Regulatory framework for innovative medical devices (ex. SaMD, AI)

Kuniki Imagawa

Deputy Division Director

Division of Standards for Medical Devices / Office of Software as a Medical Device

Pharmaceuticals and Medical Devices Agency

The definition of Medical Devices in Pharmaceuticals and Medical Devices Act (PMD Act)

Medical devices are machinery or apparatus, etc. <u>intended for use in the</u> <u>diagnosis, treatment or prevention of disease</u> in humans or animals or <u>intended to affect the structure or functions</u> of the human or animal body, which are specified by Cabinet Order

Article 2.4, PMD Act

Intended use	Diagnosis, treatment or prevention of disease
	or
	Affect the structure or functions
Condition	Specified by Cabinet Order

Medical Devices Specified by Cabinet Order

- O Medical appliances
 - (85 items : e.g. Medical disinfector, Respiration assisting apparatus, Physioclinic appliance, thermometer, Blood pressure or Pulse wave appliance, Electrosurgical, Medical Scissors, Injection needles, Syringe, Dental unit, Vision corrective lens, etc.)
- O Medical supplies
 - (6 items : e.g. radiographic film , suture , Orthopedic Appliances, etc.)

O Dental materials

- (9 items : e.g. dental metal , dental crowns , etc.)
- O Sanitary goods
 - (4 items \div e.g. Menstrual tampon , condom , contraceptive device , etc.)

O Program

Recording media on which programs are recorded
 (6 items : e.g. Program for diagnosis of disease)

Software as a Medical Device (SaMD) has been regulated in PMD Act since 25th Nov. 2014

The kind of Software treated as a Medical Device (SaMD) in Japan

Pmda

The number of approved SaMD in Japan^{*}

X The number of certified SaMD isn't included in this figure.

As of 31^{st} Mar. 2022

Rejection Reasons of Application for all type of Medical Devices

(a) The given device is judged that it does not have its own efficacy, effectiveness and/or performance as to be concerned in the application.

(b) The given device is judged of no value for medical use because its adverse effect(s) far exceed its efficacy, effectiveness and/or performance.

PMD Act, Article 23-2-5 paragraph(2), item(iii), (a) &(b)

Example of evaluation of SaMD (Computer- Aided Diagnosis; CAD)

Artificial Intelligence and Machine Learning Definition

- There is no definition regarding Artificial Intelligence or Machine Learning in Japanese regulation.
- •IMDRF defines Machine Learning-enabled Medical Device (MLMD) as
 - "A medical device that uses machine learning, in part or in whole, <u>to achieve its</u> <u>intended medical purpose</u>."^{*}

Pmda

The type of MLMD considering plasticity

- Locked type : These have only included algorithms that are "locked" prior to marketing.
 - The fundamental review concept is same for general medical devices.
- Adaptive type : Change its behavior using a defined learning process
 - > The first performance review is same for general medical devices.
 - Post-Approval Change Management Protocol (PACMP) was introduced in September, 2020 in Japan for medical devices to enable continuous improvements through product lifecycle.
 - > In generally, this PACMP system is expected to be utilized.
- These is no clear definition regarding Locked type and Adaptive type in IMDRF or ISO/IEC standards.

The type of clinical data (Standalone Performance Test)

Standalone Performance Assessment for clinical data

• To confirm a proper performance against clinical data (Evaluation for learning algorithm and learning model)

Clinical data

- A) Training data^{*}: Data used to train a *machine learning model*
- B) Validation data^{*}: Validation data can be used to tune hyper parameters or to validate some algorithmic
- C) Test data^{*} : Data used to assess the performance of a final model

The type of clinical data (Clinical Performance Assessment)

Post-Approval Change Management Protocol (PACMP)

Post-Approval Change Management Protocol (PACMP) is introduced for medical devices to enable continuous improvements through product lifecycle.

Publication and Guidance regarding AI/ML-enabled SaMD in Japan

English Version;

https://www.jstage.jst.go.jp/article/abe/7/0/7_7_118/_articl e/-char/en

English Version;

https://dmd.nihs.go.jp/jisedai/tsuuchi/Guidance_for_evaluati on_of_AI_assisted_systems.pdf

The example of approval AI/ML-enabled SaMD in Japan

Approval date	Medical Device Nomenclature (JMDN)	
2018.12.6	Supporting software for differential diagnosis with endoscopic imaging	
2019.9.17	Software for MRI system workstation	
2019.12.25	Software for general-purpose imaging system workstation	
2020.4.27	Supporting software for differential diagnosis with endoscopic imaging	
2020.5.8	Software for general-purpose imaging system workstation	
2020.6.3	Software for diagnostic X-ray imaging system workstation	2
2020.6.19	Software for general-purpose imaging system workstation	
2020.6.29	Supporting software for detecting lesion with endoscopic imaging	
2020.6.29	Software for diagnostic X-ray imaging system workstation	
2020.7.15	Supporting software for differential diagnosis with endoscopic imaging	
2020.8.20	Software for diagnostic X-ray imaging system workstation	
2020.9.2	Supporting software for differential diagnosis with endoscopic imaging	
2020.11.24	Software for ultrasound imaging system workstation	
2020.11.30	Supporting software for detecting lesion with endoscopic imaging	
2021.5.26	Software for general-purpose imaging system workstation	
2021.7.7	Software for general-purpose imaging system workstation	
2021.9.1	Software for general-purpose imaging system workstation	
2021.10.11	Software for diagnostic X-ray imaging system workstation	
2021.12.9	Software for general-purpose imaging system workstation	
2021.12.24	Software for diagnostic X-ray imaging system workstation	
2022.6.2	Software for diagnostic X-ray imaging system workstation	
2022.9.20	Supporting software for detecting lesion with endoscopic imaging	
-		

[Approval Product]

The majority of them are CAD using Machine Learning (Locked type)

> Type of Machine Learning :

Support Vector Machine, Deep Neural Network, Convolutional Neural Network, Cascade Classifier, etc.

> Target Disease :

Lung nodules, Brain tumor, Breast tumor, Colorectal cancer, Covid-19, etc.

> Modality :

X-ray, CT, MRI, Ultrasound, Endoscopy, etc.

As of 30th Sep. 2022

PMDA Science Board

Medical institutions

- Theme of on Science board in fiscal year 2022
 AI/ML-enabled Medical Device
- Re-use test data such as performance change at post-marketing.
- Comprehensive (various) test data considering intended use and clinical practice.
- How to review for adaptive AI.

Between top-class researchers

in Japan and PMDA reviewers

Assess cutting-edge technologies

Cybersecurity in Japan

The notification regarding Cybersecurity in Medical Devices was published on 2015, and Marketing Authorization Holder (MAH) should take steps to ensure appropriate safeguards. **2023**

"Principles and Practices for Medical Device Cybersecurity" (IMDRF/CYBER WG/N60 FINAL:2020) was published on 20 April 2020.

 \Rightarrow Japan will introduce this IMDRF documents into regulation by March 2023

