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Exposure —response
dose individualization assessment

Stroke or SEE by Baseline CrCL

Protocol-defined subgroup analysis
Edoxaban 60/30 mg
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Analysis shown for “typical” patient with normal renal function: 64 years old, CrCL of 100 mL/min,
24.8% with prior stroke, 29.2% with baseline aspirin use, body weight of 95.3 kg
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Pop PK in exposure matching
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Clarification on Precision Criteria to
Derive Sample Size When Designing
Pediatric Pharmacokinetic Studies

Yaning Wang, PhD, Pravin R. Jadhav, PhD, Mallika Lala, PhD,
and Jogarao V. Gobburu, PhD

Keywords: pediatric drug development; pharmacokinet- Journal of Clinical Pharmacology, 2012;52:1601-1606
ics; regulatory requirement; precision © 2012 The Author(s)
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Scale
UPPSALA PKPD model from adults to children
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Example: Comparison of scaling approaches for vancomycin (main elimination by
glomerular filtration)[1,2]
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[1] Parameter value from:
Anderson et al. “WVancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance.” Br J

Clin Pharmacol 2007; 63 (1): 75-84

[2] Growth data from:
WHO Multicentre Growth Reference Study Group. "WHO Child Growth Standards based on length/height, weight

and age". Acta Paediatr, Suppl. 2006, 450, 76-85.
de Onis M et al. "Development of a WHO growth reference for school-aged children and adolescents" Bull WHO,

2007;85:660-7.
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Power
UPPSALA study for required parameter precision

UNIVERSITET

e Sample size needs to be chosen to fulfill precision criteria:
“.. target a 95% Cl within 60% and 140% of the geometric
mean estimates of clearance and volume of distribution ... in
each pediatric sub-group with at least 80% power.” [1]

Methodology:
1. Determine expected parameter standard errors (SE) for

sample size N using CTS

2. Scale parameter SE and determine approximate sample
size for intended precision

3. Verify approximate sample size calculation using CTS
(asymp. nature of scaling, non-normality of estimates)

[1] Yaning Wang et al. “Clarification on precision criteria to derive sample size when designing pediatric pharmacokinetic
studies.” J Clin Pharmacol 2012;52:1601-1606
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T Motivating example for use of
"W longitudinal modelling as primary analysis

e Proof-of-Concept study in gastroesophageal reflux
—Back-up compound
—Protocol for planned PoC already developed

—Prior internal experience of PoC-study with same
endpoint

*Data
eLongitudinal NLME model

—Could NLME offer any advantage to planned
design/analysis?



Data from previous trial
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Clinical symptom data in reflux disease
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Two options in testing for a drug effect
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*Based on a responder definition
—Maximally 1 symptom during last week
—Test for differences in responder rates (RR)

e Based on a non-linear mixed effects model for longitudinal
ordered categorical data (OC model)

—Test for a non-zero drug effect



Extensive diagnostics to assure sufficient

qguality of model on prior data
e.g. visual predictive check (VPC)
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www.nature.com/psp
ORIGINAL ARTICLE

Comparisons of Analysis Methods for Proof-of-Concept
Trials

KE Karlsson', C Vong', M Bergstrand', EN Jonsson'2 and MO Karlsson!

Drug development struggles with high costs and time consuming processes. Hence, a need for new strategies has been
accentuated by many stakeholders in drug development. This study proposes the use of pharmacometric models to rationalize
drug development. Two simulated examples, within the therapeutic areas of acute stroke and type 2 diabetes, are utilized to
compare a pharmacometric model-based analysis to a f-test with respect to study power of proof-of-concept (POC) trials. In all
investigated examples and scenarios, the conventional statistical analysis resulted in several fold larger study sizes to achieve
80% power. For a scenario with a parallel design of one placebo group and one active dose arm, the difference between the
conventional and pharmacometric approach was 4.3- and 8.4-fold, for the stroke and diabetes example, respectively. Although
the model-based power depend on the model assumptions, in these scenarios, the pharmacometric model-based approach
was demonstrated to permit drastic streamlining of POC trials.

CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e23; doi:10.1038/psp.2012.24; advance online publication 16 January 2013




M Pharmacometric vs. traditional
t=" approach to establish PoC
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Stroke
e Traditional:

—NIH stroke scale change from baseline at end of
treatment (~90 days), LOCF for drop-out

—Two sided t-test (p<0.05) placebo vs. top dose level
* Model based:

The AAPS Journal (© 2010)
DOI: 10.1208/s12248-010-9230-0

Research Article

Modeling Disease Progression in Acute Stroke Using Clinical Assessment Scales

Kristin E. Karlsson,"* Justin J. Wilkins,' Fredrik Jonsson,” Per-Henrik Zingmark."’
Mats O. Karlsson," and E. Niclas Jonsson™*

19



Benefits of using all available data;
NIHSS observations
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Observations made at day 0, 7, 30 and 90
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Data used in a traditional analysis;
e NIHSS observations
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NIHSS Score
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. Data used in pharmacometric analysis;
NIHSS observations

UNIVERSITET
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Pharmacometric model-based power (POC) A

T-test based power
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Design of a PoC study for an anti-
- diabetic study
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o Pharmacometric vs. traditional
approach to establish PoC
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Diabetes
* Model used in model-based analysis:

ARTICLES

nature publishing group

Models for Plasma Glucose, HbA1c, and
Hemoglobin Interrelationships in Patients with
Type 2 Diabetes Following Tesaglitazar Treatment

B Hamrén!2, E Bjijrkz, M Sunzel? and MO Karlsson?

1 Department of Medical Science, Clinical Pharmacalogy, AstraZeneca RED Malndal, Mélndal, Sweden; 2Department of Biopharmaceutical Sciences,
Division of Pharmacokinetics and Dug Therapy, Uppsala University, Uppsala, Sweden: *Clinical Cardiovascular, AstraZeneca RED Wilmington, Wilmington,
Delaware, USA; ‘Department of Medical Science, Clinical Pharmacology, AstraZeneca R&D Wilmington, Wilmington, Delaware, USA.

Correspondence: B Hamrén (bengt hamren@astrazeneca.com)

Received 31 October 2007, accepted 2 lanuary 2008; advance online publication 15 March 2008, doi: 1010358/ clpt.2008.2

CLINICAL PHARMACOLOGY & THERAPEUTICS
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FPG — HbAlc model
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Figure 2. Schematic representation of the mechanism-based model for the FPG—HbA Ic relationship,



P VPC for FPG-HbA1lc model
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PoC in Diabetes

Pharmacometric model-based power (POC) A
T-test based power *
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Models for ADAS-Cog in
Alzheimer’s disease

Simulated data — power to detect a hypothetical drug effect
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Reference:
Ueckert et al. Pharm Res 31 (2014)
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A comparison of five approaches to
decision-making for a first clinical

Simon Kirby** and Christy Chuang-Stein®

Lower limit of interval >0 — Go

decision
Traditional
(a)
‘ Y
05 0 0.5 1.0 A
D — Zy,xs.e.(D) < 0. Kill criterion (b) ESOE  p_z, xse(D)>0,  Go criterion
05 0 0.5 target value 1.0
Kill criterion (©) LPDAT Go criterion
05 0 MAV 05 target value 1.0
d TV Desirable outcome
05 0 MCID 0.5 target value 1.0 *
() TVucp Desirableoutcome
05 0 MCID 05 target value 1.0 ®

Kirby and Chuang-Stein Pharmaceutic. Statist (2017)
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How precise is the total scores between
estimated drug effect? 0.95- arms including

parameter uncertainty
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Llanos-Paez et al. ACoP 2020




Total score
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Relationship between
latent variable and
total scores
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Standard approach |
week 52

IRT
(different -
maximum placebo/drug effect)

IRT

(different |
maximum placebo/drug effect &
disease progression time)

FULL SCORE

Results for a placebo-controlled PoC trial in

COPD using the EXACT score

(| REDUCED SCORE
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‘ : | How many subjects
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. achieve the precision
1 N?

obtained with the
longitudinal IRT
model?

SE =standard error
W =widthCI

[

N 4*2:;4; SE*
N =relative samplesize
20

8 6 -4

35



g Results for a placebo-controlled PoC trial in
@ COPD using the EXACT score

90% CI

Approach Mean (90%Cl) Mean (90%ClI) Cl width Cl width Relative Relative
differencein total difference in total FULL REDUCED  sample size sample
score between score between SCORE SICLHE FULL SCORE size
arms arms REDUCED
FULL SCORE REDUCED SCORE SCORE
Standard — week -3.34 -1.82 9.46 5.53 1 1
52 (-8.08, 1.38) (-4.59, 0.94)
IRT — different P, -2.40 -1.21 5.36 3.57 3.1* 2.4*
(-5.07, 0.29) (-2.77,0.80)
IRT — different P, -2.49 -1.22 7.93 4.39 1.6 1.6
& Toroc (-6.26, 1.27) (-3.39, 1.00)

* This means that using the standard approach the sample size should be 3.1/2.4 times larger to achieve the precision obtained with
IRT model

Llanos-Paez et al. ACoP 2020




Framework for M&S in regulatory
review according to impact on
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P Aspects to consider in model-based
S drug effect estimation

¢ 1. Selection bias

— The model building process, where typically the best of many tested
models is selected, may result in drug effect bias

2. Model misspecification

— Models for longitudinal data are always misspecified to some degree.
Consequences may include:

* Inflated Type 1 error rate from misspecified placebo model
e Loss of power from misspecified drug model

* Bias in drug effect estimates from misspecified drug or placebo
model



Model averaging
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Model averaging in pharmacometrics
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ORIGINAL PAPER

Model selection and averaging of nonlinear mixed-effect models
for robust phase III dose selection

Yasunori Aoki'?

Research Article

Comparison of Model Averaging and Model Selection in Dose Finding Trials
Analyzed by Nonlinear Mixed Effect Models

Simon Buatois,">>5 Sebastian Ueckert,* Nicolas Frey,1 Sylvie Retout,? and France Mentré®

WILEY
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WHITE PAPER

Advanced Methods for Dose and Regimen Finding
During Drug Development: Summary of the EMA/EFPIA
Workshop on Dose Finding (London 4-5 December 2014)
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FT Musuamba®??*, E Manolis'*, N Holford®, SYA Cheung®, LE Friberg’, K Ogungbenro®, M Posch®, JWT Yates®, S Berry'®,
N Thomas'', S Corriol-Rohou®, B Bornkamp'?, F Bretz*'?, AC Hooker’, PH Van der Graaf'*'%, JF Standing''®, J Hay"',

S Cole"'®, V Gigante"'”, K Karlsson''?, T Dumortier'?, N Benda'-', F Serone’'”, S Das®, A Brochot?®, F Ehmann®,

R Hemmings'® and | Skottheim Rusten'?!

Inadequate dose selection for confirmatory trials is currently still one of the most challenging issues in drug development, as
illustrated by high rates of late-stage attritions in clinical development and postmarketing commitments required by regulatory
institutions. In an effort to shift the current paradigm in dose and regimen selection and highlight the availability and
usefulness of well-established and regulatory-acceptable methods, the European Medicines Agency (EMA) in collaboration
with the European Federation of Pharmaceutical Industries Association (EFPIA) hosted a multistakeholder workshop on dose
finding (London 4-5 December 2014). Some methodologies that could constitute a toolkit for drug developers and regulators
were presented. These methods are described in the present report: they include five advanced methods for data analysis
s, quantitative systems pharmacology models, MCP-Mod, and model
There was agreement at the workshop on the fact that lization (Fisher information matrix (FIM)-based methods, clinical trial

selection of dose for phase Il is an estimation problem and ions were also discussed during the workshop; however, mostly for

should not be addressed via hypothesis testing. ilue and limitations of these methods as well as challenges for their
NUPIEIIE UL duine appusauvns i uineren wierapeutic areas are also summarized, in line with the discussions at the
workshop. There was agreement at the workshop on the fact that selection of dose for phase lll is an estimation problem and
should not be addressed via hypothesis testing. Dose selection for phase lll trials should be informed by well-designed dose-
finding studies; however, the specific choice of method(s) will depend on several aspects and it is not possible to recommend
a generalized decision tree. There are many valuable methods available, the methods are not mutually exclusive, and they
should be used in conjunction to ensure a scientifically rigorous understanding of the dosing rationale.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 418-429; doi:10.1002/psp4.12196; published online 0 Month 2017.



Model averaging for determining dose-
. response from longitudinal data

ORIGINAL PAPER

Model selection and averaging of nonlinear mixed-effect models
for robust phase III dose selection

Yasunori Aoki'”
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This model averaging methodology combines both the
parameter estimation uncertainty and model structure
UNIVERSITET uncertainty to quantify overall uncertainty

1 Model 1: Linear
Model 2: Log-line

/" Model 3: Em@x
/" Model 4: S@I

Target Effect
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. M Simulation Studies based on AZD 1981
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Frequencies of making the correct dose
selection

Study Protocol

Averaged Model
(ANOVA + Averaged

Effect) Based
0
Case 1 582 788 3%
correct dose = 10mg Improvement
0
Case 2 361 592 4%
correct dose = 40mg Improvement
Case 3 0
correct dose = 312 432 i r:CBJSe/Oment
100mg P
Case 4 0
correct dose = 402 519 im rigfment
400mg P

Aoki et al. J Pharmacokinet Pharmacodyn 2017
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Introduction

MCP-MOD'

PMX

= Starting from a predefined set of dose-

response candidate models:

|. MCP-step: Assessment of dose-response
signal using contrast test on the best model (MS)

2. MOD-step: Estimate the dose-response curve
using either model selection (MS) or model

averaging (MA)

1. Model building using multiple LRT on nonlinear
mixed effect models (MS)

2. Estimate the dose-response curve using the

selected model

Advantages vs MCP-MOD

Advantages vs PMX
®* Models pre-specified
® Takes model uncertainty into account

*  Control the type | error

Longitudinal analysis of the data

Slide courtesy of Simon Buatois
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Methods

MCP-MOD' cLRI-FMOD

Predefined set of dose-response candidate

models:

|. MCP-step: Assessment of dose-response
signal using contrast test on the best model (MS)

I. cLRT-step: Assessment of dose-response
signal using a corrected-Likelihood Ratio Test?

2. MOD-step: Estimate the dose-response

curve using either model selection (MS) or
model averaging (MA)

[1] Bretz F . et al, Biometrics, 2005

[2] Dette H. et al, Biometrics, 2015

Slide courtesy of Simon Buatois



Methods

|. Corrected-LRT step:

m Observed dataset:
2LL(y, Prnope) — 2LL(y, Pys) = AOFV,g -

=  cLRT statistic: | P95
h 15% - I
No drug [
effect ® :
S simulated (NoDE) g 10% :
datasets 3 I
L 1
(HO) Candidate Model & % I
models Selection I
[=1,..L 0% 1| A -

According to the AIC':2 < AOFV

[1] Aoki Y. et al, JPKPD, 2017
[2] Buatois S. et al, AAPS, 2018

Slide courtesy of Simon Buatois
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Assessments of a treatment effect with
Individual Model Averaging (IMA)

Base model (HO)

Full model (H1)

STD f(BASE, PLB) f(BASE,PLB,DRUG * TRT)
Mixture 1.f (BASE, PLB)
Mixture 2: f(BASE,PLB,DRUG)
IMA | Mixture probability fixed to Mixture probability

randomization:
P(1)=05
P(2)=1-P(1)

estimated:
P(1) =TRT*(1-0,,;x) +
(1-TRT)*6,; ¢
P(2)=1-PQ)

Chasseloup et al PAGE 28 (2019) Abstr 9149 [www.page-meeting.org/?abstract=9149]




Clinical data sets —
e placebo or natural history data

UNIVERSITET

Likert pain score (categorical data) from 230 patients
with neuropathic pain3# followed-up for 4 months

Seizure (count data) from 500 epileﬁptic patients>
followed-up for 3 months

ADAS-Cog (continuous data): natural history of 800
patients with Alzheimer’s disease® followed-up for 36
months




Procedure to assess type 1 error
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* For each data set (Pain, Seizures and ADAS-Cog), placebo
patients were randomized 1:1 to TRT=0 (“placebo”) or
TRT=1 (“active”)

*This creates a data set similar to a two-arm trial, where
the “active” treatment has zero effect

*The randomization was repeated to generate 1000 data
sets for each disease
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Placebo models

ADAS-Cog data — STD and IMA

Standard approach IMA approach

8.7 11.513.9

"b"%
! 5 15.3. 32.1

9.4 11.335.

Drug models

Type | error

- 0-3.72

3.73-6.54
6.55-10
10-30
30-60
60-80
80-100




Typical value of the drug effect

ADAS-Cog — drug effect estimates
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Adas-cog data
Standard approach vs IMA facetted by placebo models

exp_iiv_base exp_iiv_pmax
41 188 g 4-
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| Type 1 error rates — STD and IMA
Pain, Seizures & ADAS-Cog
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ADAS-cog data
IMA approach Standard approach

Seizure count data
Standard approach

Likert pain score data
Standard approach IMA approach

19.4

Placebo models

Drug hodels

M 0-3.72 6.55-10 1 30-60 I 80-100
Type lermor gy 373 554 W 10-30 M 60-80

IMA approach




@ Summary IMA vs STD approach

*Type 1 error rates:
. typically inflated for standard approach

. controlled for individual model averaging (IMA)

* Drug effect estimates
. typically biased for standard approach
. unbiased for individual model averaging (IMA)




Rare diseases: Example of single-subject
customized antisense oligonucleotide
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treatment

he NEW ENGLAND JOURNAL of MEDICINE

|| BRIEF REPORT ”

Patient-Customized Oligonucleotide Therapy
for a Rare Genetic Disease

e Genetic diagnosis

e AON design

e Tests in fibroblasts
e Tox studies in rats

* First treatment

Kim et al, 2019, NEJM




Kim et al, 2019, NEJM
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Response from FDA

Drug Regulation in the Era of Individualized Therapies

Janet Woodcock, M.D., and Peter Marks, M.D., Ph.D.

Kim et al., in a report now published in the Jour-
nal,' describe the discovery, development, and
administration of an antisense oligonucleotide
{ASO) therapy specifically designed for a single
patient with CLN7 neuronal ceroid lipofuscino-
sis (a form of Batten's disease), a fatal genetic
neurodegenerative disorder.? In this patient, a
known pathogenic point mutation was found to
be present in one copy of the gene MFSD8 (also

tion in this patient led to missplicing of the
MFSDE messenger RNA (mRNA) and probably to
premature translational termination. The authors
devised candidate ASOs that were intended to
“correct” the missplicing of the mRNA and se-
lected a candidate ASO that, in cultured patient
fibroblasts, resulted in an increase in the ratio of
normal to mutant mRNA. Evaluation of lysosomal
function in vitro showed improvements in the
presence of the ASQ. After an abbreviated toxico-
logic evaluation and after obtaining authorization
from the Food and Drug Administration (FDA)
and expedited institutional review board approval,

known as CLN7), and a previously undescribed
insertion of a retrotransposon was present in the
other copy. Retrotransposons are stretches of
DNA that are sometimes described as mobile
elements; thousands are present in the human
genome, and some are capable of moving to a
new location — such as the middle of a gene
— through a “copy and paste™ mechanism. The
authors showed that the retrotransposon inser-

could ultimately be treated affect the decision-

making process?

In addition, how will efficacy be evaluated? At
the very least, during the time needed to dis-
cover and develop an intervention, quantifiable,
objective measures of the patient’s disease status
should be identified and tracked, since, in an
N-of-one experiment, evaluation of disease
trends before and after treatment will usually be

the primary method of assessing effectiveness.

In this regard, there is precedent for the applica-
tion of new efficacy measures to the study of
small numbers of patients.*




Concluding remarks
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e Longitudinal data analysis using pharmacometric (NLME)
models are already an important tool in drug development

*Such analyses use available data very efficiently and are for
that reason attractive

*To date, their use in primary analyses has been limited, but
this may change as

—the insight in their advantages is increasing
—the methodology for their use is maturing

—situations where good alternatives are lacking is
Increasing



	Mats Karlsson
	Decisions based on longitudinal analysis
	スライド番号 3
	Exposure – response�dose individualization assessment
	Exposure - response
	スライド番号 6
	Pop PK in exposure matching
	Workflow�for pediatric studies 
	Scale�PKPD model from adults to children 
	Workflow�for pediatric studies 
	Power�study for required parameter precision 
	Workflow�for pediatric studies 
	Motivating example for use of longitudinal modelling as primary analysis 
	Data from previous trial
	Two options in testing for a drug effect
	Extensive diagnostics to assure sufficient quality of model on prior data�e.g. visual predictive check (VPC)
	Analysis alternatives for the PoC study�Power to detect a clinically relevant effect
	スライド番号 18
	Pharmacometric vs. traditional approach to establish PoC
	Benefits of using all available data; NIHSS observations
	Data used in a traditional analysis; �NIHSS observations
	Data used in pharmacometric analysis; NIHSS observations
	�PoC in Stroke
	Design of a PoC study for an anti-diabetic study
	Pharmacometric vs. traditional approach to establish PoC
	FPG – HbA1c model
	VPC for FPG-HbA1c model�FPG
	VPC for FPG-HbA1c model�HbA1c
	�PoC in Diabetes
	Models for ADAS-Cog in �Alzheimer’s disease
	スライド番号 32
	スライド番号 33
	スライド番号 34
	スライド番号 35
	スライド番号 36
	Framework for M&S in regulatory review according to impact on regulatory decision
	Aspects to consider in model-based drug effect estimation
	Model averaging
	Model averaging in pharmacometrics�
	スライド番号 41
	Model averaging for determining dose-response from longitudinal data
	スライド番号 43
	Model weighting by goodness-of-fit
	This model averaging methodology combines both the parameter estimation uncertainty and model structure uncertainty to quantify overall uncertainty
	Probability of Success based on Quantified Overall Uncertainty
	スライド番号 47
	スライド番号 48
	スライド番号 49
	スライド番号 50
	スライド番号 51
	スライド番号 52
	Assessments of a treatment effect with Individual Model Averaging (IMA)
	Clinical data sets – �placebo or natural history data
	Procedure to assess type 1 error 
	ADAS-Cog data – STD and IMA�
	ADAS-Cog – drug effect estimates
	Type 1 error rates – STD and IMA�Pain, Seizures & ADAS-Cog 
	Summary IMA vs STD approach
	スライド番号 60
	スライド番号 61
	Response from FDA
	Concluding remarks

