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Exposure – response
dose individualization assessment
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Exposure - response
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Pop PK in exposure matching



Workflow
for pediatric studies 

Scale model 

Adjust dose

Design of study

Power / Select N

Conduct Analyze

Adult 
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PKPD 
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weight-
banded 
dosing

Reassess design

*NLME = NonLinear Mixed Effects



Scale
PKPD model from adults to children 

[1] Parameter value from: 
Anderson et al. “Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance.” Br J 
Clin Pharmacol 2007; 63 (1): 75-84

[2] Growth data from: 
WHO Multicentre Growth Reference Study Group. "WHO Child Growth Standards based on length/height, weight 
and age". Acta Paediatr, Suppl. 2006, 450, 76-85.
de Onis M et al. "Development of a WHO growth reference for school-aged children and adolescents" Bull WHO, 
2007;85:660-7.

Example: Comparison of scaling approaches for vancomycin (main elimination by 
glomerular filtration)[1,2]
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Power
study for required parameter precision 

• Sample size needs to be chosen to fulfill precision criteria:
“.. target a 95% CI within 60% and 140% of the geometric 
mean estimates of clearance and volume of distribution … in 
each pediatric sub-group with at least 80% power.” [1]

Methodology:
1. Determine expected parameter standard errors (SE) for 

sample size N using CTS
2. Scale parameter SE and determine approximate sample 

size for intended precision 
3. Verify approximate sample size calculation using CTS 

(asymp. nature of scaling, non-normality of estimates)

[1] Yaning Wang et al. “Clarification on precision criteria to derive sample size when designing pediatric pharmacokinetic 
studies.” J Clin Pharmacol 2012;52:1601-1606
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Motivating example for use of 
longitudinal modelling as primary analysis

•Proof-of-Concept study in gastroesophageal reflux
–Back-up compound
–Protocol for planned PoC already developed
–Prior internal experience of PoC-study with same 
endpoint

•Data
•Longitudinal NLME model

–Could NLME offer any advantage to planned
design/analysis?



Data from previous trial
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Clinical symptom data in reflux disease



Two options in testing for a drug effect

•Based on a responder definition
–Maximally 1 symptom during last week
–Test for differences in responder rates (RR)

•Based on a non-linear mixed effects model for longitudinal 
ordered categorical data (OC model)

–Test for a non-zero drug effect



16

Simulated data

Observed data

Extensive diagnostics to assure sufficient
quality of model on prior data

e.g. visual predictive check (VPC)



Analysis alternatives for the PoC study
Power to detect a clinically relevant effect
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Stroke
•Traditional: 

–NIH stroke scale change from baseline at end of 
treatment (~90 days), LOCF for drop-out

–Two sided t-test (p<0.05) placebo vs. top dose level

•Model based:

Pharmacometric vs. traditional 
approach to establish PoC
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Benefits of using all available data; 
NIHSS observations

Observations made at day 0, 7, 30 and 90



Data used in a traditional analysis; 
NIHSS observations
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Data used in pharmacometric analysis; 
NIHSS observations
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PoC in Stroke
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Pharmacometric 
power gain:

• Use longitudinal data
• Sensible handling of 

drop-out information
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Design of a PoC study for an anti-
diabetic study

Information utilized with the traditional approach

Information utilized with the pharmacometric approach
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Diabetes
•Model used in model-based analysis:

Pharmacometric vs. traditional 
approach to establish PoC



FPG – HbA1c model
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VPC for FPG-HbA1c model
FPG



VPC for FPG-HbA1c model
HbA1c



PoC in Diabetes
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Pharmacometric 
power gain:

• Use longitudinal data
• FPG and HbA1c 

simultaneously



Models for ADAS-Cog in 
Alzheimer’s disease

End-of-treatment
Total score
IRT

Simulated data – power to detect a hypothetical drug effect

Reference:
Ueckert et al. Pharm Res 31 (2014)

Item Response Model



Traditional

Lower limit of interval >0 – Go 
decision

ESOE Go criterionKill criterion

LPDATKill criterion Go criterion

TV Desirable outcome

Desirable outcomeTVMCID

Kirby and Chuang-Stein Pharmaceutic. Statist (2017)
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How precise is the 
estimated drug effect?

Confidence intervals

Standard approach

Pharmacometrics 
(model-based 

approach)

x2,000

Simulate difference in 
total scores between 

arms including 
parameter uncertainty 

N=10,000
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Llanos-Paez et al. ACoP 2020



Simulating total score using IRT model

X2,000 

Relationship between 
latent variable and 
total scores

N=5,000 IDsN=5,000 IDs

NSUB=2,000

90% CI for the mean difference 
between averages is calculated

NSUB=2,000
Simulations include  
uncertainty for each 
parameter value 
($PRIOR)

NWPRI:

• MVN distribution for 
THETAs

• Inverse Wishart 
distribution for OMEGAs

Simulate total 
scores for each 
arm



90% CI
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How many subjects 
are required to 
achieve the precision 
obtained with the 
longitudinal IRT 
model?

N?

FULL SCORE REDUCED SCORE 

Results for a placebo-controlled PoC trial in 
COPD using the EXACT score



90% CI

* This means that using the standard approach the sample size should be 3.1/2.4 times larger to achieve the precision obtained with 
IRT model

Approach Mean (90%CI) 
difference in total 

score between 
arms

FULL SCORE

Mean (90%CI) 
difference in total 

score between 
arms

REDUCED SCORE

CI width 
FULL

SCORE

CI width 
REDUCED 

SCORE

Relative 
sample size
FULL SCORE

Relative 
sample 

size
REDUCED 

SCORE

Standard – week 
52

-3.34 
(-8.08, 1.38)

-1.82 
(-4.59, 0.94)

9.46 5.53 1 1

IRT – different PMAX -2.40 
(-5.07, 0.29)

-1.21 
(-2.77, 0.80)

5.36 3.57 3.1* 2.4*

IRT – different PMAX
& TPROG

-2.49 
(-6.26, 1.27)

-1.22 
(-3.39, 1.00)

7.53 4.39 1.6 1.6

Results for a placebo-controlled PoC trial in 
COPD using the EXACT score

Llanos-Paez et al. ACoP 2020



Framework for M&S in regulatory 
review according to impact on 

regulatory decision

Manolis et al. CPT:PSP 2013:2 e31



Aspects to consider in model-based
drug effect estimation

•1. Selection bias
– The model building process, where typically the best of many tested
models is selected, may result in drug effect bias

•2. Model misspecification
– Models for longitudinal data are always misspecified to some degree. 
Consequences may include:

• Inflated Type 1 error rate from misspecified placebo model
• Loss of power from misspecified drug model
• Bias in drug effect estimates from misspecified drug or placebo 
model



Model averaging

Data

Model 1 
estimation

Model M 
estimation

Model 2 
estimation

Results

Results

Results

Drug effect 
estimate

Weighting based on 
model performancePrespecified

models



Model averaging in pharmacometrics



There was agreement at the workshop on the fact that 
selection of dose for phase III is an estimation problem and 
should not be addressed via hypothesis testing.



Model averaging for determining dose-
response from longitudinal data



Placebo Model

+
PhIIb clinical trial data

Placebo Model + Linear

Placebo Model + Log-linear

Placebo Model + Emax

Placebo Model + Sigmoidal

Bootstrap 



Effect
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• Weighting scheme 
proposed by Buckland et 
al. 1997

Model weighting by goodness-of-fit



Model 1: Linear
Model 2: Log-linear

Model 3: Emax
Model 4: Sigmoidal

Target Effect

This model averaging methodology combines both the 
parameter estimation uncertainty and model structure 

uncertainty to quantify overall uncertainty
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Frequencies of making the correct dose 
selection

Study Protocol
(ANOVA + Averaged 

Effect)

Averaged Model 
Based

Case 1
correct dose = 10mg 582 788 35%

improvement

Case 2
correct dose = 40mg 361 592 64%

improvement

Case 3
correct dose = 

100mg
312 432 38%

improvement

Case 4
correct dose = 

400mg
402 519 29%

improvement

Simulation Studies based on AZD 1981

Aoki et al. J Pharmacokinet Pharmacodyn 2017
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 One step approach :

1. Simultaneously test for a dose-response 
signal (LRT) and estimate the dose-response 
curve using nonlinear mixed effect (NLME) 
models.

 Starting from a predefined set of dose-
response candidate models:

1. MCP-step: Assessment of dose-response 
signal using contrast test on the best model (MS)

2. MOD-step: Estimate the dose-response curve 
using either model selection (MS) or model 
averaging (MA)

MCP-MOD1

[1] Bretz F . et al, Biometrics, 2005

PMX
- Starting from a predefined set of dose-response 
candidate models

1. Model building using multiple LRT on nonlinear 
mixed effect models (MS)

2. Estimate the dose-response curve using the 
selected model

Advantages vs PMX Advantages vs MCP-MOD
• Models pre-specified
• Takes model uncertainty into account
• Control the type I error

• Longitudinal analysis of the data

3

Slide courtesy of Simon Buatois
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 One step approach :

1. Simultaneously test for a dose-response 
signal (LRT) and estimate the dose-response 
curve using nonlinear mixed effect (NLME) 
models.

 Starting from a predefined set of  dose-
response candidate models:

1. MCP-step: Assessment of dose-response 
signal using contrast test on the best model (MS)

2. MOD-step: Estimate the dose-response curve 
using either model selection (MS) or model 
averaging (MA)

MCP-MOD1

[1] Bretz F . et al, Biometrics, 2005

PMX
- Starting from a predefined set of dose-response 
candidate models

1. Model building using multiple LRT on nonlinear 
mixed effect models (MS)

2. Estimate the dose-response curve using the 
selected model

Advantages vs PMX Advantages vs MCP-MOD
• Models pre-specified
• Takes model uncertainty into account
• Control the type I error

• Longitudinal analysis of the data

Best of
both worlds ?

3

Slide courtesy of Simon Buatois
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1. cLRT-step: Assessment of dose-response 
signal using a corrected-Likelihood Ratio Test2

[2] Dette H. et al, Biometrics, 2015[1] Bretz F . et al, Biometrics, 2005

1. MCP-step: Assessment of dose-response 
signal using contrast test on the best model (MS)

Predefined set of dose-response candidate 
models:

2. MOD-step: Estimate the dose-response 
curve using either model selection (MS) or 

model averaging (MA)

5

Slide courtesy of Simon Buatois
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 cLRT statistic:
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2𝐿𝐿𝐿𝐿 𝑦𝑦, �𝛹𝛹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 2𝐿𝐿𝐿𝐿 𝑦𝑦, �𝛹𝛹𝑀𝑀𝑀𝑀 = ∆𝑂𝑂𝑂𝑂𝑂𝑂𝑁𝑁𝑜𝑜𝑜𝑜

 Observed dataset:

According to the AIC1,2

P95

[1] Aoki Y.  et al, JPKPD, 2017
[2] Buatois S.  et al, AAPS, 2018

1. Corrected-LRT step:

Slide courtesy of Simon Buatois
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Assessments of a treatment effect with
Individual Model Averaging (IMA)

Base model (H0) Full model (H1)

STD 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑃𝑃𝐿𝐿𝐵𝐵) 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑃𝑃𝐿𝐿𝐵𝐵,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝑇𝑇𝐷𝐷𝑇𝑇)

IMA

Mixture 1:𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑃𝑃𝐿𝐿𝐵𝐵)
Mixture 2: 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑃𝑃𝐿𝐿𝐵𝐵,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)

Mixture probability fixed to 
randomization:

P(1) = 0.5 
P(2) = 1 - P(1)

Mixture probability 
estimated:

P(1) =TRT*(1-𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀) +
(1-TRT)*𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀

P(2) = 1 - P(1) 

Chasseloup et al PAGE 28 (2019) Abstr 9149 [www.page-meeting.org/?abstract=9149] 
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Clinical data sets –
placebo or natural history data

Likert pain score (categorical data) from 230 patients
with neuropathic pain3,4 followed-up for 4 months

Seizure (count data) from 500 epileptic patients5

followed-up for 3 months

ADAS-Cog (continuous data): natural history of 800
patients with Alzheimer’s disease6 followed-up for 36
months
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Procedure to assess type 1 error

•For each data set (Pain, Seizures and ADAS-Cog), placebo 
patients were randomized 1:1 to TRT=0 (“placebo”) or 
TRT=1 (“active”) 

•This creates a data set similar to a two-arm trial, where 
the “active” treatment has zero effect

•The randomization was repeated to generate 1000 data 
sets for each disease 
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ADAS-Cog data – STD and IMA
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ADAS-Cog – drug effect estimates
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Type 1 error rates – STD and IMA
Pain, Seizures & ADAS-Cog
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Summary IMA vs STD approach

•Type 1 error rates:
• typically inflated for standard approach 
• controlled for individual model averaging (IMA)

•Drug effect estimates
• typically biased for standard approach
• unbiased for individual model averaging (IMA)
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• Genetic diagnosis
• AON design
• Tests in fibroblasts
• Tox studies in rats
• First treatment

Rare diseases: Example of single-subject 
customized antisense oligonucleotide 

treatment

Kim et al, 2019, NEJM



Kim et al, 2019, NEJM

Milasen treatment: first year



Response from FDA



•Longitudinal data analysis using pharmacometric (NLME) 
models are already an important tool in drug development

•Such analyses use available data very efficiently and are for 
that reason attractive

•To date, their use in primary analyses has been limited, but
this may change as

–the insight in their advantages is increasing
–the methodology for their use is maturing
–situations where good alternatives are lacking is 
increasing

Concluding remarks
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