PMDA’s Perspectives on Continuous Manufacturing

Yoshihiro Matsuda, Ph.D.
Senior Scientist (for Quality)
Pharmaceuticals and Medical Devices Agency (PMDA)

March 23, 2017 3rd PQRI/FDA
Expectations for CM

- Opportunities:
 - To avoid poor quality product with PAT etc.
 → Prevention of drug shortage problem
 - To avoid scale-up issues
 → Rapid development
 - To operate multiple scales and dosage manufacturing
 → Personalized medicines
 - To reduce inventory
 → Cost reductions

PMDA would like to encourage industry to introduce the innovative manufacturing technology.
PMDA’s Approaches to CM

We are learning about CM technology.

- Collaboration with AMED sponsored Study Group in Japan.
- Communication between PMDA and Industries who are studying CM.
- Professional Training together with GMP Inspectors.
 - External specialists/scientists give us lectures.
- Collaboration with a society, e.g. JSPME (Japan Society of Pharmaceutical Machinery and Engineering).
 - PAT, Multivariate analysis etc.
- Collaboration with other regulators.

(AMED: Japan Agency for Medical Research and Development)
Innovative Manufacturing Technology Working Group (IMT-WG)

- Has been established in PMDA since July, 2016.

- Purpose
 - To establish PMDA’s perspective on the latest technologies of pharmaceutical quality control
 - To propose a new regulatory framework for the pharmaceutical quality control by the new technologies
 - To draft guidelines

- Members
 - Senior Scientist (for Quality); Dr. Yoshihiro Matsuda
 - From Office of New Drugs
 - From Office of Manufacturing/Quality and Compliance
 - From Office of Regulatory Science
IMT-WG Activity Plan

- To organize face-to-face meeting(s) with FDA and EMA
- To visit continuous manufacturing sites
- To discuss with stakeholders including industries and academia
- To collaborate with a national research project on pharmaceutical quality control
- To publish a draft points-to-consider document about CM in spring, 2017
CM Sites Visit

- A visit to a Drug Product CM site in late Oct-Nov, 2016
 - Discussion Points
 - Control Strategy for CM
 - Feeding, PAT tools, RTRT
 - Material Properties influence in CM
 - Impurity
 - Tracking and Tractability of materials
 - Batch definition
 - Process validation etc.

- We will visit a Drug Substance CM site in March, 2017.

It’s not PMDA activity. These site visits are parts of AMED sponsored Study Group activities
A Face-to-Face Meeting with Regulators

- We had a meeting with FDA in Nov, 2016.
 - Discussion Points
 - Product specific matters
 - Emerging Technology Team
 - Training for staffs
 - Collaboration

- We had a meeting with EMA (PAT Team) in Feb, 2017.
 - Discussion Points were the same as with FDA.
Clarification for CM Implementation

A draft Points-to-consider document.

- We are focusing on 4 topics
 - Control Strategy
 - Batch/Lot Definition
 - Process Validation
 - Stability Test
Control Strategy (draft)

- Elements to ensure CQAs are same between CM and Batch Manufacturing (BM)
- But some different CS for CM can be taken

Performance based Approach

- Unlike the manufacturing with fixed process parameters, process parameters can be adjusted flexibly for variables detected by PAT etc.
- Need to understand the “Process Dynamics”
- Need to ensure the “State of Control”
- Need to consider the “Fitness for Purpose”
Batch/Lot Definition (draft)

- The definition of Batch/Lot is same between CM and BM.
- How to set the Batch/Lot size can be different.
 - A production run time and speed
 - An amount of incoming raw material

The Batch/Lot size can be changed for each production. However the maximum size should be defined in advance.
Process Validation (draft) (1)

- The purpose of PV is same between CM and BM. Specifically for CM;
 - To ensure the state of control by control strategy
 - For example, the assurance that the quality’s time-dependent variation can be controlled within allowance range not only among batches/lots, but also in a batch/lot.

- The number of PV batches/lots
 - Basically three PV batches/lots are required as same as batch manufacturing in Japan.
 - It would be able to use manufacturing batches/lots during development as PV batches/lots by redefining it on PV implementation plan.
Process Validation (draft) (2)

☐ Scale for PV batches/lots
 ■ Fundamentally the maximum size (run time and speed) is not needed for all of three PV batches/lots because it should be ensured that the CM is under “the state of control”. However at least one batch/lot should be the maximum size.

☐ Change the maximum size after a PV study
 ■ At least one PV (prospective process validation or concurrent process validation) batch/lot data should be required.
Stability Test (draft)

- **Batch/Lot size**
 - It would be possible to consider the batch/lot which was manufactured by different batch/lot size to be the primary batch/lot of the drug substance/product.
 - Even if it is under the state of control, it would be important to understand potential risks of batch/lot size differences and to explain that it exhibits the same property between the primary batch/lot and the commercial scale batch/lot.

- **The number of the primary batches/lots**
 - Data from formal stability studies should be provided on at least three primary batches/lots as ICH Q1A(R2) described.
 - Because the batch/lot sizes are different, the information of sampling points should be recorded.
Next Step

☐ How to gain experience of CM?
☐ How to share our experience of CM?
☐ How to encourage industries?
☐ How to return profits to patients?

Let’s move forward!
Thank you for your attention