PMDA科学委員会第2回数值解析技術専門部会

資料 2-2

CT画像を利用した有限要素法(CT-FEM) による骨解析法と 人工股関節置換股の損傷解析への応用

東藤 貢 九州大学応用力学研究所 新エネルギー力学部門

(独) 医薬品医療機器総合機構, 2014年11月14日(金)

- ●CT画像を利用した骨モデル構築と CT-FEM
- ●CT-FEMによる人工関節置換股の
 応力解析
- ●損傷モデルの導入による人工股関
 節
 - 置換股の損傷・骨折解析
- ●有効性と問題点

CT画像を利用した骨モデル構築と CT-FEM

骨密度と力学特性との関係

Keyak, J.H., et al., J Biomedical Materials Research, 1994.

BMDを用いた弾性率と降伏強度の推定

Young's Modulus (MPa)	Density Range (g/cm ³)
E = 0.001	ρ = 0
$E = 33900\rho^{2.20}$	0<ρ≦0.27
E = 5307p+469	0.27 < ρ < 0.6
$F = 102000^{2.01}$	$0.6 \leq 0$
	$0.0 \equiv \beta$
Yield Strength (MPa)	Density Range (g/cm ³)
Yield Strength (MPa) $\sigma_{yield} = 1.0 \times 10^{20}$	Density Range (g/cm³) $\rho \leq 0.2$
Yield Strength (MPa) $\sigma_{yield} = 1.0 \times 10^{20}$ $\sigma_{yield} = 137\rho^{1.88}$	Density Range (g/cm³) $\rho \le 0.2$ $0.2 < \rho < 0.317$

Keyak, J.H., et al., J Biomechanics, 1998

CT画像を利用した股関節モデル構築

CT値から骨密度(BMD)を推定

解析例~骨梁構造と主応力分布の関係~

CT-FEMによる人工股関節置換股の応力解析

THAに関連する合併症

人工股関節置換モデル

	Young's modulus (GPa)	Poisson's ratio
Stem(Ti-6AL-4V)	110	0.3
Cup(Ti-6AL-4V)	110	0.3
Head (Ceramic)	380	0.26
Liner (UHMWPE)	1.95	0.43

ひずみエネルギー密度分布の比較

小転子下部方向のSED

Stress shieldingの再現

損傷モデルの導入による人工股関 節置換股の損傷・骨折解析

破壊基準に達した要素は剛性がゼロになる

Bessho, M., et al., J Biomechanics, 2007

実験結果とCT-FEMによる解析結果が良く一致している

先進 医療 での FEA

 ・先進医療技術名:
 定量的CTを用いた有限要素法による骨強度予測評価 (告示日: H19/6/1)

●適応症:

骨粗鬆症、骨変形若しくは骨腫瘍又は骨腫瘍掻爬術後のもの

●技術の概要:

骨塩定量ファントムとともに対象骨のCTを撮影し、データをワーク ステーションに入力、有限要素解析のプログラムによって処理する。こ れにより、患者固有の三次元骨モデルが作成され、これをもとに3次元 有限要素解析モデルを作成。この解析モデルに対して、現実の加重条件 を模擬した加重・拘束条件を与えて応力・歪みを解析し、破壊強度を計 算・算出する。

●実施医療機関:

東京大学医学部附属病院 水学療法研究所附属病院 横浜市立大学附属病院 川

東北大学病院

国立長寿医療研究センター

川崎医科大学附属病院

●実施件数:

H25: 110件, H23: 12件, H21: 18件

人工股関節置換術と骨折

Fracture types

Brooks, P. in Orthopaedic 2010, 33: 9

http://www.bcmj.org/

http://fractureguide.zimmer.com/

異なる骨折形態をFEMによ り再現し、そのメカニズム を明らかにする

THA & RHAモデルの構築

THA RHA

Properties	Ti6Al4V	Alumina	Co-Cr
Elastic Modulus (GPa)	114	370	230
Poisson Ratio	0.34	0.22	0.30
Critical Stress (GPa)	0.88	0.40	0.94
Yield Stress (GPa)	0.97	3.00	2.70
Density (g/cm ³)	4.43	3.96	8.28

骨損傷の累積挙動(ねじり)

骨損傷の累積挙動(ねじり)

骨損傷の累積挙動(転倒)

解析結果と骨折形態の対応

異なる患者の比較~79歳 vs 54歳~

26

healthy

骨損傷の累積挙動~79歳vs 54歳~

損傷要素数の推移~79歳 vs 54歳~

28

- CT画像を利用することで実構造に近い骨構造の数 値モデルの作成が可能
- CT値を利用することで骨密度分布の推定と弾性率 や圧縮降伏強度への変換が可能
- 骨モデルと人工関節CADデータを組み合わせること で人工関節置換股の数値モデルの作成が可能
- CT-FEMにより人工関節置換が骨に及ぼす影響の定 量的評価が可能
- ●損傷モデルを導入することで骨折予測が可能
- ●人工関節デザインの最適化,加齢・性別・骨粗鬆症
 等の影響の調査等への応用も可能

問題点

- CT画像の解像度に影響されるモデルの精度
- ●部分的(股関節,大腿骨等)に抽出した骨モデルの妥当性
- ●複雑な境界条件(拘束条件と荷重条件)の設定
- ●解析結果の妥当性の検証(臨床結果や実験との比較)
- ●ミクロ構造(コラーゲンと炭酸アパタイトの複合構造)が影響を及ぼす骨折現象に対するマクロな損傷評価パラメータ(主応力や主ひずみ)の適応性