Principles and Case Examples in Global/Asian Clinical Trials

Yuki ANDO
Senior Scientist for Biostatistics
Pharmaceuticals and Medical Devices Agency (PMDA)
Disclaimer

• The views and opinions expressed in the following PowerPoint slides are those of the individual presenter and should not be attributed to Drug Information Association, Inc. ("DIA"), its directors, officers, employees, volunteers, members, chapters, councils, Special Interest Area Communities or affiliates, or any organization with which the presenter is employed or affiliated.

• These PowerPoint slides are the intellectual property of the individual presenter and are protected under the copyright laws of the United States of America and other countries. Used by permission. All rights reserved. Drug Information Association, DIA and DIA logo are registered trademarks or trademarks of Drug Information Association Inc. All other trademarks are the property of their respective owners.
Outline

• Introduction
• Guidance documents in Japan
 – “Basic Principles on Global Clinical Trials”
 – “Basic Principles on Global Clinical Trials – Reference Cases”
• Current situation in Japan
• Selected points from “Basic Principles” and “Reference cases” with case example
 – Selected points from “Basic Principles”
 – Selected points from “Reference cases”
• Other issues related to Global Clinical Trials
• Summary
Introduction

- Purposes of global drug development
 - To prevent unnecessary duplication of clinical trials
 - To make drug development more efficient and cost-effective
 - To enable simultaneous drug submission and approval all over the world
 - To provide effective and safe drug to patients faster

- Global Clinical Trial (GCT) is considered as one of efficient tool for simultaneous global drug development.
Introduction

• History of using foreign data in Japan
 • After ICH-E5, foreign clinical trial data have been used in Japan with “bridging strategy” and “bridging study”.
 – ICH-E5 Q&A No.11 (2006)
 • The Q&A clearly mentioned the use of GCT for the purpose of bridging.
 • The strategy for using foreign clinical data shifted to global simultaneous drug development with GCT.
Introduction

• History of using foreign data in Japan (Cont.)
Outline

• Introduction

• Guidance documents in Japan
 – “Basic Principles on Global Clinical Trials”
 – “Basic Principles on Global Clinical Trials – Reference Cases”

• Current situation in Japan
• Selected points from “Basic Principles” and “Reference cases” with case example
 – Selected points from “Basic Principles”
 – Selected points from “Reference cases”

• Other issues related to Global Clinical Trials
• Summary
“Basic Principles on Global Clinical Trials”

- “Basic Principles on Global Clinical Trials” was issued on Sep 28, 2007.
 - To encourage Japan’s participation to GCTs from an early stage of drug development
 - To provide points to be considered in GCTs
 - To promote conducting GCTs more appropriately in consideration of ethnic factors
 - Based on accumulated experiences mainly in PMDA consultation meetings
“Basic Principles on Global Clinical Trials”

• 12 Q&As
 – Basic requirements to conduct a GCT
 – Appropriate timing to participate in global drug development
 – Importance of Phase I study prior to a GCT
 – Importance of dose-finding study
 – Basic points to consider in designing a GCT
 – Sample size and proportion of Japanese subjects
“Basic Principles on Global Clinical Trials”

• 12 Q&As (Cont.)
 – Acceptability of evaluation index which has not been established in Japan
 – GCT and a smaller clinical study with identical protocol in Japan
 – Control group (use of active control, active control which is not approved in Japan)
 – Concomitant medications or therapeutics
 – Recommended areas
 – Flow chart
“Reference Cases”

• There were few approved cases when the original guidance document was issued in Japan.
 – “General” cases were assumed.
 • Ex. Example of a few hundred subjects of study in the explanation of sample size of Japanese population
 – Points to be considered for evaluating the results of GCT were not provided in original guidance.

• Number of conduct of Asian trials have been increased and East Asian contribution has been recognized.
“Reference Cases”

• “Basic Principles on Global Clinical Trials (Reference Cases)” was issued on Sep 5, 2012.
 – Based on recently accumulated scientific data and our experiences in consultation meetings and new drug review
 – Reflect the outcome of cooperation in clinical trials among the regulatory authorities of China, Korea, and Japan
“Reference Cases”

• Purpose of “Reference cases”
 – To promote further understanding of the former “Basic Principles” issued in 2007
 – To ensure Japan’s smooth participation in global drug development activities from an early stage
 – To ensure smooth and appropriate conduct of global clinical trials in East Asia

• 17 Q&As
 – 4 points to consider for global clinical trials in East Asia
 – 13 general points to consider on global clinical trials
Outline

• Introduction
• Guidance documents in Japan
 – “Basic Principles on Global Clinical Trials”
 – “Basic Principles on Global Clinical Trials – Reference Cases”

• Current situation in Japan
• Selected points from “Basic Principles” and “Reference cases” with case example
 – Selected points from “Basic Principles”
 – Selected points from “Reference cases”

• Other issues related to Global Clinical Trials
• Summary
Current situation in Japan

• The proportion of global clinical trials including Japanese subjects is increasing.
• There is a certain number of Asian clinical trials.
• GCT now seems to be a general tool for drug development.
• There are a few cases of bridging strategy.
 – When the development outside Japan is ahead of development in Japan
 – Bridging strategy is still useful in such cases.
Trend of GCT including Japan

CTN: Clinical Trial Notification

Regions for conducting GCT

- World Wide: 72%
- East Asia or Asia: 15%
- Uncertain: 2%
- No other Asia: 11%

Approved cases based on GCTs in Japan

| Year | Tolterodine | Trastuzumab | Insulin - Glulisine | Tadalafil | Peramivir | Everolimus | Panitumumab | Travoprost/ Timolol | Temsirolimus | Laninamivir | Nilotinib | Dabigatran | Trastuzumab | Pramipexole | Edoxaban | Dasatinib | Indacaterol | Linagliptin | Gefitinib | Everolimus | Denosumab | Aripiprazole | Olanzapine | Exenatide | Crizotinib | Budesonide/ Formoterol | Esomeprazole | Formoterol | Axitinib | Budesonide/ Formoterol | Paclitaxel | Pregabalin | Tofacitinib | Regorafenib |
|------|-------------|-------------|-------------------|-----------|-----------|------------|-------------|---------------------|--------------|-------------|----------|------------|-------------|--------------|---------|-----------|-------------|-------------|----------|------------|----------|-------------------|--------------|---------|----------|-------------------|-----------|-----------|-----------|-------------|
| 2006 | | | Tolterodine | Losartan | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2007 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2008 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2009 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2010 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2011 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2012 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 2013 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

- **Red:** Asian Clinical Trial
- **Guidance:** “Basic Principles on Global Clinical Trials”
- **Guidance RC:** “Basic Principles on Global Clinical Trials – Reference Cases”

• **45 applications were approved as of Apr 1, 2013**
Current situation in Japan

- The number of approved cases with GCT is rapidly increasing.
- We accumulate experiences in planning and evaluating worldwide and Asian GCTs in Japan.
Outline

• Introduction
• Guidance documents in Japan
 – “Basic Principles on Global Clinical Trials”
 – “Basic Principles on Global Clinical Trials – Reference Cases”
• Current situation in Japan
• Selected points from “Basic Principles” and “Reference cases” with case example
 – Selected points from “Basic Principles”
 – Selected points from “Reference cases”
• Other issues related to Global Clinical Trials
• Summary
Selected points from Japanese guidance document

• Although the guidance was issued for promoting global drug development including Japan, most of the points are useful for other regions.

• Especially when
 – consider participation in global drug development
 – evaluate efficacy and safety of a drug in a region based on the results of GCT
Basic principles

• “Global Clinical Trial (GCT)”
 – A trial designed for a new drug aiming for worldwide development and approval
 – Having multiple countries, regions and medical institutions participating in a single clinical trial
 – Conduct concurrently in accordance with a common clinical trial protocol
Basic principles

• An appropriate timing to participate in global drug development
 – Regarding clinical developments that are globally proceeding, it is recommended to participate as soon as possible.
 – At the latest, participation to the exploratory dose-finding study should be possible.
Phase I study

• Importance of a phase I trial or pharmacokinetic information prior to conduct of a GCT for patients
 – The dosage regimen to be used in the GCT should be confirmed beforehand, so it is important to examine single dose safety and pharmacokinetics of the drug in a region.
 – PK comparison between participating regions is important to determine an appropriate dose for the regions.
 – If safety in the region can be determined from the results of foreign PI trials, a PI in the region is not necessarily required prior to the GCT
Dose-finding study

• Acceptability of participation in a confirmatory PIII GCT without conducting any dose-finding study in the region?
 – PK may be different between regions and it is sometimes difficult to conclude that we can use same dose as a recommended dose for all regions.
 – It is recommended to participate in a dose-finding GCT to identify inter-ethnic difference in dose-response relationship early in clinical development.
Possibility of dose difference

Same Drug, Different Dosing: Differences in Dosing for Drugs Approved in the United States, Europe, and Japan

Henry J. Malinowski, PhD, Agnes Westelinck, Phu and Ting Ong, MS

With globalization of the pharmaceutical industry, newly approved drugs nearly always become available worldwide, including the 3 major pharmaceutical regions: the United States, Europe, and Japan. One might think that these drugs would have the same recommended dosing throughout the world, but this appears not to be true in many instances. The objective of this study was to identify any patterns of differences in labeled dosing. Approved labeling, for the most widely prescribed proprietary drugs in the United States, was used as a basis for this study. Dosing was compared, for common indications, for the United States, Europe, and Japan. There are numerous approved in all three regions. The dosing in the United States or Europe or Japan may appear to be different.

Keywords: Int. J. Clin. Pharmaco Therapeut. 2010;87:714-720

Exploring Differences in Drug Doses Between Japan and Western Countries

FL Arnold¹, M Kusama¹ and S Ono¹

Japan is unique among Asian countries in that it requires inclusion of substantial domestic clinical trial data in new drug application data packages. Some question the need for this and call for globalization of approved doses. The current study examines international differences in maximum daily dose of drugs approved in Japan between 2001 and 2007, and for all cardiovascular system (CVS) and central nervous system (CNS) drugs marketed in Japan. For 32% of the drugs approved in Japan between 2001 and 2007, the maximum recommended dose in the United States was ≥2 times higher than the maximum dose approved in Japan. Dose differences were rare for antitumor and antiviral drugs and also for priority-review and orphan drugs. Of all the price-listed CVS drugs currently available in Japan, 65% had maximum doses that were ≥2 times higher in the Netherlands than in Japan; similarly, 57% of the drugs had maximum doses that were ≥2 times higher in the United States than in Japan. For CNS drugs, these figures were 32% (the Netherlands) and 29% (United States). These results underscore the necessity to carry out quantitative analyses to determine the causes of these differences.

Designing GCT

• The basic points to consider in designing a GCT
 – It is necessary to evaluate
 • effects of ethnic factors specific to individual regions on efficacy and safety of the drug
 • efficacy and safety of investigational drugs in region where the GCT will be used for new drug submission
 – The designs and analytical methods for the GCT should be acceptable to all regions.
 – The primary endpoints should be those acceptable to all individual regions
 • If the primary endpoints are different by region, data on all the primary endpoints should be collected in all regions
 – The collecting and assessing method of adverse event information should be standardized as much as possible across all regions
Sample size for a region

- Appropriate sample size (or a proportion) for one region
 - Sufficient statistical power to detect statistically significant results should not necessarily be secured within the subpopulation (population in one region).
 - GCT should be designed so that consistency can be obtained between results from the entire population and that from population in each region.
 - Sample size for each region needs to be determined by considering some factors, including the number of regions, the scale of trial, target disease, and the relevant ratio between the total and each subject numbers.
 - (Two methods as examples)
Sample size for a region

• Method 1:
 – Determine the sample size of Japanese subjects so that DJapan/Dall > 0.5 will occur with a probability of 80% or higher. (D: Difference between placebo and study drug)

• Method 2:
 – Determine sample sizes so that D of each region show a similar tendency. For example with three regions, the number of subjects is determined so that each of the D1, D2, and D3 will exceed 0 with a probability of 80% or higher.
Sample size for a region

• Current situation in Japan
 – Sample size based on Method 1 or Method 2 in the guidance
 – Sample size based on modified Method 1 or 2
 • For non-inferiority trials, hazard ratio
 • At least based on criteria for point estimates of the endpoint with a certain degree of probability
 – Sample size based on the feasibility
 • For orphan type disease, oncology, or large scale trials
Endpoint

- GCT with endpoint which is not established in some regions
 - Conduct of a pilot study in the regions would be needed at as an early stage as possible
 - to confirm whether drug response in the regions is similar to other regions
 - In addition, to minimize possible differences among raters, trial sites, and regions, some measures are needed before the start of the GCT, such as developing and conducting a regionally-common training program.
 - -> Example: Atomoxetine
Separately performed trial

• Foreign GCT and smaller domestic trial that is separately performed using identical protocol
 – They should generally be regarded as separate trials, and it is difficult to conclude that the efficacy and safety are the same between all regions based on the results of these trials.
 – Bridging study with enrollment of enough number of subjects to allow statistical consideration within the region would be recommended.
 – -> Example: Rivaroxaban
Disease areas

- Disease areas where conduct of a GCT is recommended
 - GCT can be performed in any therapeutic areas.
 - Conduct of a GCT should be actively considered for diseases for which conduct of a large confirmatory clinical trial in one region will be difficult
 - E.g., orphan diseases
 - Building clinical evidence based on the more appropriately designed trial
 - Also, participating in GCT should be actively considered for the disease area that take a long time to accumulate a sufficient number of subjects even at global level, such as a large clinical trial with true clinical endpoints.
Example: Tadalafil

- PDE5 inhibitor
- Indication: pulmonary arterial hypertension (PAH)
- GCT:
 - Randomized placebo-controlled trial conducted in Europe, North America, and Japan
 - Objective: To demonstrate efficacy and safety of each dose group of tadalafil compared to placebo
 - Dose groups: 2.5mg, 10mg, 20mg, 40mg
 - Number of patient: 405 (including 26 Japanese)
 - Primary endpoint: 6-minute walk distance change from baseline to week16

http://www.info.pmda.go.jp/shinyaku/P200900050/index.html
http://www.info.pmda.go.jp/shinyaku/P200900050/530471000_22100AMX02266000_A100_1.pdf
Tadalafil: Results

Result of primary endpoint: Mean 6-minute walk distance (m)

<table>
<thead>
<tr>
<th>Region</th>
<th>Baseline</th>
<th>2.5mg</th>
<th>10mg</th>
<th>20mg</th>
<th>40mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>All regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>347.49</td>
<td>346.53</td>
<td>340.01</td>
<td>338.26</td>
<td>352.67</td>
</tr>
<tr>
<td>Week 16</td>
<td>356.71</td>
<td>368.32</td>
<td>368.61</td>
<td>374.49</td>
<td>393.80</td>
</tr>
<tr>
<td>Change</td>
<td>9.21</td>
<td>21.79</td>
<td>28.60</td>
<td>36.23</td>
<td>41.14</td>
</tr>
<tr>
<td>N</td>
<td>79</td>
<td>79</td>
<td>78</td>
<td>80</td>
<td>76</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>313.33</td>
<td>371.08</td>
<td>311.06</td>
<td>370.87</td>
<td>375.20</td>
</tr>
<tr>
<td>Week 16</td>
<td>362.67</td>
<td>398.50</td>
<td>405.62</td>
<td>409.75</td>
<td>459.25</td>
</tr>
<tr>
<td>Change</td>
<td>49.33</td>
<td>27.42</td>
<td>94.56</td>
<td>35.25</td>
<td>63.00</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>
Tadalafil: Discussion point

• Most of the clinical trials conducted for previously approved drugs for PAH were single arm trials

• General conclusion for this case
 – Sample size of Japanese patients was not sufficient to evaluate consistency.
 – However, there was not a severe discrepancy between all patients results and Japanese results from a comprehensive viewpoint that looks at the total patient data.
Tadalafil: Results

- Selection of recommended dose
 - 6-minute walk distance change from baseline of individual patient and predicted value from PK/PD modeling
Disease areas

• Experiences in Japan
 – In some cases of drugs for orphan type diseases and oncology drugs, the number of Japanese subjects did not seem to be sufficient for efficacy evaluation.
 – Even in such cases, participating in GCT is useful for collecting safety information in target Japanese patients, and is also important for establishing evidence of the drug.
• Introduction
• Guidance documents in Japan
 – “Basic Principles on Global Clinical Trials”
 – “Basic Principles on Global Clinical Trials – Reference Cases”
• Current situation in Japan
• Selected points from “Basic Principles” and “Reference cases” with case example
 – Selected points from “Basic Principles”
 – Selected points from “Reference cases”
• Other issues related to Global Clinical Trials
• Summary
Selected points from “Reference cases”

- “Reference Cases” includes special points to consider for GCT in East Asia
- Also it includes points to consider based on recent experiences
Points to consider for GCT in East Asia

• Special points to consider for global clinical trial in East Asia
 – The types and frequency of metabolic enzyme polymorphisms and gene profiles are expected to be similar
 – However, GCTs in East Asia need to be designed and conducted based on prior evaluation of ethnic difference.
 – Further accumulation of experience will lead to improvement of the efficiency and quality of clinical development in East Asia
Points to consider for GCT in East Asia

• Recommended therapeutic areas
 – Although GCTs in East Asia can be performed for any target disease area, they may contribute to the improvement of the efficiency and quality of development of drugs especially for diseases with high morbidity in East Asia
 – E.g. gastric cancer, hepatitis
Points to consider for GCT in East Asia

• Global drug development strategy plan based on data of interethnic comparison of pharmacokinetic profiles
Points to consider for GCT in East Asia

- Development plan may depend on the comparison of the PK profile
 - Between East Asian and Caucasian
 - Among East Asian populations
- Based on the results of comparison, most efficient plan should be chosen, such as
 - Worldwide GCT from early exploratory phase
 - East Asian exploratory clinical trial
 - Exploratory study in one region
- Possibility of confirmatory GCT trial is based on
 - The result of prior exploratory studies
 - PK profiles, effects of ethnic factors
General points to consider

• Points to consider in planning clinical development strategies and a protocol of regional study in the trend of globalization of drug development
Development plan

• Key points
 – To develop a long term and overall plan
 – To optimize the development process and protocols for subsequent phases during the course of drug development based on evaluation of data available so far
 – To cooperate with relevant foreign sections from an early stage, and share and understand up-to-date data of the drug and development program
Development plan

• Three major types of clinical development strategies
 – Single-country development
 – Bridging development to which foreign data are extrapolated
 – Global development including confirmatory global clinical trials
 • World-wide development
 • East Asian global development (for East Asian Countries)
• Optimal protocol should be developed for the next phase based on the data available at the moment.
Example: Atomoxetine

- Selective norepinephrine reuptake inhibitor
- Indication: Adult attention-deficit hyperactivity disorder (AD/HD)
 - Already approved in 29 countries including US, Taiwan, and Korea
- Prior information
 - Japanese PII, foreign PII, results in AD/HD in children
- GCT (PIII)
 - Placebo-controlled double-blinded East Asian clinical trial conducted in Taiwan, Korea, and Japan

http://www.info.pmda.go.jp/shinyaku/P201200114/index.html
http://www.info.pmda.go.jp/shinyaku/P201200114/53047100_22100AMX00644_A100_1.pdf
Atomoxetine: results of GCT

Primary endpoint: CAARS-Inv: SV* AD/HD Total Score

* Conner’s Adult AD/HD Rating Scales-Investigator Rated and Scored: Screening Version

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Baseline</th>
<th>Post</th>
<th>Change</th>
<th>Difference (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>195</td>
<td>33.9±7.5</td>
<td>25.1±11.2</td>
<td>-8.8±9.6</td>
<td>-5.78 (-7.66,-3.91)</td>
</tr>
<tr>
<td>Atomoxetine</td>
<td>191</td>
<td>33.2±7.8</td>
<td>18.9±10.2</td>
<td>-14.3±10.4</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>124</td>
<td>32.8±7.6</td>
<td>26.0±10.6</td>
<td>-6.8±8.5</td>
<td>-5.98 (-8.18,-3.77)</td>
</tr>
<tr>
<td>Atomoxetine</td>
<td>123</td>
<td>32.0±7.5</td>
<td>19.5±10.2</td>
<td>-12.6±9.5</td>
<td></td>
</tr>
<tr>
<td>Korea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>37</td>
<td>33.0±6.5</td>
<td>19.8±10.6</td>
<td>-13.2±8.7</td>
<td>-5.60 (-10.06,-1.15)</td>
</tr>
<tr>
<td>Atomoxetine</td>
<td>34</td>
<td>35.8±7.8</td>
<td>16.0±9.8</td>
<td>-19.8±10.4</td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo</td>
<td>34</td>
<td>39.3±6.1</td>
<td>27.6±12.6</td>
<td>-11.6±12.1</td>
<td>-6.13 (-11.92,-0.34)</td>
</tr>
<tr>
<td>Atomoxetine</td>
<td>34</td>
<td>34.9±7.8</td>
<td>19.7±10.7</td>
<td>-15.2±11.9</td>
<td></td>
</tr>
</tbody>
</table>
Atomoxetine: discussion points

• Prior consideration of ethnic differences
 – There was no major difference in intrinsic factors such as
 • pharmacokinetics between Japanese and other Asian countries
 • Incidence rate
 – AD/HD was not so well recognized and it seemed that there was no major difference in Extrinsic factors such as
 • Diagnostics
 • Standard therapy
Atomoxetine: discussion points

• Study design
 – Diagnostics criterion in the trial
 • Establishment of Japanese version of Conners’ Adult AD/HD Diagnostic Interview for DSM-IV (CAADID)
 • Training for evaluation using CAADID
 – Primary endpoint
 • Establishment of Japanese version of CAARS-Inv: SV with validation study
 • Check inter-rater variability in all countries

• Results
 – Consistent between regions
 – No major factors affect the efficacy and safety
Example: Rivaroxaban

- Direct factor Xa inhibitor
- Indication: Prevention of ischemic stroke and systemic embolism in patients with non-valvular atrial fibrillation
- Japan could not participate in worldwide GCT.
 - Rivaroxaban is approved in Japan not based on GCT including Japanese subjects
 - Smaller trial with Japanese subjects, which is basically not recommended, was conducted and evaluated.

http://www.info.pmda.go.jp/shinyaku/P201200011/index.html
http://www.info.pmda.go.jp/shinyaku/P201200011/630004000_22400AMX00041_A100_1.pdf
Example: Rivaroxaban

- Two trials with almost identical protocol
 - GCT not including Japan (ROCKET AF)
 - Randomized double-blinded parallel group trial conducted in 45 countries
 - Objective is to show non-inferiority to warfarin
 - Number of patients: 14264
 - Japanese trial (J-ROCKET AF)
 - Randomized double-blinded parallel group trial conducted in Japan
 - Objective is to investigate safety (non-inferiority) compared to warfarin
 - Number of patients: 1280
Rivaroxaban: Results of two trials

ROCKET AF

<table>
<thead>
<tr>
<th></th>
<th>20mg</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6958</td>
<td>7004</td>
</tr>
<tr>
<td>Stroke/SS (/100pat.-y.)</td>
<td>188 (1.71)</td>
<td>241 (2.16)</td>
</tr>
<tr>
<td>Hazard ratio (95%CI)</td>
<td>0.79 (0.66-0.96)</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>7111</td>
<td>7125</td>
</tr>
<tr>
<td>Bleeding (/100pat.-y.)</td>
<td>1475 (14.91)</td>
<td>1449 (14.45)</td>
</tr>
<tr>
<td>Hazard ratio (95%CI)</td>
<td>1.03 (0.96-1.11)</td>
<td></td>
</tr>
</tbody>
</table>

J-ROCKET AF

<table>
<thead>
<tr>
<th></th>
<th>15mg</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>637</td>
<td>637</td>
</tr>
<tr>
<td>Stroke/SS (/100pat.-y.)</td>
<td>11 (1.26)</td>
<td>22 (2.61)</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>639</td>
<td>639</td>
</tr>
<tr>
<td>Bleeding (/100pat.-y.)</td>
<td>138 (18.04)</td>
<td>124 (16.42)</td>
</tr>
<tr>
<td>Hazard ratio (95%CI)</td>
<td>1.11 (0.87-1.42)</td>
<td></td>
</tr>
</tbody>
</table>

Efficacy endpoint: composite of stroke and non-CNS systemic embolism

Safety endpoint: composite of major and non-major clinical relevant bleeding events
Rivaroxaban: Discussion points

• Different dose for Japanese
 – Based on the PPK model, simulation

• We could expect that the clinical usefulness shown in ROCKET AF will be shown also in Japanese patients, but the efficacy information in Japanese was limited.
 – Information from J-ROCKET AF is useful, but smaller number of Japanese population was not sufficient for efficacy confirmation.

• -> Contrasted with Example: Apixaban
General points to consider

• Points to consider in evaluating the results of a global clinical trial
Evaluation of the results of overall population
 – Patients characteristics, efficacy (primary purpose of the trial in most cases), and safety
 – Ethnic difference (Effect of region)

Evaluation of the results of individual region
 – Patients characteristics, efficacy, and safety
 – Consistency between overall population and population of the region
Evaluation of the results of GCT

• Population in individual region is sub-population of the overall population.
 – Smaller sample size for statistical tests
 – Necessity of consideration on the variability of the results
 – Necessity of the evaluation of secondary and other endpoints as supportive results
 – Use of overall results for investigating effect of factors (Careful interpretation of subgroup analysis by factors in each region)

• Inconsistency?
 – Possible reason of inconsistency and possibility of using the results of the GCT for NDA for individual region should be carefully investigated.
Example: Insulin Degludec

• Insulin analog
• Indication: diabetes mellitus
• GCT:
 – GCT for Type 1 diabetes
 – Asian trial for Type 2 diabetes
 • Comparing insulin degludec to insulin glarugin
Asian trial of Insulin Degludec

• Information of ethnic factors
 – Possibility of severe impairment in insulin secretion and less insulin resistance in Asian type 2 diabetes compared to Caucasian
 – Age, disease duration, BMI, and HbA1c are almost same among Asian countries based on research results
 – Similar guidance documents based on the worldwide used guidance (e.g. WHO)
 – No major difference in PK among Asian countries
Asian trial of Insulin Degludec

- Check results of all subjects and those of Japanese subjects
 - Primary endpoint: HbA1c
 - Secondary endpoints: blood sugar level, % of patients with HbA1c<7.0%, etc.
 - -> No major difference
- Check patient characteristics
 - -> Difference in sex, age, and concomitant drugs (glucose lowering agents)
Asian trial of Insulin Degludec

- Check effects of factors based on the subgroup analysis of overall population (and Japanese population) by factors
 - Sex: no major effects in overall population (and Japanese population)
 - Age: change from baseline of HbA1c is smaller in age > 65 in both group and there was no effects of age on difference between groups (in overall population and in Japanese population)
 - Concomitant drugs: no effects of on difference between groups in overall population
• Points to consider in participating in a large-scale global clinical trial using a true endpoint such as survival time
Large-scale GCT

- One region may contribute to establishment of evidence based on the true endpoint by participating in large-scale GCT.
- Considering number of participating regions, adequate sample size of subjects in individual region may not be achieved to evaluate the consistency of the results between the overall study population and the population in one region.
Large-scale GCT

• Need special care for small sample size of population in one region
 – Prior investigation of ethnic differences
 – Considering endpoints that were used in earlier phase trials when evaluate consistency
 – Careful interpretation of subgroup analysis results by factors in overall population, even when we consider special population in particular region
 – Possibility of deciding minimum required sample size of each region based on other endpoints that relate closely to primary endpoint
Example: Dabigatran

- Direct thrombin inhibitors
- Indication
 - Stroke and systemic embolism in patients with non-valvular atrial fibrillation
- Prior information
 - Japanese PII for safety
- GCT: Global PIII (RE-LY)
 - Prospective, randomized, open label, blinded endpoint evaluation (PROBE)
 - Parallel group trial of 150mg, 110mg, and warfarin, to show non-inferiority of Dabigatran to warfarin
 - Number of patients: 18113 (including 326 (1.8%) Japanese patients)
Dabigatran: Results (efficacy)

Incidence of stroke (including hemorrhagic) and systemic embolism

<table>
<thead>
<tr>
<th></th>
<th>110mg</th>
<th>150mg</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6015</td>
<td>6076</td>
<td>6022</td>
</tr>
<tr>
<td>Subject-years</td>
<td>11900</td>
<td>12039</td>
<td>11797</td>
</tr>
<tr>
<td>Stroke/SEE (Yearly rate%)</td>
<td>182 (1.53)</td>
<td>133 (1.10)</td>
<td>198 (1.68)</td>
</tr>
<tr>
<td>Hazard ratio (95%CI)</td>
<td>0.91 (0.75-1.12)</td>
<td>0.66 (0.53-0.82)</td>
<td>—</td>
</tr>
<tr>
<td>Japanese</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>107</td>
<td>111</td>
<td>108</td>
</tr>
<tr>
<td>Subject-years</td>
<td>145</td>
<td>150</td>
<td>151</td>
</tr>
<tr>
<td>Stroke/SEE (Yearly rate%)</td>
<td>2 (1.38)</td>
<td>1 (0.67)</td>
<td>4 (2.65)</td>
</tr>
<tr>
<td>Hazard ratio (95%CI)</td>
<td>0.52 (0.10-2.84)</td>
<td>0.25 (0.03-2.27)</td>
<td>—</td>
</tr>
</tbody>
</table>
Dabigatran: Results (safety)

Major bleeding

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>110mg</th>
<th>150mg</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>11900</td>
<td>12039</td>
<td>11797</td>
</tr>
<tr>
<td>N</td>
<td>6015</td>
<td>6076</td>
<td>6022</td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td></td>
<td>318 (2.67)</td>
<td>375 (3.11)</td>
<td>396 (3.36)</td>
</tr>
<tr>
<td>(Yearly rate%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazard ratio</td>
<td>0.79 (0.68-0.92)</td>
<td>0.93 (0.81-1.07)</td>
<td></td>
<td>1.68 (0.55-5.15)</td>
</tr>
<tr>
<td>(95%CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Japanese

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>110mg</th>
<th>150mg</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>145</td>
<td>150</td>
<td>151</td>
</tr>
<tr>
<td>N</td>
<td>107</td>
<td>111</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>Major bleeding</td>
<td></td>
<td>8 (5.53)</td>
<td>5 (3.33)</td>
<td>5 (3.31)</td>
</tr>
<tr>
<td>(Yearly rate%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazard ratio</td>
<td>1.68 (0.55-5.15)</td>
<td>1.02 (0.29-3.51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95%CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dabigatran: discussion points

• Design issues
 – PROBE design, non-inferiority margin
 – Acceptance of PT-INR criteria for warfarin dose adjustment in Japanese elderly

• Evaluation of the Japanese data
 – Difficulty of reviewing consistency between all subjects and Japanese subjects due to the Japanese sample size based on the feasibility
 – Need of comprehensive review of efficacy and safety, with reviewing secondary endpoints for them
 – Use of lower dose (110mg)
 – Consideration on special population in Japan
Dabigatran: post-marketing

• Reports of adverse events (severe bleeding) especially in elderly patients
• The blue letter and change of the package insert
 – Importance of consideration for the risk of using dabigatran based on the characteristics of the patients
 – Warning statement for risk of bleeding, lack of neutralizing agents and measurements of bleeding risk
• Even there was the results of large scale clinical trial, it may be difficult to assume actual use in clinical environment
Example: Apixaban

• Direct factor Xa inhibitor
• Indication
 – Prevention of ischemic stroke and systemic embolism in patients with non-valvular atrial fibrillation
• Prior information
 – Japanese PII for safety
 – Foreign PII in patients with elective knee replacement
 – Foreign PII in patients with deep venous thrombosis

http://www.info.pmda.go.jp/shinyaku/P201200166/index.html
http://www.info.pmda.go.jp/shinyaku/P201200166/670605000_22400AMX01496_A100_1.pdf
Example: Apixaban

- **GCT: Global PIII (ARISTOTLE)**
 - Randomized double-blinded parallel group non-inferiority trial compared to Warfarin
 - Number of patients: 18201 (including 336 (1.8%) Japanese patients)
 - Dose could be reduced from 5.0mg BID to 2.5mg BID, according to the criteria for patient characteristics
 - Age, weight, and serum creatinine

http://www.info.pmda.go.jp/shinyaku/P201200166/index.html
http://www.info.pmda.go.jp/shinyaku/P201200166/670605000_22400AMX01496_A100_1.pdf
Apixaban : Results (efficacy)

Incidence of stroke (including hemorrhagic) and systemic embolism

<table>
<thead>
<tr>
<th></th>
<th>Apixaban</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>9120</td>
<td>9081</td>
</tr>
<tr>
<td>Stroke/SEE (Yearly rate%)</td>
<td>212 (1.27)</td>
<td>265 (1.60)</td>
</tr>
<tr>
<td>Hazard ratio (95%CI)</td>
<td>0.79 (0.66-0.95)</td>
<td>—</td>
</tr>
<tr>
<td>Hazard ratio (99%CI)</td>
<td>0.79 (0.62-1.00)</td>
<td>—</td>
</tr>
<tr>
<td>Japanese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>161</td>
<td>175</td>
</tr>
<tr>
<td>Stroke/SEE (Yearly rate%)</td>
<td>3 (0.87)</td>
<td>6 (1.67)</td>
</tr>
</tbody>
</table>
Apixaban: Results (safety)

Major bleeding

<table>
<thead>
<tr>
<th></th>
<th>Apixaban</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>9088</td>
<td>9052</td>
</tr>
<tr>
<td>Major bleeding (Yearly rate%)</td>
<td>327 (2.13)</td>
<td>462 (3.09)</td>
</tr>
<tr>
<td>Japanese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>160</td>
<td>175</td>
</tr>
<tr>
<td>Major bleeding (Yearly rate%)</td>
<td>4 (1.26)</td>
<td>18 (5.99)</td>
</tr>
</tbody>
</table>
Apixaban: Results (dose)

<table>
<thead>
<tr>
<th></th>
<th>Apixaban</th>
<th>Warfarin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total N</td>
<td>9120</td>
<td>9081</td>
</tr>
<tr>
<td>5.0mg BID</td>
<td>8692 (95.3%)</td>
<td>8678 (95.6%)</td>
</tr>
<tr>
<td>2.5mg BID</td>
<td>428 (4.7%)</td>
<td>403 (4.4%)</td>
</tr>
<tr>
<td>Japanese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total N</td>
<td>161</td>
<td>175</td>
</tr>
<tr>
<td>5.0mg BID</td>
<td>151 (93.8%)</td>
<td>161 (92.0%)</td>
</tr>
<tr>
<td>2.5mg BID</td>
<td>10 (6.2%)</td>
<td>14 (8.0%)</td>
</tr>
</tbody>
</table>
Apixaban: Discussion points

• Design issues
 – Acceptance of PT-INR criteria for warfarin in Japanese elderly

• Evaluation of the Japanese data
 – Difficulty of reviewing consistency between all subjects and Japanese subjects due to the Japanese sample size based on the feasibility
 – Need of comprehensive review of efficacy and safety, with reviewing secondary endpoints for them
Apixaban: discussion points

- Information of doses
 - Appropriateness of criteria for low dose
 - Sufficiency of information of low dose
Outline

• Introduction
• Guidance documents in Japan
 – “Basic Principles on Global Clinical Trials”
 – “Basic Principles on Global Clinical Trials – Reference Cases”
• Current situation in Japan
• Selected points from “Basic Principles” and “Reference cases” with case example
 – Selected points from “Basic Principles”
 – Selected points from “Reference cases”

• Other issues related to Global Clinical Trials
• Summary
Different regulatory requirement

• In some GCTs, different primary analysis methods are planned for different regulatory agencies respectively.

• Such difference based on the clinical environment or regulatory decision making may be inevitable and understandable in some situations.
Different regulatory requirement

• Apixaban
 – Significance level for one pivotal trial, 2.5% or 0.5% (one-sided)
 – Non-inferiority margin, 1.44 or 1.38
Different regulatory requirement

• Fesoterodine
 (foreign (but global) clinical trials which are extrapolated to Japanese by bridging strategy)
 – Different combination of primary and secondary endpoints
 • Urination and incontinence
 • Urination and response rate
 – Order of test in closed testing procedure
Different regulatory requirement

• In the example cases, primary analysis method for other regions including Japan was not provided.
 – In Japan, we review the trial according to our criteria or guidance document of clinical evaluation of the disease.
 – Which will be the general overall results of the trial?
• Understanding of the situations in the different regions and prior consultation are very important.
• Designing trial to meet regulatory requirements of multiple regions is important for efficient drug development.
Outline

• Introduction
• Guidance documents in Japan
 – “Basic Principles on Global Clinical Trials”
 – “Basic Principles on Global Clinical Trials – Reference Cases”
• Current situation in Japan
• Selected points from “Basic Principles” and “Reference cases” with case example
 – Selected points from “Basic Principles”
 – Selected points from “Reference cases”
• Other issues related to Global Clinical Trials
• Summary
Summary and future tasks

• GCT is one of the tools for efficient drug development in the era of global development.

• In each case, optimal study design including GCT should be chosen in consideration of development plan.

• Innovative and efficient trial designs will be applied to GCT, and many topics with GCT may be discussed.
 – Design and evaluation of dose-response trials
 – Patient selection by biomarkers

• It is important to share our experience between industry and regulatory agency (agencies).
Reference

• Please see the original text of the Japanese guidance documents for details
 “Basic Principles on Global Clinical Trials”

• “Basic Principles on Global Clinical Trials - Reference Cases”