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2.1 What is Bayesian statistics?

* Bayesian statistics is an approach for learning from evidence as it

accumulates.

* In clinical trials, traditional (frequentist) statistical methods may use
information from previous studies only at the design stage. Then, at the data
analysis stage, the information from these studies is considered as a
complement to, but not part of, the formal analysis.

* |n contrast, the Bayesian approach uses Bayes’ Theorem to formally
combine prior information with current information on a quantity of

interest.

* The Bayesian idea is to consider the prior information and the trial results as part of a
continual data stream, in which inferences are being updated each time new data

become available.
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2.2 Why use Bayesian statistics for medical
devices?

-With prior information

e When good prior information on clinical use of a device exists, the
Bayesian approach may enable this information to be incorporated
into the statistical analysis of a trial.

* In some circumstances, the prior information for a device may be a
justification for a smaller-sized or shorter-duration pivotal trial.
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2.2 Why use Bayesian statistics for medical
devices?

-With prior information

e Good prior information is often available for medical devices because
of their mechanism of action and evolutionary development.
 The mechanism of action of medical devices is typically physical. As a result,

device effects are typically local, not systemic.

» Local effects can sometimes be predictable from prior information on the previous
generations of a device when modifications to the device are minor.

e Good prior information can also be available from studies of the
device overseas.

* In a randomized controlled trial, prior information on the control can
be available from historical control data.
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2.2 Why use Bayesian statistics for medical

devices?

-With prior information

e Our experience is that Bayesian methods are usually less controversial
when the prior information is based on empirical evidence such as
data from clinical trials.

 However, Bayesian methods can be controversial when the prior
information is based mainly on personal opinion (often derived by
elicitation from “experts”).

A —SFHYA TR - TIORF=TILaE
(2017/03/09)

13



2.2 Why use Bayesian statistics for medical

devices?

-Without prior information

 The Bayesian approach is also frequently useful in the absence of
prior information.

e First, the approach can accommodate adaptive trials (e.g., interim analyses,
change to sample size, or change to randomization scheme) and even some
unplanned, but necessary trial modifications.

* Second, the Bayesian approach can be useful for analysis of a complex model
when a frequentist analysis is difficult to implement or does not exist.

e Other potential uses include adjustment for missing data, sensitivity analysis,
multiple comparisons, and optimal decision making (Bayesian decision

theory).
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2.2 Why use Bayesian statistics for medical
devices?

-Least burdensome

 The Bayesian approach, when correctly employed, may be less
burdensome than a frequentist approach.

e Section 513(a)(3) of the Federal Food, Drug, and Cosmetic Act
(FFDCA) mandates that FDA shall consider the least burdensome
appropriate means of evaluating effectiveness of a device that would
have a reasonable likelihood of resulting in approval (see 21 U.S.C.
360c(a)(3)).
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2.6 What are potential benefits of using Bayesian
methods?

2.6.1 More Information for Decision Making

* The information from a current trial is augmented and the precision
may be increased by the incorporation of prior information in a
Bayesian analysis.

 The Bayesian analysis brings to bear the extra, relevant, prior
information, which can help FDA make a decision.
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2.6 What are potential benefits of using
Bayesian methods?

2.6.2 Sample size reduction via prior information

* In some instances, the use of prior information may alleviate the need
for a larger sized trial.

 However, a decrease in the sample size for the current trial may not
be warranted by a Bayesian analysis incorporating prior information.

e See section 4.7 for further discussion on sample size issues in a Bayesian
clinical trial.

e Additionally, if the prior information does not agree sufficiently with trial
results, then the Bayesian analysis may actually be conservative relative to a
frequentist or Bayesian analysis that does not incorporate the prior
information.
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2.6 What are potential benefits of using Bayesian
methods?

2.6.3 Sample size reduction via Adaptive Trial Design

e Adaptive designs use accumulating data to decide on how to modify
certain aspects of a trial according to a pre-specified plan. They are
often used to potentially reduce the size of a trial by stopping the trial
early when conditions warrant. Adaptive trial designs can sometimes
be easier to implement using Bayesian methods than frequentist
methods. By adhering to the Likelihood Principle, a Bayesian
approach can offer flexibility in the design and analysis of adaptive
trials (see Sections 3.8 and 4.10).



2.6 What are potential benefits of using
Bayesian methods?
2.6.4. Midcourse changes to the trial design

e With appropriate planning, the Bayesian approach can also offer the
flexibility of midcourse changes to a trial. Some possibilities include
dropping an unfavorable treatment arm or modifications to the
randomization scheme. Modifications to the randomization scheme
are particularly relevant for an ethically sensitive study or when
enrollment becomes problematic for a treatment arm. Bayesian
methods can be especially flexible in allowing for changes in the
treatment to control randomization ratio during the course of the trial.
See Kadane (1996) for a discussion.



2.6 What are potential benefits of using
Bayesian methods?
2.6.5 Other Potential Benefits

e Exact analysis
The Bayesian approach can sometimes be used to obtain an exact analysis
when the corresponding frequentist analysis is only approximate or is too
difficult to implement.

* Missing Data
Bayesian methods allow for great flexibility in dealing with missing data.
See section 5.4 for a discussion of the use of these Bayesian methods.

 Multiplicity
Multiplicity is pervasive in clinical trials. For example, inferences on
multiple endpoints or testing of multiple subgroups ﬁe.g., race or sex) are
examples of multiplicity. Bayesian approaches to multiplicity problems are
different from frequentist ones, and may be advantageous. See section 4.9
for a discussion of Bayesian multiplicity adjustments.
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ASA’s statement

P-values can indicate how incompatible the data are with a specified
statistical model.

P-values do not measure the probability that the studied hypothesis is
trlue, or the probability that the data were produced by random chance
alone.

Scientific conclusions and business or policy decisions should not be
based only on whether a p-value passes a specific threshold.

Proper inference requires full reporting and transparency.

A p-value, or statistical significance, does not measure the size of an
effect or the importance of a result.

By itself, a p-value does not provide a good measure of evidence
regarding a model or hypothesis.
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