MAMMALIAN CELL SUBSTRATES

INTRODUCTION

Mammalian Cell Substrates for Biological Products

Recurring focus of attention / anxieties for the past 50 years

Recurring inter-linked issues
 Safety (infection, cancer, other diseases)
 Transmissble agent (e.g., viruses)
 Transmissible elements (e.g., oncogenes)
 Acceptability

MAMMALIAN CELL SUBSTRATES

DEFINITIONS

MAMMALIAN CELL SUBSTRATES Phenotypic Characteristics of Cells Grown in vitro

Life potential

- Finite
- Infinite
- Tumorigenic potential (assay dependent)
 (+)
 - **-** (-)
- Chromosomal compliment
 - Diploid
 - Heteroploid

Mammalian Cell Substrate Classification Scheme

Primary cells

 Examples: monkey kidney, hamster kidney, & chick embryo fibroblasts

Diploid cell lines (human and nonhuman primate)

- Finite life
- Non-tumorigenic
- Examples: WI-38, MRC-5, FRhL-2

Continuous cell lines

- Infinite life
- Heteroploid
- Tumorigenic
 - In vitro "transformation" during subculture (animal) Examples: BSC-1, LLC-MK2, MDCK, & BHK-21
 - Transformed in vitro by whole virus or viral element(s) (animal and human) Examples: 293, PerC.6
 - Derived from tumor tissue (human and animal) Examples: Namalwa, HeLa, T-24
- Non-tumorigenic (animal) Example: VERO at passages <200, some rabbit cell lines

MAMMALIAN CELL SUBSTRATES

Mammalian Cell Substrates Decisions & Developments

 1950s
 Human cancer cells (HeLa) <u>vs</u>
 Primary monkey kidney cells

Mammalian Cell Substrates Decisions & Developments

■ 1960s

Human diploid cells (HDCs)
 Risk of a theoretical latent oncogenic agent
 No tests available for a theoretical agent
 Gradual acceptance of HDCs

Mammalian Cell Substrates **Decisions & Developments** 1970s - Human cancer cells Namalwa - lymphoblastoid cells for IFN Virus (EBV) DNA IFN Not a replicating agent Purification & validation

Mammalian Cell Substrates Decisions & Developments 1980s - Animal cancer cells Characteristics Rapid growth High expression High density Examples CHO for rDNA Hybridomas for MAbs

Mammalian Cell Substrates **Decisions & Developments** 1990s – 2000s Cancer Cells Examples of human CCLs for products in development HeLa – HIV vaccines Per.C6 – Influenza and HIV vaccines 293ORF6 – HIV vaccines Examples of other CCLs for products in development MDCK – influenza vaccines SF9 – human papilomavirus vaccine

Mammalian Cell Substrates Decisions & Developments 1954 - 2006

Year 1954	Meeting AF Epidemiology Board	Major Outcome 1º monkey kidney
1967	NIH	Consider human diploid cells
1978	NIH	Consider alternate cell substrates (e.g., Namalwa for Interferon)
1984	NIH/FDA	DNA, viruses, transforming proteins 10pg DNA/dose
1986	WHO Study Group	DNA, viruses, transforming proteins. 100pg DNA/dose
1996	WHO ECBS	10 ng DNA/dose
1999	FDA, NIH, WHO, IABS	DNA risk issues unresolved
2 004	FDA, NIAID, WHO, IABS	Consensus statements
2005	WHO	Start revision of WHO Requirements for cell substrates

Mammalian Cell Substrates 1986 WHO Study Group

- CCLs acceptable in principle
- Primary concern is viral safety
 - Emphasis should be on the elimination of potential viruses pathogenic for humans
- DNA is of lesser concern 100 pg
- Transforming proteins are not a realistic concern
- Validation & wide margin of safety (~1/10⁶)

Mammalian Cell Substrates Infectious Agents Transmitted to Humans in Biological Products

Polio vaccines	1°MK	SV40 / ?
PPF	Human plasma	Hepatitis B
Transplants	Human cornea	Rabies
	& dura mater	Prions / CJD
Growth hormone	Human pituitary	Prions / CJD
Factors VIII, IX	Human plasma	HIV / AIDS
/		Hepatitis A, B, C

MAMMALIAN CELL SUBSTRATES

CELLULAR DNA

Why Worry About DNA?

- Cells may contain
 - Cancer cell genes
 - Integrated viral genes

Cellular DNA may be carried over into products

DNA in products may be transferred to patients
 Oncogenic event
 Pathology

ELEMENTS of DNA RISK

Infection

- Tumor induction
 - Expression of oncogene
 - Activation of proto-oncogene(s)
 - Inactivation of tumor suppressor gene(s)
- Insertional mutagenesis:
 - activation, inactivation, up-regulation, down-regulation
 - Generally considered to be of negligible risk based on gene therapy studies

Risk estimates of the potential for DNA to cause an oncogenic or infectious event

Source for Estimate of Risk	Type of Risk	Estimated Level of Risk
1986 WHO Study Group	Oncogenic	1 in 2x10 ¹⁰
1987 Petricciani and Regan	Oncogenic	1 in 1x10 ¹⁰
1990 Temin	Oncogenic	1 in 1x10 ¹²
1995 Kurth	Oncogenic	1 in 1x10 ¹²
1997 Dortant	Oncogenic	1 in 5x10 ⁸
1999 Krause and Lewis	Infectious	1 in 4x10 ⁹

18

No published study to date has demonstrated that tumor cell DNA can cause tumors in animal models or in humans. Quantitative risk estimates by five groups, based on various assumptions, suggest that if there is a risk of oncogenesis from cell substrate DNA in biological products, it is extremely low.

The manufacturing process should address risk by achieving a level of cellular DNA well below a theoretical point at which DNA might be expected to be oncogenic.

- The acceptable level of residual cellular DNA per human dose has evolved as the assessment of risks has evolved
 - 10 pg (FDA 1984)
 100 pg (WHO 1986)
 - 10 ng (WHO 1994)

Risk of residual cell substrate DNA can be reduced to negligible levels when: a DNA-inactivating method or a nucleic acid fragmentation method is used in the manufacturing process of vaccines data are available to: validate these methods demonstrate the consistency of the manufacturing process

WHO should establish a working group to recommend studies designed to answer specific questions relating to theoretical risks associated with residual cellular DNA

2004 IABS Conference Recommended studies

- Platform studies to address the risk of oncogensis by residual cellular DNA in appropriate models, including the use of relevant positive controls.
- Dose-response studies to determine the relationship of DNA dose to biological activity.

Studies to determine whether there is less risk from DNA derived from non-tumorigenic continuous cell lines than from those that are tumorigenic.

2004 IABS Conference Recommended studies

- Risk reduction strategy studies
 - Determine the impact of reducing the size of DNA fragments to various lengths
 - assess the effect, if any, of the configuration of the DNA (naked DNA, chromatin DNA, etc.)

 WHO could facilitate reaching a consensus on this point and should be encouraged to do so by undertaking a review of the DNA issue, as was done by the 1986 Study Group and the 1994 ECBS, when sufficient new data become available to warrant such a meeting.

 Agreement among major regulatory agencies and WHO should be reached on levels of cellular DNA that can be considered risk-free.

WHO 2006 Study Group

- Response to 2004 IABS conference recommendations
- 1st meeting in May 2006
 - Review scope of current WHO Requirements
 - Focus on CCLs
 - DNA
 - Review results of studies in progress (CBER/NIAID)
 - Tumorigenicity
 - Review current WHO guidance and draft an update
 - Oncogenicity
 - Consider developing WHO guidance for Requirements
 - New cell systems (e.g., insect cell lines)
 - Consider developing WHO guidance on broad acceptability issues

WHO 2006 Study Group

2nd meeting in April 2007

- Review draft revision to tumorigenicity guidelines
- Review draft tumorigenicity protocol
- Review current results of DNA studies
- Consider updating requirements for adventitious agent tests
- Estimated completion in 2008
- WHO/IABS conference in 2009
 - Public presentation of data and conclusions of Study Group

 Develop consensus on revisions to WHO Guidelines

Continuous Cell Lines Summary

- Risks associated with CCLs are the same as those identified in 1954
 - Transmissble agent (e.g., viruses)
 - Cellular component (e.g., DNA)
- Scientific knowledge and technical abilities are significantly improved since 1954
- Data is now being generated to answer specific questions related to risk
- Prospects are bright for a consensus on the criteria for acceptability of a wide range of CCLs