 試験報告書

5.3.3.1 健康被験者におけるPK及び初期忍容性試験報告書

資料番号	報告書の表題	著者	試験実施期間	試験実施場所	報種類	掲載紙・その他	評価/	申請電子データ 提出有無
5.3.3.1-1	日本人健康男性および女性被験者にCAT-354を皮下投与したときの安全性,忍容性,薬物動態および免疫原性を評価する単施設,単盲検,無作為化,プラセボ対照,単回漸増投与,第1相試験 <mi-cp224></mi-cp224>	_	2010/3/19- 2010/7/27	米国	海外	_	評価	有
5.3.3.1-2	CAT-354を皮下および静脈内投与したときの薬物動態を評価する非盲検, 並行群間,バイオアベイラビリティ試験 <cat-354-0703></cat-354-0703>	ı	2008/4/11- 2008/6/11	米国	海外	-	評価	有
	健康被験者を対象としてトラロキヌマブ2 mL製剤を異なる注入速度で単回SC(皮下)投与したときの薬物動態および忍容性を評価する第1相試験 <d2210c00011></d2210c00011>	_	2014/3/19- 20	米国	海外	_	参考	無

5.3.3.2 患者におけるPK及び初期忍容性試験報告書

資料番号	報告書の表題	著者	試験実施期間	試験実施場所	報種類	掲載紙・その他	評価/	申請電子データ 提出有無
5.3.3.2-1	中等症喘息患者を対象に3用量のCAT-354を反復静脈内投与したときの薬物動態,安全性,および忍容性を評価する二重盲検,プラセボ対照試験 <cat-354-0602></cat-354-0602>	ı	20 1 1 1 - 2007/8/3	英国	海外	ı	参考	無
5.3.3.2-2	喘息を有する青年を対象としてトラロキヌマブの薬物動態(PK)を評価 する第1相非盲検試験 <cd-ri-cat-354-1054></cd-ri-cat-354-1054>	ı	20 / / - 20 / / /	ポーランド	海外	I	参考	無

1.12 添付資料一覧 CONFIDENTIAL

トラロキヌマブ (遺伝子組換え)

5.3.3.3 内因性要因を検討したPK試験報告書

該当資料なし

5.3.3.4 外因性要因を検討したPK試験報告書

該当資料なし

5.3.3.5 ポピュレーションPK試験報告書

資料番号	報告書の表題	著者	試験実施期間	試験実施場所	報種類	掲載紙・その他	評価/	申請電子データ 提出有無
5.3.3.5	Population PK analysis report Tralokinumab in moderate-to-severe atopic dermatitis	_	_	_	海外	_	評価	有

5.3.4 臨床薬力学 (PD) 試験報告書

5.3.4.1 健康被験者におけるPD試験及びPK/PD試験報告書

該当資料なし

5.3.4.2 患者におけるPD試験及びPK/PD試験報告書

資料番号	報告書の表題	著者	試験実施期間	試験実施場所	報種類	掲載紙・その他	評価/	申請電子データ 提出有無
5.3.4.2-1	喘息被験者を対象にCAT-354の漸増用量を単回静脈内投与したときの忍容性,ならびに予備的な薬物動態および薬力学を評価する二重盲検,無作為化,プラセボ対照試験 <cat-354-0401></cat-354-0401>	l	20 / - / - 20 / - /	英国	海外		参考	無
5.3.4.2-2	Exposure-response analysis report Tralokinumab in moderate-to-severe atopic dermatitis	_	_	_	海外	_	参考	無

1.12 添付資料一覧 トラロキヌマブ(遺伝子組換え)

CONFIDENTIAL

5.3.4.2-3	PKPD analysis report Tralokinumab in moderate-to-severe atopic dermatitis	_	_	_	海外	_	評価	有	
-----------	---	---	---	---	----	---	----	---	--

5.3.5 有効性及び安全性試験報告書

5.3.5.1 申請する適応症に関する比較対照試験報告書

資料番号	報告書の表題	著者	試験実施期間	試験実施場所	報種類	掲載紙・その他	評価/参考	申請電子データ 提出有無
5.3.5.1-1	中等症から重症のアトピー性皮膚炎を有する成人被験者を対象にトラロキヌマブの有効性および安全性を評価する第2b相,無作為化,二重盲検,プラセボ対照,用量設定試験 <d2213c00001></d2213c00001>	Andreas Wollenberg	2015/1/23- 2016/2/5	米国、ドイツ、日 本,ポーランドお よびカナダ	海外	Journal of Allergy and Clinical Immunology 143.1 (2019): 135-141	評価	有
5.3.5.1-2	中等症から重症のアトピー性皮膚炎に対するトラロキヌマブ単剤療法 ECZTRA 1 (ECZema TRAlokinumab trial no. 1) 全身療法が適用となる中等症から重症のアトピー性皮膚炎患者に対する トラロキヌマブ単剤療法の有効性および安全性を評価する無作為化二重 盲検プラセボ対照第3相試験 <lp0162-1325></lp0162-1325>	Andreas Wollenberg	2017/5/30- 2019/7/18	米国, ドイツ, フ ランス, スペイン および日本	海外	British Journal of Dermatology (2021) 184, pp437–449	評価	有
5.3.5.1-3	中等症から重症のアトピー性皮膚炎に対するトラロキヌマブ単剤療法 ECZTRA 2 (ECZema TRAlokinumab trial no. 2) 全身療法が適用となる中等症から重症のアトピー性皮膚炎患者に対する トラロキヌマブ単剤療法の有効性および安全性を評価する無作為化二重 盲検プラセボ対照第3相試験 <lp0162-1326></lp0162-1326>	Andreas Wollenberg	2017/6/29- 2019/8/14	オーストラリア, カナダ,デンマー ク,イタリア,韓 国,米国,ポーラ ンド,ロシア, よび英国	海外	British Journal of Dermatology (2021) 184, pp437–449	評価	有
5.3.5.1-4	中等症から重症のアトピー性皮膚炎に対する tralokinumab とステロイド外 用剤の併用療法 ECZTRA 3 (ECZema TRAlokinumab trial no. 3) 全身療法が適用となる中等症から重症のアトピー性皮膚炎患者を対象 に、ステロイド外用剤との併用下でのトラロキヌマブの有効性および安 全性を評価する無作為化二重盲検プラセボ対照第3相試験 <lp0162-1339></lp0162-1339>	Jonathan Silverberg	2018/2/27- 2019/6/26	ベルギー, カナ ダ, ドイツ, 英 国, ポーランド, スペイン, オラン ダおよび米国	海外	British Journal of Dermatology (2021) 184, pp450–463	評価	有

1.12 添付資料一覧 CONFIDENTIAL

1.12 协门 良 们	兄
トラロキヌマブ	(遺伝子組換え)

5.3.5.1-5	トラロキヌマブの投与を受けたアトピー性皮膚炎患者におけるワクチン 応答 ECZTRA 5(ECZema TRAlokinumab trial no. 5) <lp0162-1341></lp0162-1341>	Joseph F. Merola	2018/7/13- 2019/11/22	米国およびカナダ	海外	Journal of the American Academy of Dermatology 85.1 (2021): 71-78	参考	無
5.3.5.1-6	中等症から重症の日本人アトピー性皮膚炎患者に対するTralokinumabとコルチコステロイド外用剤の併用試験 ECZTRA 8 (ECZema Tralokinumab trial no. 8) 全身療法が適用となる中等症から重症の日本人アトピー性皮膚炎患者に対するTralokinumab とコルチコステロイド外用剤併用の有効性及び安全性を評価する無作為化二重盲検プラセボ対照第3相試験 <lp0162-1343></lp0162-1343>	_	2020/10/27- 2021/7/15	日本	国内	_	評価	有

5.3.5.2 非対照試験報告書

資料番号	報告書の表題	著者	試験実施期間	試験実施場所	報種類	掲載紙・その他	評価/参考	申請電子データ 提出有無
5.3.5.2	先行するトラロキヌマブ試験に参加したアトピー性皮膚炎被験者を対象とする長期延長試験—ECZTEND試験 <lp0162-1337 j-ecztend=""></lp0162-1337>	_	2018/9/18- 実施中 中間CTRの データロック ポイント: 20 4 4 / 1	ベルギー, カナ ダ, チェコ共和 国, ドイツ, イタ リア, 日本, ポー ランド, スペイ ン, 英国, 米国	海外	I	評価	有

5.3.5.3 複数の試験成績を併せて解析した報告書

資料番号	報告書の表題	著者	試験実施期間	試験実施場所	報種類	掲載紙・その他	評価/	申請電子データ 提出有無
5.3.5.3-1	ISE Statistical Analysis Plan for Integrated Analysis of Efficacy	ı	_	ı	海外	社内資料	評価	_
7. 1. 7. 1-/.	ISE 5.3.5.3 ISE monotherapy pool baseline 1.1-3.13 Tralokinumab in moderate to severe atopic dermatitis	ı	_	ı	海外	社内資料	評価	有
5.3.5.3-3	ISE 5.3.5.3 ISE monotherapy pool 6.1-6.132Tralokinumab in moderate to severe atopic dermatitis	ı	_		海外	社内資料	評価	有

1.12 添付資料一覧 CONFIDENTIAL

トラロキヌマブ(遺伝子組換え)

5.3.5.3-4	ISE M5.3.5.3 JP ISE tables and figures Tralokinumab in moderate-to-severe atopic dermatitis	_	_	_	海外	社内資料	評価	有
5.3.5.3-5	ISS LP0162-1325 ECG Safety Report DBL 1+2	_	_	_	海外	社内資料	評価	有
5.3.5.3-6	ISS LP0162-1326 ECG Safety Report	_	_	_	海外	社内資料	評価	有
5.3.5.3-7	ISS LP0162-1339 ECG Safety Report DBL1	_	_	_	海外	社内資料	評価	有
5.3.5.3-8	ISS LP0162-1341 ECG Safety Report	_	_	_	海外	社内資料	評価	有
5.3.5.3-9	ISS LP0162-1325 ECG Safety report DBL 3	_	_	_	海外	社内資料	評価	有
5.3.5.3-10	ISS LP0162-1339 ECG Safety report DBL 2	_	_	_	海外	社内資料	評価	有
5.3.5.3-11	ISS LP0162-1341 ECG Safety report DBL 2	_	_	_	海外	社内資料	評価	有
5.3.5.3-12	ISS LP0162-1343 ECG Safety Report	_	_	_	日本	社内資料	評価	有
5.3.5.3-13	ISS Integrated Summary of Safety Statistical Analysis Plan - Atopic Dermatitis	_	_	_	海外	社内資料	評価	_
5.3.5.3-14	ISS Tralokinumab Statistical Analysis Plan for Integrated Summary of Safety - Appendix: MedDRA searches for Japan	_	_	_	海外	社内資料	評価	_
5.3.5.3-15	ISS LP0162-1325 Statistical Analysis Plan-ECG	_	_	_	海外	社内資料	評価	_
5.3.5.3-16	ISS LP0162-1326 ECG Statistical Analysis Plan	_	_	_	海外	社内資料	評価	_
5.3.5.3-17	ISS LP0162-1339 Statistical Analysis Plan ECG	_	_	_	海外	社内資料	評価	_
5.3.5.3-18	ISS LP0162-1341 Statistical Analysis Plan- ECG	_	_	_	海外	社内資料	参考	無
5.3.5.3-19	ISS M5.3.5.3 JP ISS AD pool tables and figures Tralokinumab in moderate-to severe atopic dermatitis	_	_	_	海外	社内資料	評価	有

CONFIDENTIAL

トラロキヌマブ(遺伝子組換え)

	1						1	
5.3.5.3-20	ISS M5.3.5.3 JP ISS AD pool listings Tralokinumab in moderate-to-severe atopic dermatitis - MedDRA 24.0 for Japan	_	_	_	海外	社内資料	評価	有
5.3.5.3-21	ISS 5.3.5.3 ISS Exposure pool tables and figures Tralokinumab	_	_	_	海外	社内資料	参考	無
5.3.5.3-22	ISS M5.3.5.3 JP ISS Exposure pool tables Tralokinumab - MedDRA 24.0 for Japan	_	_	_	海外	社内資料	参考	無
5.3.5.3-23	ISS 5.3.5.3 ISS Exposure pool listings Tralokinumab	_	_	_	海外	社内資料	参考	無
5.3.5.3-24	ISS M5.3.5.3 JP ISS Exposure pool listings Tralokinumab - MedDRA 24.0	_	_	_	海外	社内資料	参考	無
5.3.5.3-25	ISS 5.3.5.3 JP ADR tables Tralokinumab in moderate-to-severe atopic dermatitis	_	-	-	海外	社内資料	評価	有
5.3.5.3-26	ISS Other 5.3.5.3 SAP other insications Tralokinumab	_	_	_	海外	社内資料	参考	_
5.3.5.3-27	ISS Other Tralokinumab Statistical Analysis Plan for Intetegrated Summary of Safety-Appendix:MedDRA searches	_	_	_	海外	社内資料	参考	_
5.3.5.3-28	ISS M5.3.5.3 ISS Asthma Listings	_	_	_	海外	社内資料	参考	無
5.3.5.3-29	ISS M5.3.5.3 ISS Asthma Tables Figures	_	_	_	海外	社内資料	参考	無
5.3.5.3-30	ISS 5.3.5.3 Clinical safety in other indications Tralokinumab	_	_	_	海外	社内資料	参考	無
5.3.5.3-31	ISS 5.3.5.3 JP Clinical safety in other indications Appendix A: Additional panels	_	_	_	海外	社内資料	参考	無
5.3.5.3-32	ISS 5.3.5.3 Clinical safety in other indications Appendix B: Overview of narratives - asthma	_	_	_	海外	社内資料	参考	無
5.3.5.3-33	ISS 5.3.5.3 Clinical safety in other indications Appendix C: Overview of narratives - UC	_	_	_	海外	社内資料	参考	無
5.3.5.3-34	ISS 5.3.5.3 Clinical safety in other indications Appendix D: Overview of narratives - IPF	_	_	_	海外	社内資料	参考	無
5.3.5.3-35	ISS 5.3.5.3 Clinical safety in other indications Appendix E: Overview of CRFs - asthma	_	_	_	海外	社内資料	参考	無

CONFIDENTIAL

1.12 添付資料一覧 トラロキヌマブ(遺伝子組換え)

5.3.5.3-36	ISS 5.3.5.3 Clinical safety in other indications Appendix F: Overview of CRFs - UC	_	_	_	海外	社内資料	参考	無
5.3.5.3-37	ISS 5.3.5.3 Clinical safety in other indications Appendix G: Overview of CRFs - IPF	_	_	_	海外	社内資料	参考	無
5.3.5.3-38	ISI M5.3.5.3 Integrated summary of immunogenicity Tralokinumab in moderate-to-severe atopic dermatitis	_	_	_	海外	社内資料	参考	無
5.3.5.3-39	ISI M5.3.5.3 Integrated summary of immunogenicity addendum - Tralokinumab	_	_	_	海外	社内資料	参考	無
5.3.5.3-40	ISI M5.3.5.3 ISI ADA ECZTRA analysis set tables and figures	_	_	_	海外	社内資料	参考	無
5.3.5.3-41	ISI M5.3.5.3 JP ISI ADA ECZTRA analysis set Tralokinumab in moderate-to-severe atopic dermatitis - MedDRA 24.0	_	_	_	海外	社内資料	評価	有
5.3.5.3-42	ISI ADA 120-Day Safety Update ECZTRA analysis set tables and figures	_	_	_	海外	社内資料	参考	無

5.3.5.4 その他の臨床試験報告書

資料番号	報告書の表題	著者	試験実施期間	試験実施場所	報種類	掲載紙・その他	評価/	申請電子データ 提出有無
5.3.5.4-1	吸入ステロイド薬+長時間作用性β2受容体刺激薬でコントロールが不十分な喘息を有する成人および青年患者を対象にトラロキヌマブの有効性および安全性を評価する52週間,多施設共同,無作為化,二重盲検,並行群間,プラセボ対照,第3相試験(STRATOS 1)		2014/6/13- 2017/2/28	アルゼンチン, ベ ルギー, ブルガリ ア, コロンビア, ドイツ, ハンガ リー, ペルー, ポーランド, ロ バキア, 韓国, スイ イン, ウクライ トナム	海外	_	参考	無
5.3.5.4-2	吸入ステロイド薬+長時間作用性β2受容体刺激薬でコントロールが不十分な喘息を有する成人および青年患者を対象にトラロキヌマブの有効性および安全性を評価する52週間,多施設共同,無作為化,二重盲検,並行群間,プラセボ対照,第3相試験(STRATOS 2)		2014/10/30- 2017/9/21	カナダ, チリ, チェコ共和国, イ タリア, 日本, メ キシコ, フィリ帝 ン, ロシ 台湾, ロ フリカ, 台湾, 国 クライナ, 英国 よび米国	海外	_	参考	無
5.3.5.4-3	コントロール不能な重症喘息を有する成人を対象にトラロキヌマブの有効性を評価する第2b相,無作為化,二重盲検試験 <cd-ri-cat-354-1049></cd-ri-cat-354-1049>	_	20 / / - 20 / /	日本,米国,フラ ンス,メキシコ, ロシア,スペイ ン,アルゼンチ ン,ドイツ,韓 国,カナダ,ド, リ,ポーランド, フィリピン,チョ コ共和国,英国	海外	_	参考	無

5.3.5.4-4	コントロール不能な中等症から重症の持続性喘息を有する成人を対象に、インターロイキン-13 (IL-13) に対する遺伝子組換えヒトモノクローナル抗体であるCAT-354が喘息コントロールに対して及ぼす有効性および安全性を評価する第2a相、無作為化、二重盲検、プラセボ対照、並行群、多施設共同試験 <mi-cp199></mi-cp199>	_	20 / / - 20 / / /	ブルガリア, ルー マニア, ポーラン ド, ドイツおよび 英国	海外	_	参考	無
5.3.5.4-5	CAT-354の有効性,安全性および忍容性を評価する二重盲検,プラセボ対照,並行群間試験 <cat-354-0603></cat-354-0603>	_	20 / / - 20 / /	オーストラリア, ドイツ, オラン ダ, ポーランドお よび英国	海外	_	参考	無
5.3.5.4-6	経口ステロイド薬に依存性喘息を有する成人および青年患者を対象に経 ロステロイド薬の使用を減少させることにおけるトラロキヌマブの有効 性および安全性を評価する多施設共同,無作為化,二重盲検,並行群 間,プラセボ対照,第3相試験(TROPOS) <d2210c00013></d2210c00013>	_	2015/2/19- 2017/9/7	ベルギー, フランス, ドイツ, オランダ, ポーランド, ウクライナおよび米国	海外	_	参考	無
5.3.5.4-7	吸入ステロイド薬でコントロールが不十分な成人喘息患者を対象に、気道炎症に対するトラロキヌマブの影響を評価する多施設共同、無作為化、二重盲検、並行群間、プラセボ対照、12週間、第2相試験(MESOS) <d2210c00014></d2210c00014>	_	2015/9/29- 2017/6/21	カナダ,デンマー クおよび英国	海外	_	参考	無
5.3.5.4-8	活動性の中等症から重症の潰瘍性大腸炎患者におけるクリニカルレスポンスについて、インターロイキン-13 (IL-13) に対する組換えヒトモノクローナル抗体であるトラロキヌマブ (CAT-354) をアドオン療法として投与したときの有効性および安全性を評価する第2a相、無作為化、二重盲検、プラセボ対照、並行群間、多施設共同試験 <d2211c00001></d2211c00001>	_	20 / / - 20 / /	欧州6か国	海外	_	参考	無
5.3.5.4-9	特発性肺線維症の日本人患者を対象にCAT-354(トラロキヌマブ)の静脈 内投与の安全性および忍容性を評価する第2相,多施設共同,二重盲検 (コホート内),用量漸増試験 <d2212c00002></d2212c00002>	_	20 / / - 20 / / / -	日本	国内	_	参考	無

1.12 添付資料一覧

CONFIDENTIAL

トラロキヌマブ (遺伝子組換え)

5.3.5.4-10	吸入ステロイド薬+長時間作用性β2受容体刺激薬でコントロールが不十分な喘息を有する日本人成人および青年患者を対象にトラロキヌマブの有効性および安全性を評価する52週間,非盲検,多施設共同試験 <d2210c00029></d2210c00029>	I	20 / - / - 20 / / /	日本	国内	-	参考	無
5.3.5.4-11	特発性肺線維症を有する成人を対象としたトラロキヌマブの有効性を評価する第2相,無作為化,用量設定試験 <cd-ri-cat-354-1066></cd-ri-cat-354-1066>	-	20 / - / - 20 / / /	米国, オーストラ リア, ペルー, イ スラエル, カナ ダ, 韓国	海外	_	参考	黒

5.3.6 市販後の使用経験に関する報告書

該当資料なし

5.3.7 患者データー覧表及び症例記録

資料番号	報告書の表題
5.3.7-1	該当資料なし
5.3.7-2	実施された全ての臨床試験において副作用が観察された症例の一覧表
5.3.7-3	実施された全ての臨床試験において重篤な有害事象が観察された症例の一覧表
5.3.7-4	実施された全ての臨床試験において臨床検査値異常変動が観察された症例の一覧表
5.3.7-5	実施された臨床試験において観察された臨床検査値の変動を適切に示した図

5.4 参考文献 (著者アルファベット順)

0. 1	
資料番号	報告書の表題
1	Abraham S, Haufe E, Harder I, Heratizadeh A, Kleinheinz A, Wollenberg A, Weisshaar E, Augustin M, Wiemers F, Zink A, et al. Implementation of dupilumab in routine care of atopic eczema. Results from the German national registry TREATgermany. Br J Dermatol. 2020.
2	Albanesi C, Fairchild HR, Madonna S, Scarponi C, De Pita O, Leung DY, Howell MD. IL-4 and IL-13 negatively regulate TNF-alpha- and IFN-gamma-induced beta-defensin expression through STAT-6, suppressor of cytokine signaling (SOCS)-1, and SOCS-3. J Immunol. 2007;179(2):984-992.
3	Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N Engl J Med. 1999;341(27):2068-2074.
4	Anthony RM, Rutitzky LI, Urban JF, Jr., Stadecker MJ, Gause WC. Protective immune mechanisms in helminth infection. Nat Rev Immunol. 2007;7(12):975-987.
5	Apter AJ. The tralokinumab story: Nothing is ever simple. J Allergy Clin Immunol. 2019;143(4):1336-1338.
6	Ariens LFM, van der Schaft J, Bakker DS, Balak D, Romeijn MLE, Kouwenhoven T, Kamsteeg M, Giovannone B, Drylewicz J, van Amerongen CCA, et al. Dupilumab is very effective in a large cohort of difficult-to-treat adult atopic dermatitis patients: First clinical and biomarker results from the BioDay registry. Allergy. 2020;75(1):116-126.
7	Bakker DS, Ariens LFM, van Luijk C, van der Schaft J, Thijs JL, Schuttelaar MLA, van Wijk F, Knol EF, Balak DMW, van Dijk MR, de Bruin-Weller MS. Goblet cell scarcity and conjunctival inflammation during treatment with dupilumab in patients with atopic dermatitis. Br J Dermatol. 2019;180(5):1248-1249.
8	Barbarot S, Auziere S, Gadkari A, Girolomoni G, Puig L, Simpson EL, Margolis DJ, de Bruin-Weller M, Eckert L. Epidemiology of atopic dermatitis in adults: Results from an international survey. Allergy. 2018;73(6):1284-1293.
9	Basra MK, Salek MS, Camilleri L, Sturkey R, Finlay AY. Determining the minimal clinically important difference and responsiveness of the Dermatology Life Quality Index (DLQI): further data. Dermatology. 2015;230(1):27-33.
10	Bauer RJ. NONMEM Tutorial Part I: Description of commands and options, with simple examples of population analysis. CPT Pharmacometrics Syst Pharmacol. 2019;8(8):525-537.
11	Bauer RJ: NONMEM users guide. Introduction to NONMEM 7.4.3. Gaithersburg, Maryland. ICON Plc; 2019.
12	Baverel PG, Jain M, Stelmach I, She D, Agoram B, Sandbach S, Piper E, Kuna P. Pharmacokinetics of tralokinumab in adolescents with asthma: implications for future dosing. Br J Clin Pharmacol. 2015;80(6):1337-1349.
13	Beck LA, Thaci D, Hamilton JD, Graham NM, Bieber T, Rocklin R, Ming JE, Ren H, Kao R, Simpson E, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014;371(2):130-139.
14	Berdyshev E, Goleva E, Bronova I, Dyjack N, Rios C, Jung J, Taylor P, Jeong M, Hall CF, Richers BN, et al. Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI Insight. 2018;3(4):1-15.
15	Bieber T. Atopic dermatitis. N Engl J Med. 2008;358(14):1483-1494.
16	Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy. 2020;75(1):54-62.
17	Blauvelt A, Simpson EL, Tyring SK, Purcell LA, Shumel B, Petro CD, Akinlade B, Gadkari A, Eckert L, Graham NMH, et al. Dupilumab does not affect correlates of vaccine-induced immunity: A randomized, placebo-controlled trial in adults with moderate-to-severe atopic dermatitis. J Am Acad Dermatol. 2019;80(1):158-167.e151.

トラロキヌマ	ブ(遺伝子組換え)
18	Boguniewicz M, Alexis AF, Beck LA, Block J, Eichenfield LF, Fonacier L, Guttman-Yassky E, Paller AS, Pariser

18	Boguniewicz M, Alexis AF, Beck LA, Block J, Eichenfield LF, Fonacier L, Guttman-Yassky E, Paller AS, Pariser D, Silverberg JI, Lebwohl M. Expert Perspectives on Management of Moderate-to-Severe Atopic Dermatitis: A Multidisciplinary Consensus Addressing Current and Emerging Therapies. J Allergy Clin Immunol Pract. 2017;5(6):1519-1531.
19	Boguniewicz M, Fonacier L, Guttman-Yassky E, Ong PY, Silverberg J, Farrar JR. Atopic dermatitis yardstick: Practical recommendations for an evolving therapeutic landscape. Ann Allergy Asthma Immunol. 2018;120(1):10-22.
20	Braddock M, Hanania NA, Sharafkhaneh A, Colice G, Carlsson M. Potential Risks Related to Modulating Interleukin-13 and Interleukin-4 Signalling: A Systematic Review. Drug Saf. 2018;41(5):489-509.
21	Brandt EB, Sivaprasad U. Th2 Cytokines and Atopic Dermatitis. J Clin Cell Immunol. 2011;2(3).
22	Breuer K, Kapp A, Werfel T. Bacterial infections and atopic dermatitis. Allergy. 2001;56(11):1034-1041.
23	Brunner PM, Silverberg JI, Guttman-Yassky E, Paller AS, Kabashima K, Amagai M, Luger TA, Deleuran M, Werfel T, Eyerich K, et al. Increasing Comorbidities Suggest that Atopic Dermatitis Is a Systemic Disorder. J Invest Dermatol. 2017;137(1):18-25.
24	Bunikowski R, Mielke M, Skarabis H, Herz U, Bergmann RL, Wahn U, Renz H. Prevalence and role of serum IgE antibodies to the Staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis. J Allergy Clin Immunol. 1999;103(1 Pt 1):119-124.
25	Callen J, Chamlin S, Eichenfield LF, Ellis C, Girardi M, Goldfarb M, Hanifin J, Lee P, Margolis D, Paller AS, et al. A systematic review of the safety of topical therapies for atopic dermatitis. Br J Dermatol. 2007;156(2):203-221.
26	Cardona ID, Cho SH, Leung DY. Role of bacterial superantigens in atopic dermatitis: implications for future therapeutic strategies. Am J Clin Dermatol. 2006;7(5):273-279.
27	Castells MC. Anaphylaxis to chemotherapy and monoclonal antibodies. Immunol Allergy Clin North Am. 2015;35(2):335-348.
28	Chalmers JR, Schmitt J, Apfelbacher C, Dohil M, Eichenfield LF, Simpson EL, Singh J, Spuls P, Thomas KS, Admani S, et al. Report from the third international consensus meeting to harmonise core outcome measures for atopic eczema/dermatitis clinical trials (HOME). Br J Dermatol. 2014;171(6):1318-1325.
29	Chamberlain P: Addressing immunogenicity-related risks in an integrated manner. Dossier Strategy; 2011.
30	Charman CR, Venn AJ, Williams HC. The patient-oriented eczema measure: development and initial validation of a new tool for measuring atopic eczema severity from the patients' perspective. Arch Dermatol. 2004;140(12):1513-9.
31	Chen X, Anstey AV, Bugert JJ. Molluscum contagiosum virus infection. Lancet Infect Dis. 2013;13(10):877-888.
32	Chieosilapatham P, Ogawa H, Niyonsaba F. Current insights into the role of human beta-defensins in atopic dermatitis. Clin Exp Immunol. 2017;190(2):155-166.
33	Chioato A, Noseda E, Stevens M, Gaitatzis N, Kleinschmidt A, Picaud H. Treatment with the interleukin-17A-blocking antibody secukinumab does not interfere with the efficacy of influenza and meningococcal vaccinations in healthy subjects: results of an open-label, parallel-group, randomized single-center study. Clin Vaccine Immunol. 2012;19(10):1597-1602.
34	Chopra R, Silverberg JI. Assessing the severity of atopic dermatitis in clinical trials and practice. Clin Dermatol. 2018;36(5):606-615.
35	Chopra R, Vakharia PP, Sacotte R, Patel N, Immaneni S, White T, et al. Severity strata for Eczema Area and Severity Index (EASI), modified EASI, Scoring Atopic Dermatitis (SCORAD), objective SCORAD, Atopic Dermatitis Severity Index and body surface area in adolescents and adults with atopic dermatitis. Br J Dermatol. 2017;177(5):1316-21.
36	Czarnowicki T, Gonzalez J, Shemer A, Malajian D, Xu H, Zheng X, Khattri S, Gilleaudeau P, Sullivan-Whalen M, Suarez-Farinas M, et al. Severe atopic dermatitis is characterized by selective expansion of circulating TH2/TC2 and TH22/TC22, but not TH17/TC17, cells within the skin-homing T-cell population. J Allergy Clin Immunol. 2015;136(1):104-115.e107.
37	Czarnowicki T, He H, Krueger JG, Guttman-Yassky E. Atopic dermatitis endotypes and implications for targeted therapeutics. J Allergy Clin Immunol. 2019;143(1):1-11.
38	Dalgard FJ, Gieler U, Tomas-Aragones L, Lien L, Poot F, Jemec GBE, Misery L, Szabo C, Linder D, Sampogna F, et al. The psychological burden of skin diseases: a cross-sectional multicenter study among dermatological out-patients in 13 European countries. J Invest Dermatol. 2015;135(4):984-991.

1112 10011 1 20111	<i>)</i> L
トラロキヌマブ	(遺伝子組換え)

39	Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633-659.
40	Doherty TM, Andersen P. Vaccines for tuberculosis: novel concepts and recent progress. Clin Microbiol Rev. 2005;18(4):687-702.
41	Eckert L, Gupta S, Amand C, Gadkari A, Mahajan P, Gelfand JM. Impact of atopic dermatitis on health-related quality of life and productivity in adults in the United States: An analysis using the National Health and Wellness Survey. J Am Acad Dermatol. 2017;77(2):274-279.
42	Egeberg A, Andersen YM, Gislason GH, Skov L, Thyssen JP. Prevalence of comorbidity and associated risk factors in adults with atopic dermatitis. Allergy. 2017;72(5):783-791.
43	Eichenfield LF, Tom WL, Berger TG, Krol A, Paller AS, Schwarzenberger K, Bergman JN, Chamlin SL, Cohen DE, Cooper KD, et al. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol. 2014;71(1):116-132.
44	Eichenfield LF, Tom WL, Chamlin SL, Feldman SR, Hanifin JM, Simpson EL, Berger TG, Bergman JN, Cohen DE, Cooper KD, et al. Guidelines of care for the management of atopic dermatitis: section 1. Diagnosis and assessment of atopic dermatitis. J Am Acad Dermatol. 2014;70(2):338-351.
45	EMA. European Medicines Agency. Good practice guide on recording, coding, reporting and assessment of medication errors. EMA/762563/2014. 2015.
46	EMA. European Medicines Agency. Inspections and Human Medicines Pharmacovigilance Division: Designated Medical Event (DME) list, EMA/557113/2016. 2016.
47	EMEA. Reflection paper on the regulatory guidance for the use of health-related quality of life (HRQoL) measures in the evaluation of medicinal products. EMEA/CHMP/EWP/139391/2004. 2005.
48	EMEA: European Medicines Agency. Guideline on Immunogenicity assessment of therapeutic proteins. EMEA/CHMP/BMWP/14327/2006 Rev 1. 2017
49	FDA. Food and Drug Administration. Guidance for Industry. Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims. 2009.
50	FDA. The Food and Drug Administration. Advice from FDA, Department of Health and Human Services: Study Protocols LP0162-1325 and LP0162-1326 (23-Jun). Reference ID: 4115573. 2017.
51	FDA. The Food and Drug Administration. Guidance for Industry. Drug-Induced Liver Injury: Premarketing Clinical Evaluation. 2009.
52	FDA: The Food and Drug Administration. Guidance for Industry. Immunogenicity Assessment for Therapeutic Protein Products. 2014.
53	Finlay AY, Khan GK. Dermatology Life Quality Index (DLQI)a simple practical measure for routine clinical use. Clin Exp Dermatol. 1994;19(3):210-216.
54	Foundation NK. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1-266.
55	Furue K, Ito T, Tsuji G, Ulzii D, Vu YH, Kido-Nakahara M, Nakahara T, Furue M. The IL-13-OVOL1-FLG axis in atopic dermatitis. Immunology. 2019;158(4):281-286.
56	Futamura M, Leshem YA, Thomas KS, Nankervis H, Williams HC, Simpson EL. A systematic review of Investigator Global Assessment (IGA) in atopic dermatitis (AD) trials: Many options, no standards. J Am Acad Dermatol. 2016;74(2):288-294.
57	Gandhi NA, Pirozzi G, Graham NMH. Commonality of the IL-4/IL-13 pathway in atopic diseases. Expert Rev Clin Immunol. 2017;13(5):425-437.
58	GlobalSkin.org. Atopic Dermatitis: A Collective Global Voice for Improving Care. 2018.
59	Gomez EV, Bishop JL, Jackson K, Muram TM, Phillips D. Response to tetanus and pneumococcal vaccination following administration of ixekizumab in healthy participants. BioDrugs. 2017;31(6):545-554.
60	Greiner W, Weijnen T, Nieuwenhuizen M, Oppe S, Badia X, Busschbach J, et al. A single European currency for EQ-5D health states. Results from a six-country study. The European journal of health economics: HEPAC: health economics in prevention and care. 2003;4(3):222-31.
61	Hanifin JM, Rajka G. Diagnostic features of atopic dermatitis. Acta Derm Venereol. 1980;60(92):44-47.

62	Hanifin JM, Thurston M, Omoto M, Cherill R, Tofte SJ, Graeber M. The eczema area and severity index (EASI): assessment of reliability in atopic dermatitis. EASI Evaluator Group. Exp Dermatol. 2001;10(1):11-18.
63	Hernandez C, Cetner AS, Jordan JE, Puangsuvan SN, Robinson JK. Tuberculosis in the age of biologic therapy. J Am Acad Dermatol. 2008;59(3):363-380; quiz 382-364.
64	Hershey GK. IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol. 2003;111(4):677-690; quiz 691.
65	Hicks KA, Tcheng JE, Bozkurt B, Chaitman BR, Cutlip DE, Farb A, Fonarow GC, Jacobs JP, Lichtman JH, Limacher MC, et al. 2014 ACC/AHA Key Data Elements and Definitions for Cardiovascular Endpoint Events in Clinical Trials. Journal of the American College of Cardiology. 2015;66(4):403-469.
66	Holm S. A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics. 1979;6(1):65-70.
67	Howell MD, Gallo RL, Boguniewicz M, Jones JF, Wong C, Streib JE, Leung DY. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity. 2006;24(3):341-348.
68	Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, Debenedetto A, Schneider L, Beck LA, Barnes KC, Leung DY. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007;120(1):150-155.
69	Hu Y, Chen Z, Gong Y, Shi Y. A Review of Switching Biologic Agents in the Treatment of Moderate-to-Severe Plaque Psoriasis. Clin Drug Investig. 2018;38(3):191-199.
70	ICH. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use: Estimands and Sensitivity Analysis in Clinical Trials Addendum. (E9)(R1), Final version; 20-Nov. 2019.
71	Jefferis R. Antibody therapeutics: isotype and glycoform selection. Expert Opin Biol Ther. 2007;7(9):1401-1413.
72	Jeon C, Yan D, Nakamura M, Sekhon S, Bhutani T, Berger T, Liao W. Frequency and Management of Sleep Disturbance in Adults with Atopic Dermatitis: A Systematic Review. Dermatol Ther (Heidelb). 2017;7(3):349-364.
73	Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res. 2007;24(9):1759-1771.
74	Kahn-Greene ET, Killgore DB, Kamimori GH, Balkin TJ, Killgore WD. The effects of sleep deprivation on symptoms of psychopathology in healthy adults. Sleep Med. 2007;8(3):215-21.
75	Kalb RE, Fiorentino DF, Lebwohl MG, Toole J, Poulin Y, Cohen AD, Goyal K, Fakharzadeh S, Calabro S, Chevrier M, et al. Risk of Serious Infection With Biologic and Systemic Treatment of Psoriasis: Results From the Psoriasis Longitudinal Assessment and Registry (PSOLAR). JAMA Dermatol. 2015;151(9):961-969.
76	Karimkhani C, Dellavalle RP, Coffeng LE, Flohr C, Hay RJ, Langan SM, Nsoesie EO, Ferrari AJ, Erskine HE, Silverberg JI, et al. Global Skin Disease Morbidity and Mortality: An Update From the Global Burden of Disease Study 2013. JAMA Dermatol. 2017;153(5):406-412.
77	Karlsson MO, Holdford N: A tutorial on visual predictive checks. Abstract 1434, p. 17. In Annual Meeting of the Population Approach Group in Europe. Marseille, France. 2008 [cited 2018 Dec 12]. Available from: [www.page-meeting.org/?abstract=1434].
78	Katayama I, Kohno Y, Akiyama K, Aihara M, Kondo N, Saeki H, Shoji S, Yamada H, Nakamura K. Japanese Guideline for Atopic Dermatitis 2014. Allergol Int. 2014;63(3):377-398.
79	Katoh N, Ohya Y, Ikeda M, Ebihara T, Katayama I, Saeki H, Shimojo N, Tanaka A, Nakahara T, Nagao M, et al. Clinical practice guidelines for the management of atopic dermatitis 2018. J Dermatol. 2019;46(12):1053-1101.
80	Kaufmann SH. Envisioning future strategies for vaccination against tuberculosis. Nat Rev Immunol. 2006;6(9):699-704.
81	Koo J, Marangell LB, Nakamura M, Armstrong A, Jeon C, Bhutani T, Wu JJ. Depression and suicidality in psoriasis: review of the literature including the cytokine theory of depression. J Eur Acad Dermatol Venereol. 2017;31(12):1999-2009.
82	Koppes SA, Brans R, Ljubojevic Hadzavdic S, Frings-Dresen MH, Rustemeyer T, Kezic S. Stratum corneum tape stripping: Monitoring of inflammatory mediators in atopic dermatitis patients using topical therapy. Int Arch Allergy Immunol. 2016;170(3):187-193.

83	Lamel SA, Myer KA, Younes N, Zhou JA, Maibach H, Maibach HI. Placebo response in relation to clinical trial design: a systematic review and meta-analysis of randomized controlled trials for determining biologic efficacy in psoriasis treatment. Arch Dermatol Res. 2012;304(9):707-717.
84	Lee HH, Patel KR, Singam V, Rastogi S, Silverberg JI. A systematic review and meta-analysis of the prevalence and phenotype of adult-onset atopic dermatitis. J Am Acad Dermatol. 2019;80(6):1526-1532.e1527.
85	LEO Pharma. Psychometric measurement properties of the Worst Daily Pruritus Numeric Rating Scale (NRS).
86	Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-612.
87	Lin PT, Wang SH, Chi CC. Drug survival of biologics in treating psoriasis: a meta-analysis of real-world evidence. Sci Rep. 2018;8(1):16068.
88	Lindqvist D, Janelidze S, Hagell P, Erhardt S, Samuelsson M, Minthon L, Hansson O, Bjorkqvist M, Traskman-Bendz L, Brundin L. Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol Psychiatry. 2009;66(3):287-292.
89	Looney RJ, Diamond B, Holers VM, Levesque MC, Moreland L, Nahm MH, St Clair EW. Guidelines for assessing immunocompetency in clinical trials for autoimmune diseases. Clin Immunol. 2007;123(3):235-243.
90	Lugo-Villarino G, Verollet C, Maridonneau-Parini I, Neyrolles O. Macrophage polarization: convergence point targeted by mycobacterium tuberculosis and HIV. Front Immunol. 2011;2:43.
91	Mansouri Y, Guttman-Yassky E. Immune pathways in atopic dermatitis, and definition of biomarkers through broad and targeted therapeutics. J Clin Med. 2015;4(5):858-873.
92	Matsushima S, Huang Y, Suzuki H, Nishino J, Lloyd P. Ethnic sensitivity assessment - pharmacokinetic comparability between Japanese and non-Japanese healthy subjects on selected mAbs. Expert Opin Drug Metab Toxicol. 2015;11(2):179-191.
93	May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine. 2015;75(1):89-116.
94	May RD, Monk PD, Cohen ES, Manuel D, Dempsey F, Davis NH, Dodd AJ, Corkill DJ, Woods J, Joberty-Candotti C, et al. Preclinical development of CAT-354, an IL-13 neutralizing antibody, for the treatment of severe uncontrolled asthma. Br J Pharmacol. 2012;166(1):177-193.
95	McSorley HJ, Chaye MAM, Smits HH. Worms: Pernicious parasites or allies against allergies? Parasite Immunol. 2019;41(6):e12574.
96	Meeusen EN, Balic A. Do eosinophils have a role in the killing of helminth parasites? Parasitol Today. 2000;16(3):95-101.
97	Mennini M, Dahdah L, Fiocchi A. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2017;376(11):1090.
98	Ministry of Health, Labour and Welfare. 2017 Patient Survey (Classification of disease). 2017.
99	Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2197-2223.
100	Nair P, O'Byrne PM. The interleukin-13 paradox in asthma: effective biology, ineffective biologicals. Eur Respir J. 2019;53(2).
101	Nakagome K, Nagata M. Involvement and Possible Role of Eosinophils in Asthma Exacerbation. Front Immunol. 2018;9:2220.
102	Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol. 2017;26(11):989-998.
103	Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171(6):3262-3269.
104	Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H, Guo CJ, Chen S, Trier AM, Xu AZ, Tripathi SV, et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell. 2017;171(1):217-228.e213.

105	Ong PY, Leung DY. Bacterial and Viral Infections in Atopic Dermatitis: a Comprehensive Review. Clin Rev Allergy Immunol. 2016;51(3):329-337.
106	Paller AS, Kong HH, Seed P, Naik S, Scharschmidt TC, Gallo RL, Luger T, Irvine AD. The microbiome in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143(1):26-35.
107	Pereira MP, Stander S. Assessment of severity and burden of pruritus. Allergol Int. 2017;66(1):3-7.
108	Phan NQ, Blome C, Fritz F, Gerss J, Reich A, Ebata T, Augustin M, Szepietowski JC, Stander S. Assessment of pruritus intensity: prospective study on validity and reliability of the visual analogue scale, numerical rating scale and verbal rating scale in 471 patients with chronic pruritus. Acta Derm Venereol. 2012;92(5):502-507.
109	Popovic B, Breed J, Rees DG, Gardener MJ, Vinall LM, Kemp B, Spooner J, Keen J, Minter R, Uddin F, et al. Structural characterisation reveals mechanism of IL-13-neutralising monoclonal antibody tralokinumab as inhibition of binding to IL-13Rα1 and IL-13Rα2. J Mol Biol. 2017;429(2):208-219.
110	Purwar R, Werfel T, Wittmann M. IL-13-stimulated human keratinocytes preferentially attract CD4+CCR4+ T cells: possible role in atopic dermatitis. J Invest Dermatol. 2006;126(5):1043-1051.
111	Ravera S, Monteiro SP, de Gier JJ, van der Linden T, Gomez-Talegon T, Alvarez FJ. A European approach to categorizing medicines for fitness to drive: outcomes of the DRUID project. Br J Clin Pharmacol. 2012;74(6):920-931.
112	Ring J, Alomar A, Bieber T, Deleuran M, Fink-Wagner A, Gelmetti C, Gieler U, Lipozencic J, Luger T, Oranje AP, et al. Guidelines for treatment of atopic eczema (atopic dermatitis) Part II. J Eur Acad Dermatol Venereol. 2012;26(9):1176-1193.
113	Salfeld JG. Isotype selection in antibody engineering. Nat Biotechnol. 2007;25(12):1369-1372.
114	Sampson HA, Muñoz-Furlong A, Campbell RL, Adkinson NF, Bock SA, Branum A, Brown SG, Camargo CA, Cydulka R, Galli SJ, et al. Second symposium on the definition and management of anaphylaxis: summary reportSecond National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium. J Allergy Clin Immunol. 2006;117(2):391-397.
115	Sandhu JK, Wu KK, Bui TL, Armstrong AW. Association Between Atopic Dermatitis and Suicidality: A Systematic Review and Meta-analysis. JAMA Dermatol. 2019;155(2):178-187.
116	Sanyal RD, Pavel AB, Glickman J, Chan TC, Zheng X, Zhang N, Cueto I, Peng X, Estrada Y, Fuentes-Duculan J, et al. Atopic dermatitis in African American patients is TH2/TH22-skewed with TH1/TH17 attenuation. Ann Allergy Asthma Immunol. 2019;122(1):99-110.e116.
117	Schmitt J, Langan S, Deckert S, Svensson A, von Kobyletzki L, Thomas K, Spuls P. Assessment of clinical signs of atopic dermatitis: a systematic review and recommendation. J Allergy Clin Immunol. 2013;132(6):1337-1347.
118	Schmitt J, Spuls PI, Thomas KS, Simpson E, Furue M, Deckert S, Dohil M, Apfelbacher C, Singh JA, Chalmers J, Williams HC. The Harmonising Outcome Measures for Eczema (HOME) statement to assess clinical signs of atopic eczema in trials. J Allergy Clin Immunol. 2014;134(4):800-807.
119	Schram ME, Spuls PI, Leeflang MM, Lindeboom R, Bos JD, Schmitt J. EASI, (objective) SCORAD and POEM for atopic eczema: responsiveness and minimal clinically important difference. Allergy. 2012;67(1):99-106.
120	Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O'Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-862.
121	Severity scoring of atopic dermatitis: the SCORAD index. Consensus Report of the European Task Force on Atopic Dermatitis. Dermatology. 1993;186(1):23-31.
122	Shen E, Xie K, Jwo K, Smith J, Mosaed S. Dupilumab-Induced Follicular Conjunctivitis. Ocul Immunol Inflamm. 2019;27(8):1339-1341.
123	Sidbury R, Davis DM, Cohen DE, Cordoro KM, Berger TG, Bergman JN, Chamlin SL, Cooper KD, Feldman SR, Hanifin JM, et al. Guidelines of care for the management of atopic dermatitis: section 3. Management and treatment with phototherapy and systemic agents. J Am Acad Dermatol. 2014;71(2):327-349.
124	Sidbury R, Tom WL, Bergman JN, Cooper KD, Silverman RA, Berger TG, Chamlin SL, Cohen DE, Cordoro KM, Davis DM, et al. Guidelines of care for the management of atopic dermatitis: Section 4. Prevention of disease flares and use of adjunctive therapies and approaches. J Am Acad Dermatol. 2014;71(6):1218-1233.

125	Silverberg JI, Gelfand JM, Margolis DJ, Boguniewicz M, Fonacier L, Grayson MH, Simpson EL, Ong PY, Chiesa Fuxench ZC. Patient burden and quality of life in atopic dermatitis in US adults: A population-based cross-sectional study. Ann Allergy Asthma Immunol. 2018;121(3):340-347.
126	Silverwood RJ, Forbes HJ, Abuabara K, Ascott A, Schmidt M, Schmidt SAJ, Smeeth L, Langan SM. Severe and predominantly active atopic eczema in adulthood and long term risk of cardiovascular disease: population based cohort study. Bmj. 2018;361:k1786.
127	Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, Cork MJ, Silverberg JI, Deleuran M, Kataoka Y, Lacour JP, et al. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N Engl J Med. 2016;375(24):2335-2348.
128	Simpson EL, Bruin-Weller M, Flohr C, Ardern-Jones MR, Barbarot S, Deleuran M, Bieber T, Vestergaard C, Brown SJ, Cork MJ, et al. When does atopic dermatitis warrant systemic therapy? Recommendations from an expert panel of the International Eczema Council. J Am Acad Dermatol. 2017;77(4):623-633.
129	Singh SK. Impact of product-related factors on immunogenicity of biotherapeutics. J Pharm Sci. 2011;100(2):354-387.
130	Stalder JF, Aubert H, Anthoine E, Futamura M, Marcoux D, Morren MA, Trzeciak M, Szalai Z, Veres K, Deleuran M, et al. Topical corticosteroid phobia in atopic dermatitis: International feasibility study of the TOPICOP score. Allergy. 2017;72(11):1713-1719.
131	Suarez-Farinas M, Tintle SJ, Shemer A, Chiricozzi A, Nograles K, Cardinale I, Duan S, Bowcock AM, Krueger JG, Guttman-Yassky E. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J Allergy Clin Immunol. 2011;127(4):954-964 e951-954.
132	Sun D, Ong PY. Infectious Complications in Atopic Dermatitis. Immunol Allergy Clin North Am. 2017;37(1):75-93.
133	Szegedi K, Lutter R, Res PC, Bos JD, Luiten RM, Kezic S, Middelkamp-Hup MA. Cytokine profiles in interstitial fluid from chronic atopic dermatitis skin. J Eur Acad Dermatol Venereol. 2015;29(11):2136-2144.
134	Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11(1-2):81-88.
135	Tazawa T, Sugiura H, Sugiura Y, Uehara M. Relative importance of IL-4 and IL-13 in lesional skin of atopic dermatitis. Arch Dermatol Res. 2004;295(11):459-464.
136	Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, Donaldson DD, Carbone DP, Paul WE, Berzofsky JA. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunology. 2000;1:515-520.
137	Terabe M, Park JM, Berzofsky JA. Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunol Immunother. 2004;53(2):79-85.
138	Thavagnanam S, Parker JC, McBrien ME, Skibinski G, Heaney LG, Shields MD. Effects of IL-13 on mucociliary differentiation of pediatric asthmatic bronchial epithelial cells. Pediatr Res. 2011;69(2):95-100.
139	Thijs JL, Drylewicz J, Bruijnzeel-Koomen C, Giovannone B, Knol EF, de Bruin-Weller MS, Nierkens S, Hijnen D. EASI p-EASI: Predicting disease severity in atopic dermatitis patients treated with cyclosporin A. Allergy. 2019;74(3):613-617.
140	Thijs JL, Nierkens S, Herath A, Bruijnzeel-Koomen CA, Knol EF, Giovannone B, de Bruin-Weller MS, Hijnen D. A panel of biomarkers for disease severity in atopic dermatitis. Clin Exp Allergy. 2015;45(3):698-701.
141	Thom G, Minter R. Optimization of CAT-354, a therapeutic antibody directed against interleukin-13, using ribosome display. Methods Mol Biol. 2012;805:393-401.
142	Thyssen JP, Hamann CR, Linneberg A, Dantoft TM, Skov L, Gislason GH, et al. Atopic dermatitis is associated with anxiety, depression, and suicidal ideation, but not with psychiatric hospitalization or suicide. Allergy. 2018;73(1):214-20.
143	Thyssen JP, Skov L, Hamann CR, Gislason GH, Egeberg A. Assessment of major comorbidities in adults with atopic dermatitis using the Charlson comorbidity index. J Am Acad Dermatol. 2017;76(6):1088-1092.e1081.

144 20 145 20 146 Ts m 147 Vs	Chyssen JP, Toft PB, Halling-Overgaard AS, Gislason GH, Skov L, Egeberg A. Incidence, prevalence, and risk of selected ocular disease in adults with atopic dermatitis. J Am Acad Dermatol. 2017;77(2):280-286.e281. Chyssen JP. Could conjunctivitis in patients with atopic dermatitis treated with dupilumab be caused by colonization with Demodex and increased interleukin-17 levels? Br J Dermatol. 2018;178(5):1220-1220. Croi LC, Rodriguez E, Degenhardt F, Baurecht H, Wehkamp U, Volks N, Szymczak S, Swindell WR, Sarkar MK, Raja K, et al. Atopic dermatitis is an IL-13-dominant disease with greater molecular heterogeneity compared to psoriasis. J Invest Dermatol. 2019;139(7):1480-1489.
145 20 146 Ts m 147 Vs	2018;178(5):1220-1220. Tsoi LC, Rodriguez E, Degenhardt F, Baurecht H, Wehkamp U, Volks N, Szymczak S, Swindell WR, Sarkar MK, Raja K, et al. Atopic dermatitis is an IL-13-dominant disease with greater
146 m 147 va 148 V	
148 V	
1/12	van Zuuren EJ, Fedorowicz Z, Christensen R, Lavrijsen A, Arents BWM. Emollients and moisturisers for eczema. Cochrane Database Syst Rev. 2017;2:Cd012119.
in	Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and njuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163-2196.
149	Wang Y, Allen KJ, Suaini NHA, McWilliam V, Peters RL, Koplin JJ. The global incidence and prevalence of anaphylaxis in children in the general population: A systematic review. Allergy. 2019;74(6):1063-1080.
150 W	Ware JEJ, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473-83.
151	Wei W, Anderson P, Gadkari A, Blackburn S, Moon R, Piercy J, Shinde S, Gomez J, Ghorayeb E. Extent and consequences of inadequate disease control among adults with a history of moderate to evere atopic dermatitis. J Dermatol. 2018;45(2):150-157.
152 W	Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers. 2018;4(1):1.
153 W	Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387(10023):1109-1122.
	Werfel T, Allam JP, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E, Hoetzenecker W, Knol E, Simon HU, Wollenberg A, et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol. 2016;138(2):336-349.
	Winthrop KL, Novosad SA, Baddley JW, Calabrese L, Chiller T, Polgreen P, Bartalesi F, Lipman M, Mariette X, Lortholary O, et al. Opportunistic infections and biologic therapies in immune-nediated inflammatory diseases: consensus recommendations for infection reporting during clinical trials and postmarketing surveillance. Ann Rheum Dis. 2015;74(12):2107-2116.
136	Wollenberg A, Barbarot S, Bieber T, Christen-Zaech S, Deleuran M, Fink-Wagner A, Gieler U, Girolomoni G, Lau S, Muraro A, et al. Consensus-based European guidelines for treatment of atopic exzema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2018;32(5):657-682.
157	Wollenberg A, Barbarot S, Bieber T, Christen-Zaech S, Deleuran M, Fink-Wagner A, Gieler U, Girolomoni G, Lau S, Muraro A, et al. Consensus-based European guidelines for treatment of atopic exzema (atopic dermatitis) in adults and children: part II. J Eur Acad Dermatol Venereol. 2018;32(6):850-878.
150	Wollenberg A, Zoch C, Wetzel S, Plewig G, Przybilla B. Predisposing factors and clinical features of eczema herpeticum: a retrospective analysis of 100 cases. J Am Acad Dermatol. 2003;49(2):198-205.
159 W	Wollenberg A. Eczema herpeticum. Chem Immunol Allergy. 2012;96:89-95.
160	Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Lancet. 1998;351(9111):1225-1232.
161 W	Wynn TA. IL-13 effector functions. Annu Rev Immunol. 2003;21:425-456.
	Kue L, Fiscella M, Rajadhyaksha M, Goyal J, Holland C, Gorovits B, Morimoto A. Pre-existing biotherapeutic-reactive antibodies: survey results within the American Association of Pharmaceutica Scientists. Aaps j. 2013;15(3):852-855.
	Yano C, Saeki H, Ishiji T, Ishiuji Y, Sato J, Tofuku Y, Nakagawa H. Impact of disease severity on sleep quality in Japanese patients with atopic dermatitis. J Dermatol Sci. 2013;72(2):195-197.

1.12 添付資料一覧 トラロキヌマブ(遺伝子組換え)

CONFIDENTIAL

164	Yocum MW, Butterfield JH, Klein JS, Volcheck GW, Schroeder DR, Silverstein MD. Epidemiology of anaphylaxis in Olmsted County: A population-based study. J Allergy Clin Immunol. 1999;104(2):452-456.
165	Yu SH, Drucker AM, Lebwohl M, Silverberg JI. A systematic review of the safety and efficacy of systemic corticosteroids in atopic dermatitis. J Am Acad Dermatol. 2018;78(4):733-740.
166	Zhang Y, Cheng J, Li Y, He R, Pan P, Su X, Hu C. The Safety and Efficacy of Anti-IL-13 Treatment with Tralokinumab (CAT-354) in Moderate to Severe Asthma: A Systematic Review and Meta-Analysis. J Allergy Clin Immunol Pract. 2019;7(8):2661-2671.e2663.
167	Zhou H, Tsukamoto Y, Davis HM. Should clinical pharmacokinetic bridging studies between Caucasian and Asian populations be required for approval of monoclonal antibodies? J Clin Pharmacol. 2012;52(8):1273-1276.
168	Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361-70.
169	Zuberbier T, Orlow SJ, Paller AS, Taieb A, Allen R, Hernanz-Hermosa JM, Ocampo-Candiani J, Cox M, Langeraar J, Simon JC. Patient perspectives on the management of atopic dermatitis. J Allergy Clin Immunol. 2006;118(1):226-232.